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For personal use only

Felix Fontein

March 8, 2005



Contents

1 Cryptography 1

1.1 Road Map to Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Introduction to Secret Key Systems . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 One-way Trapdoor Functions and the RSA System . . . . . . . . . . . . . . . . . 6

1.4 A Small Background in Complexity Theory . . . . . . . . . . . . . . . . . . . . . 10

1.5 Finding Primes and Primality Checking . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 The Fermat Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 The Solovay-Strassen Test (1977) . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.3 The Miller-Rabin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.4 Deterministic Primality Tests . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Security Issues of RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7.1 Implementation Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Distance of p and q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Pollards (p− 1) Factoring Attack . . . . . . . . . . . . . . . . . . . . . . . 22

Common Modulus Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Short Message Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bleichenbacher Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Low Public Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Low Private Key Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.2 Some Quick Notes on Factoring . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 Secret Key Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8.1 Stream Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8.2 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.9 Public Key Systems Based on the Discrete Logarithm Problem . . . . . . . . . . 34

1.9.1 Solving the Discrete Logarithm Problem . . . . . . . . . . . . . . . . . . . 35

Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Baby-step Giant-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Pohlig-Hellmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Index Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Pollard ρ Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10 An Introduction to Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.10.1 Affine Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2 CHAPTER 1. CRYPTOGRAPHY

1.1 Road Map to Cryptography

The area of cryptology contains lots of different subareas:
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Try to break ciphers Hide messages

Design of one-way functions Public key cryptosystems
Hash functions, secret key systems Based on one-way trapdoor functions

In this lecture, we will concentrate on cryptography. But what exactly is cryptography? We
want to cite a definition from the Handbook of Applied Cryptography [MvOV96], the “bible” for
applied cryptography:

Definition 1.1.1. Cryptography is the study of mathematical techniques related to aspects of
information security such as confidentiality in point-to-point communication, data integrity and
authentification.

Historical Remarks

• Around 1900 B.C., Egyptians used hyroglyphs to communicate secretly with their gods.

• The Romans used Caesar ciphers: By identifying the alphabet with Z26, that is the
integers modulo 26, the cipher works by translating every letter by an offset, the secret
key k ∈ Z26:

ϕ : Z26 → Z26, m 7→ m+ k.

This is a weak scheme, since by trying a maximum of 26 possibilities the plaintext can be
found.

• Around 1600, Vigenére proposed the following improvement of the Caesar cipher: Instead
of encrypting one letter at a time and using one key for all letters, his scheme encrypts n
letters at a time, where each of them is translated by a (not necessary) different key:

ϕ : Zn
26 → Zn

26, m 7→ m+ k where k ∈ Zn
26.

This might look more complex than the Caesar cipher, but by employing statistical analysis
like frequency analysis of letters, one can also defeat this scheme.

• In 1880, Kerckhoff formulated his principle:

“All the secrecy of a secret key system should rely on the secret key only.”

• In 1917, Vernam proposed and received a patent for a Vigenére cipher where n goes to
∞, also called the one time pad. We will later see that the one time pad is provable
secure. But it is not that useful in practice, since a key of at least the length of the
message must be exchanged before. It is still used; it is rumoured that the Soviet and the
U.S. governments exchanged lots of one time pad keys during the cold war, to be able to
communicate absolutely secretly in emergency situations.

• In 1930, D. Hill proposed a system

ϕ : Zn
26 → Zn

26, m 7→ Am+ k,
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where A ∈ GLn(Z26) and k ∈ Zn
26 form the key.1 This is a weak scheme because of so

called plaintext attacks: If the attacker knows a long enough sequence of pairs (m̃i,mi)
such that m̃i = Ami + k, he can compute A and k by employing basic linear algebra.

• In the Second World War, many new systems evolved. An example is the German Enigma
machine.

• In 1949, C. Shannon published his article Communication theory of secret systems. He
showed the existence of provable secure cyrptosystems.

• In 1976, Diffie and Hellmann realized the possibility of assymetric secret key systems, like

– public key cryptography,

– digital signatures and

– zero knowledge proofs.

Public key cryptosystems work as follows: If Alice wants to send a message to Bob, she
looks up Bobs public key, which is publicy avaible. Then she encrypts the message with
that key and sends it to Bob, who is the only person knowing the private key corresponding
to the public key, and so can decrypt the message.

The idea behind digital signatures is to mimic “real” signatures: Only one person can sign
for a given identity, but everyone can check whether a signature belongs to that identity.

An even more interesting concept are zero knowledge proofs: Alice wants to proof to Bob
that she knows a secret, and at the end of the day Bob is convinced that Alice knows the
secret, but has gained no clue about the secret itself.

1With GLn(R) we denote the invertible n × n-matrices over a ring R. Also note that A ∈ Rn×n is invertible
if and only if its determinant is a unit in R, i. e. det A ∈ R∗.

This can be shown as follows: If A is invertible, then 1 = det In = det(AA−1) = det A · det A−1, so det A ∈ R∗.
Conversely, if det A ∈ R∗, then since AA# = det A · In, we get A−1 = (det A)−1A#. (Here A# is the adjoint
matrix of A.)

Furthermore, note that an element x ∈ Zn is invertible if and only if gcd(x, n) = 1, i. e. if x and n are coprime.
This can be proven by using the Bezout identity.
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1.2 Introduction to Secret Key Systems

Definition 1.2.1. Let X and Y be arbitrary sets. A function ϕ : X → Y is called a one-way
function if ϕ(x) can be effectively computed for every x ∈ X, and it is practically not possible to
compute x ∈ ϕ−1(y) for almost all y ∈ Imϕ.

Examples 1.2.2.

(1) Let G be a finite group with |G| ≥ 2100 and e ∈ N, for example e = 17. Also efficient
multiplication should be possible. Define

ϕ : G→ G, g 7→ ge.

Such functions are called of RSA type. This is a good one-way function if |G| is unknown!
If n = |G| is known, then by Lagrange we have gn = 1G for all g ∈ G. If e and n are
coprime, the extended Euclidean algorithm delivers a Bezout equation

ed+ nb = 1 with d, b ∈ Z.

Then we have
ϕ(g)d = (ge)d = ged = g1−nb = g(gn)b = g1b

G = g.

If n and e are not coprime, with the same method one can recover ggcd(n,e) from ge, but in
general not g itself, since ϕ is not one-one, i. e. not injective.

(2) Let G = 〈g〉 be a cyclic group with generator g, and |G| ≥ 2100. Assume again that multi-
plication in G is efficient. Let

ϕ : Z→ G, m 7→ gm.

As a notation: If h = gm, we call m the discrete logarithm of h with base g, written
m = logg h. It is important to note that similar to the complex logarithm, the discrete

logarithm is multi-valued, as for example gm = gm+|G|. For many groups, the discrete log
problem (DLP) “given h and g, compute logg h” is considered a very hard problem.

(3) We want to define a one-way function ϕ : X → Y , where X = Y = Z64
2 . This scheme

mimics the methods used by secret ciphers like Rijndael, the cipher behind AES. Consider
the following multiplications on Z64

2 :

(a) The classic componentwise multiplication by interpreting Z64
2 as the 64-fold direct sum

of Z2; we will denote this multiplication by ⊗.

(b) By interpreting Z64
2 as Z264 , for example by the bijection (ai)i 7→

∑

i ai2
i−1, one can

define a Z264-like multiplication on Z64
2 . We will denote this by ·.

(c) Another way to interpret Z64
2 is by selecting a F2-basis of F264 and by this defining a

mapping between the two spaces; we will denote the F264-multiplication on Z64
2 by ×.

(d) Consider the mapping

(xi)i 7→








x1 · · · x8

x9 · · · x15
...

. . .
...

x57 · · · x64







∈ Z8×8

2 .

We denote the Z8×8
2 -multiplication on Z64

2 by ◦.

Given an x ∈ X, the cipher works by first doing a key expansion:

x0 := x, xt+1 := xt · xt + (xt ◦ xt)⊗ xt + xt × xt for t = 0, . . . , 3.

Then, the one-way function ϕ can for example be defined like

ϕ(x) = x1 ◦ x5 + (x2 ⊗ x3) · x4.

The security of this scheme lies in the fact that, though the multiplications on Z64
2 , Z264 ,

F264 and Z8×8
2 alone can be described algebraically very well, the mixing of these operations

makes it very hard or even impossible to employ algebraic methods to compute the preimage
of an image element.



1.2. INTRODUCTION TO SECRET KEY SYSTEMS 5

In the following, we will assume that every kind of information one wants to send and/or
encrypt can be stored as a sequence of one’s and zero’s, i. e. as an element of Zn

2 for some n
depending on the message. Of course, by employing bijective functions to other sets, also other
sets than Zn

2 can be used to store information.
We want to give two more applications of one-way functions:

(1) Password storage: For example on UNIX, the Data Encryption Standard (DES) cipher is
used to transform a user’s password (given in ASCII letters, where an ASCII letter corre-
sponds to an element of Z28) into a garbled looking string. For an attacker who got a copy
of the password file, it is computationally hard to compute a preimage of the encrypted
passwords.

(2) Hash functions: If X is a infinite set and Y finite, a one-way function ϕ : X → Y can be
for example used to protect data against changes by computing the hash value for a big file;
if the file is changed, for example by a malicious attacker or even by a hardware failure,
recomputing the hash value will give with a high probability another value.

A more sophisticated version of the one-way functions are the one-way functions with a secret
key : Let M , K and C be sets; we will call M the message space, K the key space and C the
cipher space.

Definition 1.2.3. A secret key system consists of maps

ϕ : M ×K → C and ψ : C ×K →M

called encryption and decryption, such that

(i) for all m ∈M and all k ∈ K, we have ψ(ϕ(m, k), k) = m, and

(ii) for a fixed m ∈M , the function ϕm : k 7→ ϕ(m, k) is a one-way function.

Famous examples are

• the Enigma machine;

• the 1975 Data Encryption Standard (DES);

• the 2001 Advanced Encryption Standard (AES).

This still leaves open the question of how to exchange the secret key for communication,
since when the attacker knows the key, everything is lost.
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1.3 One-way Trapdoor Functions and the RSA System

In 1976, Diffie and Hellmann realized the importance of one-way trapdoor functions:

Definition 1.3.1. A one-way trapdoor function is a one-way function f : X → Y having two
additional properties:

(i) the function ϕ is one-one (injective), and

(ii) the designer has a trapdoor which allows him to efficiently compute ϕ−1 : Imϕ→ X.

If one has such a function, it can be applied for example as follows:

(1) Secret key exchange: Alice publishes a one-way trapdoor function ϕ : X → Y . Bob wants
to send k ∈ X to Alice, which should serve as the secret key for a symmetric encryption
scheme. Instead of k he sends ϕ(k) to Alice, which makes it impossible for an eavesdropper
to get hold of k, but allows Alice to compute k by exploiting the trapdoor.

(2) Digital signatures: Alice deposits a one-way trapdoor function ϕ : X → Y with a trusted
party; this could for example be a government institution. A signature would be for example

ϕ−1(“Alice, Zürich 21. October 2004”).

It can be verified by applying ϕ to the signature; the idea behind this scheme is that
no other person but Alice, the designer of the one-way trapdoor function, can compose a
signature x ∈ X such that ϕ(x) gives a string as “Alice, Zürich 21. October 2004”.

This emphasizes that such a one-way trapdoor function could be very useful, but it does
not helps coming up with such a function. In 1978, Rivest, Shamir and Adleman proposed
the RSA system, which was the first instanciation of a one-way trapdoor function. The idea
behind it is as follows: The designer (Alice) constructs a finite group G, where only Alice can
compute φ := |G|. As usual, it should be easy to do multiplication in G. In addition, Alice
chooses an e ∈ N such that e and φ are coprime. Then

ϕ : G→ G, g 7→ ge

is a one-way trapdoor function.

Remarks 1.3.2.

(1) The mapping ϕ is one-one. This follows directly from the next:

(2) The extended Euclidean algorithm delivers some d ∈ Z such that ed+ bφ = 1, where b ∈ Z.
Then we have

ϕ−1 : G→ G, h 7→ hd,

since
(ge)d = ged = g1−bφ = g(gφ)−b = g.

(3) In RSA, one choses G = Z∗
n, where n is the product of two large distinct primes p and q.

Definition 1.3.3. For a natural number n ∈ N>0, define the Euler φ-function as follows:

φ : N>0 → N, n 7→ |Z∗
n| .

The next theorem will show how we can compute φ(n), if n = pq and p, q are known.

Theorem 1.3.4. If n =
∏k

i=1 p
ei

i ∈ N>0, where the pi are pairwise distinct primes and ei ∈ N>0,
then

φ(n) =
k∏

i=1

pei−1
i (pi − 1) = n

k∏

i=1

pi − 1

pi
.
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We will give two proofs of this theorem, one using elementary combinatorics and one em-
ploying the Chinese Remainder Theorem.

Proof #1. We will only show the case ei = 1 here, i. e. n = p1 · · · pk, by employing the inclu-
sion/exclusion principle. Define

Ai := {a ∈ Zn | pi divides a}.

It is easy to see that

Z∗
n = Ac

1 ∩ · · · ∩Ac
k,

where Ac
i = Zn \Ai. This gives

φ(n) = |Z∗
n| = |(A1 ∪ · · · ∪Ak)

c| = n− |A1 ∪ · · · ∪Ak|

= n−
∑

i

|Ai|+
∑

i<j

|Ai ∩Aj | −
∑

i<j<k

|Ai ∩Aj ∩Ak| ± · · ·+ (−1)k

∣
∣
∣
∣
∣

⋂

i

Ai

∣
∣
∣
∣
∣

= n−
∑

i

n

pi
+
∑

i<j

n

pipj
−
∑

i<j<k

n

pipjpk
± · · ·+ (−1)k

= n(1− 1
p1

) · · · (1− 1
pk

) = (p1 − 1) · · · (pk − 1).

For the second proof, which works for all n ∈ N>0, we need the Chinese Remainder Theorem
(CRT):

Theorem 1.3.5 (Chinese Remainder Theorem). Let n1, . . . , nk ∈ N>0 be pairwise coprime
integers, and let n = n1 · · ·nk. Then

Zn
∼= Zn1 × . . .Znk

.

Proof of the Chinese Remainder Theorem. Let n = pe1
1 · · · p

ek

k with pi pairwise distinct primes
and ei ∈ N>0. We will show the case where ni := pei

i ; the general case follows directly from this
one.

Define the function

ϕ : Z→ Zn1 × · · · × Znk
, a 7→ (a+ n1Z, . . . , a+ nkZ).

It is clear that ϕ is a ring morphism, and one directly sees that

kerϕ =
⋂

i

ker(x 7→ x+ niZ) =
⋂

i

niZ = nZ,

since n is the least common multiple of the ni. By the isomorphism theorem, we have

Z/nZ = Z/ kerϕ ∼= Imϕ ⊆ Zn1 × · · · × Znk
.

We will show that ϕ is surjective, which completes the proof. Since Z/nZ ∼= Imϕ, it is |Imϕ| =
|Z/nZ| = n. Now we also have |Zn1 × · · · × Znk

| = ∏k
i=1 ni = n, and since n is finite, we get

Imϕ = Zn1 × · · · × Znk
.

For n = n1 · · ·nk ∈ Z, where the ni are relatively coprime, the Chinese Remainder Theorem
gives

Zn
∼= Zn1 × · · · × Znk

,

which implies

Z∗
n
∼= Z∗

n1
× · · · × Z∗

nk
.

Therefore, we get the following corollary of the Chinese Remainder Theorem:
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Corollary 1.3.6. If n1, . . . , nk ∈ Z are pairwise coprime and n = n1 · · ·nk, it is

φ(n) =
k∏

i=1

φ(ni).

Proof #2 of Theorem 1.3.4. By the above corollary, we get

φ(n) =
k∏

i=1

φ(pei

i ).

Now let us take a look at the case n = pe with p a prime and e ∈ N>0. Since gcd(a, pe) = 1 if
and only if gcd(a, p) = 1, we get

∣
∣Z∗

pe

∣
∣ = pe − pe−1 = pe−1(p− 1).

Another very useful and easy to get corollary from the Chinese Remainder Theorem is the
following:

Corollary 1.3.7 (Simultanous congruences). Let n = n1 · · ·nk, where n1, . . . , nk are pair-
wise coprime. Then for every x1, . . . , xk ∈ Z there exists a unique integer x̄ ∈ Z such that
0 ≤ x̄ < n and

x̄ ≡ xi (mod ni) for every i ∈ {1, . . . , k}.

Proof. The Chinese Remainder Theorem gives a unique x̄ ∈ Zn such that

x̄ = ϕ−1(x1, . . . , xk),

where ϕ is the function from the proof of the Chinese Remainder Theorem.

Examples 1.3.8.

(1) For the system x̄ ≡ 1 (mod 3), x̄ ≡ 3 (mod 5), one can easily see that x̄ = 13.

(2) Given the system x̄ ≡ 13 (mod 151), x̄ ≡ 31 (mod 131), it is not so obvious what the
solution is. Euclids algorithm gives a, b ∈ Z such that a · 151 + b · 131 = 1. In this example,
we get a = 59 and b = 68. Now x̄ = 31 · (59 · 151) + 13 · (68 · 131) mod 151 · 131; can you
think of why this is the solution, and how to generalize this to more than two equations?

Now, back to the RSA system. For setting up the system, Alice has to do the following:

(1) Alice choses two distinct primes p, q ≥ 10100.

(2) Alice computes n = pq and φ(n) = (p− 1)(q − 1).

(3) Alice picks an e ∈ N, e < φ(n), which is coprime to n, and computes d ∈ N, d < φ(n) such
that ed+ bφ(n) = 1 for some b ∈ Z.

Now Alice publishes ϕ : Zn → Zn, m 7→ me. The information pieces p, q, φ(n) and d are kept
secret by her.

Questions and remarks 1.3.9.

(1) How difficult is it to find p and q from the public information? How difficult is it to factor
a number n ∈ N?

(2) Clearly if Bob sends m ∈ Z∗
n, then Alice can decrypt it, i. e. compute m from me by expo-

nentiating by d. But what happens if m ∈ Zn \ Z∗
n?

(It can be shown that decryption still works by using the Chinese Remainder Theorem. Can
you figure out how to prove that?)
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(3) Knowing p and q is equivalent to knowing n and φ(n).

(4) How hard is it to compute me and cd?

To answer the fourth question, assume that m and e are random numbers in between
{1, . . . , n}. Use consecutive squaring to compute

m, m2, m4 = (m2)2, m8 = (m4)2, m16 = (m8)2, . . . , m2k

= (m2k−1
)2,

where2 k := blog2 nc. Then me can be computed in at most 2k multipliations in Zn as follows:
Write e in binary representation, i. e.

e =
k∑

i=0

ei2
i, where ei ∈ {0, 1}.

Then

me =
k∏

i=0

mei2
i

=
k∏

i=0
ei 6=0

m2i

.

Example 1.3.10. Consider e = 17, that is e = 20 + 24. Thus we get

m17 = m20+24
= m(((m2)2)2)2.

So computing me costs O(log3 n) bit operations, where O is described in the following short
section:

2For a real number x ∈ R, define bxc := max{z ∈ Z | z ≤ x} (floor) and dxe := −b−xc (ceiling).
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1.4 A Small Background in Complexity Theory

One writes f(x) = O(g(x)) for f, g : R → R if there are constants x0, c ∈ R such that f(X) ≤
cg(x) for all x ≥ x0. This is called the big-O notation. If g ≥ 0, one has

lim sup
x→∞

f(x)

g(x)
<∞⇐⇒ f(x) = O(g(x)).

Example 1.4.1. The number of bit operations for adding two numbers a, b ≤ n is O(logn),
since the binary representation of a, b has at most length logn. Similarly, multiplying two num-
bers a, b ≤ n requires O(log2 n) bit operations, if schoolbook multiplication is used. By employing
more sophisticated methods, for example discrete Fourier transformations, multiplication can be
made a lot faster for large n.

Definition 1.4.2. Given an algorithm for computing f : Ns → R, (a1, . . . , as) 7→ f(a1, . . . , as),
one says the algorithm has polynomial time if the number of bit operations is O(logk n) for some
k ∈ N, whenever a1, . . . , as ≤ n. An algorithm which requires at least nα bit operations for some
α > 0 is called an exponential time algorithm.

In cryptography, problems for which polynomial time algorithms do exist are considered easy,
while algorithms for which only exponential time algorithms do exist are considered (possibly)
hard.

Definition 1.4.3. A problem P is called a polynomial time problem once one knows a polyno-
mial time algorithm for solving P. All these problems form the class P .

Examples 1.4.4.

(1) Multiplying two numbers in Zn is a polynomial time problem, thus it is in P .

(2) As was shown in [AKS02], the problem PRIMES (is a given number n prime?) is in P .
More information about primality testing can be found in the next section.

Definition 1.4.5. A decision problem P is said to be in the class NP (nondeterministic
polynomially), if

(i) the problem can be solved for someone with infinite computing power;

(ii) the answer can be verified in polynomial time.

Example 1.4.6. The problem FACTORING is clearly in NP , since once the factors are pro-
vided checking whether their product is the original number can be acomplished in polynomial
time.

Definition 1.4.7. A decision problem P1 reduces to a decision problem P2 if for any instance
of P1 there is a polynomial time algorithm translating the problem to an instance of P2.

Definition 1.4.8. A decision problem P is called NP -hard if every other decision problem
in NP reduces to P. If moreover P is in the class of NP problems, one says that P is a
NP -complete problem.

Examples 1.4.9.

(1) The traveling salesman problem.

(2) The subset sum problem (see later).

(3) The knapsack problem (see later).

Remark 1.4.10. A big open question in complexity theory is whether P = NP or P $ NP .
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1.5 Finding Primes and Primality Checking

For the RSA cryptosystem, one needs to construct two primes p, q ≥ 10100. How can this be
done?

Remark 1.5.1. There are infinitely many primes, as a simple argument shows: Assume
p1, . . . , pn are all primes. Then, consider p1 · · · pn+1; none of the p1, . . . , pn divides this number,
so it must contain another prime factor, a contradiction!

A more interesting question is how the primes are distributed. This is partially answered by
the following theorem:

Theorem 1.5.2 (Prime Number Theorem). Let π(x) denote the number of primes in the
interval [0, x]. Then one has

lim
x→∞

π(x)

x/ log x
= 1.

This theorem has an important consequence: The chance that a randomly chosen integer
with 100 digits is prime is roughly

10100/ log 10100

10100
=

1

100 log 10
≈ 1

230
.

This leads to the following

Algorithm 1.5.3.

(1) Pick a 100-digit number m not divisible by small primes like 2, 3, 5, . . .

(2) Check whether m is prime.

(3) If m is not prime, go back to step 1.

This opens up another question: How to check whether a number m ∈ N is prime? One could
try all possible divisors from 2 up to b√mc. The cost of that is O(m1/2 log2m) bit operations:
This is an exponential time algorithm!

In order to check if m is possibly prime, there are several probabilistic and deterministic
algorithms which outperform this primitive algorithm a lot, i.ė. they are polynomial time. We
will present three probabilistic algorithms and one deterministic one, which was published in
the 2002 paper “PRIMES is in P” by three Indian computer scientists [AKS02]. The three
probabilistic algorithms are:

(A) Fermat’s test;

(B) Solovay-Strassen test;

(C) Miller-Rabin test.

1.5.1 The Fermat Test

We want to recite the Little Fermat Theorem for integers:

Theorem 1.5.4 (Little Fermat). Let p be a prime and a an integer not divisible by p. Then

ap−1 ≡ 1 (mod p).

Proof. It is
∣
∣Z∗

p

∣
∣ = φ(p) = p − 1, and further we have a ∈ Z∗

p; so by Lagrange this theorem
follows.

If p is not a prime, for some a ∈ Z∗
p this is often not the case. To be more precise about this,

we first need a definition:
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Definition 1.5.5. For n ∈ N, let

Un := {a ∈ Z∗
n | an−1 ≡ 1 (mod n)}.

Lemma 1.5.6. For all n ∈ N, the set Un is a subgroup of Z∗
n.

Proof. Since Z∗
n is finite, it is enough to check that ab ∈ Un if a, b ∈ Un. Indeed, if a, b ∈ Un,

then
(ab)n−1 = an−1bn−1 ≡ 1 (mod n).

This implies that if Un $ Z∗
n, then by Lagrange we have |Un| ≤ 1

2 |Z∗
n| < 1

2 |Zn| = n
2 . Thus

the probability that a randomly chosen a ∈ Z∗
n fulfills an−1 ≡ 1 (mod n) is at most 1

2 in this
case. This suggests the following algorithm, which is known as the Fermat pseudoprime test :

(1) Pick a canidate prime m.

(2) Check that m is not divisible by small primes.

(3) Pick random integers a1, . . . , as ∈ {1, . . . , n− 1} and check whether an−1
i

?≡ 1 (mod n).

If an−1
i 6≡ 1 (mod n) for one i, then m is not prime by Little Fermat. If all tests succeed, then

m is not neccessary prime! But if s is small, the probability that m is prime is larger than
1− 2−s. Unfortunately, this probability cannot be send to one by increasing s up to infinity, for
the following reasons:

Definition 1.5.7. A number n which is not prime is called a Carmichael number if Un = Z∗
n,

that is for all a ∈ Z∗
n we have an−1 ≡ 1 (mod n).

Carmichael numbers do exist, the smallest one is 561. Before characterizing them further,
we would like to point out that there even exist infinitely many of them.

Theorem 1.5.8. Let n ∈ N.

(a) If p is a prime and p2 divides n, then n is not Carmichael. Thus all Carmichael numbers
are squarefree.

(b) If n is composite, odd and squarefree, then n is Carmichael if and only if p | n implies
(p− 1) | (n− 1).

(c) If n is Carmichael, then n has at least three prime factors.

Proof.

(a) Write n = pem where gcd(p,m) = 1, and assume e ≥ 2. By the Chinese Remainder
Theorem, we have

Z∗
n
∼= Z∗

pe × Z∗
m.

The order of Z∗
pe is pe−1(p − 1), so p divides φ(pe). By Sylow, there is an element a ∈ Z∗

pe

of order p. So there is some b ∈ Z∗
n which corresponds to (a, 1) ∈ Zpe × Zm; and b also has

order p.

Now, it must be bn−1 6≡ 1 (mod n), since elsewise p divides n−1, but since p already divides
n this is a contradiction.

(b) Assume n = p1 · · · ps, where the pi are distinct odd primes. By the Chinese Remainder
Theorem,

Z∗
n
∼= Z∗

p1
× · · · × Z∗

ps
.

Chose some x ∈ Z∗
n, and let x correspond to (x1 . . . , xs). Then xn−1 ≡ 1 (mod n) if and

only if xn−1
i ≡ 1 (mod pi) for i = 1, . . . , s. So if (pi − 1) | (n− 1) for all i, this is always the

case, which completes the ‘if’ part of the proof.

For the ‘only if’ part, assume there is an i such that (pi − 1) - (n − 1). Let a ∈ Z∗
pi

be a
primitive element, that is a generates Z∗

pi
. Then an−1 6≡ 1 (mod pi). So if b ∈ Z∗

n corresponds
to (1, . . . , 1, a, 1, . . . , 1), then bn−1 6≡ 1 (mod n) by the Chinese Remainder Theorem. Thus
n cannot be Carmichael.
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(c) Assume n = pq, where p and q are primes and p > q. If n would be Carmichael, by (b) we
get (p− 1) | (n− 1), and hence there is an λ ∈ N such that λ(p− 1) = n− 1 = pq − 1. This
means

q − λ =
λp− λ+ 1

p
− λ =

1− λ
p
∈ N,

which implies p | (λ− 1) and so λ ≥ p+ 1. Thus,

n− 1 = λ(p− 1) ≥ (p+ 1)(p− 1) = p2 − 1 > pq − 1 = n− 1,

a contradiction.

As a result, the following can be said: If n ∈ N is a number, there are two possibilities:

• Un = Z∗
n, which happens if and only if n is prime or Carmichael;

• Un ( Z∗
n, which happens if and only if n is composite and [Z∗

n : Un] ≥ 2.

Thus for a number n ∈ N which is neither prime nor Carmichael, the chance that a random a ∈
Zn fails an−1 ≡ 1 (mod n) (and thus proves that n is not prime) is at least 1

2 .

1.5.2 The Solovay-Strassen Test (1977)

Before we can present the results by Solovay and Strassen, we first have to introduce some results
from elementary number theory.

Definition 1.5.9. Let F be a finite field. An element u ∈ F∗ = F \ {0} is called a quadratic
residue if the equation x2 = u has a solution in F. Otherwise, u is called a quadratic nonresidue.

