Multilayer crisscross error and erasure correction

Umberto Martínez-Peñas University of Valladolid (UVa)

25th MTNS, Network Coding Session,

Universität Bayreuth 2022

- Solid state storage devices store data in an $(m \times n)$ matrix of bits.
- Typically, there are multiple devices connected column-wise or row-wise by wires.
- A write or read voltage is applied to a given device through the corresponding column and row wires.

Martínez-Peñas, U.

- A defective device has an even lower resistance than the "on" (or low resistance) state used for storing data.
- As devices in the same row and column are directly connected, a defective device may induce read and write errors in the same row and column.

- Roth in 1991 showed that the right metric to measure the number of errors/erasures in this case is the cover metric.
- For $C \in \mathbb{F}_q^{m \times n}$, we say $(X, Y) \in [m] \times [n]$ is a cover of C if $C_{i,j} \neq 0$ implies $i \in X$ or $j \in Y$.
- The cover weight $wt_{\mathcal{C}}(\mathcal{C})$ is the minimum size |(X, Y)| = |X| + |Y| of its covers.
- The cover distance is defined as $d_C(C, D) = wt_C(C D)$, for $C, D \in \mathbb{F}_q^{m \times n}$.

프 에 에 프 어 - -

The Multi-Cover Metric

- In this work, we extend the cover metric to the multi-cover metric.
- A multi-cover of $C = (C_1, C_2, \dots, C_\ell) \in \prod_{i=1}^\ell \mathbb{F}_q^{m_i \times n_i}$ is $X = (X_i, Y_i)_{i=1}^\ell \in \prod_{i=1}^\ell [m_i] \times [n_i]$ such that

$$C_{i,a,b} \neq 0 \implies a \in X_i \text{ or } b \in Y_i, \quad \forall i \in [\ell].$$

• The multi-cover weight $wt_{MC}(C)$ is the minimum size

$$|X| = \sum_{i=1}^{\ell} (|X_i| + |Y_i|)$$

of a multi-cover of C.

• The multi-cover distance between $C, D \in \prod_{i=1}^{\ell} \mathbb{F}_q^{m_i \times n_i}$ is simply defined as

$$\mathrm{d}_{MC}(C,D) = \mathrm{wt}_{MC}(C-D).$$

The Multi-Cover Metric

Example: An encoded tuple

$$C = (C_1, C_2) \in \mathbb{F}_2^{4 imes 4} imes \mathbb{F}_2^{4 imes 4}$$

with exactly 4 multilayer crisscross errors is of the form

$$Y = C + E \in \mathbb{F}_2^{4 imes 4} imes \mathbb{F}_2^{4 imes 4},$$

where $\operatorname{wt}_{MC}(E) = 4$.

1	0	0	1
0	1	0	1
1	1	1	0
1	0	0	1

1	1	1	0	
1	0	1	0	
0	1	0	1	
0	1	1	0	

1	0	0	1
1	0	1	0
1	1	1	0
0	1	1	1

0	1	0	1
1	0	0	0
0	1	1	1
0	1	0	0

 \mapsto

Correction characterization: C ⊆ Π^ℓ_{i=1} 𝔽^{m_i×n_i} can correct t errors and ρ erasures if, and only if,

$$2t + \rho < d_{MC}(\mathcal{C}).$$

• Bounds by other metrics:

$$\operatorname{wt}_{\mathcal{SR}}(\mathcal{C}) \leq \operatorname{wt}_{\mathcal{MC}}(\mathcal{C}) \leq \operatorname{wt}_{\mathcal{H}}(\mathcal{C}),$$

where $\operatorname{wt}_{SR}(C) = \sum_{i=1}^{\ell} \operatorname{rk}(C_i)$ and $C = (C_1, \ldots, C_{\ell}) \in \prod_{i=1}^{\ell} \mathbb{F}_q^{m_i \times n_i}$.