Example 1.5.10. Let F = Z11 and take a look at the following table:

x 1 2 3 4 5 6 7 8 9 10

x2 1 4 9 5 3 3 5 9 4 1

So {1, 3, 4, 5, 9} are the quadratic residues of Zn.

In this example one can already get an idea what happens in a finite field: Both −x and x
are mapped onto the same number x2 by squaring, and thus (if x 6= −x for all x ∈ F∗) at most
half of the elements can be quadratic residues. The following lemma gives a more exact result:

Lemma 1.5.11. When the characteristic Char F = 2, then every element of F∗ is a quadratic
residue. If Char F 6= 2 then exactly half the elements of F∗ are quadratic residues.

Proof. Consider the squaring map SQ : F → F, x 7→ x2. If Char F = 2, then SQ is a Z2-linear
map. Further kerSQ = {0}, and thus SQ is one-one. Since F is finite, SQ must also be onto
(surjective). Since SQ(F∗) are the quadratic residues of F we are done.

If Char F 6= 2, then SQ(a) = SQ(b) if and only if a = −b or a = b. Since the only x ∈ F
satisfying x = −x is x = 0, every quadratic residue corresponds exactly to two elements of F∗.
This completes the proof.

At first, we want to consider F = Zp for a prime p.

Definition 1.5.12. Let p be an odd prime and a ∈ N arbitrary. Then let

(
a

p

)

:=







0 if a ≡ 0 (mod p),

1 if a is a quadratic residue in Zp,

−1 elsewise

be the Legendre symbol.

Example 1.5.13. It is
(

7
11

)
= −1.



14 CHAPTER 1. CRYPTOGRAPHY

Theorem 1.5.14 (Euler, 1760). If p is an odd prime and a ∈ N, then

a
p−1
2 ≡

(
a

p

)

(mod p).

Proof. Assume a 6≡ 0 (mod p). Then a
p−1
2 ≡ ±1 (mod p), since the polynomial x2 = 1 has

exactly the two solutions ±1 in Zp and ap−1 ≡ 1 (mod p) by Little Fermat. If a is a quadratic

residue, there exists some v ∈ Zp such that v2 ≡ a (mod p), and thus a
p−1
2 ≡ vp−1 ≡ 1 (mod p).

Now consider the set

Q := {x ∈ Z∗
p | x

p−1
2 ≡ 1 (mod p)}.

By the Fundamental Theorem of Algebra, the polynomial x
p−1
2 − 1 has at most p−1

2 roots, and

thus |Q| ≤ p−1
2 . But we just have shown that Q contains at least p−1

2 elements, and thus Q
must be exactly the set of quadratic residues.

But in our case, we want to check whether or not n is prime. For that, we require a definition
of what

(
a
n

)
means if n is not prime (in this case Zn is not a field), and how quadratic residues

behave in Zn.

Definition 1.5.15. Let n ≥ 0 be an odd integer and n = pe1
1 · · · pes

s , where the pi are distinct
primes. Then for a ∈ N let

(a

n

)

:=

(
a

p1

)e1

· · ·
(
a

ps

)es

be the Jacobi symbol.

Theorem 1.5.16. Let n ∈ N and a1, a2, a ∈ N.

(1) If a1 ≡ a2 (mod n), then
(

a1
n

)
=
(

a2
n

)
.

(2) It is
(

a1a2
n

)
=
(

a1
n

) (
a2
n

)
.

(3) The following inversion formula, which is also known as the quadratic reciprocity law, holds:

(a

n

)

=

{

−
(

n
a

)
if a ≡ n ≡ 3 (mod 4),

(
n
a

)
otherwise.

(4) If n is odd, then
(

2

n

)

=

{

1 if n ≡ ±1 (mod 8),

−1 if n ≡ ±3 (mod 8).

A remark for the proof: The statements (1) and (2) directly follow from the definition. Proofs
for the other statements can be found for example in every book about elementary number theory
which covers quadratic residues.

Remark 1.5.17. The first statement can be interpretet such that the Jacobi symbol becomes a
map from Zn to {−1, 0, 1}; and the second says that

( ·
n

)
: Z∗

n → {−1, 1}, a 7→
(

a
n

)
is a group

homomorphism.

The theorem allows efficient computation of
(

a
n

)
for large a, n:

Example 1.5.18. It is

(
176

221

)

=
(2)

(
2

221

)4( 11

221

)

=

(
11

221

)

=
(3)

(
221

11

)

=
(1)

(
1

11

)

= 1.

Remark 1.5.19. An algorithm can be deduced whose complexity is at most O(log3 n) bit oper-
ations.

Theorem 1.5.20 (Solovay-Strassen). Assume n is odd.
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(a) The set

V :=
{

x ∈ Z∗
n | x

n−1
2 ≡

(x

n

)

(mod n)
}

is a subgroup of Z∗
n.

(b) It is V = Z∗
n if and only if n is prime.

The consequence is that if n is not prime, then for at most half of the numbers a ∈ Z∗
n we

have a
n−1

2 ≡
(

a
n

)
(mod n). Thus by randomly chosing t integers a1, . . . , at ∈ Z∗

n, one checks
whether a number n is not prime or prime with a probability at least 1− 1

2t . This test is called
the Solovay-Strassen test.

The cost of the test (for a fixed t) is O(log3 n).

Proof of the Solovay-Strassen theorem.

(a) Again, it suffices to show ab ∈ V if a, b ∈ V . So let a, b ∈ V , then we have

(a

n

)( b

n

)

=

(
ab

n

)

and a
n−1

2 b
n−1

2 ≡ (ab)
n−1

2 (mod n).

(b) If n is prime, by Euler V = Z∗
n. Otherwise, if n is not prime, let us assume V = Z∗

n. Then
xn−1 ≡ 1 (mod n) for all x ∈ Z∗

n; thus n has to be Carmichael, and n = p1 · · · ps where the
pi are pairwise distinct primes, and s ≥ 3, and futhermore pi − 1 divides n − 1 for every i
by theorem 1.5.8. Consider the Chinese Remainder Theorem:

Z∗
n ≡ Z∗

p1
× · · · × Z∗

ps
.

Let b ∈ Z∗
p1

a quadratic nonresidue, and let a ∈ Z∗
n correspond to (b, 1, . . . , 1). Then a

n−1
2

corresponds to (b
n−1

2 , 1, . . . , 1), and since the correspondence is one-to-one and a
n−1

2 ≡ ±1

(mod n) (because of Z∗
n = V ), it must be a

n−1
2 ≡ 1 (mod n).

On the other hand we have

(a

n

)

=

(
a

p1

)

· · ·
(
a

ps

)

=

(
b

p1

)(
1

p2

)

· · ·
(

1

ps

)

=

(
b

p1

)

= −1,

contradicting V = Z∗
n.

1.5.3 The Miller-Rabin Test

Now we want to present another probabilistic primality test, which is more efficient than the
first two in the sense that the probability for a failure is at most 1

4 for one round in the test,
and not 1

2 . It is currently one of the most used tests for primality. But before we present that
test, we again need some preparations.

Lemma 1.5.21. Let n be prime and n− 1 = 2sd where d is odd. If a ∈ Z∗
n, then either ad ≡ 1

(mod n), or there exists some r ∈ {0, 1, . . . , s− 1} such that a2rd ≡ −1 (mod n).

Proof. Clearly ord(a) divides n − 1 = |Z∗
n|. So ord(ad) = 2` for some 0 ≤ ` ≤ s. If ` = 0, then

ad ≡ 1 (mod n). Otherwise (ad)2
`−1 6≡ 1 (mod n) and (ad)2

` ≡ 1 (mod n), and since 1 has only

the two square roots ±1 modulo n since n is odd, it must be (ad)2
`−1 ≡ −1 (mod n).

Definition 1.5.22. For some odd n ∈ N, define the following sets:

• The Fermat liars

F (n) := {a ∈ Z∗
n | an−1 ≡ 1 (mod n)};

• The Euler liars

E(n) :=
{

a ∈ Z∗
n | a

n−1
2 ≡

(a

n

)

(mod n)
}

;



16 CHAPTER 1. CRYPTOGRAPHY

• The strong liars

S(n) := {a ∈ Z∗
n | ad ≡ 1 (mod n) or

a2rd ≡ −1 (mod n) for some r ∈ {0, 1, . . . , s− 1}},

where n− 1 = 2sd such that d is odd.

Example 1.5.23. Let n = 65. Then |Z∗
n| = φ(65) = 4 · 12 = 48.

• It is
F (65) = {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64}

a subgroup of index 3;

• It is
E(65) = {1, 8, 14, 18, 47, 51, 57, 64}

a subgroup of index 6;

• It is
S(65) = {1, 8, 18, 47, 57, 64};

this is not a subgroup, since 8 · 18 ≡ 14 (mod 65).

Theorem 1.5.24. For all odd n, one has that

S(n) ⊆ E(n) ⊆ F (n) ⊆ Z∗
n.

Thus, S(n) = Z∗
n if and only if n is prime.

Proof. If n is prime, we have S(n) = Z∗
n by the lemma. So let n be composite. By Solovay-

Strassen, E(n) $ Z∗
n. Futhermore, it is clear that E(n) ⊆ F (n) ⊆ Z∗

n. So we can complete the
proof by showing S(n) ⊆ E(n).

Assume a ∈ S(n) and n − 1 = 2sd, where d is odd. Let k be the smallest integer such that

a2kd ≡ 1 (mod n); by assumption we have k ∈ {0, 1, . . . , s}. Assume n = pe1
1 · · · pet

t , where the
pi are distinct primes.

We first take a look at the case k = 0. For every i we have ad ≡ 1 (mod pi), and thus ordpi
a

divides d. Since d is odd, ordpi
a must be odd. Further ordpi

divides pi − 1 and thus a
pi−1

2 ≡ 1

(mod pi), which implies
(

a
pi

)

= 1 by Euler. But this means
(

a
n

)
= 1 ≡ a

n−1
2 (mod n), so we

have a ∈ E(n).

The second case is k > 0; in that case a2k−1d ≡ −1 (mod n). For any i we have a2kd ≡ 1

(mod pi) and a2k−1d ≡ −1 (mod pi), and thus ordpi
a divides 2kd, but not divides 2k−1d. So we

can write ordpi
a = 2kdi, where di is odd. Since ordpi

a divides pi − 1, we know that 2k divides
pi − 1. Thus we can write pi = 2kbi + 1 where bi ∈ Z. Note that

a
ordpi

a

2 ≡ −1 (mod pi).

Thus by Euler

(
a

pi

)

≡ a
pi−1

2 ≡ a
ordpi

a

2
· pi−1

ordpi
a ≡ (−1)

pi−1

ordpi
a

≡ (−1)
pi−1

2kdi ≡ (−1)
pi−1

2k = (−1)bi (mod pi),

since di is odd. Further we have

n =
t∏

i=1

pei

i =
t∏

i=1

(2kbi + 1)ei ≡
t∏

i=1

(1 + 2kbiei) ≡ 1 + 2k
t∑

i=1

biei (mod 22k).

Therefore we have

2s−1d =
n− 1

2
≡ 2k−1

t∑

i=1

biei (mod 2k),
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and thus

2s−kd ≡
t∑

i=1

biei (mod 2).

So we finally get

a
n−1

2 = a2s−1d = (a2k−1d)2
s−k ≡ (−1)2

s−k ≡ (−1)
Pt

i=1 biei

≡
t∏

i=1

((−1)bi)ei ≡
t∏

i=1

(
a

pi

)ei

=
(a

n

)

(mod n),

and thus a ∈ E(n).

Theorem 1.5.25 (Miller and Rabin). If n is odd and composite, then |S(n)| ≤ 1
4φ(n) except

if n = 9; in that case |S(n)| = 2, while φ(n) = 6.

Proof. We distinguish two cases:

1. The first case is that n is Carmichael.

Let n = p1 · · · pt, where the pi are distinct primes, and pi−1 divides n−1 for all i, and t ≥ 3.
(This can be assumed by theorem 1.5.8.) Define numbers s1, . . . , st such that n−1 = 2si(pi−
1)di, where di is odd for every i. Without loss of generality, we can assume s1 ≤ · · · ≤ st.
Let s := s1 = min{s1, . . . , st}.
Then a

n−1
2s ≡ 1 (mod n) for all a ∈ Z∗

n, which one can easily see by applying the Chinese
Remainder Theorem. Furthermore, n−1

2s is even.

We distinguish two more cases:

1a. The first is that s = si for all i. Then n−1
2s+1 is an odd multiple of pi−1

2 . Then S(n) is
contained in the subgroup

A1 := {a ∈ Z∗
n | a

n−1
2s+1 ≡ ±1 (mod n)}.

Let a(k1, . . . , kt) be the element in Z∗
n defined via

ψ : Zn → Zp1 × · · · × Zpt , a(k1, . . . , kt) 7→ (gk1
1 , . . . , g

kt
t ),

where the gi’s are generators of the Z∗
pi

’s. Then a(k1, . . . , kt)
n−1

2s+1 ≡ ±1 (mod n) if and
only if either all ki are even, or all ki are odd. Since t ≥ 3, then it follows that |S(n)| ≤

1
2t−1φ(n) ≤ 1

4φ(n).

1b. The second is st > s. Then n−1
2s+1 is a multiple of pt − 1, and hence even. So

S(n) ⊆ A0 := {a ∈ Z∗
n | a

n−1
2s+1 ≡ 1 (mod n)}.

Since it is A0 6= Z∗
n, we know that |A0| ≤ 1

2φ(n). Additionally, we have

S(n) ⊆ A2 := {a ∈ Z∗
n | a

n−1

2s+2 ≡ ±1 (mod n)},

which is clearly a subgroup of A0.

We now claim A2 $ A0; which again is left to be proved by the reader.

Together it follows that |S(n)| ≤ |A2| ≤ 1
2 |A0| ≤ 1

4φ(n).

2. The second case is that n is not Carmichael.

We know that S(n) ⊆ F (n) $ Z∗
n and |F (n)| ≤ 1

2φ(n).

As an excercise, construct a subgroup W ⊆ F (n) such that

(i) S(n) ⊆W and

(ii) W $ F (n).

Hint: Let W = {a ∈ Z∗
n | a2`d ≡ ±1 (mod n)} for some `.



18 CHAPTER 1. CRYPTOGRAPHY

So let us sum this up: Let n be a canidate prime; for example, n ≈ 10100, then approximately
1

230 of the numbers are prime. The probability is higher when small factors do not produce
division.

Take random numbers a1, . . . , at ∈ Z∗
n, and compute n − 1 = 2sd where d is odd. Then

compute for i = 1, . . . , t

ad
i

?≡ 1 (mod n) and a2`d
i

?≡ −1 (mod n), where ` = 0, . . . , s− 1.

If neither happens for a particular i, then we have proven that n is not prime by the first lemma
of this subsection! If one of the cases happens for every i, then the likelihood that n is prime is
at least 1− 4−t by Miller-Rabin.

In practice, take for example t = 20. This results in prime numbers with probability at
least 1− 240 ≈ 1− 10−12. But what is the cost of this test? It is O(log3 n) bit operations, since
we need O(log n) multiplications in Z∗

n.
This test is called the Miller-Rabin pseudoprime test, and it is probably the most-used non-

deterministic test today: It does not bears the problems which the Fermat test has, and it
includes the Solovay-Strassen test while being easier to compute, since

(
a
n

)
does not needs to be

evaluated.

1.5.4 Deterministic Primality Tests

Let us leave the area of non-deterministic tests and return to the deterministic ones. As we have
seen, simply trying to divide by all possible prime factors is not a good idea, since it is an expo-
nential time algorithm. For a long time, it was not clear if there exist deterministic polynomial
time primality test. This question was answered positively in August 2002 by Agrawal, Kayal
and Saxena, when they published a preprint of their paper [AKS02], which gives a polynomial
time algorithm! Unfortunately, the complexity for the algorithm is quite high even though it
is polynomial: The current version has a complexity of O(log10.5 n), where the original version
even had O(log12 n). Thus, for practical applications where a primality test is required to be
fast, non-deterministic algorithms are still in use.

In this subsection, we want to sketch the idea of this paper. Consider the polynomial
ring Zn[x].

Lemma 1.5.26. For all a ∈ Z∗
n, it is (x+ a)n ≡ xn + a (mod n) if and only if n is prime.

Proof. If n is prime, one has (x + y)n = xn + yn in Zn[x, y], and by Little Fermat, an ≡ 1
(mod n) if a ∈ Z∗

n.
If n is not prime, then a has to be Carmichael. It follows that n = p1 · · · pt and many

binomial coefficients
(

n
m

)
are non-zero modulo n.

Remark 1.5.27. If n = pq, where p < q are primes, then

(x+ a)n = xn + 0 + · · ·+ 0 +

(
n

p

)

xn−pap + 0 + . . . ,

and
(
n
p

)
is divisible by q.

The lemma cannot be used directly for practical reasons, since representing (x+a)n mod n
or even just computing it would be an exponential time algorithm! The idea of AKS is now to
compute (x+ a)n (mod n, xr − 1) for several small r.
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1.6 Finite Fields

In this section we want to recall several facts about finite fields which we will need later.

Proposition 1.6.1. Let F be a finite field and q = |F|. Then q = pn where n ∈ N>0 and p is
prime. Further Zp is contained in F as a subfield.

Proof. Define a map ψ : Z → F as follows: Map 0 7→ 0, n 7→ 1 + · · · + 1 (n times) and
−n 7→ −(1+· · ·+1) (n times), where n ∈ N>0. It is easy to see that this is a ring homomorphism.
Since Z is a principal ideal domain, kerψ = mZ for some m ∈ N; and thus Zm is embedded as
ψ(Z) in F. Since F contains no zero divisors, mZ must be a prime ideal. In addition F is finite,
and thus m > 0. So m must be prime. Now F is a Zm-vector space, and as |F| < ∞ we have
n := dimZm

F <∞, and thus |F| = |Zn
m| = mn, and we conclude since m is prime.

Remark 1.6.2. If F is an arbitrary (not neccessary finite) field, then the map ψ gives us the
characteristic of F:

Char F =

{

0 if kerψ = 0,

p if kerψ = pZ.

Examples 1.6.3.

(a) For Q, R and C, the characteristic is zero since they contain Z as a subring, and thus ψ is
injective.

(b) Let F = Z2[x]/(x
3 +x+1); from the exercises we know this is a field. We have |F| = 8 = 23,

and further Z2 ⊆ F and Char F = 2.

Theorem 1.6.4. For each prime p and n ∈ N>0 there exists a unique (up to isomorphism)
field F such that |F| = pn.

Proof. Consider f = xpn − x ∈ Zp[x]. Now f ′ = −1, and thus f has only simple roots. Let

K ⊇ Zp be an extension field such that f =
∏pn

i=1(x− xi), where xi ∈ K (for example, take the
algebraic closure of Zp, or a splitting field of f). Let F := {x1, . . . , xpn}. We will show that F is
a field:

It is easy to see that 0, 1 ∈ F. If x, y ∈ F, then (x − y)pn
= xpn − ypn

= x − y and thus
x − y ∈ F. If x, y ∈ F \ {0}, then (xy−1)pn

= xpn
(ypn

)−1 = xy−1 and thus xy−1 ∈ F. So F is a
field with pn elements.

We will continue with the uniqueness. Assume F is a field of pn elements. By Proposi-
tion 1.6.1 we can assume that F is an extension field of Zp, and thus f ∈ F[x]. Since every
element of F∗ is a root of f by Little Fermat, one sees that F is the splitting field of f , and thus
unique up to isomorphism.

Notation 1.6.5. Let q = pn, where p is prime and n ∈ N>0. Then let Fq denote the finite field
with q elements. Note that Fp

∼= Zp.

From now on, let q be a prime power.

Proposition 1.6.6. Let F be a finite field. Then the multiplicative group F∗ is cyclic.

Proof. It is clear that F∗ is a finite Abelian group. By the structure theorem for finite Abelian
groups, we have

F∗ ∼= Zn1 ⊕ · · · ⊕ Znr ,

where n1 divides n2, . . . , nr−1 divides nr. Thus αnr = 1 for all α ∈ F∗ by Little Fermat. Then
all α ∈ F∗ are roots of f := xnr − 1 ∈ F[x], and thus |F∗| ≤ nr, which implies nr = |F∗| and thus
F∗ ∼= Znr .

This implies F∗
q
∼= Zq−1 and Z∗

p
∼= Zp−1 (as groups!).

Remarks 1.6.7.
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(1) By using Proposition 1.6.6 we can show that there exists a unique field of pn elements up to
isomophism: If F and K are two such fields, there are α ∈ F and β ∈ K such that F∗ = 〈α〉
and K∗ = 〈β〉. Define the map ψ : F → K by 0 7→ 0 and αn 7→ βn. It is not hard to show
that this is an isomorphism.

(2) The proposition does not gives us a way to find the generators of F∗.

(3) Consider the Discrete Logarithm Problem (DLP):

Let F∗ = 〈α〉 and β ∈ F∗. Can we find some n such that αn = β? (I. e. n = logα β.)

This problem is very hard if |F| is “big”, and β is “general” (i. e. chosen at random).

Corollary 1.6.8. Every finite field F can be represented as F ∼= Zp[x]/(f) where f ∈ Zp[x] is
irreducible. If Char F = p and deg f = n, then |F| = pn.

Proof. Define a ring homomorphism

ψ : Zp[x]→ F, 1 7→ 1, x 7→ α,

where p = Char F and α ∈ F∗ generates F∗ as a group. This map is surjective, and thus
F ∼= Zp[x]/ kerψ. Now Zp[x] is a principle ideal domain (PID) and thus kerψ = (f) for an
f ∈ Zp[x]. Since F is a field, (f) must be maximal and thus f irreducible. Since

|Zp[x]/(f)| = pdeg f

we conclude.

Corollary 1.6.9. There exists at least one irreducible polynomial of degree n ∈ N>0 in Zp[x]
for all primes p.

Proof. Represent Fpn by Zp[x]/(f) as in the last corollary; then f is irreducible of degree n.

Remark 1.6.10.

(1) If f ∈ Zp[x] is the minimal polynomial of a generator as in the proof of the lemma, and
F ∼= Zp[x]/(f), then x is a generator of F∗.

(2) Let F∗ = 〈α〉 and |F| = pn. Take 1, α, . . . , αn ∈ F. Since dimZp
F = n, these elements are

linearly dependent and thus there exist a0, . . . , an ∈ Zp, not all zero, such that

n∑

i=0

aiα
i = 0.

Let f =
∑
aix

i ∈ Zp[x]. Then f is the minimal polynomial3 of x over Zp, and F ∼= Zp[x]/(f).

Theorem 1.6.11. The multiplicative group F∗
pn embeds in a natural way in GLn(Zp).

Proof. For n = 1 this is clear, so let n > 1. Define the ring morphism

ϕ : Fpn ∼= Zp[x]/(f)→ Zn×n
p , 0 7→ 0, x 7→ A

where

A =









0 0 −a0

1
. . .

...
. . . 0 (−1)n−1an−2

0 1 (−1)nan−1









such that xn +

n−1∑

i=0

aix
i = f.

This is well-defined: It is easy to see that detA = (−1)n+1a0 6= 0 since f is irreducible, and thus
ψ|F∗

pn
is a well defined map from F∗

pn to GLn(Zp). Further det(λIn −A) = f(λ), and thus

ψ(f) = f(ψ(x)) = f(A) = 0

by Cayley-Hamilton, since f is the characteristic polynomial of A.
The map ψ is injective, since ψ(g(x)) = 0 implies g(A) = 0 and thus f | g, since f is also

the minimal polynomial of A because it is irreducible.

3This means that f is monic, i. e. the highest coefficient is one, and minimal in the sense that if g ∈ Zp[x] is
another polynomial vanishing at α, then f divides g.
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Remarks 1.6.12. In the exercises we found out that

|GLn(Zp)| =
n−1∏

i=0

(pn − pi),

and further
∣
∣F∗

pn

∣
∣ = pn − 1. Thus if n > 1, then |GLn(Zp)| is larger than

∣
∣F∗

pn

∣
∣. For n = 1, we

have F∗
p
∼= Z∗

p
∼= GL1(Zp).

Definition 1.6.13. The Galois group Gal(Fpn/Fp) of Fpn over Fp is

{ϕ : Fpn → Fpn | ϕ ring homomorphism where ϕ|Fp
= idFp

}.

If ϕ ∈ Gal(Fpn/Fp), it must be that kerϕ ∈ {0,Fpn} since Fpn is a field. Since ϕ(1) = 1 we
get that ϕ is injective, and since Fpn is finite, ϕ must also be surjective. So ϕ is an automorphism
of Fpn and it is easy to verify that Gal(Fpn/Fp) is a group.

Examples 1.6.14.

1. It is Gal(Fp/Fp) = {id}.

2. Define F : Fpn → Fpn by x 7→ xp. Then F |Fp
is the identity on Fp by Little Fermat,

and thus F ∈ Gal(Fpn/Fp). We call F the Frobenius endomorphism. Note that 〈F 〉 =
{id, F, F 2, F 3, . . . } is a subgroup of Gal(Fpn/Fp).

Theorem 1.6.15. The Frobenius endomorphism F generates Gal(Fpn/Fp).

Proof. Let ϕ ∈ Gal(Fpn/Fp) and let α ∈ F∗
pn such that 〈α〉 = F∗

pn . Let k ∈ {1, . . . , pn − 1} such

that αk = ϕ(α). Assume k > 1, since otherwise ϕ = id = F 0. Then ϕ(x) = xk for every x ∈ Fpn

since ϕ is a ring homomorphism and Fpn = {0} ∪ 〈α〉.
Write k = p`r where p does not divides r. Then ϕ◦F n−` maps every x onto (xpn−`

)p`r = xpnr,
and since xpn − x annihilates every element of Fpn we have that xpnr is the same than xr. We
now want to show r = 1. Without loss of generality we can assume k = r, i. e. p does not divides
k. Assume that k > 1.

Take a look at the polynomial f := (x+1)k−xk−1 =
∑k−1

i=1

(
k
i

)
xi ∈ Fpn [x]. This polynomial

is annihilated by every element of Fpn , since x 7→ xk is a ring endomorphism of Fpn . Thus deg f

must be at least pn, or f = 0. Since r < 0 this means that p divides
(
k
i

)
for every i = 1, . . . , p−1,

and especially
(
k
1

)
= k. But this is a contradiction!

What Galois theory says is that there is a one-to-one correspondence between subfields of
Fpn which contain Fp and subgroups of Gal(Fpn/Fp). A subfield corresponds to the subgroup
which leaves the subfield fixed. And a subgroup corresponds to the subfield which is left fixed
by every element of the subgroup.

Let m be a divisor of n. Then the elements of Fpn which are fixed under Fm are exactly the
elements of Fpm , since Fm(α) = α if and only if α is a root of xpm − x, and Fpm is the splitting
field of xpm − x.

If Fpm is a subfield of Fpn , then Fpn is an Fpm-vector space and thus pn is a power of pm,
which implies that m divides n. Thus we have shown that Fpm is a subfield of Fpn if and only
if m divides n.
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1.7 Security Issues of RSA

Recall that n = pq, where p, q ≥ 10100 are prime. The public information are the modulus n,
the encryption exponent e and the encryption map ψ : Zn → Zn, m 7→ me = c. The private
information are the primes p and q and the decryption exponent d, where ed ≡ 1 (mod φ(n)).
Further, decryption is done by ψ−1 : Zn → Zn, c 7→ cd = m.

The fundamental question is: is being able to break RSA (that is computing ψ−1) polynomial
equivalent to factoring n?

Lemma 1.7.1. Knowing p and q is polynomial equivalent to knowing n and φ(n).

Proof. Consider the relations n = pq and φ(n) = (p−1)(q−1). If n and φ(n) are known, one can
find p and q by solving this quadratic equation over the reals. The other direction is trivial.

Lemma 1.7.2. Knowing the decryption exponent d is polynomial equivalent to factor.

Proof. If p, q and e are known, d can easily be computed. The other direction is more involved;
we only give an outline of the proof.

Given d, it follows that mde−1 ≡ 1 (mod n) for all m ∈ Z∗
n. It follows that φ(n) divides

de− 1. Let k = de− 1 and write k = 2tr with r odd. Since p and q are odd, φ(n) is divisible at
least by four and thus r ≥ 2.

Let g ∈ Z∗
n be randomly chosen. Consider the sequence

gr, g2r, . . . , g2tr.

Let i be the smallest index such that g2ir ≡ 1 (mod n). Then g2i−1r 6≡ 1 (mod n) if i ≥ 1.
By the Chinese Remainder Theorem Zn

∼= Zp × Zq, and thus g2i−1r maps to (±1,±1). So

there are four possibilities for g2i−1r:

(a) it corresponds to (1, 1); thus g2i−1r ≡ 1 (mod n); this will not happen by hypothesis;

(b) it corresponds to (−1,−1); thus g2i−1r ≡ −1 (mod n);

(c) it corresponds to (1,−1) or (−1, 1), and thus gcd(g2i−1r, n) is either p or q.

One can show that for randomly chosen g, more than fifty percent of the cases one deals with
are case (c). The proof for this is left to the reader as an exercise.

The cost of this algorithm is O(log3 n).

1.7.1 Implementation Weaknesses

(1) p and q should be sufficiently apart: For example, the following is a bad choice: let a
be a random number around 10100. Let p := nextprime(a) and q := nextprime(p+ 1), and
n := pq. This can be attacked since q = nextprime(

√
n).

(2) Pollards (p− 1) factoring attack:

Definition 1.7.3. Let m and B be positive integers. One says that m is B-smooth if all
prime factors of m are less or equal than B.

Example 1.7.4. The number 96 is 3-smooth: it is 96 = 25 · 3.

Assume n = pq and that p− 1 is B-smooth, but q − 1 is not (for a small bound B). Define

k :=
∏

α≤B
α prime

α

j

log n

log α

k

.

By assumption q − 1 does not divides k, but p− 1 does. By little Fermat we have

ak ≡ 1 (mod p) and ak 6≡ 1 (mod q)

for more than fifty percent of the a’s. (Another exercise for the interested reader.) If ak 6≡ 1
(mod q), then gcd(ak − 1, n) = p.
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Remark 1.7.5. For randomly chosen p, with a high probability p − 1 has a large prime
factor.

Definition 1.7.6. An odd prime p is called a safe prime if p−1
2 is prime.

Examples 1.7.7. The numbers 7 and 11 are safe primes.

In practice, p and q are chosen as safe primes.

(3) Common modulus attack: A sitation: A large corporation computes n = pq with p, q
safe primes. Different web servers get pairs (ei, di) of encryption/decryption exponents for
this modulus n. As p and q are safely stored (maybe even decentralized), the compromise
of one server does not compromises the others.

But this assumption is wrong, as by one of the above lemmata p and q can be computed
from one pair (ei, di).

In addition, if the same modulus is used with two different encryption exponents e1 and e2
which are coprime, and a message can be intercepted both encrypted by e1 and e2, then the
original message can be decrypted without breaking the system itself. (See the exercises.)

(4) Short message encryption: In practice n is around 1024 bits. Assume a message 1 ≤
m ≤ 240 is send.

With probability around 18 percent, m = m1m2 with m1,m2 ≤ 222. Then c ≡ me ≡ me
1m

e
2

(mod n). Produce a list of c
me

1
mod n for 1 ≤ m1 ≤ 222 and store the last 50 bits of each

result. Compute me
2 mod n for 1 ≤ m2 ≤ 222 and check if the last 50 bits agree with a

number in the previous list. This leaves a short list of canidates for c
me

1
≡ me

2 (mod n); in

that case we found m = m1m2.

(5) Bleichenbacher attack (1998): Under public key cryptography standard PKCS I, n is
chosen to have 1024 bits, and the following protocol is used: Of each message m, the first
16 bits specify the protocol ID, then there follow a lot of random bits, followed by some
zeros to indicate the start of the real message, and then the last 128 bits contain the real
message.

The default behaviour for a server who received such a packet which contained an invalid
protocol ID was to send the invalid protocol ID back to the sender, in decrypted form.

Bleichenbacher exploited this behaviour to produce a decryption of c = me mod n bit-by-bit
by sending many (invalid) requests to the server, which are of the form

c′ = cre = (mr)e mod n.

As an exercise, figure out how this can be done. Hint: Multiplying by two is (more or less)
a cyclic shift.

(6) Low public key: Early implementations used e = 3 as an encryption exponent. (This has
the advantage that only two multiplications modulo n are needed for encryption.) There
are several attacks known; the most sophisticated is by Coppersmith using shortest vector
computation with LLL.

Another reason: If n ≈ 21024 and m ≤ 2300, then m3 ≤ 2900 and thus m3 mod n = m3 ∈ N.
So by taking the cubic root of m3 mod n over R gives m.

A third attack is the following: Assume m3 is known for different moduli, for example
m3 ≡ ci (mod ni), where i = 1, . . . , 4. Without loss of generality gcd(ni, nj) = 1 for i 6= j.
Under reasonable assumptions we can expectm3 <

∏4
i=1 ni =: n. By the Chinese Remainder

Theorem, we can reconstruct m3 mod n and thus m3 ∈ N from m3 (mod ni). Thus again
we can take the cubic root in R to get m.

In practice, it is better to use e = 216 + 1 = 65537; this is also prime and fairly easy to
compute.
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(7) Low private key exponent: Another tempting idea is to let d = 3; then for example a
web server’s load is reduced dramatically. But there are several reasons why this is bad:

First, a too small d is bad since just trying d = 2, 3, . . . (small numbers) gives back m from
me.

Second, in 1990 M. Wiener shows that d should be at least n1/4. The idea of Wiener is that
ed− bφ(n) = 1 for some b ∈ Z, and thus

∣
∣
∣
∣

e

φ(n)
− b

d

∣
∣
∣
∣
=

1

dφ(n)
.

Assume 1 ≤ p < q ≤ 2p and d < n1/4. Then

|n− φ(n)| ≤ 3
√
n, so

∣
∣
∣
∣

e

n
− b

d

∣
∣
∣
∣
≤ 1

dn1/4
<

1

2d2
.

By using continued fraction expansion, b and d can be found (or at least a short list of
canidates).

!!! ??? n1/2 anstelle n1/4 in der Formel, da spaeter d2 ??? !!!

A conclusion: in an implemtation all difficulties above are taken into account nowadays.
The security depends mainly on the difficulty of factoring.

1.7.2 Some Quick Notes on Factoring

A major idea in factoring is the “quadratic sieve”: Consider the polynomial f := x2−y2 ∈ Z[x, y].
Assume (α, β) ∈ Z2 is a point with f(α, β) = 0. More generally, assume f(α, β) ≡ 0 (mod n),
where n is the product of two distinct primes p and q. There are four possibilities:

(a) It is α ≡ β (mod n);

(b) It is α ≡ −β (mod n);

(c) p divides α+ β and q divides α− β;

(d) q divides α+ β and p divides α− β,

In cases (c) and (d), computing gcd(α−β, n) reveals a factor of n. But how to get a non-trivial
solution of f(α, β) ≡ 0 (mod n)?

First, chose a factor base p1, . . . , pm (distinct primes); for example the first m primes. Then
search for numbers xi ∈ Zn such that x2

i mod n can be completely factored over p1, . . . , pm.
Write

x2
i mod n = pe1i

1 · · · pemi
m , i = 1, . . . , `.

From this we produce a binary matrix (eij mod 2) 1≤i≤`
1≤j≤m

. Find λi ∈ F2 not all zero such that
∑`

i=1 λieij is even for all j (this is basic linear algebra over F2!). Then we found

x2 =
∏̀

i=1

(x2
i )

λi

which is a square.
By using this, the RSA challenge 512 was solved at the end of the 90’th.
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1.8 Secret Key Ciphers

Recall that a secret key cipher consists of two maps

ϕ :M×K → C, ψ : C × K →M
such that

(1) we have ψ(ϕ(m, k), k) = m for every k ∈ K and m ∈M and that

(2) for fixed m ∈M, the function ϕm : K → C, k 7→ ϕ(m, k) is a one-way function.

In practice, there are two systems available:

(A) stream ciphers (M,K, C can have arbitrary sizes) and

(B) block ciphers (M,K, C are fixed finite sets).

1.8.1 Stream Ciphers

In 1917, Vernam invented (and got a patent) for the one-time pad. For this letm = (m0,m1,m2, . . . ) ∈
ZN

2 (that are the Z2-valued sequences). Alice and Bob exchange a key k = (ki)i ∈ ZN
2 . The

encryption is done by
c = m+ k = (ci + ki)i ∈ ZN

2 ,

and decryption by
m = c+ k = (ci + ki)i ∈ ZN

2 .

(This works since ci + ki = mi + 2ki = mi in Z2.)
In 1949, Shannon proved that the one-time pad is unconditionally and provable secure. In

order to make this precise, Shannon viewed the sequences (mi)i, (ki)i and (ci)i as generated by
random variables M , K and C. For a discrete4 random variable X he introduced the notion of
entropy :

H(X) := −
t∑

i=1

pi log2 pi, where P (X ∈ {m1, . . . ,mt}) = 1, pi = P (X = mi)

and the mi are pairwise distinct.

Examples 1.8.1.

(1) Let X describe a Bernoulli trial with p = 1
2 and q = 1 − p = 1

2 , i. e. P (X = 1) = p and
P (X = 0) = q. Then

H(X) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1.

(2) Let A, C, T and G have the probabilites P (X = A) = P (X = C) = P (X = T ) = P (X =
G) = 1

4 . In this case we have

H(X) = −4 · log2

1

4
= 2.

An encryption scheme would be

A 7→ 00, C 7→ 01, T 7→ 10, G 7→ 11.

(3) Now assume P (X = A) = 1
2 , P (X = C) = 1

4 and P (X = T ) = P (X = G) = 1
8 . What about

this scheme:
A 7→ 0, C 7→ 10, T 7→ 110, G 7→ 111.

One can easily check that a sequence consisting of A, C, T and G encoded by this scheme
can be uniquely decoded. How many bits per letter are needed in average? We have

E(`(X)) =
1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3 =

7

4
= 1.75 < 2.

The entropy is

H(X) = −1

2
log2

1

2
− 1

4
log2

1

4
− 1

8
log2

1

8
− 1

8
log2

1

8
=

7

4
.

4A random variable X is called discrete if there exists a finite set S such that P (X ∈ S) = 1.
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The Noiseless Shannon Theorem says:

Any encoding scheme of a random sample from a random variable X requires at least
H(X) bits per symbol. There are encoding schemes which in the limit can reach that
bound.

In cryptography Shannon defined a secret key cryptosystem to be unconditionally and prov-
able secure if

H(M | C) = H(M).

Here H(M | C) denotes the conditionally entropy under the knowledge of the cipher of M .
He proved that the one-time pad is unconditionally secure as soon as H(K) ≥ H(M). The

problem with this result is that a secret key has to be exchanged which is longer than the longest
message ever sent.

The idea of stream ciphers is to generate pseudo-random sequences (ki)i starting only with
some finite data.

Example 1.8.2. Let si+2 = si + si+1 where s0 = s1 = 1; this is a Fibonacci sequence. Over Z
the sequence looks like

1, 1, 2, 3, 5, 8, . . . ,

(i. e. there is no period), while modulo 3 (i. e. over Z3) it looks like

1, 1, 2, 0, 2, 2, 1, 0, 1, 1, . . . ,

i. e. it has a period of 8. Modulo 16 it looks like

1, 1, 2, 3, 5, 8, 13, 5, 2, 7, 9, 0, 9, 9, 2, . . . ,

so the period is quite long.

Definition 1.8.3. Let F be a finite field. The relation

sn+i + bn−1sn−1+i + bn−2sn−2+i + · · ·+ b0si = 0, (∗)

where si, bj ∈ F for j = 0, . . . , n− 1 and i ∈ N, is called an n-th order linear recurrence relation
having the characteristic polynomial

χ(z) = zn + bn−1z
n−1 + · · ·+ b0 ∈ F[z].

Example 1.8.4. The Fibonacci sequence is given by the second order recurrence relation, whose
characteristic polynomial is

χ(z) = z2 − z − 1.

In the next paragraphs we want to inspect the following questions:

(1) How can the total solution space of (∗) be described?

(2) How can sequences with long periods be constructed?

(The largest possible period is qn − 1, where q = |F|.)

Let V = FN = {(s0, s1, . . . ) | si ∈ F} be the vector space of the F-valued sequences. (Note
that this is an infinite dimensional vector space with an uncountable basis.) Define the shift
map

D : V → V, (si)i 7→ (si+1)i.

This is an F-linear map.

Lemma 1.8.5. The element s ∈ V satisfies (∗) if and only if χ(D)(s) = 0, and that happens if
and only if s ∈ kerχ(D).

Proof. Clear.
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Example 1.8.6. For the Fibonacci sequence, we have χ(z) = z2 − z − 1 and

(D2 −D − 1)((si)i) = (s2 − s1 − s0, s3 − s2 − s1, s4 − s3 − s2, . . . ).

The consequence is that the total solution space of (∗) is a subspace of V .

Lemma 1.8.7. The dimension of kerχ(D) over F is degχ.

Proof. This is also clear, since any choice of n initial conditions si = si for i = 0, . . . , n − 1
determines a unique solution of (∗).

Lemma 1.8.8. Assume χ1, χ2 ∈ F[z] are given. Then we have

kerχ1(D) ⊆ kerχ2(D) ⇐⇒ χ1 divides χ2.

Proof. If χ1 divides χ2, then χ2 = r ·χ1 where r ∈ F[x]. If we have w ∈ kerχ1, then χ2(D)(w) =
(r(D)χ1(D))(w) = r(D)(χ1(D)(w)) = r(D)(0) = 0, thus we have w ∈ kerχ2(D).

For the other direction assume that kerχ1(D) ⊆ kerχ2(D). Write χ2 = q · χ1 + r where
q, r ∈ F[x] and r = 0 or deg r < degχ1. Now for every w ∈ kerχ1(D) we have r(D)(w) =
χ2(D)(w) − q(D)(χ1(D)(w)) = 0, thus kerχ1(D) ⊆ ker r(D). Assume that r 6= 0: this implies
that dim ker r(D) ≥ dim kerχ1(D) = degχ1, but by the previous lemma dim ker r(D) = deg r <
degχ1, contradiction!

Lemma 1.8.9. Assume

χ(z) =

n∏

i=1

(z − λi)

where the λi ∈ F are pairwise distinct. Then

kerχ(D) = ker(D − λ1)⊕ · · · ker(D − λn).

Moreover for λ ∈ F we have

ker(D − λ) = F · (λi)i = {(c, cλ, cλ2, . . . ) | c ∈ F}.

Proof. The form of ker(D − λ) is clear. By the last lemma we know ker(D − λi) ⊆ kerχ(D).
Since the (λj

i )j are linearily independent5 the claim follows.

Remark 1.8.10. When there are multiple roots, for example if λ is an m-th root of χ, then
ker(D − λ)m consists of

span
{

(λi)i, (iλ
i−1)i, . . . , (0, . . . , 0,

(m−1)!
0! λ0, m!

1! λ
1, (m+1)!

2! λ2, (m+2)!
3! λ3, . . . )

}

.

(Note the similarity to homogenous linear differential equations: the other solutions for the root λ
are found by differentiating the first one.)

Example 1.8.11. Find an explicit formula for the Fibonacci sequence over F19. We have
χ(z) = z2 − z − 1 = (z − 5)(z − 15). The general solution is thus

si = c05
i + c115

i, c0, c1 ∈ F.

To get a particular sequence where s0 = s1 = 1, we solve

1
!
= s0 = c0 + c1 and 1

!
= s1 = 5c0 + 15c1,

leading to c0 = 9 and c1 = 11. Thus

si = 9 · 5i + 11 · 15i, i ∈ N

is the Fibonacci sequence over F19!

5Which follows directly from writing λ
j
i where 1 ≤ i ≤ n, 0 ≤ j < n into a matrix. This matrix has a special

form and is called a Vandermonde matrix. The determinant of this is nonzero if and only if the λi are pairwise
distinct, which we have required here.
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Another way is to use generating functions: We define

F((z)) =

{ ∞∑

i=−N

aiz
i | N ∈ N, ai ∈ F

}

= F[[z]]⊕ z−1F[z−1]

to be the ring of formal Laurent series in z. (Note that F((z)) is the quotient field of F[[z]], the
formal power series in z.) In the following, we need the formal Laurent series in z−1,

F((z−1)) = z−1F[[z−1]]⊕ F[z].

Consider the vector space

V = z−1F[[z−1]] = F((z−1))/F[z] =̂
{

s0
z + s1

z2 + s2
z3 + · · · | si ∈ F

}
;

this space is isomorphic to FN.

Remark 1.8.12. Multiplication by z inside V corresponds to the shift map D in FN!

Lemma 1.8.13. Let s = (si)i ∈ FN and f(z) = s0
z + s1

z2 + s2
z3 + · · · ∈ V . Then s satiesfies (∗) if

and only if f(z) = r(z)
χ(z) with r ∈ F[z] such that deg r < degχ.

Proof. We have χ(D)(s) = 0 if and only if χ(z)f(z) = r(z) ∈ F[z].

Example 1.8.14. Again the Fibonacci sequence: We want to find an explicit formula for the
Fibonacci sequence si+2 = si−1 + si where s0 = s1 = 1 using generating functions. The general
solution of si+2 − si+1 − si = 0 (in the sense of the previous lemma) is given by

f(z) =
a1z + a0

z2 − z − 1
=

∞∑

i=0

si

zi+1
.

The initial condition s0 = s1 = 1 results in a1 = 1 and a0 = 0, since we get

f(z) =
z

z2 − z − 1
=

z

z2
· 1

1− (1
z + 1

z2 )
=

1

z
+

1

z2
+

1

z3
+ · · · .

Let z2 − z − 1 = (z − α1)(z − α2). By partial fraction composition, we get

f(z) =
z

z2 − z − 1
=

A

z − α1
+

B

z − α2
where A =

α1

α1 − α2
and B =

α2

α2 − α1
.

If F = C we have α1 = 1
2(1 +

√
5) and α2 = 1

2(1 −
√

5), and by using the geometric series we
have

1

z − β =
1

z
· 1

1− β
z

=
1

z

∞∑

i=0

βi

zi
=

∞∑

i=1

βi−1

zi
.

Thus we get

z

z2 − z − 1
=

1√
5

∞∑

i=1

(1 +
√

5)i

2izi
− 1√

5

∞∑

i=1

(1−
√

5)i

2izi
,

and so we have

si =
1√
5

(

1 +
√

5

2

)i+1

− 1√
5

(

1−
√

5

2

)i+1

.

In complex analysis is shown that any holomorphic (i. e. complex differentiable) function is
of the form

f(z) =
∞∑

i=0

ai(z − zi)
i, ai, z, z0 ∈ C.

This leads to the question whether and how it is possible to determine if f(z) is a rational

function, i. e. f(z) = g(z)
h(z) where g, h ∈ C[z].
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Example 1.8.15. Let f(z) = z+ z2 +2z3 +3z4 +5z5 +8z6 +13z7 + . . . (Fibonacci coefficients)
is rational, and

f(z) =
1/z

(1/z)2 − (1/z)− 1
=

z2

1− z − z2
.

Definition 1.8.16. A sequence s = (si)i is called ultimately periodic if there are numbers r̂, ĵ
such that sr̂+i = si for all i ≥ ĵ. The smallest numbers r̂ and ĵ with the above properties are
called the period and the pre-period, respectively.

Example 1.8.17. The sequence 3, 7, 11, 5, 9, 2, 5, 2, 5, 2, 5, 2, 5, . . . has period 2 and pre-period 6.

Theorem 1.8.18 (Kronecker). For a power series

f(z) =
∞∑

i=0

si

zi+1
∈ F[[z−1]]

the following are equivalent:

(i) f(z) is a rational function of degree n, where the degree of f(z) = g(z)
χ(z) is defined6 as

deg f := max{deg g, degχ};

(ii) s = (si)i satisfies the n-th order recurrence χ(D)(s) = 0;

(iii) the Hankel (sp?) matrix

Hf =









s0 s1 s2 · · ·
s1 s2

s2
. . .

...









(an infinite matrix) has rank n.

If F is finite, these are further equivalent to

(iv) s0, s1, s2, . . . is ultimately periodic.

If F is arbitrary and (iv) holds, this also implies (i)–(iii).

Proof. The implication (ii)⇒ (i) is the previous lemma: given χ(D)(s) = 0, we have f(z) = g(z)
χ(z)

where deg g < degχ.
(i) implies (ii): let f(z) = g(z)

χ(z) = g̃(z)
χ(z) + r(z), where r ∈ F[z] and deg g̃(z) < degχ. Then the

sequence f(z) =
∑ si

zi+1 satisfies χ(D)(s) = 0.
(i) is equivalent to (iii): let

f(z) =

∑n−1
i=0 aiz

i

∑n
i=0 biz

i
=

∞∑

i=0

si

zi+1
.

This is equivalent to
n−1∑

i=0

aiz
i =

(
n∑

i=0

biz
i

)( ∞∑

i=0

si

zi+1

)

,

and by comparing coefficients we get

zn−1 : an−1 = s0,

zn−2 : an−2 = bn−1s0 + s1,

...
...

z0 : a0 = b1s0 + · · ·+ bn−1sn−2 + sn−1,

z−1 : 0 = b0s0 + · · ·+ bn−1sn−1 + sn,

z−k : 0 = b0sk−1 + · · ·+ bk−1sn−k + sn−k+1, k ∈ N.

6The rationale behind this definition comes from complex analysis: if f(z) = g(z)
h(z)

is reduced, i. e. g and

h are coprime, then f is a d-to-one map from C onto C, where C is the Riemann sphere and d = deg f :=
max{deg g, deg h}.
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This again is equivalent to









s0 s1 s2 · · ·
s1 s2

s2
. . .

...



















b0
b1
...

bn−1
...











= 0,

which in turn is equivalent to that Hf has finite rank n.

(iv) implies (ii): assume s = (si)i is ultimately periodic with period r and pre-period j. Then
(Dr+j −Dj)(s) = 0, and thus

f(z) =
g(z)

zr+j − zj
,

where the fraction is not necessarily reduced.

(ii) implies (iv) in the case that F is finite: assume F = Fq and χ(z) = zn +
∑n−1

i=0 biz
i, and

χ(D)(s) = 0. Introduce the state vector at time t,

xt =






st+1
...

st+n




 ,

and the state transition matrix

A =








0 1 0
. . .

. . .

0 0 1
−b0 · · · · · · −bn−1







.

Then (∗) is equivalent to xi+1 = Axi for all i. Consider the state sequence x0, x1, x2, . . . .
Since |Fn| = |F|n = qn <∞ by the pigeonhole principle7 there exists a, b ∈ N with 0 ≤ a < b ≤ qn

such that xa = xb. Then s = (si)i is periodic of period at most b− a ≤ qn.

Remark 1.8.19. An addition to the implication (ii) ⇒ (iv): if a state is non-zero and b0 6= 0,
then all states x0, x1, x2, . . . are non-zero and the maximal period is thus strictly less than qn.

The question remains whether we can construct periodic sequences of period qn − 1?

Lemma 1.8.20. Let ϕ(z) = zn +
∑n−1

i=0 biz
i ∈ Zq[z] and ϕ(0) = b0 6= 0. Then there exists an

e ∈ N such that 1 ≤ e ≤ qn − 1 and q divides the polynomial ze − 1.

Definition 1.8.21. The smallest e with the property as in the lemma is called the order of ϕ.

Proof of the lemma. Consider the ringR = F[z]/(ϕ) which has qn elements. Consider the residue
classes zi + (ϕ), where i = 0, . . . , qn−1. By the pigeonhole principle (note that zi 6≡ 0 (mod ϕ)
for all i) there exists r, s with 0 ≤ r < s < qn such that zs ≡ zr (mod ϕ). Thus zr(zs−r−1) ≡ 0
(mod ϕ), and so ϕ divides zr(zs−r − 1). Since ϕ(0) 6= 0 we get that ϕ divides zs−r − 1.

Lemma 1.8.22. Let Fq be a finite field and let ϕ(z) be irreducible. Then the order of ϕ is equal
to the order of any of the roots of ϕ.

Proof. If α is a root of ϕ, then the others are given by α, αq, αq2
, . . . , αqn−1

, and all of them have
the same order `. Thus ϕ divides z` − 1, and ` is the smallest number with this property.

Lemma 1.8.23. Assume α is a generator of F∗
qn. Let ϕ ∈ Fq[z] be the minimal polynomial of

α over Fq. Then ϕ has order qn − 1.

7The pigeonhole principle states that if n + 1 objects are placed in n boxes, at least one box must contain two
objects.
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Proof. Clearly αqn−1 = 1 and thus ϕ divides zqn−1 − 1. Since αa 6= 1 for 0 < a < qn − 1 we get
that ϕ does not divides za − 1 for 0 ≤ a < qn − 1.

Corollary 1.8.24. Let ϕ = zn+
∑n−1

i=0 biz
i be as above, and assume s = (si)i ∈ FN

q is a sequence
defined through s0 = · · · = sn−1 = 0 and

sn+i + bn−1sn+i−1 + · · ·+ b0si = 0 for all i ∈ N

(that is, ϕ(D)(s) = 0). Then s is periodic with period qn − 1 and pre-period 0.

Proof. Since b0 6= 0 it is possible to “reverse” the time direction, i. e. one can compute si from
si+1, . . . , si+n. This implies that there is no pre-period.

Since ϕ divides zqn−1 it follows that (Dqn−1 − 1)(s) = 0, and thus s has a period dividing
qn − 1. But since ϕ does not divides za − 1 for a < qn − 1, we get

(Da − 1)(s) 6= 0 for all 0 < a < qn − 1,

and thus the period is qn − 1.

But now we want to return to cryptography. Between 1940 and 1970 secret key ciphers were
constructed where Alice and Bob agree on a minimal polynomial ϕ as above. They compute
f(z) = 1

ϕ(z) =
∑∞

i=0
si

zi+1 . If Alice wants to send the message

m =
∞∑

i=0

mi

zi+1
,

then she computes c = f +m and sends c. Bob deciphers it via m = c− f .

Remark 1.8.25. The state vector at time t is given by

xt =






st
...

st+n−1




 ∈ Fn,

and the transition matrix by

A =








0 1 0
. . .

. . .

0 0 1
−b0 · · · · · · −bn−1







∈ Fn×n.

Then (∗) has a first order description

xi+1 = Axi, i ∈ N.

Thus x1, . . . , xqn−1 appear once and only once and pass through all non-zero vectors in Fn
q .

Note that Aqn−1 = In!
But there is a great weakness of this system! Assume an attacker has access to st, . . . , st+2n−1,

which for example can be gained from a plaintext attack. From (∗) it follows that









st st+1 · · · st+n−1

st+1
. . .

...
...

. . .
...

st+n−1 · · · · · · st+2n−1

















b0
...
...

bn−1









=








−st+n

−st+n+1
...

−st+2n−1







.

Solving this system reveals b0, . . . , bn−1 and hence also ϕ and f .
The cost of this attack: A naive Gauss elimination requires O(n3) field operations. In 1969

Berlekamp and Massey came up with an algorithm to solve this linear problem in O(n2) field
operations! Thus, after 1969 everybody stopped using this system.
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After 1969 the interest in stream ciphers remained intense. Instead of linear recurrence
sequences, nonlinear recurrence sequences were consideres. For this let f ∈ F[x1, . . . , xn]; then

sn+i = f(sn+i−1, . . . , si), i ∈ N

defines a nonlinear recurrene sequence.

As an example, consider si+3 = 3si+2si+1 + 6s2i si+2 over F19. In the area of nonlinear recur-
rence sequences, still many problems are not solved. A standard reference for such recurrence
sequences is the book by Rainer Rueppel from 1986. One of the most famous nonlinear stream
ciphers is probably MD5.

1.8.2 Block Ciphers

A block cipher is a secret key system where M, K and C are finite sets. A famous example is
DES, the data encryption standard introduced in 1975. There we have

|M| = |C| = 264 and |K| = 256.

Remark 1.8.26. Under the old ASCII code, 27 = 128 type writer symbols are encoded in

{x ∈ Z8
2 |
∑

xi = 0}.

For example,

A 7→ 01000001, a 7→ 11100001, 0 7→ 00110000.

Thus eight ASCII symbols correspond to an element in Z56
2 when the check digit is omittet.

Because of advancements in computers, DES became obsolte in the mid 90’th.

On November 26, 2001 the National Institute for Standards and Technology (NIST) adopted
the Rijndael system as the advanced encryption standard AES. The inventors of the systems
are Vincent Rijmen and Joan Daemen from Belgium.

We want to sketch the system. Consider the polynomial ring Z2[x, y, z]. Let µ := z8 + z4 +
z3 + z + 1 (an irreducible element of Z2[z]) and I =

〈
µ, x4 + 1, y4 + 1

〉
. In Rijndael,

M = C = K = R := Z2[x, y, z]/I.

Note that R has a Z2-basis given by {xiyjzk | 0 ≤ k < 8, 0 ≤ i, j < 4} and thus |R| = 2128.
Moreover F = Z2[x]/ 〈µ〉 is a field of 28 = 256 elements.