- Bounds for the multi-cover metric: Every upper bound valid for the Hamming metric is also valid for the multi-cover metric.
- Singleton bound: Set $m = m_1 = \ldots = m_\ell$ and $n = n_1 + \cdots + n_\ell$. Given $C \subseteq \prod_{i=1}^{\ell} \mathbb{F}_q^{m \times n_i}$, we have

$$|\mathcal{C}| \leq q^{m(n-d_{MC}(\mathcal{C})+1)}.$$

MMCD Codes

- MMCD codes: C ⊆ ∏^ℓ_{i=1} 𝔽^{m_i×n_i} is a maximum multi-cover distance (MMCD) code if it attains the Singleton bound.
- If there is an MMCD code C ⊆ (𝔽^{m×n})^ℓ, and δ is the remainder of d − 3 divided by n,

$$\ell \leq \left\lfloor \frac{q^{2m} - 1 - m(q^{n-\delta} - 1) - (n-\delta)(q^m - 1) + m(n-\delta)(q-1)}{m(q^n - 1) + n(q^m - 1) - mn(q-1)} \right\rfloor + \left\lfloor \frac{d-3}{n} \right\rfloor + 1.$$
(1)

• Set m = n. If $q \ge 4$ and $n \ge 2$, or if q = 3 and $n \ge 3$, or if q = 2 and $n \ge 4$, then the upper bound (1) is tighter than

$$\ell \leq \left\lfloor \frac{2q^n}{3n} \right\rfloor + \left\lfloor \frac{d-3}{n} \right\rfloor + 1.$$
 (2)

Duality

Consider the product

$$\langle \boldsymbol{C}, \boldsymbol{D} \rangle = \sum_{i=1}^{\ell} \operatorname{Tr}(\boldsymbol{C}_i \boldsymbol{D}_i),$$

where $C = (C_1, \ldots, C_\ell)$, $D = (D_1, \ldots, D_\ell) \in \prod_{i=1}^{\ell} \mathbb{F}_q^{m_i \times n_i}$, and where $Tr(\cdot)$ denotes the matrix trace.

• The dual of $\mathcal{C} \subseteq \prod_{i=1}^{\ell} \mathbb{F}_q^{m_i \times n_i}$ is defined as

$$\mathcal{C}^{\perp} = \left\{ \left. D \in \prod_{i=1} \mathbb{F}_q^{m_i imes n_i} \right| \langle \mathcal{C}, D
angle = 0, ext{ for all } \mathcal{C} \in \mathcal{C}
ight\}.$$

Martínez-Peñas, U.

Duality

• Consider
$$\mathcal{C} \subseteq \mathbb{F}_2^{3 \times 3}$$
 generated by

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- C is MDS by columns and rows since |C| = 8 (dim(C) = 3) and $d_H^R(C) = d_H^C(C) = 3$.
- C is not MMCD, since $d_{MC}(C) = 2$.
- \mathcal{C}^{\perp} has dim $(\mathcal{C}^{\perp}) = 6$ and $d_{MC}(\mathcal{C}^{\perp}) = 2$, hence it is MMCD.
- Thus the dual of a linear MMCD code may not be MMCD.
- A linear code that is MDS by rows and columns may not be MMCD.

Dually MMCD Codes

- Dually MMCD codes: A linear $C \subseteq \prod_{i=1}^{\ell} \mathbb{F}_q^{m_i \times n_i}$ is dually MMCD if both C and C^{\perp} are MMCD.
- Let C ⊆ (F^{2×2}_q)^ℓ be a linear code. The following are equivalent:
 C^t is MDS by columns for all t ∈ {0,1}^ℓ.
 - $\bigcirc C$ is MMCD.
 - $\textcircled{O} \mathcal{C} \text{ is dually MMCD.}$
- If $C \subseteq \prod_{i=1}^{\ell} \mathbb{F}_q^{m_i \times n_i}$ is a maximum sum-rank distance (MSRD) code, then it is also an MMCD code.
- If C is a linear MSRD code and m₁ = m₂ = ... = m_ℓ, then C is a dually MMCD code.

Nested Construction

• Let n = rs and $t = r\ell$. Given $C \subseteq (\mathbb{F}_q^{s \times s})^t$, define $\varphi(C) \subseteq (\mathbb{F}_q^{n \times n})^\ell$, where $\varphi(C^1, C^2, \dots, C^r) =$