Define a permutation of F through ϕ : F→ F, where ϕ = ϕ3 ◦ L ◦ ϕ1 and

ϕ1 : F→ F, f 7→
{

f−1 if f 6= 0,

0 if f = 0,

L : F→ F, f 7→ (z4 + z3 + z2 + z + 1) · f mod z8 + 1,

ϕ3 : F→ F, f 7→ (z6 + z5 + z + 1) + f.

In practice ϕ is stored via a lookup table. We want to use the following notation for an ele-
ment r ∈ R = Z2[x, y, z]/I in the following:

r =

3∑

i=0

3∑

j=0

rijx
iyj =

3∑

i=0

rjy
j , where rij ∈ F256 and rj ∈ F256[x]/

〈
x4 + 1

〉
.

The encryption algorithm works like this: Alice and Bob exchange a secret key k ∈ R. In a
first step, they both do a secret key expansion, computing 11 secret keys k(t), t = 0, . . . , 10, by

k(0) = k, k
(t+1)
0 =

3∑

i=0

ϕ(k
(t)
i,3)xi+3 + zt + k

(t)
0 , k

(t+1)
i = k

(t+1)
i−1 + k

(t)
i
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for t = 0, . . . , 9 and i = 1, 2, 3. If now Alice wants to send the message m ∈ R, she computes

m(0) := m+ k(0),

m(t+1) := γ
3∑

i=0

3∑

j=0

ϕ(m
(t)
ij )xiy3i+j + k(t+1) for t = 0, . . . , 8,

c := m(10) :=
3∑

i=0

3∑

j=0

ϕ(m
(9)
ij )xiy3i+j + k10,

where γ = (z + 1)x3 + x2 + x+ z ∈ R.
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1.9 Public Key Systems Based on the Discrete Logarithm Prob-
lem in a Finite Group

Let G be a finite group, α ∈ G an element of finite order ord(α) = n. Consider the cyclic
subgroup 〈α〉 = {e, α, α2, . . . , αn−1}.

Definition 1.9.1. For β ∈ G one defines the discrete logarithm of β with base α as a num-
ber a ∈ Z (if exists) such that αa = β. In this case one writes a = logα β.

Remarks 1.9.2.

(1) The discrete logarithm logα β exists if and only if β ∈ 〈α〉.

(2) If logα β exists then it is “multi-valued”; this means that if a = logα β, then also a + kn,
k ∈ Z are discrete logarithms of β with base α.

To be more exact, the set {a+ kn} gives all discrete logarithms of β with base α.

(3) If β ∈ 〈α〉 define the unique integer a ∈ {0, 1, . . . , n− 1} satisfying αa = β as the principal
value of logα β.

Lemma 1.9.3 (Calculation rules).

(1) It is logα β
k ≡ k logα β (mod n) for every k ∈ Z and β ∈ 〈α〉.

(2) It is logα(β1β2) ≡ logα β1 + logα β2 (mod n) for every β1, β2 ∈ 〈α〉.

In 1976 Diffie and Hellmann proposed a secret key exchange which was based on the hardness
of the discrete logarithm problem (DLP):

1) Alice and Bob agree on a group G and g ∈ G.

2) Alice picks a ∈ N and computes ga.

3) Bob picks b ∈ N and computes gb.

4) Alice and Bob exchange ga and gb.

5) Both Alice and Bob can compute gab = (ga)b = (gb)a.

Note that to compute gab when one only knows G, g, ga and gb, one has to solve a discrete
logarithm problem to either find a or b.

Remark 1.9.4. Alice and Bob pick a, b ≥ 2100 so that Eve (the eavesdropper) cannot simply
find a or b by exhaustive search. (Using consecutive squaring one can compute ga and gb easily,
using O(log a) group operations.)

The major drawback is that this system does not gives a one-way trapdoor function!
In 1985, El Gamal showed how to create a one-way trapdoor function from difficult discrete

logarithm problems:

• Alice choses α ∈ G and β = αa for some a ∈ N.

• She makes (G,α, β) public, and keeps a secret.

• Encryption is done via the randomized “function” ϕ : G→ G×G, m 7→ (αk,mβk) where
k ∈ Z is randomly chosen by Bob.

• Decryption is done via ψ : G×G→ G, (c1, c2) 7→ c2c
−a
1 .

If c1 = αk and c2 = mβk, we have c2c
−a
1 = mβkα−ak = mαak−ak = m.

Note that Alice cannot recover k without solving a discrete logarithm problem herself.
This leads to the

Question 1.9.5. How hard is DLP?
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A “pure math answer”: Consider the homomorphism ψ : Z→ G, a 7→ αa and let n = ordα.
By the homomorphism theorem, Zn = Z/ kerψ ∼= 〈a〉 and thus there exists an isomorphism ρ :
〈a〉 → Zn, αa 7→ a+ nZ. If Eve wants to compute logα β = a, she can do this by applying ρ to
β, since logα β + nZ = ρ(β).

But of course this does not really works, since to be able to compute the map ρ one has to
solve a discrete logarithm problem every time!

Note that in Z, solving ax ≡ b (mod n) is easy. Thus the discrete logarithm problem in the
additive group of Zn is easy.

There are many groups where the discrete logarithm problem has been studied in literature.
We want that G has a cyclic subgroup of order at least 2100.

Examples 1.9.6.

(1) Z∗
n; this is cyclic of order φ(n);

(2) Fpn; this is cyclic of order pn − 1;

(3) GLn(Fq), the invertible n× n-matrices over Fq;

(4) E(Fq), the Fq-rational points of an elliptic curve;

(5) Jacobians of varieties.

1.9.1 Solving the Discrete Logarithm Problem

We first want to concentrate on methods to solve the discrete logarithm problems in (fairly)
arbitrary groups.

(1) Exhaustive search:

For i = 1, 2, 3, . . . compute αi ?
= β. If n = |〈α〉| this has a cost of O(n) group operations.

(2) Baby-step Giant-step method:

This method was invented by Shanks.

The baby step: For some number m produce a look-up table and store it in the computer:

{(i, αi) | 0 ≤ i ≤ m}.

The giant step: Compute β(α−m)j for j = 1, 2, 3, . . . and compare the result with the
look-up table. If β(α−m)j = αi for 0 ≤ i ≤ m¡ then β = αi+mj and thus we are done.

As an example, take m = b√nc, i. e. the largest integer smaller or equal to
√
n. Then O(

√
n)

numbers have to be stored, and O(
√
n) group multiplications have to be performed.

(3) Pohlig-Hellmann algorithm:

AssumeG has order n = ps1
1 · · · psr

r , where the pi are pairwise distinct primes, and p1, . . . , pr ≤
B for a fairly small bound B. (Thus n is B-smooth.) Under this condition the discrete log-
arithm can be computed iteratively:

Assume αx = β. For i = 1, . . . , r let xi = x mod psi

i . If the xi are known, by the Chinese
Remainder Theorem also x is known. Now fix one i.

Let xi =
∑si−1

j=0 `jp
j
i with 0 ≤ `j > pi. Pohlig-Hellmann computes iteratively `0, `1, . . . , `si−1

by the following method:

Establish a look-up table for the p-th root of unity of α,

{(k, αk· n
pi ) | k = 0, . . . , pi − 1}.

In order to find `0, compute β
n
pi . Then β

n
pi = α

x· n
pi , and x n

pi
≡ k n

pi
(mod n) if and only if

x ≡ k (mod pi). Since x ≡ xi ≡ `0 (mod pi) we can get `0 from the look-up table.

Now βα−`0 = αx−`0 , so we also get (βα−`0)
n

p2
i = (αx−`0)

n

p2
i = (αp`1)

n

p2
i , since x − `0 ≡ pi`1

(mod n
p2

i

). Thus we can get `1 from the look-up table. Continuing in this fashion delivers

`2, `3, . . . , `si−1.
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This practically only works if the look-up talbe has reasonable size, and thus B ≤ 230

(for example). In order to avoid Pohlig-Hellmann the group order should be divisible by a
prime p ≥ 250. In case G = Z∗

p pick primes p where p−1
2 is prime as well (these are called

safe primes).

Remark 1.9.7. The running time of Pohlig-Hellmann is O(
∑r

i=1 si(log n+
√
pi)).

(4) Index calculus:

Assume the group G has some factor base S = {p1, . . . , pt}. The elements p1, . . . , pt are
group elements such that for an arbitrary chosen g ∈ G there is a good chance to write
g = pd1

1 · · · pdt
t , where the di ∈ Z. (A good chance is here for example a chance of at least

0.01%). In such a situation search for some k such that

αk = pd1
1 · · · pdt

t .

Thus we have

k ≡
t∑

i=1

di logα pi (mod ord(α))

Assume that m ≥ t numbers ki could be found such that

ki ≡
t∑

j=1

dij logα pj (mod ord(α)), i = 1, . . . ,m,

that is
αki = pdi1

1 · · · pdit
t , i = 1, . . . ,m.

This gives a linear system of equations





k1
...
km




 =






d11 · · · dt1
...

. . .
...

d1m · · · dtm











logα p1
...

logα pt




 (mod ord(α)),

which can (if the rank is high enough) be used to compute

logα p1, . . . , logα pt (mod ord(α)).

In order to compute logα β, search for an ` ∈ Z such that

α`+logα β = βα` = pe1
1 · · · pet

t , ei ∈ Z.

Then

logα β ≡ −`+
t∑

i=1

ei logα pi (mod ord(α)),

and we are done!

Inside Z∗
p, one could take the first t primes as a factor base, like S = {2, 3, 5, 7, 11, 13, . . . }.

Example 1.9.8. Let G = Z∗
220. Take S = {2, 3, 5, 7, 11}, α = 6 and β = 13. Find some

a ∈ Z such that αa ≡ β (mod 229).

We have 61 = 2 · 3, 612 ≡ 165 = 3 · 5 · 11 (mod 229), which gives the relations

1 ≡ logα 2 + logα 3 (mod 228)

and 12 ≡ logα 3 + logα 5 + logα 11 (mod 228).

Moreover we get

618 ≡ 176 = 24 · 11 (mod 229),

67 ≡ 98 = 2 · 72 (mod 229)

and 6x ≡ ... (mod 229),
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thus giving the relations

18 ≡ 4 · logα 2 + logα 11 (mod 228),

7 ≡ logα 2 + 2 logα 7 (mod 228)

and · · · ≡ . . . (mod 228).

From this we get

logα 2 = 21, logα 3 = 208, logα 5 = 98,

logα 7 = 107 and logα 11 = 162.

Now search for ` ∈ Z such that 13 · 6` mod 229 factors over S. We get

13 · 62 ≡ 2 · 5 (mod 229),

and thus

logα 13 = logα 2 + logα 5− logα 62 mod 228 = 21 + 98− 2 mod 228 = 117.

The following example illustrating how index calculus can be done over Fq is taken from the
[MvOV96].

Example 1.9.9 (Index calculus over Fq). Let G = F∗
128 = (Z2[Z]/(f))∗, where f =

Z7 + Z + 1 ∈ Z2[Z]. As a factor base take al irreducible polynomials of degree at most 3,
i. e.

S = { z
︸︷︷︸

=:p1

, z + 1
︸ ︷︷ ︸

=:p2

, z2 + z + 1
︸ ︷︷ ︸

=:p3

, z3 + z + 1
︸ ︷︷ ︸

=:p4

, z3 + z2 + 1
︸ ︷︷ ︸

=:p5

}.

Denote the image of Z in Z2[Z]/(f) by z. Take α = z; since |F∗
128| = 127 is prime, any

α 6= 1 is a generator of G. Let further be β = z4 + z3 + z2 + z+ 1; the task is to find logα β.

Let `i = logα pi. To faktor an x ∈ F∗
128, we treat it and the pi’s as polynomials in Z2[Z] and

try to factor there. We get

α1 = z = p1,

α18 = z6 + z4 = p4
1p

2
2,

α45 = z5 + z2 + z1 = p2
2p4,

α72 = z6 + z5 + z2 = p2
1p

2
2p3,

α105 = z6 + z5 + z4 + z = p1p
2
2p5,

α121 = z6 + z5 + z3 + z2 + z + 1 = p4p5.

We get the linear system











1
18
45
72
105
121











=











1 0 0 0 0
4 2 0 0 0
0 2 0 1 0
2 2 1 0 0
1 2 0 0 1
0 0 0 1 1
















`1
...
`5




 ,

resulting in

`1 = 1, `2 = 7, `3 = 56, `4 = 31 and `5 = 90.

Now we find

βα66 = z5 + z3 + z = p1p
2
3,

and thus

logα β = `1 + 2`3 − 66 mod 127 = 47.



38 CHAPTER 1. CRYPTOGRAPHY

Example 1.9.10 (A case study). The Digital Signature Standard (1991) is based on a
discrete logarithm problem in F∗

p, where

2511+64t ≤ p ≤ 2512+64t, t = 0, . . . , 8;

here t is a security parameter. The underlying algorithm of the standard is known as the
Digital Signature Algorithm (DSA).

In 1991 index calculus was already known, and we want to show what effect index calculus had
when the possible sizes of p were specified. Assume that p ≈ 21000 (that roughly corresponds
to security parameter between 7 and 8). To do index calculus, we need a factor base S =
{2, 3, 5, . . . , pt}, where pt ≤ B for some smoothness bound B.

A natural question in this case is: what is the probability that a random number x ∈
{1, 2, . . . , p− 1} is B-smooth? This is answered by the following theorem:

Theorem 1.9.11 (Norton (1971), Canfield, Erdős, Pomerance (1983)). Let N and
r be positive reals satisfying

B := N1/r ≥ logN.

Then the number of x ∈ N, x ≤ N which are B-smooth is given by

N · r−r+o(r), where lim
N→∞

o(r)

r
= 0.

Example 1.9.12 (Continuing Example 1.9.10).

Let p ≈ 21000 and r = 20. Then B ≈ 21000/20 = 250, and it is expected that one out of
2020 ≈ 1026 numbers can be factored over the base {p1, . . . , pt}, where pt ≤ 250. By the

Prime Number Theorem, t ≈ 250

log 250 ≈ 245. Thus to use index calculus here, one has to

compute and store a 245 × 245 matrix and solve the associated linear system, which is even
out of range for future computers.

Even if the lowest security parameter is chosen, index calculus is no real threat to the
security. But for numbers ≈ 2100, index calculus is well suited. Currently, the Generalized
Number Field Sieve is the best algorithm for solving the DLP in this case.

(5) In the case there is no factor base known, the best known method to solve a DLP is the
Pollard ρ method :

For this let G = 〈α〉 be a cyclic group and β ∈ G. As usual, k := logα β is wanted. For
simplicity let |G| = p be prime. We search for exponents (xi, yi) and (xj , yj) such that

αxiβyi = αxjβyj .

If such a relation is found, we have

αxi−xj = βyj−yi = αk(yj−yi) and thus xi − xj ≡ k(yj − yi) (mod p).

Thus if yj − yi is invertible in Zp, we can compute

k = (xi − xj)(yj − yi)
−1 mod p.

Question 1.9.13. How many exponents (xi, yi), i = 1, 2, 3, . . . should be randomly checked
until a collision becomes likely?

This problem is known as the birthday problem. An approximate answer is: given
√
p

randomly chosen (xi, yi) will provide a collision with probability at least 1
2 .

In this way
√
p elements of the form αxiβyi have to be computed and stored! (This is very

similar to the baby-step giant-step algorithm.)



1.9. PUBLIC KEY SYSTEMS BASED ON THE DISCRETE LOGARITHM PROBLEM 39

Pollard showed how to eliminate the storage problem: Define a recurrence sequence

xi+1 = f(xi, yi), yi+1 = g(xi, yi), (x0, y0) = (1, 1)

such that most indices (x, y) ∈ Z2
p are visited in the sequence (xi, yi)i∈N. Consider the

sequence of group elements
{gi := αxiβyi | i ∈ N}.

Since (gi)i must be ultimately periodic, assume it has pre-period m and period n. In order
to find a collision, not all elements have to be stored, instead just store the current element
of the sequence

(gi, g2i)i, i ∈ N.

For one i there will be gi = g2i, and thus one can find a collision this way! The costs are
O(
√
p) time consumption, and (almost) no storage consumption.

(The name “Pollard ρ” originates to that if one wants to illustrate the algorithm graphically,
one draws a circle with a line attached, which if correctly orientated looks like the Greek
letter ρ.)
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1.10 An Introduction to Elliptic Curves

1.10.1 Affine Curves

Let p =
∑
aijx

iyi ∈ F[x, y] be a polynomial in two variables. Then

C := V (p) := {(x, y) ∈ F2 | p(x, y) = 0}

is called an affine curve of degree degC := max{i+ j | aij 6= 0}. (The “V ” stands for variety.)

Example 1.10.1. The curve given by x2

a + y2

b − 1 = 0 is an ellipse, and has degree 2.

Curves of degree 1, 2, 3, 4 and 5 are called lines, conics, cubics, quartics and quintics,
respectively. One says a curve p(x, y) = 0 is irreducible if p as a polynomial is irreducible. A
point (α, β) on the curve is called smooth if

(
∂p
∂x(α, β), ∂p

∂y (α, β)
)

6= (0, 0);

otherwise one says that (α, β) is singular. A curve C is called smooth if all points on it are
smooth.

1.10.2 Bezóut’s Theorem for Curves

Theorem 1.10.2 (Bezóut). Let C1 and C2 be irreducible curves of degree d1 and d2, and
assume that C1 6= C2. Then

|C1 ∩ C2| ≤ d1d2.

Over the algebraic closure of F, when computed with multiplicities8 and points at infinity (we
will see later what these are) we have that the number of common points of C1 and C2 is exactly
d1d2.

1.10.3 Projective Plane

Definition 1.10.3. For a field F let

P2 := P2
F := {(α, β, γ) ∈ F3 \ {(0, 0, 0)}}/∼,

where ∼ is an equivalence relation defined by

(α, β, γ) ∼ (α′, β′, γ′) :⇐⇒ ∃λ ∈ F∗ : (λα, λβ, λγ) = (α′, β′, γ′).

Then P2
F is called the projective plane over F. A point [(α, β, γ)]∼ will be written simply as

(α, β, γ). If γ 6= 0, (α, β, γ) is called finite, otherwise it is called infinite or point at infinity.

One has a one-to-one correspondence between F2 and the finite points P2 given by

ϕ : F2 → P2, (x, y) 7→ (x, y, 1).

This can be viewed graphically as in picture 1.1. The infinite points have the form (α, β, 0),
and can be thought as lines in the x-y-plane in the above picture. The projective plane can be
thought as some kind of “closure” of the affine plane F2, and it has neat properties which the
affine plane does not have; for example, every two distinct lines share exactly one point, and
every two distinct points share exactly one line.

Let p ∈ F[x, y] be a polynomial of degree d describing the affine curve V (p).

Definition 1.10.4. For p ∈ F[x, y] of degree d denote the polynomial p̂ ∈ F[x, y, z] defined by
p̂(x, y, z) := zdp(x

z ,
y
z ) as the homogenization of p.

Note 1.10.5.
8Defining the multiplicity for an intersection point of two curves is not trivial, and at the moment we just want

to illustrate it with an example: if a line is a tangent to a curve, the intersection has multiplicity two, whereas
the multiplicity is one if the line intersects the curve with another angle.
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PSfrag replacements

x y

z

F2

p ∈ P2

ϕ−1(p)

Figure 1.1: Mapping a finite point of P2 to F2

(1) We have p̂(λx, λy, λz) = λdp̂(x, y, z) for all α, x, y, z ∈ F.

(2) By substituting z 7→ 1, p̂ reduces to p: it is p̂(x, y, 1) = p(x, y) for all x, y ∈ F.

Examples 1.10.6.

(1) The parabola y = x2 is defined by p := y − x2 ∈ F[x, y]. For it we get p̂ = yz − x2.

(2) If p = 3y2 + x3 + xy + 5, we have p̂ = 3y2z + x3 + xyz + 5z3.

The homogenous form p̂ defines the projective curve

C := V (p̂) := {(α, β, γ) ∈ P2 | p̂(α, β, γ) = 0}.

(Note that p̂(α, β, γ) = 0 is well defined for any (α, β, γ) ∈ P2 by the second note: for λ 6= 0 we
have p̂(α, β, γ) = 0 if and only if p̂(λα, λβ, λγ).) Now it is

V (p) ∪ {(α, β, 0) ∈ P2 | p̂(α, β, 0)} = V (p̂),

thus the finite points of V (p̂) are exactly all the points of V (p)!

Example 1.10.7. Let p = y − x2, p̂ = yz − x2. Then V (p̂) = V (p) ∪ {(0, 1, 0)}. Take a look at
figure 1.2.

PSfrag replacements

x y

z

Figure 1.2: The parabola defined by yz − x2 = 0

We can now restate Bezóut’s theorem in its full generality:

Theorem 1.10.8 (Bezóut). Assume p̂1, p̂2 ∈ F[x, y, z] are homogenous forms of degree d1, d2

defining distinct curves Ci = V (p̂i). Then, when counted with multiplicity, C1 and C2 intersect
in exactly d1d2 points over the algebraic closure of F.

Example 1.10.9.

(1) Let p = y − x2 a parabola and q = x the x-axis. Then p̂ = yz − x2 and q̂ = x. The system

yz − x2 = 0, x = 0

has two solutions in P2 given by

(0, 0, 1) and (0, 1, 0).
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(2) Let p = x+2y and q = x+2y+1 be two parallel lines. We have p̂ = x+2y and q̂ = x+2y+z,
and we get the solution

(2,−1, 0),

which is a point at infinity. It can be geometrically interpreted as pointing in the direction of
the lines; in fact, all points at infinity can be interpreted as directions, or as points infinitely
far away from the origin into a direction.

We want to give an outline of the proof of the Theorem of Bezóut. For this, we need a
technical lemma:

Lemma 1.10.10. Let f =
∑n

i=0 fix
i and g =

∑m
i=0 gix

i be two polynomials of degree n and m,
respectively, where f, g ∈ F[x]. Define

S(f, g) := S :=


















fn 0 · · · 0 gm 0
... fn

. . .
...

...
. . .

...
...

...
. . . 0

... gm

f0
... fn

...
...

0 f0
... g0

...
...

. . .
. . .

...
. . .

...
0 · · · 0 f0 0 g0


















∈ F(n+m)×(n+m).

The determinant of S is called the resultant Res(f, g). Then Res(f, g) = detS = 0 if and only
if gcd(f, g) 6= 1. resultant

Proof sketch for the lemma. The matrix S defines a map Fm × Fn → Fm×n, (a, b) 7→ af + bg,
where Fk is interpreted as the vector space of polynomials over F of degree strict less than k.
The proof can be done as follows:

If f and g are coprime, one needs to show that there is a Bezóut equation af + bg = 1 for f
and g where deg a < m and deg b < n. Thus 1 = (0, . . . , 0, 1) is in the image of S. Conversely, if
f and g are not coprime, then there are no a, b ∈ F[x] such that 1 = af + bg, and thus 1 is not
in the image of S. We can conclude by showing that detS is zero if and only if 1 = (0, . . . , 0, 1)
is not in the image of S.

Note 1.10.11. Note that the lemma can also be applied if F is not a field but an integer
domain, and if the polynomials are monic: by the Lemma of Gauss monic polynomials over F
are irreducible iff they are prime iff they are irreducible over the field of fractions of F iff they
are prime over the field of fractions of F.

Thus if two monic polynomials f and g are coprime over F, they are also coprime over the
field of fractions of F. Since the determinant of S is the same over F and its field of fractions,
we can show this claim by switching from F to its field of fractions.

Proof sketch of the Theorem of Bezóut. Write p̂i =
∑di

j=0 pi,jx
j , where pi,j ∈ F[y, z]. Consider

S(p̂1, p̂2); this is a homogenous polynomial in F[y, z] of degree n·m. By the fundamental theorem
of algebra, one can factor detS (since detS = zn·m(detS)(y

z , 1)), so we get

detS =
nm∏

k=1

(βiz − γiy).

Thus we have n · m solutions for (y, z) such that there is a solution αi where (αi, βi, γi) ∈
V (p̂1) ∩ V (p̂2).

1.10.4 Elliptic Curves

Definition 1.10.12. A nonsingular projective curve having the homogenous form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

respectively the inhomogenous form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ F, is called an elliptic curve in Weierstrass form.
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This curve has exactly one point at infinity, which is O := (0, 1, 0).

Note 1.10.13. Since GL3(F) operates on P2, we can change bases of the elliptic curve by
applying invertible transformations onto the coordinates.

If Char(F) 6= 2, then the Weierstrass form can be simplified by substituting y 7→ 1
2(y− a1x−

a3), resulting in

y2 = x3 + ã2x
2 + ã4x+ ã6.

If Char(F) 6= 3, by substituting x 7→ x− a2
3 this can be more simplified to

y2 = x3 + ax+ b, a, b ∈ F.

Remarks 1.10.14. Some historical remarks: an integral of the form

∫

γ

f(z)
√

(z − α1)(z − α2)(z − α3)
dz =

∫

γ

f(z)

y
dz

is called an elliptic integral. The denominator (squared) is of the form

y2 = (z − α1)(z − α2)(z − α3),

an elliptic curve!

Question 1.10.15. Given an equation of the form y2 = x3 + ax+ b, where a, b ∈ F, when does
this defines an elliptic curve? I. e., when is it non-singular?

Lemma 1.10.16. The equation y2 = x3 + ax+ b, a, b ∈ F defines an elliptic curve if and only
if the discriminant ∆ := 4a3 + 27b2 6= 0.

Note 1.10.17. For a homogenous curve f̂ = 0, (α, β, γ) is singular if and only if

∂f̂

∂x
(α, β, γ) = 0,

∂f̂

∂y
(α, β, γ) = 0 and

∂f̂

∂z
(α, β, γ) = 0.

Proof. We first show that the point at infinity O = (0, 1, 0) is smooth. We have f̂ = y2z − x3 −
axz2 − bz3 and thus

∂f̂

∂x
= −3x2 − az2,

∂f̂

∂y
= 2zy and

∂f̂

∂z
= y2 − 2axz − 3bz2.

Plugging (0, 1, 0) in gives 0, 0, 1, and thus O is always a smooth point. Thus we can assume
z = 1, so we get the equations

3x2 + a = 0, 2y = 0 andy2 = 2ax+ 3b;

thus y = 0 and we further reduce to

3x2 = −a and (2a)x = −3b.

If a = 0, then it must be x = 0 and b = 0, and the curve y2 = x3 is singular in (0, 0, 1) as one
easily checks. So assume a 6= 0.

So the singular condition is fulfilled if and only if 27b2

4a2 = 3(− 3b
2a)2 = −a, i. e. 27b2 + 4a3 = 0.

Thus if this equation is not fulfilled, the curve cannot be singular. Conversely, if 27b2 +4a3 = 0,
then let x := − 3b

2a ; we conclude by showing that (x, 0, 1) lies on the curve. But this is true, since

(2a)3(x3 + ax+ b) = −27b3 − 12a3b+ 8a3b = −b(27b2 + 4a3) = 0.
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1.10.5 The group law

If P,Q ∈ C are two points on an elliptic curve C, the line through P and Q is well defined,
even if P = Q, since C is smooth (take the tangent in that case). Define P ∗ Q as the third
intersection point of C and this line; the existence is garuanteed by the Theorem of Bezóut.
Even over an arbitrary field, if P and Q have coordinates in it, the third point will also have
coordinates in it. Define for an P the conjugate point P := P ∗ O. Then define

P +Q := P ∗Q.

Theorem 1.10.18. The set of points on C over an arbitrary field F containing the defining
equation of C together with the operation + has the structure of an Abelian group.

Sketch of proof.

• The group law is surely commutative.

• The neutral element is O, since clearly P +O = O ∗ (O ∗ P ) = P .

• The inverse is given by −P = P .

• The associativity for the general case can be seen from the following (for the special cases
the proof is much simplier):

It is enough to show that T := (P +Q) ∗R is equal to T̂ := P ∗ (Q+R). Take a look at
the following diagram consisting of six lines `i,mi, i = 1, 2, 3:

m1 m2 m3

`1 P Q P ∗Q

`2 Q+R Q ∗R O

`3 ? R P +Q

When coming from above, one sees that the missing point is T̂ , and when coming from
right, one sees that it must be T . Thus we are done.
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Figure 1.3: Illustration of the group law and the two typical forms of elliptic curves
(Please note that these are absolutely unrealistic drawn pictures of elliptic curves. Consult

your favourite plotting software to get an accurate picture :-) )
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Lemma 1.10.19. Let E be an elliptic curve in P2
F, given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ F.

Let P1 = (x1, y1), P2 = (x2, y2) ∈ E(F). Then

−P1 = (x1,−y1 − a1x1 − a3),

and if P1 6= −P2,

λ =

{
y2−y1

x2−x1
if x1 6= x2,

3x2
1+2a2x1+a4−a1y1

2y1+a1x1+a3
if x1 = x2, P1 = P2

and P1 + P2 =: P3 = (x3, y3), then

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = −y1 + λ(x1 − x3).

Proof. The slope of the line through P1 and P2, respectively the slope of the tangent in P1 = P2

is given by λ. The formulas can be verified by tedious calculations which we will skip here.

Remark 1.10.20. If P1 and P2 have coordinates in a field extension of F, then their sum
P1 + P2 also has coordinates in the same extension. This motivates the following notation:

Definition 1.10.21. Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 be an elliptic curve. If F

is the smallest field such that all the ai’s are in F, we say that E is defined over F. We write E
for E(F) ∪ {O}, where F denotes the algebraic closure of F. If K is a field extension of F, we
write

E(K) := {(x, y) ∈ K2 | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}.

The set E(K) is called the set of K-rational points.

We have seen that (E(K),+) is an Abelian group for every field extension K of F. If K is
finite, E(K) is obviously also finite.

We can use the group E(Fq) to do a Diffie-Hellmann key exchange, or to construct an
ElGamal one-way trapdoor function.

This leads to the question: how difficult is the Elliptic Curve Discrete Logarithm Problem
(ECDLP)? Namely, if P,Q ∈ E(Fq), Q ∈ 〈P 〉, the ECDLP asks: find an n ∈ Z such that
nP = Q. The ECDLP is of the hardest kind currently known; the only attacks that work in
(E(Fq),+) are the ones for general groups.

Advantages of this group:

• The DLP is hard (in general);

• It is easy to describe and perform the operation.

Theorem 1.10.22. If E is an elliptic curve over Fq, then E(Fq) ∼= Zd1 ×Zd2, where d1 divides
d2.

Remarks 1.10.23.

(1) Possibly it may happen that d1 = 1, i. e. E(Fq) ∼= Zd1.

(2) Unfortunately the isomorphism is not effectively computable (similarly as in the case of
F∗

q
∼= Zq−1).

But what about the size of E(Fq)?

Theorem 1.10.24 (Hasse). If E is an elliptic curve defined over Fq, then

|E(Fq)| = q + 1− t, where |t| ≤ 2
√
q.
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Remark 1.10.25. Consider the simplified Weierstrass equation y2 = x3 + ax + b. For every
x ∈ Fq, we have two points if x3 + ax + b is a quadratic residue in F∗

q, one point if it is zero,
and no points if it is a quadratic nonresidue.

In average we expect a quadratic residue in “half of the times”, thus q points is reasonable.
Thus |E(Fq)| ≈ q + 1, where the +1 is for the point at infinity, sounds perfectly fine.

Example 1.10.26. Consider E : y2 = x3+x+1 over F23. We have ∆ = 4a3+27b2 = 4+4 6= 0,
and thus E is an elliptic curve. By Hasse, we know |E(F23)− 24| ≤

⌊
2
√

23
⌋

= 9.

We now enumerate all the points: O, (0, 1), (0, 22), (1, 7), (1, 16), (3, 10), (3, 13), (4, 0),
(5, 4), (5, 19), (6, 4), (6, 19), (7, 11), (7, 12), (9, 7), (9, 16), (11, 3), (11, 20), (12, 4), (12, 19),
(13, 7), (13, 16), (17, 3), (17, 20), (18, 3), (18, 20), (19, 5), (19, 18), thus we have 28 points on the
curve!

Next we want to add the points (x1, y1) = (3, 0) and (x2, y2) = (9, 7) using the formulas from
the lemma. Let the sum be (x3, y3); then we get

λ =
y2 − y1

x2 − x1
=

10− 7

3− 9
= −1

2
,

x3 = λ2 − x1 − x2 =

(

−1

2

)2

− 3− 9 = 6− 12 = 17,

y3 = − y1 + λ(x1 − x3) = −10 +

(

−1

2

)

(3− 17) = 20;

thus

(3, 0) + (9, 7) = (17, 20) in E(F23).

Let (x, y) = (3, 10). We want to compute 2 · (3, 10) = (x4, y4). We get

λ′ =
3x2

1 + a

2y1
=

3 · 32 + 1

20
= 13,

x4 = λ′ − 2x1 = 7,

y4 = − y1 + λ′(x1 − x3) = −10 + 13(3− 7) = 12;

thus

2 · (3, 10) = (7, 12).

1.10.6 Determining the Group Order

Let E be an elliptic curve over a finite field F. By Hasse we know that ||E(F)| − q − 1| ≤ 2
√

|F |.
But how to effectively compute |E(F)|?

Let P ∈ E(Fq). Recall that the order of P is defined as ordP = min{n ≥ 1 | nP = O}. By
Lagrange, the order of a point divides the group order. Thus k ·ordP = |E(Fq)| for some k ∈ N.
By Hasse we know that |E(Fq)| lies in an interval of length 4

√
q, and thus the choices of k are

limited.

If we can find a point Q ∈ E(Fq) such that ordQ > 4
√
q, we are done. Otherwise both ordP

and ordQ divide |E(Fq)|, and thus |E(Fq)| is a multiple of lcm(ordP, ordQ) (the least common
multiple of ordP and ordQ). Repeating this might lead to a solution. We will later see that
(and also why) this does not always works.

But first we will investigate how to calculate the order of an element. This can be done by
a variation of the Baby-step Giant-step algorithm: the Shanks-Mestre algorithm:

Shanks-Mestre The goal is to compute ord(P ), where P ∈ E(Fq), or to compute |E(Fq)|.

(1) Let Q := (q + 1)P .

(2) Choose an m ∈ Z, such that m > q1/4. (For example m :=
⌊
q1/4 + 1

⌋
.)

(3) Compute and store jP for j = 0, . . . ,m. (Baby step)

(4) Compute Q + k(2mP ) for k = −m, . . . ,m, until there is a match Q + k(2mP ) = ±jP for
some j, k. (Giant step)
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(5) Compute M := q + 1− 2mk ∓ j. Then M · P = O.

(6) Factor M ; let p1, . . . , pr be the distinct prime factors.

(7) Compute M
pi
· P ?

= O. If it is equal for one i, divide M by pi and try the i again.

(8) Now M = ordP .

If we want to compute |E(Fq)|, we repeat this with randomly chosen points Pi ∈ E(Fq). Repeat
this until lcm(ordP1, . . . , ordPt) divides only one integer in the interval [q+1−2

√
q, q+1+2

√
q];

this integer is then |E(Fq)|.

Remarks 1.10.27.

The running time is O(q1/4+ε) for any constant ε > 0. (To be expected, since the interval
contains 4

√
q integers.)

This algorithm works for any group G where we have bounds on |G|.
How hard is factoring M in step 6? If M ≈ q, it is not too hard to factor since for elliptic curve
cryptography, the values used for q are around 160 bits.

A side note on how to find a (almost uniformly distributed) random point on E. Pick an
x ∈ Fq and compute α := x3 + ax + b. If α is a quadratic residue, find an y such that y2 = α
(in most cases, there are two choices; chose one randomly). Then (x, y) is a point on E. As
approximately half of the x lead to a quadratic residue α, this probabilistic algorithm will in
most cases need at most two tries.

A much better (since polynomial and completely deterministic) algorithm for point counting
was created by Schoof in 1985. It has complexity O(log8 q). Unfortunately it is not useful for
practical computations for q’s of 160 bits and more. But there do exist extensions which also
work good for such large q’s.

Since to understand how Schoof’s algorithm works requires a much deeper insight in elliptic
curves and the proof of Hasse’s theorem, we will not further elaborate on the algorithm. The
interested reader is encouraged to consult the literature for more information.

Examples 1.10.28.

(1) Consider the elliptic curve E : y2 = x3 + 7x + 1 over F101. Chose P = (1, 0); it has
order 116 (computed using Shanks-Mestre), and thus |E(F101)| is a multiple of 116. But the
only multiple of 116 in the interval [101+1−2

√
101, 101+1+2

√
101] is 116 itself, and thus

|E(F101)| = 116. Further we know that E(F101) is cyclic and generated by P .

(2) The point P = (−1, 2) on the curve E : y2 = x3 + 7x+ 12 over F103 has order 13. By Hasse
we know that 84 ≤ |E(F103)| ≤ 124. Moreover, the point Q = (19, 0) has order 2. Thus
|E(F103)| is divisible by lcm(13, 2) = 26, and the only possibility is |E(F103)| = 4 · 26 = 104.
We further know that the subgroup 〈P,Q〉 has index 4.

(3) Consider the curve E : y2 = x3 + 2 over F7. Let N := |E(F7)|. By Hasse, N ∈ [1, 13].
Pick P = (0, 3); then 2P = (0, 4), and 3P = O, thus ordP = 3. So N is a multiple of 3,
and thus we are left with N ∈ {3, 6, 9, 12}. Pick Q = (3, 1); again ordQ = 3. This looks
like we have no further information about N . But Q 6∈ 〈P 〉, and since E(F7) is Abelian
it follows that 〈P,Q〉 has 9 elements. Thus 9 divides N , and so we get that N = 9 and
E(F7) = 〈P,Q〉 ∼= Z3×Z3. This shows that we were not lucky, since every element of E(F7)
except O has order 3.

Remarks 1.10.29.

(1) We know E(Fq) ∼= Zd1×Zd2, where d1 divides d2. Thus ordP divides d2 for every P ∈ E(Fq).
If d2 > 4

√
q, then by Hasse we get |E(Fq)| if we find d2. (Because there is only one multiple

of d2 in the interval given by Hasse.) In the applications this will always be the case.

However, as we saw in the third example, looking at m = |〈P,Q〉| gives more information
than looking simply at ` = lcm(ordP, ordQ), since ` divides m, which in turn divides |E(Fq)|.
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1.10.7 General Algorithms to Solve the ECDLP

These are the only algorithms known to solve the ECDLP. We work in G = E(Fq) with additive
notation. Let n = ordP .

(1) Baby-step Giant-step method:

This requires about O(
√
n) storage and O(

√
n) operations.

(2) Pohlig-Hellmann algorithm:

If n =
∏t

i=1 p
ei

i , where ei ≥ 1 and the pi’s are distinct primes, the complexity of Pohlig-
Hellmann is given by

O
(

t∑

i=1

ei(log n+
√
pi)

)

.

This is good when all the pi’s are “small”.

Remark 1.10.30. Because of this algorithm we want to have a big prime p such that p
divides |E(Fq)|.

In practice, curves with |E(Fq)| being prime itself, or being twice a prime are preferred.

(3) Pollard ρ and λ method :

The best algorithm known for elliptic curves. The complexity is O(
√
n), and a negligible

amount of storage used. First we want to recap how the Pollard ρ algorithm works. We
want to find a k ∈ Z such that kP = Q, for P,Q ∈ E(Fq) and Q ∈ 〈P 〉.

(1) Produce a random collection of triples (ci, ni,mi) such that ci = niP +miQ.

(2) Expect a collision ci = cj but (ni,mi) 6= (nj ,mj) after ≈ √n steps.

(3) It is niP +miQ = njP +mjQ, and thus k =
ni−nj

mj−mi
(mod ordP ).

Example 1.10.31. First we want to construct a “random looking” function h : E(Fq) →
{1, 2, 3}. For this pick P = (x, y) ∈ E(Fq). Let x̂ denote the integer representation of the
eight least significant bits of the binary representation of x. (Thus x̂ ∈ {0, 1, . . . , 255}.)
Define h(P ) to be i, if (i− 1) 255

3 ≤ x̂ < i2553 . Take Si := h−1(i); then we have

E(Fq) = S1 ∪̇S2 ∪̇S3.

We use this to construct a random walk in E(Fq):

• Start from a random (c0, n0,m0).

• Generate a sequence by

(ci+1, ni+1,mi+1) =







(ci + P, ni + 1,mi) if ci ∈ S1,

(ci +Q,ni,mi + 1) if ci ∈ S2,

(2ci, 2ni, 2mi) if ci ∈ S3.

More complicated versions of this idea are used in the praxis.

What if
√
n is too big for one machine? There is a distributed version of the Pollard ρ

algorithm, called the Pollard λ algorithm. The key idea for this is to chose a sparse, random
D ∈ E(Fq) such that it is easy to test whether P ∈ D or not.

Assume we have M machines, each of them computing their own independent Pollard ρ
sequence from a starting point which is the same for every machine.

If ci ∈ D for some ci on some machine, it reports the triple (ci, ni,mi) to a central server,
which keeps track of all the triples send to it in order to find collisions.

If the sequences on two machines have one common point, this is with a high probability
not in D. But from this point on the sequences follow the same way, and eventually they
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will both hit D and get reported; in that case the central server can solve the DLP. The
collision can be depicted like in picture 1.6.

This picture explains where the name “Pollard λ” comes from: the two paths look like the

Greek letter λ. The complexity for M machines is O(
√

n
M ).

Solving the ECDLP for q of 109 bits is harder than factoring a 512 bit number. A company
called Certicom, which specializes in producing crypto products based on elliptic curves set up
several challanges, consisting of ECDLP’s of different sizes. One of them was an ECDLP for q
of 109 bits, which took over a year to solve with the help of the Pollard λ algorithm running
on 10,000 machines. The software for this was developed by Chris Monico, a former student of
Professor Rosenthal.

We want to give some good parameter choices for elliptic curve cryptography which are
currently in use:

• q ≈ 2160, i. e. q has 160 bits;

• q = 2`, ` prime, or q being a prime itself;

• |E(Fq)| ∈ {p, 2p}, where p is prime;

• E “random” (avoiding some special curves which are “weak”; more to that later).

1.10.8 Divisors and the Weil Pairing

Rational Functions and Divisors

Definition 1.10.32. Let g, h ∈ F[x, y, z] be two homogenous polynomials of the same degree. If
f := g

h we call f a rational function. If C is a curve, we say that f is defined over C if h does
not vanishes completely on C.

We will further also call g
h a rational function if the degrees of g and h differ; in that case

we will mean the rational function gzk

hz` where k, ` ∈ N are chosen minimal such that gzk and hz`

have the same degree.

Remark 1.10.33. Recall that the zeros of a homogenous polynomial in projective space are
well-defined.

Example 1.10.34. Let p = x ∈ Q[x, y, z]. Let Q = (x, y, z) ∈ P2
Q. If for example Q = (1, 0, 0) =

(r, 0, 0) for every r ∈ Q∗, it doesn’t makes sense to evaluate p(Q), since 1 = p(1, 0, 0) = p(Q) =
p(2, 0, 0) = 2! But if R = (a, b, c) ∈ P2

Q, then p(a, b, c) = 0 if and only if p(λa, λb, λc) =
λp(a, b, c) = 0 for any λ ∈ Q∗. Thus p(R) = 0 is well-defined.
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Definition 1.10.35. Let E be an elliptic curve. For each P ∈ E define a symbol [P ]. Denote
the free Abelian group generated by the [P ], P ∈ E, by Div(E); these are formal sums of the
form

∑

P∈E

nP [P ], nP ∈ Z and nP = 0 for all but a finite number of P ∈ E.

The elements of this group are called divisors on E.

Definition 1.10.36. Let f = p
q be a rational function on an elliptic curve E which is not

completely vanishing on E; further assume that p and q have the same degree. Let P1, . . . , Ps

be the (distinct) zeroes of p on E with multiplicities ni, and Q1, . . . , Qt the (distinct) zeroes of
q on E with multiplicities mi. Then we define the divisor of f as

div(f) :=
s∑

i=1

ni[Pi]−
t∑

i=1

mi[Qi].

Note that multiplying a polynomial with z increases the multiplicity of its intersection with
O by one. Thus requireing that p and q have the same degree is the same than “padding” the
divisor with O’s such that if div(f) =

∑
nP [P ], then

∑
nP = 0.

It can be shown that div(f) is indeed a divisor on E. Moreover, if D =
∑
nP [P ] ∈ Div(E)

is the divisor of a function, then
∑
nP = 0 and

∑
nPP = O. The last two definitions and this

statement (except that about the sum in (E,+)) also hold on general smooth curves.

Example 1.10.37. Let E : y2 = x3 + x + 1 an elliptic curve over F5. Consider the rational
function f = x+z

y−z . What is div(f)?
The zeroes of x+ z: If x = −z = 0, then the point is O. If x = −z 6= 0, we have the points

(−1,±
√
−1, 1) = (−1,±2, 1). Thus the zeroes of x+ z are

[O] + [(−1, 2)] + [(−1,−2)].

The zeroes of x−y: If x = y = 0, this cannot be a point on the curve. Thus consider x = y 6= 0.
In that case 1 = x3 + x+ 1, and thus x(x2 + 1) = 0. So we get x = 0 and x = ±2, and thus

[(0, 1)] + [(0,−2)] + [(0, 2)].

Summing up we have

div(f) =
(
[O] + [(−1, 2)] + [(−1,−2)]

)
−
(
[(0, 1)] + [(0,−2)] + [(0, 2)]

)
.

In the group (E,+) we have

O + (−1, 2) + (−1,−2) = O and (0, 1) + (0,−2) + (0, 2) = O.

Lemma 1.10.38. Let αi ≥ 1 and Pi ∈ E \ {O} distinct points satisfying
∑

i αiPi = O. Then

∑

i

αi[Pi]−
∑

i

αi[O]

is the divisor of a rational function.
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Proof. We will only proof this for αi = 1. We will proceed by induction on i. For i = 0, consider
the rational function f = 1; its divisor is 0. It is not possible that i = 1, since P1 6= O.

If i = 2, then P1+P2 = O, and thus P2 = −P1, and we have P1 6= −P1. Consider f = x−xP y
if P1 = (xP , yP ); then

div(f) = [P1] + [P2]− 2[O].

If i = 3, then P1 + P2 + P3 = O, and thus P1, P2, P3 lie on a line which has an equation
L(x, y, z) = 0. Then div(L) = [P1] + [P2] + [P3]− 3[O].

Now for the induction step i−1→ i. Let P1 + · · ·+Pi = O, and define Q := P1 + · · ·+Pi−2.
Then Q + Pi−1 + Pi = O, and thus there is a line equation L(x, y, z) = 0 such that div(L) =
[Q] + [Pi−1] + [Pi] − 3[O]. By induction consider P1 + · · · + Pi−2 + (−Q) = O; find a rational
function g such that div(g) = [P1] + · · ·+ [Pi−2] + [−Q]− (i− 1)[O]. Let M be the equation of
the vertical line through Q and −Q; then div(M) = [Q] + [−Q]− 2[O]. Let f := gL

M ; then

div(f) = ([P1] + · · ·+ [Pi−2] + [−Q]− (i− 1)[O])

+ ([Q] + [Pi−1] + [Pi]− 3[O])

− ([Q] + [−Q]− 2[O])

= [P1] + · · ·+ [Pi]− i[O].

Note that if f and g are rational functions such that div(f) = div(g), then f = λg with a
constant λ ∈ F∗. This implies that the function associated to a divisor as in the above lemma
is determined up to multiplication by non-zero constants.

Definition 1.10.39. Denote the set of divisors D ∈ Div(E) such that there is a rational function
f satisfying div(f) = D, and the “zero” divisor 0 by PDiv(E). The elements of PDiv(E) are
called the principal divisors on E.

The set of principal divisors is in fact a subgroup of the group of divisors of an elliptic curve.

n-Torsion Points

Definition 1.10.40. Let n be a natural number and E an elliptic curve. Then

E[n] := {P ∈ E | nP = O}

are called the n-torsion points of E.

Remarks 1.10.41.

(1) If P ∈ E[n], then ordP divides n.

(2) If P,Q ∈ E[n], then P − Q ∈ E[n] as one can simply check; hence E[n] is a subgroup of
(E,+).
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(3) Consider the map ψ : E → E, P 7→ nP . This is a group homomorphism, as a simple
calculation shows. Moreover, kerψ = E[n].

Lemma 1.10.42. Let E be an elliptic curve over F, where p := Char F > 0. If p - n, then
|E[n]| = n2.

Sketch of Proof. Consider ϕn : E → E, P 7→ nP . This is a morphism of the curve, whose kernel
is E[n]. By induction one can show that ϕn = (p

q , y
f
g ) with polynomials p, q, f, g ∈ F[x], and

p = xn2
+ lower degree terms, q = nxn2−1 + lower degree terms.

We have p′ 6= 0 since p does not divides n. To find the kernel of ϕn we have to solve p(x) = 0,
and thus we expect n2 solutions over the algebraic closure. Using this one can conclude that
|E[n]| = n2.

Example 1.10.43. Let n = 2 and p = Char F > 2, and E an elliptic curve given by y2 = f(x),
where f ∈ F[x] is monic of degree 3. Write f =

∏3
i=1(x− αi). Now we know that

E[2] = {P ∈ E | 2P = O} = {P ∈ E | P = −P} = {O, (α1, 0), (α2, 0), (α3, 0)}.

Thus |E[2]| = 4 = 22, and moreover we see that E[2] ∼= Z2 × Z2.

In general E[n] ∼= Zn × Zn if n is not divided by Char F. If n is prime, this is an easy
consequence of the structure theorem of Abelian groups, since then E[n] ∼= Zd1×Zd2×· · ·×Zdt

,
where d1 | d2, . . . , dt−1 | dt and dt | n2. Since it cannot be that E[n] ∼= Zn2 , it follows that t = 2
and d1 = d2 = n since n is prime.

Theorem 1.10.44. Let n ∈ N, n ≥ 1, and let n not be divisible with Char F. Then there exists
a pairing

en : E[n]× E[n]→ µn := {x ∈ F | xn = 1},
called the Weil pairing, such that the following properties hold:

(1) The map en is bilinear, i. e. for any S, S1, S2, T, T1, T2 ∈ E[n] we have

en(S1 + S2, T ) = en(S1, T )en(S2, T ) and en(S, T1 + T2) = en(S, T1)en(S, T2).

This especially implies en(S,O) = 1 = en(O, T ) for all S, T ∈ E[n].

(2) For all S, T ∈ E[n] we have en(S, T ) = en(T, S)−1.

(3) Fix one T ∈ E[n]. If en(S, T ) = 1 for all S ∈ E[n], then T = O.

(4) If σ ∈ Gal(F/F), i. e. σ is a field automorphism σ : F → F satisfying σ|F = idF, then
en(σ(S), σ(T )) = σ(en(S, T )) for all S, T ∈ E[n]. (Here as usual σ(S) denotes (σ(x), σ(y))
if S = (x, y), and O if S = O.)

(5) If L is a field extension of F, then E[n] ⊆ E(L) implies µn ⊆ L.

The subgroup µn of F
∗

is called the group of n-th roots of unity.

Proof. Construction of the Pairing: Fix some T ∈ E[n]; we want to define en(S, T ) for
every S ∈ E[n]. We know that nT = O, and thus nT − nO = O. Choose an T ′ ∈ E[n2] such
that nT ′ = T . The existence of such an T ′ can be seen by considering the map E[n2] → E[n],
P 7→ nP ; its kernel is E[n], and since

∣
∣E[n2]

∣
∣ = n4 = |E[n]| · |ker(P 7→ nP )| <∞ it is surjective.

Consider the following sum in E:

∑

R∈E[n]

(T ′ +R)−
∑

R∈E[n]

R =
∑

R∈E[n]

T ′ = n2T ′ = nT = O.

By Lemma 1.10.38 we can find a rational function g such that

div(g) =
∑

R∈E[n]

[T ′ +R]−
∑

R∈E[n]

[R].
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Since T ′ + R runs through all the points T ′′ ∈ E[n2] such that nT ′′ = T as R varies over E[n],
the divisor does not depends on the choice of T ′.

Since nT − nO = O, we can find a rational function f such that div(f) = n[T ] − n[O] by
the same lemma. Let ψn : E → E, P 7→ nP and consider f ◦ ψn. The divisor of f ◦ ψn is

n
∑

R∈E[n]

[T ′ +R]− n
∑

R∈E[n]

[R],

and this is equal to div(gn). Therefore we know that

f ◦ ψn = λ · gn, where λ ∈ F∗.

Let S ∈ E[n] and pick an P ∈ E. We have

g(P + S)n = 1
λf(ψn(P + S)) = 1

λf(nP + nS) = 1
λf(nP ) = g(P )n,

and thus

en(S, T ) :=
g(P + S)

g(P )
∈ µn.

What is left is to show that en(S, T ) is well-defined: consider the map fS : E → µn, where

P 7→ g(P+S)
g(P ) ; we have to show that it is constant. We will use a topological argument here:

consider the discrete topology on µn and the cofinite topology on E (i. e. the closed sets are
finite subsets of E, together with E itself). Then fS is continuous with respect to this map.
Moreover, since E is connected, fS must be constant.

To the reader with more background in algebraic geometry: in fact the topologies chosen are
the trace topologies of the Zariski topologies on P2(F) and F; and the fact that fS is continuous
follows from that it can be written as fS = (p

q ,
f
g ) with polynomials p, q, f, g ∈ F[x, y]. That E

is connected follows from the fact that an elliptic curve is irreducible.

The properties: Left as homework.

The MOV Attack MOV stands for Menezes, Okanoto and Vanstone, who came up with
this attack. This is an attack based on the Weil pairing, its goal being to solve the ECDLP by
reducing it to a DLP in a finite extension of Fq.

Assume that P,Q ∈ E(Fq) are given, and N = ordP is coprime to the field characteristic q.
Moreover assume kP = Q for some k ∈ Z. We want to find k.

Lemma 1.10.45. If Q = kP , then NQ = 1 and eN (P,Q) = 1.

Proof. We have NQ = NkP = k(NP ) = kO = O; thus P,Q ∈ E[n] and we can evaluate
eN (P,Q): it is

eN (P,Q) = eN (P, kP ) = (eN (P, P ))k = 1k = 1.

The MOV attack works as follows:

(1) Choose an m such that E[N ] embeds into E(Fqm). Such an m exists since E[N ] is finite
and Fq =

⋃

`≥1 Fq` .

(We also get µN ⊆ F∗
qm by the theorem.)

(2) Choose a random point T ∈ E(Fqm) and compute M := ordP .

(3) Take d := gcd(M,N), and let T1 := M
d · T . Thus d = ordT1 divides N , and so T1 ∈ E[N ].

(4) Set ξ1 := eN (P, T1) and ξ2 := eN (Q,T1). Then ξ1, ξ2 ∈ µN ⊆ F∗
qm . Moreover ξ1, ξ2 ∈ µd,

since ξd
1 = eN (P, T1)

d = eN (P, dT1) = eN (P,O) = 1 and similarly ξd
2 = 1.

(5) Since we have

ξ2 = eN (Q,T1) = eN (kP, T1) = (eN (P, T1))
k = ξk

1 ,

by solving the DLP ξk
1 = ξ2 in µd ⊆ F∗

qm we get k mod d.
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(6) Repeat from step 2 until the least common multiple of the d’s is N . In this case, one can
use the Chinese Remainder Theorem to recover k.

Remark 1.10.46. We reduce one DLP in E(Fq) to several DLP’s in Fqm. Since |Fqm | grows
exponentially when m grows, this method gets useless if m is too large.

There is a family of curves for which m is bounded by six; these are the supersingular curves.
In case |E(Fq)| = q + 1, even worse m is bounded by two. This is why supersingular curves are
avoided when a hard DLP is required. (Please note that being supersingular has nothing to do
with being singular!)
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1.11 Alternative Public-Key Systems

1.11.1 Rabin System (1981)

Assume that p and q are primes satisfying 3 ≤ p < q, and let n := pq. Let b and c be integers.
What are the possible solutions x ∈ Zn of

x2 + bx+ c (mod n)?

Remark 1.11.1. Since p, q > 2 we have that 2 is invertible in Zn. Thus we can write

x2 + bx+ c = (x+ b
2)2 − (

b2

4
− c),

and hence solving x2 + bx + c = 0 is equivalent to solving z2 − α = 0, where z = x + b
2 and

α = b
4 − c.

Lemma 1.11.2. The equation z2 − α ≡ 0 (mod n) has at most four solutions in Zn.

Proof. Modulo p it has at most two solutions, since Zp is a field, and the same holds for modulo q.
By the Chinese Remainder Theorem, these respect to a maximum of four solutions modulo n =
pq.

Lemma 1.11.3. Assume z2 − α = 0 has solutions ±s (mod p) and ±t (mod q). Let u, v be
integers such that up + vq = 1 (Bezóut equation). Then the general solution of z2 − α = 0
(mod n) is given by

±t · up± s · vq.

Proof. This follows from the Chinese Remainder Theorem and the fact that

up ≡ 1 (mod q), vq ≡ 0 (mod q) and up ≡ 0 (mod p), vq ≡ 1 ≡ q.

Remark 1.11.4. It is possible that z2−α has zero, one, two or four solutions. Three solutions
are not possible; as the number of solutions modulo n = pq equals the number of solutions
modulo p times the number of solutions modulo q.