$$\begin{pmatrix} C_{1}^{1} & C_{1}^{2} & \dots & C_{1}^{r} \\ C_{2}^{r} & C_{2}^{1} & \dots & C_{2}^{r-1} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r}^{r} & C_{r}^{3} & \dots & C_{r}^{r-1} \\ \end{pmatrix} \begin{pmatrix} C_{r+1}^{1} & C_{r+1}^{2} & \dots & C_{r+1}^{r} \\ C_{r+2}^{1} & C_{r+2}^{1} & \dots & C_{r+2}^{r-1} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r}^{2} & C_{r}^{3} & \dots & C_{r}^{1} \\ \end{pmatrix} \begin{pmatrix} C_{r+2}^{1} & C_{r+2}^{1} & \dots & C_{r+1}^{r} \\ \vdots & \vdots & \ddots & \vdots \\ C_{r}^{2} & C_{r}^{3} & \dots & C_{r}^{1} \\ C_{2r}^{r} & C_{2r}^{3} & \dots & C_{2r}^{1} \\ \end{pmatrix} \\ \end{pmatrix} \begin{pmatrix} C_{\ell-1}^{1}r+1 & C_{\ell-1}^{2}r+1 & \dots & C_{\ell-1}^{r} \\ C_{\ell-1}^{1}r+2 & \dots & C_{\ell-1}^{r} \\ \vdots & \vdots & \ddots & \vdots \\ C_{\ell}^{2} & C_{\ell}^{3} & \dots & C_{\ell}^{1} \\ \end{pmatrix} \\ \end{pmatrix}$$
for $C^{i} = (C_{1}^{i}, C_{2}^{i}, \dots, C_{t}^{i}) \in (\mathbb{F}_{q}^{S \times S})^{t}$, for $i = 1, 2, \dots, r$.

•
$$d_{MC}(\varphi(\mathcal{C})) = d_{MC}(\mathcal{C})$$
 and $|\varphi(\mathcal{C})| = |\mathcal{C}|^r$.

- $\varphi(\mathcal{C})$ is MMCD if, and only if, so is \mathcal{C} .
- φ(C) is linear if, and only if, so is C, and in that case, dim(φ(C)) = r dim(C) and φ(C)[⊥] = φ(C[⊥]).

• (If C is linear) $\varphi(C)$ is a dually MMCD code if, and only if, so is C.

• If q > t, there is a linear MSRD code $C \subseteq (\mathbb{F}_q^{s \times s})^t$ (linearized RS).

- The code $\varphi(\mathcal{C}) \subseteq (\mathbb{F}_q^{n \times n})^{\ell}$ is a dually MMCD code.
- We may choose q = t + 1, and φ(C) may be decoded with a complexity O(tℓn²) over a field of size q^{ℓn/t} = (t + 1)^{ℓn/t}.
- If a product in 𝔽_{2^b} costs 𝒪(b²) operations in 𝔽₂, then the previous complexity over 𝔽₂ is

$$\mathcal{O}\left(t^{-1}\log_2(t+1)^2\ell^3n^4\right).$$

- This complexity is lower for larger values of t.
- However, codes for larger t require larger alphabets (q > t), whereas codes for smaller t can be used for smaller alphabets.

Nested Construction

- If ℓ = 1 (but 1 ≤ t ≤ n, t|n), then the previous code φ(C) ⊆ 𝔽^{n×n}_q is dually MMCD code for the classical cover metric (MCD code?).
- The case t = n corresponds to the code by Roth (1991), where $\mathbf{c}^i \in C$, for a Reed–Solomon code $C \subseteq \mathbb{F}_q^n$ and

$$\varphi\left(\mathbf{c}^{1},\mathbf{c}^{2},\ldots,\mathbf{c}^{n}\right) = \begin{pmatrix} c_{1}^{1} & c_{1}^{2} & \ldots & c_{1}^{n} \\ c_{2}^{n} & c_{2}^{1} & \ldots & c_{2}^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n}^{2} & c_{n}^{3} & \ldots & c_{n}^{1} \end{pmatrix}$$

- The case t = 1 corresponds to the code by Roth (1991) given by a Gabidulin code $C \subseteq \mathbb{F}_q^{n \times n}$.
- The cases 1 < t < n, t|n, correspond to a new family of dually MMCD codes for the classical cover metric.
- Their advantage is the previous alphabet-complexity trade-off.

Open Problems

- We only considered error-free worst-case deterministic decoding.
 Probabilistic decoding as considered by Roth (1997) but in the multi-cover metric is open.
- List decoding for the cover metric was studied by Wachter-Zeh (2016). The multi-cover metric case is open.
- Crisscross insertions and deletions were studied recently by Bitar et al. (2021), where several code constructions are given. The multi-cover metric case is open.
- Codes with local crisscross erasure correction was studied by Kadhe et al. (2019). The multi-cover metric case is open.

Thank you for your attention.