Remark 1.11.5. Consider p = 3, q = 5 and thus n = 15. In Z15 we have

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x2 0 1 4 9 1 10 6 4 4 6 10 1 9 4 1

The equation z2 = 0 has one solution, the equation z2 = 1 four solutions, the equation z2 = 6
has two solutions and the equation z2 = 2 has no solutions modulo 15.

In order to compute solutions of x2 + bx + c = 0 it is enough to compute solutions of
z2−α = 0 in the finite fields Fp and Fq. In a general field Fr, one has a probabilistic polynomial
time algorithm called Shank’s algorithm to achieve this task. But there is a special situation
where solving z2 − α = 0 (mod p) is easy:

Lemma 1.11.6. Assume p is a prime satisfying p ≡ 3 (mod 4). Assume that z2 −α = 0 has a
solution modulo p. Then the solutions are given by

z1,2 = ±α
p+1
4 .

Proof. Assume z2 − α = 0 has a solution in Fp. This is equivalent to
(

α
p

)

= 1, which by Euler

is equivalent to α
p−1
2 ≡ 1 (mod p). This again is equal to

(

±α
p+1
4

)2
= α

p−1
2 α ≡ α (mod p).
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Lemma 1.11.7. Assume n = pq with distinct primes p and q, and assume one knows four
different solutions α1, . . . , α4 of the equation z2 − α ≡ 0 (mod n). Then the facorization of n
can be revealed in polynomial time.

Proof. We know that α1, . . . , α4 are of the form ±svq ± tup, where up + vq = 1 with u, v ∈ Z.
We can assume that α1 = −α4 and α2 = −α3. Then

0 = α2
1 − α2

2 = (α1 − α2)(α1 + α2).

Since α1 6= ±α2 we know that α1−α2 6≡ 0 6≡ α1+α2 (mod n), and thus gcd(α1−α2, n), gcd(α1+
α2, n) ∈ {p, q}.

The Rabin System Alice choses p, q ≥ 10100, satisfying p ≡ q ≡ 3 (mod 4) and p 6= q. Let
n := pq. The public information is n and a randomly chosen b ∈ Zn. The private information
is the facorization n = pq. Encryption is done by the function

ϕ : Zn → Zn, x 7→ −x2 − bx = c.

For decryption, find solutions of x2 + bx + c ≡ 0 (mod n). For this solve z2 − α = 0 where

z = x+ b
2 and α = b2

4 − c, by using z ≡ α p+1
4 (mod p) and z ≡ α q+1

4 (mod q).

The costs for this are one multiplication for encryption, and O(log3 n) bit operations for
decryption.

Comparism to RSA System

• Contrary to RSA we can prove that breaking this the system is equivalent to factoring n.

• The encryption and decryption complexity is similar, assuming for RSA an encryption
exponent like e = 216 + 1 is chosen:

Encryption Decryption

Rabin 2 muls O(log3 n) bit ops

RSA 17 muls O(log3 n) bit ops

• But which of the four solutions of x2 + bx + c = 0 was the sent message?! The Rabin
scheme has the disadvantage that there are up to four square roots of α, and thus the
original message cannot be recovered completely.

This can (partially) be solved by either appending a check sum to the message, or by
making an agreement of for example setting the last 30 bits of the message to zero. Un-
fortunately both of these methods give away information and may help an attacker.

1.11.2 The Merkle-Hellman Knapsack System

Definition 1.11.8. Given positive integers a1, . . . , an and b1, . . . , bn, and two positive integers s
and t, the knapsack problem asks:

Determine if there i a subset S ⊆ {1, . . . , n} such that

∑

i∈S

ai ≤ s and
∑

i∈S

bi ≥ t.

A special case of this is the subset sum problem, where ai = bi for every i and s = t. In
that case

∑n
i=1 xiai = s must be fulfilled for a vector (xi)i ∈ {0, 1}n, where again a1, . . . , an and

s are positive integers.

Remark 1.11.9. Both problems are NP -complete.

The subset sum problem is NP -complete, but certain instances of it can easily be solved in
polynomial time:
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Definition 1.11.10. A sequence a1, a2, a3, . . . of positive integers is called a superincreasing
set if and only if

aj >

j−1
∑

i=1

ai for all j = 2, 3, . . . .

If a1, . . . , an is a superincreasing set, the subset sum problem has an easy algorithm: Con-
struct inductively xn, xn−1, . . . , x1 ∈ {0, 1} such that

∑n
i=1 xiai = s as follows: If xj+1, . . . , xn are

chosen, check whether s < aj +
∑n

i=j+1 xiai; if that is the case, let xj := 0, and otherwise xi := 1.
One can easily see that this works; in fact the solution, if it exists, is unique. If it does

not exists, the algorithm will terminate with
∑n

i=1 xiai < s. The complexity of this algorithm
is linear; in case the ai are given in random order and have to be sorted first, the complexity
increases9 to O(n log n).

The Merkle-Hellman System (1978)

• First, choose a superincreasing sequence a1, . . . , an.

• Choose an m ∈ N such that m >
∑n

i=1 ai.

• Choose a random s ∈ Z∗
m and a permutation π ∈ Sn.

• Publish bi := saπ(i) mod m for i = 1, . . . , n and n.

• The private information is π, a1, . . . , an and s. In fact, m can both be made public or
private.

• Encryption is done by ϕ : {0, 1}n → Zm, (xi)i 7→
∑n

i=1 xibi = c.

• Decryption is done by computing s−1c =
∑n

i=1 xiaπ(i), and thus xi can easily be computed
since the ai are superincreasing. (And in fact we even know how they are ordered.)

The system looked very attractive in 1980:

• The subset sum problem was known to be NP -complete (that is not the case for factoring).

• It is suggested to take n = 100, a1 ≈ 2100, . . . , an = a100 ≈ 2200 and hence m ≈ 2200. In
this case, the public key is around 20 kByte. Encryption and decryption require around
100 additions of 200 bit numbers. In comparism, RSA requires around 1000 multiplications
of 1000 bit numbers for decryption.

Early it was recognized that the ai’s should not be chosen too simple, e. g. a1 ≈ 2100 and
aj+1 = 2aj , j = 1, . . . , n− 1 would be a bad choice: in this case, compute all possible differences
|bi − bj | for all 1 ≤ i < j ≤ n. Sometimes aj+1 = 2aj and sometimes aj+1 = 2aj − m in Z.
Among the

(
n
2

)
differences many times the value m appears.

In 1984 Adi Shamir found a polynomial time algorithm to solve the Merkle-Hellman problem.
The idea of Shamir is based on the following observation:

As soon as an attacker can find a modulus m̃, a permutation π̃ ∈ Sn and a factor u ∈ Z∗
m̃

such that the ãi := ubπ̃(i) mod m̃ form a superincreasing set, then the subset sum problem can
be solved as well. (Recall that the problem was constructed that there is exactly one solution.)

In 1985 Lagarias and Odlyzko showed how the Merkle-Hellman problem can be solved by
searching for a shortest vector in a lattice. If the reader is new to the subject of lattices, he is
recommended to first read the beginning of the next section, section 1.12.

Assume that b1, . . . , bn ∈ Z is the public key, and c =
∑n

i=1 xibi the cipher. Let N > 1
2

√
n

and consider the (n+ 1)-dimensional lattice generated by the matrix

M :=











1 0 · · · 0 Nb1

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · 0 1 Nbn
1
2 · · · · · · 1

2 Nc











∈ R(n+1)×(n+1)

9Sorting can be done in O(n log n), for example by using the quick sort algorithm. Moreover it can be shown
that in general a sorting algorithm cannot be more efficient than this, so in fact this complexity bound is strong.
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A solution
∑n

i=1 xibi = c corresponds to the lattice vector

(x1, . . . , xn,−1)M = (±1
2 , . . . ,±1

2 , 0).

It follows that the norm of this vector is
√

n
2 . Note that the determinant of the lattice is

detM = N

(

c− 1

n

n∑

i=1

bn

)

.

Lagarias and Odlyzko showed that for suitable N the lattice has a density low enough such that
the LLL algorithm will give the shortest vector. (See the end in Section 1.12.)

Remark 1.11.11. After Merkle-Hellman new Knapsack type systems and also new attacks
were discovered. An example for a new system is the Multiple Merkle-Hellman system: Given
a1, . . . , an a superincreasing set, choose different moduli m1, . . . ,mr and different factors u1, . . . , ur.
Compute bi := b̃i,r iteratively as b̃i,0 := ai, b̃i,j := uj b̃i,j−1 mod mj for j = 1, . . . , r. This looks
more complicated, but this can also be attacked with a generalized Lagarias-Odlyzko attack. The
only Knapsack type system which is not (yet) broken is the Chov-Rivest system.

1.11.3 Polly-Cracker

The basic idea is as follows:

Give polynomials f1, . . . , fm ∈ F[x1, . . . , xn] over a finite field F, consider the ideal I :=
〈f1, . . . , fm〉. Assume it is not feasible to find any p ∈ Kn such that

p ∈ VK(I) = {q ∈ Kn | f(q) = 0 for every f ∈ I} = {q ∈ Kn | fi(q) = 0 for i = 1, . . . ,m},

where K is a field extension of F. Assume that the designer knows such an p ∈ VK(I). For
example, the designer could start by chosing a random p ∈ Fn and random polynomials f̃i ∈
F[x1, . . . , xn], and then computing fi := f̃i − f̃i(p).

• The public key is the polynomial ring F[x1, . . . , xn] together with the polynomials f1, . . . , fm.

• The private key is the extension field K and the common zero p ∈ Kn.

• For encrypting a message m ∈ F, choose random q1, . . . , qm ∈ F[x1, . . . , xn] and compute
c = c(m) = m+

∑m
i=1 fiqi.

• For decrypting a cipher c ∈ F[x1, . . . , xn], simply compute

c(p) =

(

m+
m∑

i=1

fiqi

)

(p) = m+
m∑

i=1

fi(p)qi(p) = m+
m∑

i=1

0 · qi(p) = m.

Note 1.11.12.

(1) Decryption is easy: just compute m = c(p).

(2) If Eve knows any other solution q ∈ V
F
(I), she also can decode m by m = c(q).

Thus it should not be practical to find any solution in V (I).

Definition 1.11.13. An ideal I ⊆ F[x1, . . . , xn] is called zero-dimensional if V
F
(I) is a finite

set.

Preferably Alice works with a zero-dimensional ideal.

Lemma 1.11.14. Let I ⊆ F[x1, . . . , xn] be an ideal. Then I is zero-dimensional if and only if
F[x1, . . . , xn]/I is a finite-dimensional F-vector space.

Question 1.11.15. How hard is it to compute points in V (I)?
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Example 1.11.16. Assume the ideal is generated by linear polynomials fi =
∑n

j=1 aijxj − bi,
where aij , bi ∈ F. In this case one has to solve the linear system Ax = b, where A = (aij),
b = (bi)i, i. e. one uses Gauss elimination.

For zero-dimensional ideals I, a “diagonalization process” is also possible transforming f1, . . . , fs,
where 〈f1, . . . , fs〉 = I, to g1, . . . , gn, such that 〈g1, . . . , gn〉 = I and

g1 ∈ F[x1], g2 ∈ F[x1, x2], . . . gn ∈ F[x1, . . . , xn].

Then solving this equations f1 = 0, . . . , fs = 0 is equivalent to solving at least n polynomial
equations in one variable: first find all x1 such that g1(x1) = 0. Then plug in these values of x1

into g2, and solve g2(x2) = 0 for each of them, and so on.

We want to give a little description of the process behind finding such gi. We first introduce
a monomial order on F[x1, . . . , xn]; this is an total order10 on the set of monomials {xα :=
∏n

i=1 x
αi

i | α ∈ Nn}, such that it is compatible11 with multiplication xαxβ = xα+β and the set is
well-ordered12. Based on this one can define the leading term of an polynomial, and can give a
generalization of the Euclidean algorithm, the division algorithm:

Let f1, . . . , fm ∈ F[x1, . . . , xn] and f ∈ F[x1, . . . , xn]. One has a “division with remain-
der” f =

∑m
i=1 uifi + r, where ui, r ∈ F[x1, . . . , xn] and no term xα appearing in r is divisible

by any leading term of fi, 1 ≤ i ≤ m. Such a representation (with even more properties) can be
computed by iteratively checking whether the leading term of any of the fi’s divides the leading
term of f ; if it does, let f ← f − λxαfi where λxα is a monomial such that the leading terms
cancel away; if none of the fi’s satisfy this, subtract the leading term from f and add it to r.
Repeat this as long f 6= 0.

Definition 1.11.17. A generating set g1, . . . , gm of an ideal I ⊆ F[x1, . . . , xn] is called a
Gröbner-basis of I if for all f ∈ I there exists an integer i such that the leading term of gi

divides the leading term of f .

Remarks 1.11.18. Some consequences of this definition:

(1) If g1, . . . , gm is a Gröbner-basis of I, then the remainder r in the division of f by g1, . . . , gm

is unique.

(2) The quotient R = F[x1, . . . , xn]/I has a representative system of reduced remainders:

Given f + I, calculate f =
∑
uigi + r by the division algorithm. Then f + I = r+ I, and r

is unique.

Note that if r1, r2 are reduced representatives of r1 + I and r2 + I, then r1 + r2 is reduced
again, hence (r1 + r2) + I = (r1 + I) + (r2 + I) has the representative r1 + r2.

(3) In fact it can be shown that any set of polynomials g1, . . . , gn ∈ I satisfying that if the
leading terms of the gi divide the leading term of any polynomial in I, then g1, . . . , gn are a
generating set of I.

Generalized Polly-Cracker

• Public are f1, . . . , fm ∈ F[x1, . . . , xn], and reduced elements r1, . . . , rt forR = F[x1, . . . , xn]/I,
where I = 〈f1, . . . , fm〉 and the ri’s are linearly independent over F.

• Private is the Gröbner-basis g1, . . . , gs of I. (If I is zero-dimensional, then s = n.)

10Let ≤ be a relation on a set X. Then ≤ is called an order on X if for every a, b, c ∈ X we have

(i) a ≤ a (we say ≤ is reflexive),

(ii) a ≤ b and b ≤ a implies a = b (we say ≤ is antisymmetric),

(iii) a ≤ b and b ≤ c implies a ≤ c (we say ≤ is transitive).

If moreover for every pair a, b ∈ X at least one of a ≤ b and b ≤ a holds, then ≤ is called a total order.
11An order ≤ on a group G is said to be compatible with the group operation + if for any a, b, c ∈ G satisfying

a ≤ b we have a + c ≤ b + c.
12A total ordered set is called well-ordered if every non-empty subset contains a smallest element. A well-known

example is (N,≤), and a counterexample is (Z,≤).
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• To encrypt, let m ∈ Ft and define

c(m) :=
∑

miri +
∑

hifi, where the hi ∈ F[x1, . . . , xn] are random.

• To decrypt, compute
∑
miri as the reduction of c(m) by the Gröbner-basis. From this one

can then further reconstruct the ri.

1.11.4 McEliece Crypto System (1978)

This system is based on coding theory; thus we first give a small background in that area.

1.11.4.1 A Small Background in Coding Theory

Let F be a finite field.

Definition 1.11.19. A subspace C ⊆ Fn is called a linear code. If k = dimFC, then C is called
an [n, k] linear code. If F = F2, we also call C a binary code.

Example 1.11.20. The ISBN code is the subspace

C := {(xi)i ∈ F10
11 |

10∑

i=1

ixi = 0}.

In practice, for x1, . . . , x9 only the digits 0 to 9 are used, and the tenth value x10 is calculated by

x10 =

9∑

i=1

ixi.

For x10 it might happen that x10 = 10; in that case, an “X” is used in the representation if an
ISBN as a ten digit number.

Definition 1.11.21. Given x, y ∈ Fn, one defines the Hamming distance as

Ham(x, y) := |{i | xi 6= yi}| .

The distance of a code C ⊆ Fn is defined as

d(C) := min{Ham(x, y) | x, y ∈ C, x 6= y}.

Remark 1.11.22. The function Ham : Fn × Fn → N is a metric:

(i) for every x, y ∈ Fn, we have Ham(x, y) ≥ 0, and Ham(x, y) = 0 if and only if x = y;

(ii) for every x, y ∈ Fn we have Ham(x, y) = Ham(y, x);

(iii) for every x, y, z ∈ Fn we have Ham(x, z) ≤ Ham(x, y) +Ham(y, z).

Moreover, this metric is translation invariant: for every x, y, z ∈ Fn, we have Ham(x, y) =
Ham(x+ z, y + z), and thus especially Ham(x, y) = Ham(x− y, 0).

Lemma 1.11.23. Let C be a linear code. Then up to (d(C)− 1) errors can be detected and up

to
⌊

d(C)−1
2

⌋

errors can be corrected, in the following sense:

If someone sends x ∈ Fn, and another one receives x + e, where e ∈ Fn is an error vector,

one can correctly recover x from x + e if Ham(e, 0) ≤
⌊

d(C)−1
2

⌋

by chosing the unique x̃ ∈ C

such that Ham(x+ e, x̃) ≤
⌊

d(C)−1
2

⌋

, and one can detect that x+ e 6= x without knowing what e

or x is if Ham(e, 0) ≤ d(C)− 1.
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Example 1.11.24. Assume we want to encode the four directions “west”, “north”, “east” and
“south”. One possible code would be

west 7→ 00, north 7→ 01, east 7→ 10, south 7→ 11.

This scheme has distance 1. By adding a check digit

west 7→ 000, north 7→ 011, east 7→ 101, south 7→ 110,

one gets a scheme with distance 2. The following scheme has distance 3:

west 7→ 00000, north 7→ 01101, east 7→ 10110, south 7→ 11111.

One can easily check that they are all binary linear codes of dimension 2.

Remark 1.11.25. The last code C ⊆ F5
2 is a [5, 2] linear code. Indeed, one has that

C = rowspF2

(
0 1 1 0 1
1 0 1 1 0

)

.

Proof of the lemma. Assume that Ham(e, 0) ≤ d(C) − 1, when x was sent and x + e 6= x was
received. Now x+ e 6∈ C, since otherwise Ham(0, e) = Ham(x, x+ e) ≤ d(C)− 1 and x 6= x+ e,
contradicting the definition of d(C).

Now assume that the receiver knows that Ham(e, 0) ≤ t :=
⌊

d(C)−1
2

⌋

. Then x is the

unique x̃ ∈ C satisfyingHam(x+e, x̃) ≤ t, since if x̃ fulfillsHam(x̃, x+e) ≤ t we getHam(x, x̃) ≤
Ham(x, x+ e) +Ham(x+ e, x̃) ≤ t+ t < d(C), and thus it must be that x̃ = x.

One can visualize this as follows: define the (closed) ball

Bε(x) := {y ∈ Fn | Ham(x, y) ≤ ε}, ε > 0, x ∈ Fn.

Then if we have two balls around different codewords of C with radius d(C)−1
2 , the balls do not

intersect.

Definition 1.11.26. Given an [n, k] linear code C ⊆ Fn, an k × n-matrix G ∈ Fk×n is called a
generator matrix of C if

C = rowspFG,

and an (n− k)× n-matrix H ∈ F(n−k)×n is called a parity check matrix if

C = kerH = {x ∈ Fn | Hxt = 0}.

Example 1.11.27. The matrix

H =
(
1, 2, 3, . . . , 9, 10

)
∈ F1×10

11

is a parity check matrix for the ISBN code, and the matrix

G =






1 0 1
. . .

...
0 1 10






is a generator matrix for the ISBN code.

Remark 1.11.28. We have GH t = 0k×(n−k) and HGt = 0(n−k)×k.

Back to distances The main linear coding problem is:
Given F, n, k and d, find an [n, k] linear code of distance at least d and with the maximum

number of codewords.
For this there are some bounds:
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Sphere Packing Bound Assume d(C) = 2t+ 1. Then

⋃

x∈C

Bt(x) ⊆ Fn

is a disjoint union, and thus

∑

x∈C

|Bt(x)| =
∣
∣
∣
∣
∣

⋃

x∈C

Bt(x)

∣
∣
∣
∣
∣
≤ |Fn| = |F|n .

Now |Bt(x)| does not depends on x since the code is linear and Ham is translation invariant,
and thus we have the bound

|C| · |Bt(0)| ≤ |F|n .
Now we have that Bt(0) is a disjoint union:

Bt(0) =
t⋃

r=0

{x ∈ C | Ham(x, 0) = r}.

Thus

|Bt(0)| =
t∑

r=0

|{x ∈ C | Ham(x, 0) = r}| =
t∑

r=0

(
r

n

)

(|F| − 1)r,

and finally we get

|C| ≤ |F|n
∑t

r=0

(
r
n

)
(|F| − 1)r

.

Example 1.11.29. The largest code in F5
2 of distance 3 if bounded by

25

1 +
(
5
1

)
· 1

= 5 +
2

6
,

and thus |C| ≤ 5 for any [5, 2] code C ⊆ F5
2 having distance at least 3.

Singleton Bound

Lemma 1.11.30. Assume C is an [n, k] linear code with parity check matrix H. (Thus C =
kerH, and H ∈ F(n−k)×n.) Then

d(C) = min{i | there are i linearly dependent columns of H}.

Example 1.11.31. For the ISBN code we get d(C) = 2, since

H =
(
1 2 · · · 9 10

)
∈ F1×10

11 .

For the proof we will use the following notation: if H is a matrix, H•i will denote the i-th
column of H.

Proof of the lemma. It is

d(C) = min{Ham(x, y) | x, y ∈ C, x 6= y} = min{Ham(x, 0) | x ∈ C \ {0}}.

Let x = (xi)i ∈ C \ {0}. The Hxt = 0, and thus
∑
H•ixi = 0 is a linear combination of the

i-th columns of H for whose xi 6= 0; thus we have Ham(x, 0) columns of H which are linearly
dependent.

On the contrary assume that we are given 1 ≤ i1 < · · · < it ≤ n such that
∑t

j=1H•ijxij = 0
for given xij ∈ F\{0}, j = 1, . . . , t, i. e. the columns i1, . . . , it are linearly dependent. Let xi = 0
if i 6= ij for all j; then x ∈ Fn and

t∑

j=1

H•ijxij =
n∑

i=1

H•ixi,

and thus x = (xi)i ∈ C with Ham(x, 0) = t.
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Corollary 1.11.32 (Singleton Bound). An [n, k] linear code C has distance d(C) ≤ n−k+1.

Proof. The columns of any parity check matrix H of C are vectors in Fn−k, and thus any
selection of n− k + 1 of them is linearly dependent.

The consequence of this is that in order to have codes with good distances, it is desireable
to construct matrices H such that only (d− 1) columns are linearly independent.

Example 1.11.33 (the Hamming code). Let

H =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



 ∈ F3×7
2 and C = kerH ⊆ F7

2.

In fact, the columns of H are all non-zero vectors of F3
2. A simple calculation shows dimC =

7 − 3 = 4, and thus |C| = 24 = 16. Moreover d(C) = 3 by the lemma. The singleton bound is
n− k + 1 = 4, and so one may ask whether this code is good or not.

The sphere packing bound computes to

128 = 16 ·
(

1 +

(
7

1

)

· 1
)

= |C| · |B1(0)| ≤ 27 = 128,

and thus the code is optimal! Such codes with attain the sphere packing bound are called perfect.

In order to reach the singleton bound it is neccessary to have larger field sizes. It has to be
that |F| ≥ n− 2.

Example 1.11.34. Assume α1, . . . , αn are pairwise distinct non-zero elements of a finite field F.
Consider the matrix

H =









α1 α2 · · · αn

α2
1 α2

2

...
...

. . .
...

αn−k
1 αn−k

2 · · · αn−k
n









∈ F(n−k)×n, and C = kerH ⊆ Fn.

By exploiting the Vandermonde determinant one easily shows that every (n − k) columns of H
are linearly independent, and thus d(C) = n−k+1—the singleton bound is attained! An example
for this is the ISBN code.

1.11.4.2 The McEliece System

Some facts about codes:

1) Decoding a general [n, k] linear code is an NP -hard problem.

2) There are special classes of codes going under the name of algebraic geometric codes (including
Reed-Solomon and BCH codes) where decoding can be achieved in polynomial time.

The idea of McEliece was: take an algebraic geometric code C in Fn
2 which can be efficiently

decoded, and choose a generator matrix G of C. Let T ∈ GLk(F2) be a random invertible
matrix, and P ∈ GLn(F2) a random permutation matrix. Compute G̃ := TGP , and choose an t
such that d(C) ≥ 2t+ 1.

The private key consists of G, T , P and C, and the public key of G̃ and t.
For encrypting a plaintext m ∈ Fk

2, choose a random e ∈ Fn
2 such that Ham(e, 0) ≤ t, and

let the ciphertext c be
c := c(m) := mG̃+ e.

For decryption, apply the inverses of G and T to c to get mG + ẽ, where Ham(ẽ, 0) ≤ t, and
any decoding scheme for C can be applied.

Suggested sizes are n = 1000 and k = 500, resulting in a public key of n · k = 500000 bits,
which is approximately 61 kilobyte.
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1.11.5 One-Way Trapdoor Functions from Semigroup Actions

Definition 1.11.35. A semigroup is a set with an associative multiplication.

Remark 1.11.36. In general a semigroup has no identity element and thus there exist no
inverses.

Example 1.11.37. For example, take the even integers with multiplication, i. e. the set 2Z with
multiplication ·.

Definition 1.11.38. Let G be a semigroup and S an arbitrary set. An action of G on S is a
map ψ : G× S → S such that

ψ(a, ψ(b, s)) = ψ(ab, s) for all a, b ∈ G and s ∈ S.

We will use the notation as instead of ψ(a, s) for a ∈ G, s ∈ S.

Example 1.11.39. Let G = 2Z be a semigroup with respect to the usual multiplication, and let
S = E(Fq) be the set of points on an elliptic curve over Fq. Then ψ : G× S → S, (y, P ) 7→ yP
defines a semigroup action of G on S.

Application 1.11.40 (Extended Diffie-Hellman Key Exchange). Alice and Bob agree
on an Abelian semigroup G which acts on a set S, and they agree on an s ∈ S. Alica chooses
an a ∈ G and publishes as, and Bob chooses an b ∈ G and publishes bs. The common key is
k = (ab)s = a(bs) = b(as).

Note that this generalizes the usual Diffie-Hellman exchange: indeed, if H is a group, then
ψ : Z×H → H, (n, h) 7→ nh is a semigroup action, as (hn)m = hnm = (hm)n.

Application 1.11.41 (Extended ElGamal One-Way Trapdoor Function). Given an
Abelian semigroup action ψ : G× S → S where S has the structure of a group with operation ◦.
(This structure does not have to be compatible with ψ.)

First Alice chooses an s ∈ S and a ∈ G, and publishes (s, as). Her private key is a. To send
a secret messge to Alice, Bob randomly chooses an element b ∈ G and encrypts m ∈ S by

(m, b) 7→ (bs, (b(as)) ◦m) = (c1, c2) ∈ S2.

Alice can compute m from (c1, c2) by

m = (b(as))−1 ◦ (b(as)) ◦m = (a(bs))−1 ◦ c2 = (ac1)
−1 ◦ c2.

Remark 1.11.42. The difficulty of both extended Diffie-Hellman and ElGamal is based on the
semigroup action problem (SAP) which asks for a semigroup action ψ : G× S → S:

Given s and as, find an α ∈ G such that αs = as.

For example in the case of Diffie-Hellman assume that Eve finds an α ∈ G such that αs = as.
Then Eve can compute k = (ab)s = b(as) = b(αs) = α(bs).

Thus we have to require that the SAP is a hard problem. For this ψ : G × S → S is a
semigroup action as above. Define

GEve = {α ∈ G | αs = as}.

When G is a group, one has

α ∈ GEve ⇔ a−1αs = s

⇔ a−1α ∈ Stab(s)

⇔ α Stab(s) = a Stab(s)

⇔ α ∈ a Stab(s),

where Stab(s) = {g ∈ G | gs = s} is the stabilizer of s ∈ S. (Note that Stab(s) is a groubgroup
of G in this case.)
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Lemma 1.11.43. If G is a group, then Orbit(s) = Gs, which is bijective to G/ Stab(s). Here
Orbit(s) = {gs | g ∈ G} is the orbit of s ∈ S under G.

When G is only a semigroup, one still has a Stab(s) ⊆ GEve. In this case, if G is finite one

has that |Gs| ≤ |G/ Stab(s)| = |G|
|Stab(s)| . In order to avoid brute force attacks we want |Gs| to

be a large. For example, |Gs| should be ≥ 280.
We want to give two examples of semigroup actions.

Examples 1.11.44.

(a) Linear Algebra Action: Let G = Fn×n where F is a field, and S = Fn with the ac-
tion ψ(A, v) = Av. (Clearly we have A(Bv) = (AB)v.) The only problem is that for
n > 1 we have that G is not Abelian.

Given an A ∈ Fn×n, we want to find the largest commutative semi-subgroup of G such that
A ∈ G ⊆ Fn×n. If A has finite order m, then {En, A, . . . , A

m−1} would be an Abelian
subgroup. But is it the largest one?

Lemma 1.11.45. If A is diagonizable with pairwise distinct eigenvalues λ1, . . . , λn, then
the largest Abelian semi-subgroup containing A is

F[A] = {f(A) | f ∈ F[x]}.

Outline of the Proof. Let A be as in the claim, and assume

SAS−1 =






λ1 0
. . .

0 λn






for some invertible S ∈ Fn×n. First note that F[A] is an Abelian semi-subgroup containing A.
Given B with AB = BA, we have

SAS−1SBS−1 = SBS−1SAS−1,

where with B̃ = SBS−1 we get that B̃ must be a diagonal matrix (why?). Thus B̃ ∈
F[SAS−1] and therefore B = S−1B̃S ∈ F[A].

An attempt would be to use such an A ∈ Fn×n and G = F[A] as an Abelian semigroup acting
on S = Fn. But then Eve can solve the SAP using linear algebra:

Recall the Theorem of Cayley-Hamilton: if χ(A) = det(xEn−A) ∈ F[x] is the characteristic
polynomial of A, then χ(A) = 0. (Hence the minimal polynomial of A exists and divides χ.)

Given A ∈ Cn×n with eigenvalues λ1, . . . , λm ∈ C and multiplicities µ1, . . . , µm ∈ N, and two
analytic (convergent) functions f, g ∈ C[x] such that f (j)(λi) = g(j)(λi) for all 1 ≤ i ≤ m
and 0 ≤ j < µi, then f(A) = g(A). (For µi = 1, 1 ≤ i ≤ n, this directly follows from
Sf(A)S−1 = f(SAS−1) by using an S ∈ Cn×n such that SAS−1 is a diagonal matrix.)

If Eve knows the semigroup action F[A]×Fn → Fn and v ∈ Fn, Bv ∈ Fn for some B ∈ F[A].
By Cayley-Hamilton she knows B =

∑n−1
i=0 aiA

i (if B = f(A) for some f ∈ F[x], write
f = χA · g + h for g, h ∈ F[x], deg h < degχA = n, then B = f(A) = h(A)), and thus
Bv =

∑n−1
i=0 ai(A

iv). But then Eve can simply compute v from Bv and B (and therefore
from the ai’s) by use of ordinary linear algebra!

(b) A more interesting example is the following: Take S = E(Fq) × E(Fq) for some elliptic
curve E over a finite field Fq. Let G = Z[A], where A ∈ Z2×2. The action is given by

G× S → S,

((
a b
c d

)

, (P,Q)

)

7→ (aP + bQ, cP + dQ).

Remark 1.11.46. If P,Q are in the same orbit, i. e. Q = nP , then the above problem can
be solved by several DLPs in E(Fq). In the general case we do not know how to reduce this
problem to DLPs in E(Fq).
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(c) Back to the linear algebra problem. This problem becomes more complicated if one works
with a finite ring and not a finite field. Moreover note that a matrix multiplication is defined
such that it is enough to have a finite semiring (R,+, ·), i. e. a structure such that

(i) (R,+) is an Abelian semigroup,

(ii) (R, ·) is a semigroup,

(iii) the usual distributive laws hold.

A congruence relation on a semiring R is an equivalence relation ∼ on R satisfying that if
a ∼ b holds for any a, b, c ∈ R, we also have ac ∼ bc, ca ∼ cb and a + c ∼ b + c. Clearly
{(a, a) | a ∈ R} and R2 are congruence relations on R for every semiring R; they are called
the trivial ones. A semiring without nontrivial congruence relations is called simple.

For example, the ring R = Z/6Z is not simple, since it possesses the non-trivial congruence
relations induced by the ideals 2R and 3R.

Example 1.11.47. A simple semiring with six elements:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 1 1 1 1 5
2 2 1 2 1 2 5
3 3 1 1 3 3 5
4 4 1 2 3 4 5
5 5 5 5 5 5 5

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 2 0 0 5
3 0 3 4 3 4 3
4 0 4 4 0 0 3
5 0 5 2 5 2 5
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1.12 Lattices and the LLL Algorithm

Given vectors v1, . . . , vk ∈ Rn which are linearly independent, one defines:

Definition 1.12.1. The set

Λ = Λ(v1, . . . , vk) :=

k∑

i=1

Zvi =

{
k∑

i=1

λivi | λ1, . . . , λk ∈ Z

}

is called a (k-dimensional) lattice.

Remark 1.12.2. Obviously Λ is a Z-module. Moreover, it is free of rank k, i. e. it is isomorphic
to Zk.

Assume vi = (vi1, . . . , vin); then Λ is the row space rowspZM of the matrix

M :=






v11 · · · v1n
...

. . .
...

vn1 · · · vnn




 ,

and M = M(v1, . . . , vn) is called a generator matrix of Λ = Λ(v1, . . . , vn).

Lemma 1.12.3. Let M and M̃ be two generator matrices. Then M and M̃ generate the same
lattice if and only if there exists a unimodular13 U ∈ GLk(Z) satisfying M̃ = UM .

Proof. If M̃ = UM with an U ∈ GLk(Z), one easily sees that Λ(M) = Λ(M̃) since v 7→ Uv is
an isomorphism of Zk.

Conversely assume that rowspZM = rowspZ M̃ , and let M = M(v1, . . . , vk) and M̃ =
M(ṽ1, . . . , ṽk). Write ṽj =

∑k
i=1 λi,jvi, where λi,j ∈ Z; then ei 7→

∑n
j=1 λi,jej defines a map

from Zk → Zk which easily can be seen to be an isomorphism. Thus U = (λi,j)i,j ∈ Zk×k is
unimodular and M̃ = UM .

Given a lattice Λ = rowspZ(M), one defines the volume of the fundamental region as

∣
∣det(MM t)

∣
∣1/2

.

This expression is sometimes also called the determinant of the lattice. Note that in the literature
sometimes

∣
∣det(MM t)

∣
∣ is defined to be the determinant.

Remark 1.12.4. If M̃ = UM with U ∈ GL2(Z), then det(M̃M̃ t) = detU ·deg(MM t) ·detU t =
det(MM t) since detU · detU t = (detU)2 = 1.

Definition 1.12.5. Let Λ be a lattice. Then define

d := dΛ := min{‖x− y‖ | x, y ∈ Λ, x 6= y} and r := rΛ :=
dΛ

2
.

Then one defines the density of Λ as

density(Λ) :=
vo`(k-ball of radius r)

√

det(MM t)
.

Example 1.12.6 (Convay and Sloane, “Codes and Lattices”). Let Λ be the lattice defined
by

M :=

(
1 0
1
2

1
2

√
3

)

.

(See figure 1.8.) Then

detMM t = det

(
1 1

2
1
2 1

)

=
3

4
, and hence (detMM t)1/2 =

√
3

2
= |detM | .

We get

d = 1, r =
1

2
and thus density(Λ) =

π(1/2)2√
3/2

=
π

2
√

3
≈ 0.906.

13A matrix M ∈ Rn×n over a ring R is called unimodular if it is invertible, i. e. if M ∈ GLn(R). By Cramer’s
Rule one easily shows that this is the case if and only if det M ∈ R∗.
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Figure 1.8: The lattice generated by the vectors (1, 0) and (1/2,
√

3/2)

A big question in lattice theory is:

Question 1.12.7. Given a lattice Λ, find the smallest non-zero lattice vector v, i. e. a vector v ∈
Λ such that ‖v‖ = min{‖w‖ | w ∈ Λ, w 6= 0}.

This is equivalent to computing a vector in Λ of length dΛ, and it is known to be a NP -hard
problem for the ∞-norm; in the case of the Euclidean 2-norm it still unknown.

In the case of n-dimensional lattices this means M is a square matrix and |detM | =
∣
∣det(MM t)

∣
∣1/2

. One has the following estimate of the smallest vector due to Hermite: it is

d ≤ c · (detM)1/4, where c =
1√
πe

is the Hermite constant.

Facts about n-dimensional lattices

• Finding the shortest vector v ∈ Λ is a very hard problem in general.

• In 1982, Lenstra, Lenstra and Lovacs derived an algorithm called LLL or L3 which trans-
forms M to a so called Lovacs basis. (We will see later what that is.) The smallest basis
vector b has norm

‖b‖ ≤ 2n/2 |detM |1/n .

In fact, if the density of the lattice “is low”, it can be shown that LLL even finds a
shortest vector. For an application of this fact, see the Lagarias-Odlyzko attack on the
Merkle-Hellman cryptosystem in section 1.11.2.

Norms

Definition 1.12.8. For every positive p ≥ 1 and w = (w1, . . . , wn) ∈ Rn, define the p-norm

‖w‖p :=

(
n∑

i=1

|wi|p
)1/p

.

Moreover let
‖w‖∞ := max

i=1,...,n
|wi|

be the ∞-norm of w.

Remark 1.12.9. For every p ∈ [1,∞] we have that ‖·‖p is a norm on Rn, i. e. the following
holds:

(i) we have ‖w‖p ≥ 0 for all w ∈ Rn, and ‖w‖p = 0 if and only if w = 0.

(ii) we have ‖v + w‖p ≤ ‖v‖p + ‖w‖p for all v, w ∈ Rn,

(iii) we have ‖λw‖p = |λ| ‖w‖p for all λ ∈ R and w ∈ Rn.

Remark 1.12.10. Different norms on Rn induce the same topologies. For example,

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2 ≤ n ‖x‖∞

for every x ∈ Rn.
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Relation of Lattices to Quadratic Forms

Definition 1.12.11. An expression of the form

q(x) =
∑

1≤i≤j≤n

qijxixj ∈ R[x1, . . . , xn]

is called an quadratic form. Introduce a matrix

S =






q11
qij

2
. . .

qji

2 qnn




 ∈ Rn×n.

Then q(x) = xSxt for every x ∈ Rn. A quadratic form q is positive definite if q(x) ≥ 0 for
every x ∈ Rn, and if q(x) = 0 if and only if x = 0. Furthermore two quadratic forms q and q̃ are
equivalent if there is an orthogonal matrix U ∈ Rn×n such that q̃(x) = q(Ux) for every x ∈ Rn.

Remark 1.12.12. Since q(xU) = xUSU txt = x(USU t)xt, transformation by U corresponds to
S → USU t.

Consider a lattice Λ = rowspZ(M), and define S := MM t. This defines a positive definite
quadratic form qΛ(x) := xMM txt, x ∈ Rn, and two such forms are q, q̃ belong to the same
lattice if and only if they are congruent.

A study of lattices is hence closely related to the study of quadratic forms.

Fundamental Problems Associated to Lattices

1. The Shortest Vector Problem (SVP): Given Λ = Λ(v1, . . . , vk) and p ∈ N>0 ∪ {∞}, find a
“shortest vector x ∈ Λ” with respect to the p-norm. This is a vector x 6= 0 such that

‖x‖p = inf
y 6=0
y∈Λ

‖y‖p .

Note that for p =∞ this problem is known to be NP-complete. For p = 2 the complexity
is unknown, but recent results by Miklos Ajtai indicate that this problem is hard.

2. The Closest Vector Problem (CVP): Given a lattice Λ and p ∈ N>0 ∪ {∞}, and a w ∈ Rn,
find an x ∈ Λ such that

‖x− w‖p = inf
y∈Λ
‖y − w‖p .

Even for p = 2, the CVP is known to be NP-complete.

An application of the SVP is the knapsack problem (note Section 1.11.2). Recall that for
this problem one is given positive numbers a1, . . . , an ∈ N and s ∈ N, and one is asked whether
there is a subset S ⊆ {1, . . . , n} such that

∑

i∈S

ai = s.

For different choices of N consider the lattice generated by

M =








−Na1

En
...

−Nan

0 · · · 0 Ns







∈ R(n+1)×(n+1).

If the knapsack problem has a solution, then it follows that the lattice rowspZ(M) has a shortest
vector x of ∞-norm 1 and such that 0 ≤ xi for all components xi of x. (This relation goes back
to Lagarias and Odlyzko; later C. Schnorr showed how to get a factorization method from this.)
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Hermite Basis Given a k × n-matrix M = (aij)ij of rank m, one says M is in Hermite form
if there are numbers 1 ≤ j1 < · · · < jm ≤ n such that

a) we have aij = 0 for all i > m, or if i ≤ m for all j < ji;

b) we have aiji
> 0 for all i ≤ m;

c) we have 0 ≤ akji
< aiji

for all k < i ≤ m.

Thus M looks like

M =














a1j1 ∗ < ∗ < ∗

a2j2 ∗ ... ∗
. . . <

amjm ∗

0














.

Theorem 1.12.13 (Hermite). Let M ∈ Qk×n be a matrix of rank m. Then there is a
unimodular matrix U ∈ GLk(Z) such that M̃ = UM is in Hermite form. Moreover the form is
unique.

Outline of Proof. First note that by multiplying with the least common multiple of all denomi-
nators we reduce to the problem that M ∈ Zk×n.

Let j1 be the first column with nonzero entries. Using only unimodular row operations and
Euclids algorithm for the greatest common divisor it is possible to transform M into

M̃ =

(
0 g M1

0 0 M2

)

,

where g > 0 is the greatest common divisor of all entries in the j1-th column. By recursion on
M2 we get a form








a1 ∗ ∗ ∗ ∗
a2 ∗ ∗

a3

. . .








where ai is the greatest common divisor of all entries in the ji-th column. By subtracting rows
one can transform the ∗’s in the ji-th columns to integers in the interval [0, ai[.

The uniqueness part is left as an exercise to the reader.

Remark 1.12.14. Consider a special case where m = k = n (thus we have an n× n invertible
matrix with rational entries). Then Hermite says that there is a T ∈ GLn(Z) such that

M̃ = TM =






a11 a12 · · ·
. . .

0 ann






with aii > 0 for all i and 0 ≤ aij < ajj for all 1 ≤ i < j ≤ n. Especially the theorem provides
a unique basis for row modules. Also note that in general the norm of the basis elements are
“fairly small”.

Remark 1.12.15. The Hermite Theorem is not true if some entries of M are irrational; for
example consider the matrix

(
1 3√
2 4

)

∈ R2×2.

Question 1.12.16. How to get a smaller basis of rowspZ(M) than the one provided by Hermite?

The answer came 1982 and was by Lenstra, Lenstra and Lovacs: the L3 or LLL algorithm.
The idea is based on the Gram-Schmidt algorithm for orthogonalization, which we will explain
first.
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Gram-Schmidt Orthogonalization Let v1, . . . , vn ∈ Rn be a basis of Rn. Inductively define

v∗i := vi −
i−1∑

j=1

µijv
∗
j , where µij =

〈

vi, v
∗
j

〉

〈

v∗j , v
∗
j

〉 .

Then we have:

(a) The vectors v∗1, . . . , v
∗
n form an orthogonal basis of Rn;

(b) We have Uk := span{v1, . . . , vk} = span{v∗1, . . . , v∗k} for all 1 ≤ k ≤ n;

(c) We have that v∗i is the projection of vi onto

U⊥
i = {x ∈ Rn | 〈x, vj〉 = 0 for j = 1, . . . , n}.

In particular we have ‖n∗i ‖2 ≤ ‖vi‖2.

Proof. Clearly (a) follows from (b). For (2) note that by definition we have span{v∗1, . . . , v∗k} ⊆
Uk for all k. Since vi 6∈ span{v1, . . . , vi−1} clearly v∗i 6= 0. Now

〈

v∗i , v
∗
j

〉

= 0 (see below) for

i 6= j, and therefore the v∗i are linearly independent and the claim follows by induction.
To see that 〈v∗k, v∗i 〉 = 0, we proceed by induction first on k and then on i, where 1 ≤ k <

i ≤ n. We get

〈v∗k, v∗i 〉 =

〈

v∗k, vi −
i−1∑

j=1

µijv
∗
j

〉

= 〈v∗k, vi − µikv
∗
k〉 = 〈v∗k, vi〉 −

〈v∗k, vi〉
〈
v∗k, v

∗
k

〉 〈v∗k, v∗k〉 = 0.

For (c) note that since vi = v∗i + (vi − v∗i ) and v∗i ∈ U⊥
i−1 we have to show that vi − v∗i ∈ Ui−1.

But

vi − v∗i =
i−1∑

j=1

µijv
∗
j .

Moreover
‖vi‖22 = ‖v∗i ‖22 + ‖vi − v∗i ‖22 ≥ ‖v∗i ‖

2
2 ,

since v∗i and vi − v∗i are orthogonal.

Lemma 1.12.17. Let

B =






v1
...
vn




 =






v11 · · · v1n
...

. . .
...

vn1 · · · vnn






and

B∗ =






v∗1
...
v∗n




 =






v∗11 · · · v∗1n
...

. . .
...

v∗n1 · · · v∗nn




 .

Then

B =









1 0 · · · 0

µ21
. . .

. . .
...

...
. . .

. . . 0
µn1 · · · µn,n−1 1









B∗.

In particular detB = detB∗ 6= 0.

Proof. Clear.

Theorem 1.12.18 (Hadamard). Let B =
(
v1, . . . , vn

)t
= (vij)ij ∈ Rn×n be as above. Let

ρ ∈ R>0 be such that |vij | ≤ ρ for all i, j. Then

|detB| ≤ ‖v1‖2 · · · ‖vn‖2 ≤ nn/2ρn.



72 CHAPTER 1. CRYPTOGRAPHY

Proof. For the first inequality note that

|detB| = |detB∗| = ‖v∗1‖2 · · · ‖v∗n‖2 ≤ ‖v1‖2 · · · ‖vn‖2 ,

since B∗ is orthogonal:

|detB∗| =
√

|detB∗(B∗)t| =

√
√
√
√
√
√deg






‖v1‖22 0
. . .

0 ‖vn‖22




.

For the second inequality note that ‖vi‖2 ≤
√
n ‖vi‖∞ ≤

√
nρ.

Definition 1.12.19. A matrix B having entries vij with |vij | ≤ ρ is called a Hadamard matrix
if equality holds, i. e. if |detB| = nn/2ρn.

The following is a direct consequence of the previous lemmas: if equality holds, then we have

(1) all entries vij satisfy |vij | = ρ,

(2) the rows are pairwise orthogonal.

Examples 1.12.20.

1. For n = 2 and ρ = 1 we can take

H2 =

(
1 −1
1 1

)

and

(
1 1
1 −1

)

.

2. For n = 3 and ρ = 1 there is no such matrix.

3. For n = 4 and ρ = 1 we can take

(
H2 −H2

H2 H2

)

=







1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1






.

4. For n = 2k, k > 0 and ρ = 1 we can define

H2k =

(
H2k−1 −H2k−1

H2k−1 H2k−1

)

∈ R2k×2k

.

Lemma 1.12.21. Let Λ = Λ(v1, . . . , vn) =
∑n

i=1 Zvi be a n-dimensional lattice, and let
v∗1, . . . , v

∗
n ∈ Rn be the associated Gram-Schmidt basis. (Note that v∗i 6∈ Λ in general.) If

v ∈ Λ is any nonzero vector, then

‖v‖2 ≥ min{‖v∗1‖2 , . . . , ‖v∗n‖2}.

Proof. Let v =
∑n

i=1 civi for ci ∈ Z, and assume ` is the highest index such that c` 6= 0. Then

v =
∑̀

i=1

civi =
∑̀

i=1

ci



v∗i +

i−1∑

j=1

µijv
∗
j



 = c`v
∗
` +

`−1∑

j=1

rjv
∗
j

for appropiate rj ∈ R. Using the orthogonality of the v∗i ’s we get

‖v‖22 = |c`|2 ‖v∗` ‖22 +

`−1∑

j=1

|rj |2
∥
∥v∗j
∥
∥2

2
≥ ‖v∗` ‖22 ≥ min{‖v∗1‖2 , . . . , ‖v∗n‖2}.
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As a consequence, min{‖v∗1‖2 , . . . , ‖v∗n‖2} gives a lower bound for the shortest vector problem.
Moreover it motivates the idea that an “approximate Gram-Schmidt” (such that the transformed
basis is still in the lattice) should give a “short basis”.

Definition 1.12.22. The ordered basis (v1, . . . , vn) ∈ Rn×n is called length reduced if |µij | ≤ 1
2

for i 6= j when doing Gram-Schmidt.

Theorem 1.12.23. If (v1, . . . , vn) ∈ Rn×n is length reduced, then

‖vi‖22 ≤ ‖v∗i ‖
2
2 +

1

4

i−1∑

j=1

∥
∥v∗j
∥
∥2

2
, i = 1, . . . , n.

Proof. By definition we have that

vi = v∗i +
i−1∑

j=1

µijv
∗
j ,

and because of orthogonality we have

‖v∗i ‖22 = ‖v∗i ‖22 +

i−1∑

j=1

|µij |2
∥
∥v∗j
∥
∥2

2
≤ ‖v∗i ‖22 +

1

4

i−1∑

j=1

∥
∥v∗j
∥
∥2

2
.

Lemma 1.12.24. Every lattice Λ(v1, . . . , vn) has a length reduced basis ṽ1, . . . , ṽn.

Sketch of Proof. For i = 2, 3, . . . , n let

ṽi := vi −
i−1∑

j=1

bµije vj ,

where bαe :=
⌈
α+ 1

2

⌉
.

Definition 1.12.25 (Lenstra, Lenstra, Lovacs 1982). Given a lattice Λ(v1, . . . , vn) and a
Gram-Schmidt basis v∗1, . . . , v

∗
n, we say that v1, . . . , vn are LLL-reduced with parameter ρ, where

1
4 < ρ < 1, if

(1) |µij | ≤ 1
2 for 1 ≤ i < j ≤ n (i. e. the basis is length reduced) and

(2) ρ
∥
∥v∗k−1

∥
∥2

2
≤ ‖v∗k‖

2
2 + |µk,k−1|2

∥
∥v∗k−1

∥
∥2

.

Theorem 1.12.26. Let v1, . . . , vn be an LLL-reduced basis of a lattice Λ with parameter ρ.
Define α = 1

ρ−1/4 . Then we have that

(1) ‖v1‖2 ≤ α(n−1)/4(det Λ)1/n, and

(2)
∏n

i=1 ‖vi‖22 ≤ α(n
2)(det Λ)2.

(In the original paper from 1982, ρ was fixed to 3/4, and thus α = 2.)

Note that (det Λ)1/2 corresponds to the geometric mean of ‖v∗1‖2, . . . , ‖v∗n‖2.
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The LLL Algorithm Let v1, . . . , vn be a basis of the lattice Λ = Λ(v1, . . . , vn), and let ρ ∈ R
such that 1

4 < ρ < 1. Then the LLL algorithm works as follows:

1. Let k := 2 and compute the Gram-Schmidt basis v∗1, . . . , v
∗
n and the µij ’s.

2. While k ≤ n do:

(Assume that v1, . . . , vk−1 is already LLL-reduced with parameter ρ.)

(a) Length reduce v1, . . . , vk−1, vk and recompute (if necessary) the µij .

(b) If ρ
∥
∥v∗k−1

∥
∥2

2
> ‖v∗k‖

2
2 + |µk,k−1|2

∥
∥v∗k−1

∥
∥2

2
interchange vk and vk−1 and set k := max{k −

1, 2}; otherwise let k := k + 1.

Theorem 1.12.27. Let Λ = Λ(v1, . . . , vn) be an integer lattice, i. e. we have vi ∈ Zn. Then
the LLL algorithm correctly computes an LLL-reduced basis of Λ. If for some B > 0 we have
‖vi‖2 ≤ B for all i, then the number of arithmetic operations in Q is O(n4 logB).

Outline of Proof. Let Dj := (det Λ(v1, . . . , vj))
2, j = 1, . . . , n. Thus if Mj =

(
v1, . . . , vj

)t
we

haveDj = det(MM t). LetD =
∏n

j=1Dj ; since Λ is an integer lattice we haveD ∈ N. During the
process of length reduction we have span{v1, . . . , vi} = span{ṽ1, . . . , ṽi} and det Λ(v1, . . . , vi) =
det Λ(ṽ1, . . . , ṽi}. Hence the length reduction does not changes D.

We claim that after the interchange in step 2(b) we have that Dnew ≤ 1
ρDold:

It is
ρ
∥
∥v∗k−1,old

∥
∥2

2
>
∥
∥v∗k,old

∥
∥2

2
+ |µk,k−1,old|2

∥
∥v∗k−1,old

∥
∥2

2
,

and therefore ρ
∥
∥
∥v∗k,new

∥
∥
∥

2
>
∥
∥
∥v∗k−1,new

∥
∥
∥

2
. Note thatDk−1,old =

∥
∥
∥v∗1,old

∥
∥
∥

2

2
· · ·
∥
∥
∥v∗k−1,old

∥
∥
∥

2

2
and thus

Dk−1,new ≤ ρDk−1,old.

Since Dk does not change, Dnew ≤ ρDold.

Initially the value of Di s bounded by

|D| =
∣
∣
∣
∣
∣

n∏

i=1

Di

∣
∣
∣
∣
∣
≤

n∏

i=1

∣
∣B2
∣
∣
i
= Bn(n+1);

hence the number of interchanges can be at most log1/ρB
n(n+1) or O(n2 logB). Recomputing

the µjk’s needs O(k) ≤ O(n) for fixed k, and the length reduction requires O(n2) arithmetic
operations. Using this we can conclude.

Remarks 1.12.28.

(1) Finer analysis shows that the cost is O(n4 logB) arithmetic operations of integers having
size at most O(n logB).

(2) The theorem was concerned with integer lattices Λ(v1, . . . , vn) ⊆ Zn. For rational lat-
tices Λ(v1, . . . , vn) ⊆ Qn the same theorem holds after multiplying Λ by the least common
multiple of the denominators of the components of all vi’s.

(3) The running time crucially depends on ρ. If ρ = 1 one can not use the above argument to
show that the algorithm terminates in polynomial time. Experience shows that the algorithm
converges to an LLL-reduced basis even for ρ = 1. Note that ρ close to 1 gives much better
bases in general, and that the original paper (1982) only considered the special case ρ = 3/4.

(4) The important property of an LLL-reduced basis is that

‖v1‖2 ≤ α(n−1)/4(det Λ)1/n,

where α = 1
ρ−1/4 .
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1.13 Factoring

In the sequel let n be a composite positive integer. The goal is to find factors of n. If n has
“small” factors, trial and error will “quickly” find them. Thus the hardest situtation seems to
be n = pq, where p and q are distinct primes and have similar size.

Here trial and error is of exponential time, requiring O(
√
n) = O(e

1
2

log n) trials.

1.13.1 The Quadratic Sieve

The basic idea is to consider the currve {(α, β) ∈ Z2
n | α2 − β2 = 0}. If one finds a nontrivial

solution α, β, i. e. α 6= ±β, then we have

0 ≡ (α+ β)(α− β) (mod n)

but
α+ β 6≡ 0 6≡ α− β (mod n).

Thus either p divides α+ β and q divides α− β, or q divides α+ β and p divides α− β, and in
any case

{gcd(α+ β, n), gcd(α− β, n)} = {p, q}.
A first approach to find nontrivial solutions is to randomly search for xi ∈ Zn and hope that

x2
i mod n = y2 for some y ∈ Z such that y 6≡ ±xi (mod n). The problem is that the chance

that a random number x2
i mod n is a square in Z is approximately 1√

n
; thus this method has

again exponential complexity.
An improvement is to let p1, . . . , pt be the first t primes, and to search for numbers xi such

that x2
i mod n =

∏t
j=1 p

eij

j for eij ∈ N, i. e. such that x2
i mod n is pt-smooth.

Note that if x2
i and x2

j can be factored, then we have

(xixj)
2 ≡

t∏

k=1

p
eik+ejk

k (mod n).

Moreover note that x2
i mod n is a square in Z if and only if eij is even for j = 1, . . . , t.

Now assume that x2
1 mod n, . . . , x2

k mod n are not squares. Form a matrix

A =






e11 · · · e1t
...

. . .
...

ek1 · · · ekt




 ∈ Fk×t

2 ,

where • : Z → Z/2Z = F2 is reduction modulo 2. If k ≥ t there is a good chance that A has
a non-trivial left kernel. To every non-zero element of the left-kernel corresponds a number x
where x2 mod n is a square in Z. In two third of the cases (which are α = ±β, p divides α+ β
or p divides α − β) this leads to a solution. Thus the difficulty of factoring is reduced to find
numbers x ∈ Zn such that x2 mod n is pt-smooth.

Recall Theorem 1.9.11, which we will recite here:

Theorem 1.13.1 (Norton (1971), Canfield, Erdős, Pomerance (1983)). Let N and r be
positive reals satisfying

B := N1/r ≥ logN.

Then the number of x ∈ N, x ≤ N which are B-smooth is given by

N · r−r+o(r), where lim
N→∞

o(r)

r
= 0.

Let
ψ(x, y) = |{m ∈ N>0 | m ≤ x and m is y-smooth }| .

Then the theorem says that if u = ln x
ln y , that ψ(x, y) ≈ xu−u(1+o(1)) uniformly for x→∞ if there

is a fixed ε ∈ ]0, 1[ such that (lnx)ε < u < (lnx)1−ε.
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For example if x = 10100, y = 1010, then u = 10 and ψ(x, y) ≈ 10100 · 10−10 = 1090.
This means that the probability that a random selected 100 digits number is 1010-smooth is
about 10−10.

An improvement is to instead looking at random xi to look at xi = a+ b√nc b for small a, b,
since

x2
i = a2 + 2ab

⌊√
n
⌋

+ b2
⌊√

n
⌋2 ≈ a2 + 2ab

√
n+ b2n2 ≡ a2 + 2ab

√
n (mod n).

Define the polynomial q = (x + b√anc)2 − an ∈ Z[x], and assume that for some i and natural
numbers k, x̄ one has that pk

i divides q(x̄). Then pk
i also divides q(x̄+ λpk

i ) for all λ ∈ Z.

This allows to set up an efficient “sieve.” For this fix a small a ∈ N. The goal is to find all
x ∈ [0, I] for some I > 0 such that q(x) is pm-smooth. Set up an array

x 0 1 2 3 4 · · · x̄ · · · x̄+ pi · · · · · · I

value adder 0 0 0 0 · · · 0 log pk
i 0 log pk

i 0 · · · 0

For different primes pi ∈ {p1, . . . , pm} and natural numbers k solve q(x) ≡ 0 (mod pk
i ). Let x̄ be a

solution. Add to “value adder” at the locations of the numbers x̂+λpk
i , λ ≥ 0, the value log pk

i . If
for some number v ∈ [0, I] the values add up to about log(2v

√
an), then q(v) = (v+b√anc)2−an

is pm-smooth.

A remark about the complexity of the quadratic sieve: one says a number theoretic problem
has subexponential running time if there are numbers α ∈ ]0, 1[ and c > 0 such that the number
of bit operations is

Ln(α, c) := O
(

ec(log n)α(log log n)1−α
)

.

With α = 0 this reduces to O((log n)c), i. e. polynomial time, and with α = 1 to O(nc, i. e.
exponential time. A careful analysis shows that the quadratic sieve’s complexity is of the
form Ln(1

2 , 1). The (currently) best known algorithm is an improvement of the quadratic sieve
called the generalized number field sieve, which has Ln(1

3 , c) for c ≈ 1.92 (???).

1.13.2 The Factorization Method of Claus Schnorr (1993)

The basic idea is to search for numbers of the form pe1
1 · · · pem

m mod n which are “small”. In
other words: the resulting number is likely to be pm-smooth. If this is possible, one would have
relations of the form

m∏

i=1

pei

i mod n =

m∏

i=1

pẽi

i ,

and if one has more than m such relations an equation x2 ≡ y2 (mod n) can be constructed.

Write N =
∏
pei

i ≈
∏
pfi

i = N̂ . We want that
∣
∣
∣N − N̂

∣
∣
∣ < s, where s is a number with the

property that with high probability
∣
∣
∣N − N̂

∣
∣
∣ is pm-smooth. (Note that if N − N̂ is pm-smooth,

then so are N − N̂ mod n and N̂ −N mod n.)

Taking logarithms we get

(e1 − f1) log p1 + · · ·+ (em − fm) log pm ≈ log n.

The requirement
∣
∣
∣N − N̂

∣
∣
∣ < s translates into

∣
∣
∣
∣
∣

m∑

i=1

(ei − fi) log pi − log n

∣
∣
∣
∣
∣
≤ 1

N
s

(which can be get by Taylor expansion). Consider the Schnorr lattice, which is the lattice Λ
defined by the matrix

M =








log p1 0 N log p1

. . .
...

0 log pm N log pm

0 · · · 0 N log n







∈ R(m+1)×(m+1).
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Consider a linear combination

(λ1, . . . , λm, c)M = (λ1 log p1, . . . , λm log pm,
∑

λiN log pi + cN log n).

(It is possible to round all entries to the nearest integer and get an integer lattice.)

Theorem 1.13.2 (C. Schnorr). Let c > 1 be a fixed real number and N = nc, where n is the
value to be factored. If (λ1, . . . , λm) ∈ Zm satisfy the inequalities

(i) |∑m
i=1 λi log pi − log n| ≤ 1

N pm and

(ii)
∑m

i=1 |λi log pi| < (2c− 1) log n+ 2 log pm,

then for

u =

m∏

i=1

pei

i and v =

m∏

i=1

pfi

i

we have |u− vn| ≤ p2
m.

In his 1993 paper Schnorr estimated that for factoring a number with 512 bits, a lattice
of size m = 6300 should be reduced with an algorithm more costly than LLL (namely the
Korkin-Zolotoa algorithm).

1.13.3 Lenstras Elliptic Curve Factorization Method

We first recall Pollards (p − 1)-method. Assume n = pq and for some bound B > 0 it is that
p− 1 is B-smooth, while q − 1 is not. Let

k =
∏

u≤B
u prime

u

j

log n

log u

k

.

(Then p − 1 divides k, but q − 1 does not.) For all x ∈ Z∗
p we have xk = 1 in Zp. Also

{x ∈ Z∗
q | xk = 1 ∈ Zq} is a proper subgroup of Z∗

q . Taking a random number x ∈ Z∗
n, with

probability at least 50 % we have that

gcd(xk − 1 mod n, n) ∈ {p, n}.

(The gcd cannot be 1 or q.)

Remarks 1.13.3.

(1) Computation of xk − 1 mod n can be done iteratively: start with x0 := x and compute

xi+1 := x
p

—

log n
log pi

�

i

i mod n.

Then test if gcd(xi+1 − 1 mod n, n) 6= 1. (Here p1, p2, . . . denote the first primes and x is
a random number in Zn.)

(2) If both p− 1 and q − 1 have large prime factors, this method will fail.

(3) Abstractly the (p − 1)-algorithm is based on group homomorphisms ϕ : Z∗
n → F∗

p (reduction
modulo p), and one searches for a kernel element.

Lenstras Method Consider an elliptic curve E : y2 = x3 + ax + b, where a, b ∈ Z. Assume
P = (α, β) ∈ Z2 is a point on the curve, and assume n =

∏m
i=1 p

ei

i where the pi are distinct
primes and ei ∈ N>0. We can look at the curve in different ways:

• As a curve over Q;

• As a curve over Zpi
;

• As a curve over Zn, which by reduction modulo pi reduces to a curve over Zpi
.
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To exploit the group laws for the first two kinds of curves, we require that ∆ = 4a3 + 27b2 ∈
Z∗

n. It is easy to construct such a curve with a point on it: pick randomly integers a, α ∈ Zn,
and then choose b such that α3 +aα+ b is a square in Z, like β2. Then y2 +x3 +ax+ b contains
P = (α, β) ∈ Z2

n. For smoothness compute gcd(∆ mod n, n); it is either 0, 1 or any other
positive number. If it is 1 we are done, if it is 0 we restart, and otherwise we found a non-trivial
factor of n.

Let `1, . . . , `m be the orders of P modulo pi, i. e. in the groups E(Fpi
). Assume that `i is

B-smooth and another `j is not. As in Pollards (p− 1)-method, compute

k :=
∏

u≤B
u prime

u

j

log n

log u

k

and compute kP ∈ E(Zn) using the normal addition formulas. If `i is B-smooth, then kP = O
in E(Fpi

), and if `j is not B-smooth, then kP 6= O in E(Fpj
). If we work in homogenous

coordinates kP = (x : y : z), we have z ≡ 0 (mod pi), but z 6≡ 0 (mod pj)—thus we have found
a non-trivial factor of n!

Remarks 1.13.4.

(1) In order to compute Q = kP ∈ E(Zn) we treat Zn as if it would be a field and use the usual
addition formulas. If at some step inversion modulo n is not possible though it should be,
we have a factor. Thus we do not have to work in homogenous coordinates, but can also use
inhomogenous coordinates.

(2) As in Pollard (p− 1) we can compute kP iteratively.

The Complexity Let n =
∏m

i=1 p
ei

i be as above, where p1 < · · · < pm. The algorithm succeeds
as soon as some of the orders `1, . . . , `m of P in E(Fpi

) are B-smooth while others are not. The
expected size of `i is |E(Fpi

)|, which is the size of pi by Hasse. Using some heuristic arguments
Lenstra computed the asymptotic complexity as

Lp(
1
2 ,
√

2) = O
(

exp
√

(2 + o(1))(log p)(log log p) · (log n)2
)

.

For the quadratic sieve one gets

Ln(1
2 , 1) = O

(

exp
√

(1 + o(1))(log n)(log log n)
)

.

In situations where n = pq and p ≈ q, p 6= q, we see that asymptotically Ln(1
2 , 1) ≈ Lp(

1
2 ,
√

2),
thus the algorithms have asymptotically the same complexity.

Caveat The arithmetic operations per addition in Lenstras algorithm are much more costly!

Remark 1.13.5. The quadratic sieve can be generalized from Q to number fields, i. e. finite
extensions of Q, where one works for example in Q[

√
3] which is as a Q-vector space isomorphic

to Q⊕
√

3Q. An idea would be to do a similar generalization with Lenstra’s algorithm.
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1.14 Hash Functions

Let X and Y be sets, where Y is finite and X is possibly infinite.

Definition 1.14.1. A one-way function h : X → Y is called a (cryptographic) hash function.

This means that for a given y ∈ Y it is computationally not feasible to find an x ∈ X such
that h(x) = y.

Remark 1.14.2. In practice X is typically of the form

X = A∗ :=
∞⋃

i=0

Ai,

where A is some (finite) alphabet.

Applications 1.14.3.

(1) Simple error protection.

(2) In connection with digital signatures:

If an email should be signed, one in practice computes the hash of the mail and includes that
hash value in the signature, so that anyone can check whether the signature (if it is valid)
belongs to the mail.

Definition 1.14.4. A hash function is called weakly collision free if for a particular x ∈ X
it is computationally not feasible to find an x′ ∈ X such that h(x) = h(x′) and x′ 6= x. It is
called strongly collision free if it is not feasible to find two distinct elements x, x′ ∈ X such that
h(x) = h(x′).

Remark 1.14.5. If h is weakly collision free, and the values are uniformly distributed, then
finding an x′ through a random search requires O(|Y |) trials. For strongly collision free hash
functions the number of trials is O(

√

|Y |).

As an example, consider the MD5 hash function. (Note that recently collisions were found
for MD5.)

1.14.1 The Chaum-van Heijst-Pfitzmann Hash Function

Let p, q be distinct primes with p = 2q + 1 (i. e. p is a safe prime; recall that such primes are
easy to find) Let α and β be two primitives of Fp = Zp. (Actually we have that (Zp, ·) ∼=
(Z2q,+) ∼= (Zq,+) ⊕ (Zq,+), and thus half of the units of Zp are primitive.) Identify Fq = Zq

with {0, 1, . . . , q − 1} ⊆ N.

Lemma 1.14.6. The function h : Fq×Fq → F∗
p, (x1, x2) 7→ αx1βx2 can serve as a hash function:

finding a collision is equivalent with solving logα β.

Proof. Assume s = logα β is known. Then αx1βx2 = αx1+sβx2−1, and therefore (x1, x2) and
(x1 + s, x2 − 1) hash to the same value.

Vice versa: let (x1, x2) 6= (x3, x4) be pairs such that h(x1, x2) = h(x3, x4). Thus αx1−x3 =
βx4−x2 . If x4 = x2, then x1 = x3; therefore we can assume x1 6= x3, x2 6= x4. Without loss of
generality x4 > x2. Let d = gcd(x4 − x2, p − 1). Since q > x4 − x2 ≥ 1 and p − 1 = 2q, either
d = 1 or d = 2.

If d = 1, then with y := (x4 − x2)
−1 (mod p − 1) we have (βx4−x2)y = β, and moreover

(βx4−x2)y = (αx3−x1)y = α(x3−x1)y and thus (x3 − x1)y = logα β.
If d = 2 we have gcd(x4 − x2, q) = 1 since p− 1 = 2q. Let y := (x4 − x2)

−1 (mod q). Write
y(x4 − x2) = 1 + kq, k ∈ Z. Then we have

βqkβ = βqk+1 ∼= βy(x3−x1) (mod p),

and βkq ∈ {−1, 1}. (In fact we have βkq ∼= (−1)k.) Therefore we also get logα β ∈ {(x4 −
x2)y, (x4 − x2)y + q}, and a simple trial reveals logα β.
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1.14.2 Construction of Practical Hash Functions

Question 1.14.7. Given a one-way function h : X → Y , both X and Y finite. How to construct
a hash function

h∗ : X∗ → Y, where X∗ =
∞⋃

i=0

Xi.

Method #1 Assume X = Y and that X has some additive structure. For each n, define
a function hn : Xn → Y , (x1, . . . , xn) 7→ hn(x1, . . . , xn) and h∗ : X∗ → Y , (x1, . . . , xn) 7→
hn(x1, . . . , xn). The function hn is defined recursively by

hn+1(x1, . . . , xn, xn+1) := h(xn+1 + hn(x1, . . . , xn) and h1(x1) := h(x1).

Method #2 Based on a secret key system f :M×K → C, whereM ∼= K ∼= C as sets, define
X := K and Y := C. From the definition of a secret key system we know that for any m ∈M the
function x 7→ f(m,x) is a one-way and hence a hash function. Given (x1, . . . , xn) ∈ Xn, define
hn : Xn → Y through the recurrence relation y1 := m, yi+1 := f(yi, xi) and hn(x1, . . . , xn) :=
yn+1. As in method #1, this defines a function h∗ : X∗ → Y .

As an exercise, assume that f : M×K → C is a secret key system such that fm : K → C
is strongly collision free for every m ∈ M. Show that h∗ : X∗ → Y is strongly collision free, or
prove that it is not.
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1.15 Protocols

1.15.1 Secret Sharing Systems

Consider the following situation: a bank wants to give to N employees access to a tresor in a
way where n of them can open the tresor together, but less than n can not.

Repetition of Lagrange Interpolation Let F be a field and {(x0, y0), . . . , (xn, yn)} ⊆ F2

be (n+ 1) points with xi 6= xj for i 6= j.

Lemma 1.15.1. There exists a unique polynomial f ∈ F[x] of degree n such that f(xi) = yi for
every i.

Proof. Assume f̃ ∈ F[x] is another such polynomial. Then f − f̃ is a polynomial with n + 1
roots (in x = xi), and therefore the zero polynomial, and thus f = f̃ .

For the existence define fi :=
∏

j 6=i
x−xj

xi−xj
∈ F[x]. We have deg fi = n and fi(xi) = 1,

fi(xj) = 0 for j 6= i. Therefore f =
∑
yifi is the required polynomial.

Shamir Treshold Scheme Assume N employees should be able to access the tresor if and
only if at leastn of them are present. Choose a finite field F with |F| ≥ 260, and choose a random
polynomial f =

∑n−1
i=0 aix

i ∈ F[x], an−1 6= 0, and choose random x1, . . . , xN ∈ F∗ where xi 6= xj

for i 6= j. Each employee receives a personal partial key (xi, f(xi)) ∈ F2. The secret key of the
tresor is f(0) = a.

Any n employees 1 ≤ i1 < · · · < in ≤ N can compute f by Lagrange interpolation using the
(xij , f(xij )) pairs, j = 1, . . . , n, and therefore f(0) = a.

Remark 1.15.2. Any n−1 employees or less have zero knowledge of f(0), since for every â ∈ F
there exists an f̂ ∈ F[x] of degree n− 1 such that f̂(0) = â and f̂(xi) = f(xi) for less than n of
the i’s.

1.15.2 Signature Schemes

LetM be a set of message words, and S a set of possible signatures. A signature scheme consists
of a (secret) signing function sign :M→ S and a publicly known verification function verify :
M× S → {true, false} such that verify(m, s) = true if and only if sign(m) = s for s ∈ S,
m ∈M.

Remark 1.15.3. For the forger Oscar it should not be possible to construct a pair (m, s) ∈M×S
such that verify(m, s) = true.

Example 1.15.4. Based on RSA: the public function is ψ : Zn → Zn, x 7→ xe, and the private
function is sign : Zn → Zn, x 7→ xd. Then verify(m, s) = true if and only if ψ(s) = m. Here
M = S = Zn.

Note that for this scheme Oscar can start with an s ∈ S and generate m such that (m, s) is
correct!

A solution to this problem is the following scheme: the scheme should be set up such that
a random m ∈ Zn is not a valid message to be signed. One way to accomplish this is via a
hash function: has the message to be signed, sign the hash value and send both signature and
message.

ElGamal Signature Scheme The ElGamal signature scheme dates back to 1985. ElGamal
proposed the following scheme:

Let p be a prime, p ≈ 21000, and α ∈ Z∗
p a primitive element and β = αa for some a ∈ Zp−1

which is only known to the signer. The sign function is

sign : Zp → Zp × Zp−1, m 7→ (αk, (m− aαk)k−1) = (s1, s2);

here k is randomly chosen. In this formula, αk should be computed in Zp in both components,
while the other operations in the second component should be computed in Zp−1. The signature
consists of (m, s1, s2).
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Public data are α, β and p, which are deposited with a trusted authority. Private data is
a = logα β. To verify, note that we have

βs1ss2
1 ≡ αaαk

αk(m−aαk)k−1 ≡ αaαk+m−aαk ≡ αm (mod p).

Assume that Oscar wants to forge a signature in order to sign a message m. He has to
find (s1, s2) ∈ Zp × Zp−1 such that βs1ss2

1 ≡ αm (mod p). If he randomly choses s1, he has to
solve the DLP ss2

1 ≡ αmβ−s1 , i. e. s2 = logs1
(αmβ−s1).

The drawback of this scheme is that if p ≈ 21000, the signature requires 3000 bits of data
storage.

The Digital Signature Algorithm (DSA) In 1994 the National Institute for Standards in
Technology (NIST) adopted a variation of the ElGamal signature scheme as the standard called
Digital Signature Algorithm (DSA).

For this scheme p ≈ 21000, and we have the functions

sign : Zp → Zp × Zp−1,

m 7→ (αk, (m+ aαk)k−1) = (s1, s2);

verify : Zp × Zp × Zp−1 → {true, false},

(m, (s1, s2)) 7→
{

true if αmβs1 ≡ ss2
1 (mod p),

false otherwise.

If s2 is invertible the equation is equivalent to

αms−1
2 βs1s−1

2 ≡ s1 (mod p).

Let q be a second prime such that q divides p − 1, and let α0 = α
p−1

q mod q and β0 = αa
0

mod q = β
p−1

q mod q. Then both α0, β0 are q-th roots of unity. We can ask whether

α
ms−1

2
0 β

s1s−1
2

0 ≡ s
p−1

q

1 (mod p).

Let m̃ = m mod q, s̃1 = s1 mod q and s̃2 = s2 mod q. Then (m̃, s̃1, s̃2) will serve as the
signature, and verification goes by

α
m̃s̃−1

2
0 β

s̃1s̃−1
2

0 ≡
(

s̃
p−1

q mod p
)

(mod q).

Note that m̃, s̃1 and s̃2 all have a simliar size than q. The adopted DSA standard specifies:

• The person who wants to have a signature function chooses 2159 ≤ q ≤ 2160, q prime,
and searches for a prime p, 2512 ≤ p ≤ 2524 such that q divides p − 1. (This is easily
accomplished, just search for primes of the form γq + 1.)

• Select a primitive α ∈ Z∗
p and letα0 := α

p−1
q (mod p).

• Select 0 < a < q randomly and let β0 := αa
0 (mod p).

• The public data (→ trusted authority) are α0, β0, p and q.

• The sign function is defined as

sign : Zq → Zq × Zq,

m 7→ ((αk
0 mod p) mod q), ((m+ aαk

0)k
−1 mod p) mod q),

and the verification function as

verify : Z3
q → {true, false},

(m, (s1, s2)) 7→







true if α
ms−1

2
0 β

s1s−1
2

0 mod p ≡ s
p−1

q

1 mod p (mod q),

false otherwise.

The total signature is about 3 · 160 = 480 bits.
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1.15.3 Identification Schemes

The goal is that one party (‘the verifyer’) can make sure that ‘the claimant’ is the person he/she
claims to be. This occurs in several practical situations:

(a) Over the internet, how does a bank knows that it is Alice that tries to access her account?

(b) How does Alice knows it is the bank she is dealing with? (Recently there have been lot of
attacks known as phishing where people should be lured to websites looking like their bank’s
website.)

Question (a) is usually dealt with using a (one-time) password. Question (b) is usually dealt
with using an identification protocol involving a trusted party; examples for ‘trusted parties’ are
companies like verisign and entrust.

The Fiat-Shamir Protocol Recall: if n = pq where p and q are distinct primes, we have
that the following problems are equivalent:

(a) Finding all four solutions of a random quadratic equation x2 + bx+ c ≡ 0 (mod n);

(b) Computing all four solutions of z2 + (c− b2/4) = 0 in Zn;

(c) Factoring n.

The Fiat-Shamir scheme works as follows:
A trusted authority (TA) chooses n = pq and keeps p and q secret (or even destroys them).

The bank (B) registers with the TA by choosing a random integer s ∈ Zn and by computing
v = s2 ∈ Zn. The TA keeps a file

Bank↔ v.

Assume that the bank wants to identify itself to Alice. For this the bank will convince Alice
that they know s using a zero-knowledge proof : the bank chooses a random number r ∈ Zn and
transmits to Alice x := r2 ∈ Zn. Alice challenges the bank by asking one of the two questions:

(a) Compute y = rs. This can be verified by Alice through y2 = r2s2 = vx.

(b) What is r? Alice verifies the answer by computing r2 = x.

Of course Alice can not ask both questions, as this would reveal s. Note that if Olga tries to
impersonate the bank, she can choose r ∈ Zn, compute x = r2 what allows her to answer (b),
but not (a). Alternatively she can choose r and compute x̃ = r2/v = r2/s2 = r̃2. If Alice asks
for r̃s, Olga provides an answer for (a), but not for (b). (Indeed x̃2s2 = r2.)

The Schnorr Identification Scheme The TA generates a prime q ≥ 2140 and a prime p
such that q divides p− 1. (The same setup as for DSA.) Let α ∈ Z∗

p be a primitive element and

α0 = α
p−1

q mod p a q-th root of unity. The public data are α0, p and q. Assume Alice wants to
register with the TA. She chooses a random integer e, 0 < e < q, keeps e secret and gives the
TA the number v = α−e

0 mod p. The TA publishes for every user a number

v ↔ Alice.

Now assume Alice wants to identify herself to Bob. She chooses a random integer k, 1 ≤ k < q,
and sends γ = αk

0 mod p to Bob. Bob chooses a random integer r, 1 ≤ r < q, and gives it to
Alice. Alice computes y = k + er mod q and gives it back to Bob. Now Bob verifies that

αy
0v

r ≡ αk+er
0 α−er

0 ≡ αk
0 ≡ γ (mod p).

The security lies in the fact that only Alice knows k and e, and somebody impersonating
her has to compute e from y = k + er ∈ Zq (one equation in two unknowns), α−e

0 = v ∈ Zp (a
DLP in Zp).

The underlying principle is once more a zero-knowledge proof : Alice proves to Bob that she
knows − logα v = e without revealing anything about e.
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Problem

ElGamal signature scheme, 81
elliptic curve, 42

addition formulae, 45
Elliptic Curve Discrete Logarithm Problem, 45
entropy, 25
equivalent quadratic forms, 69
Erdős, 38, 75
Euler φ-function, 6
Euler liars E(n), 16
exhaustive search, 35
exponential time, 10

Fermat liars F (n), 16
Fermat pseudoprime test, 12
Fiat-Shamir, 83
finite point, 40
formal Laurent series, 28
formal power series, 28
Frobenius endomorphism, 21
fundamental region, volume of, 67

generalized number field sieve, 38
generalized number field sieve (GNFS), 76
generalized Polly-Cracker, 59
generating functions, 28
generator matrix, 61
GNFS, see generalized number field sieve
Gram-Schmidt orthogonalization, 71
Gröbner-basis, 59
group law, 44

Hamming code, 63
Hamming distance, 60
hash function, 79
Hasse, 45
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Hermite, 68
Hermite constant, 68
Hermite form, 70
homogenization, 40

identification schemes, 83
index calculus, 36
infinite point, 40
inversion formula, 14
irreducible, 40
ISBN code, 60

Jacobi symbol, 14

K-rational points, 45
Kerckhoffs principle, 2
key space, 5
key expansion, 4
knapsack problem, 56
Kronecker, 29

Lagarias, 57
lattice, 67
Laurent series, 28
Legendre symbol, 13
length reduced basis, 73
Lenstra, 68
line, 40
linear code, 60
linear recurrence relation, 26
LLL algorithm, 74
LLL-reduced basis, 73
Lovacs, 68
Lovacs basis, 68

Menezes, 53
Merkle-Hellman system, 57
message space, 5
metric, 60
Miller-Rabin pseudoprime test, 18
Miller-Rabin theorem, 17
monomial order, 59
MOV attack, 53

n-torsion points, 51
Noiseless Shannon Theorem, 26
nondeterministic polynomial time, 10
nonlinear recurrence sequences, 32
norm of a vector, 68
Norton, 38, 75
NP , 10
NP -complete, 10
NP -hard, 10

Odlyzko, 57
Okanoto, 53
one time pad, 2
one-way function, 4
one-way trapdoor function, 6
orbit, 65

order, 30, 59

P , 10
parity check matrix, 61
perfect code, 63
period, 29
Pfitzmann, 79
phishing attacks, 83
pigeonhole principle, 30
plaintext attack, 3
Pohlig-Hellmann algorithm, 35, 48
point at infinity, 40
Pollard λ method, 48
Pollard ρ method, 38, 48
Pollards (p− 1) factoring attack, 22
Polly-Cracker, 58
polynomial time, 10
polynomial time problem, 10
Pomerance, 38, 75
positive definite, 69
power series, 28
pre-period, 29
primality test

Fermat test, 12
Miller-Rabin test, 18
Solovay-Strassen test, 15

prime number theorem, 11
principal divisor, 51
principal value, 34
projective plane, 40
provable secure, 26
public key cryptosystem, 3

quadratic
nonresidue, 13
residue, 13

quadratic form, 69
quadratic reciprocity law, 14
quadratic sieve, 75
quartic, 40
quintic, 40

Rabin system, 56
rational function, 49
K-rational points, 45
recurrence relation

linear, 26
recurrence reltaion

nonlinear, 32
reduction of problems, 10
Reed-Solomon code, 63
Rijndael, 32
Rivest, 6, 58
roots of unity, n-th, µn, 52
RSA system, 6
RSA type function, 4

safe prime, 23
SAP, see semigroup action problem
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Schnorr, 76
Schnorr lattice, 76
secret key cryptosystem, 5
secret sharing systems, 81
semigroup, 64
semigroup action, 64
semigroup action problem (SAP), 64
semiring, 66
Shamir, 6, 57
Shank’s algorithm for square roots, 55
Shanks, 35
Shanks-Mestre, 46
Shanks-Mestre algorithm, 46
shift map, 26
shortest vector problem (SVP), 69
signature scheme, 81
signature schemes, 81
simple semiring, 66
simultanous congruences, 8
singleton bound, 62
singular point, 40
smooth

curve, 40
point, 40

B-smooth, 22
Solovay-Strassen pseudoprime test, 15
Solovay-Strassen theorem, 14
sphere packing bound, 62
stabilizer, 64
state transition matrix, 30
state vector, 30
stream cipher, 25
strong liars S(n), 16
strongly collision free, 79
subexponential running time, 76
subset sum problem, 56
superincreasing set, 57
supersingular elliptic curve, 54
SVP, see shortest vector problem

Theorem of Hadamard, 71
Theorem of Hasse, 45
Theorem of Hermite, 70
torsion points, 51
total order, 59
translation invariant, 60

ultimately periodic, 29
unconditionally secure, 26

van Heijst, 79
Vandermonde matrix, 27
Vanstone, 53
variety, 40
Vigenére, 2
volume of the fundamental region, 67

weakly collision free, 79
Weierstrass form, 42

Weil pairing, 52
well-ordered, 59

zero knowledge proof, 3
zero-dimensional ideal, 58
zero-knowledge proof, 83
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