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Crisscross Erasure Correction

Solid state storage devices store data in an (m × n) matrix of bits.
Typically, there are multiple devices connected column-wise or
row-wise by wires.
A write or read voltage is applied to a given device through the
corresponding column and row wires.
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Crisscross Erasure Correction

A defective device has an even lower resistance than the “on” (or
low resistance) state used for storing data.
As devices in the same row and column are directly connected, a
defective device may induce read and write errors in the same row
and column.
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Crisscross Erasure Correction

Roth in 1991 showed that the right metric to measure the number
of errors/erasures in this case is the cover metric.
For C ∈ Fm×n

q , we say (X ,Y ) ∈ [m]× [n] is a cover of C if Ci,j 6= 0
implies i ∈ X or j ∈ Y .
The cover weight wtC(C) is the minimum size |(X ,Y )| = |X |+ |Y |
of its covers.
The cover distance is defined as dC(C,D) = wtC(C − D), for
C,D ∈ Fm×n

q .
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The Multi-Cover Metric

In this work, we extend the cover metric to the multi-cover metric.
A multi-cover of C = (C1,C2, . . . ,C`) ∈

∏`
i=1 F

mi×ni
q is

X = (Xi ,Yi)
`
i=1 ∈

∏`
i=1[mi ]× [ni ] such that

Ci,a,b 6= 0 =⇒ a ∈ Xi or b ∈ Yi , ∀i ∈ [`].

The multi-cover weight wtMC(C) is the minimum size

|X | =
∑̀
i=1

(|Xi |+ |Yi |)

of a multi-cover of C.
The multi-cover distance between C,D ∈

∏`
i=1 F

mi×ni
q is simply

defined as
dMC(C,D) = wtMC(C − D).
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The Multi-Cover Metric

Example: An encoded tuple

C = (C1,C2) ∈ F4×4
2 × F4×4

2

with exactly 4 multilayer crisscross errors is of the form

Y = C + E ∈ F4×4
2 × F4×4

2 ,

where wtMC(E) = 4.
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Crisscross Erasure Correction

Correction characterization: C ⊆
∏`

i=1 F
mi×ni
q can correct t errors

and ρ erasures if, and only if,

2t + ρ < dMC(C).

Bounds by other metrics:

wtSR(C) ≤ wtMC(C) ≤ wtH(C),

where wtSR(C) =
∑`

i=1 rk(Ci) and C = (C1, . . . ,C`) ∈
∏`

i=1 F
mi×ni
q .

Bounds for the multi-cover metric: Every upper bound valid for the
Hamming metric is also valid for the multi-cover metric.
Singleton bound: Set m = m1 = . . . = m` and n = n1 + · · ·+ n`.
Given C ⊆

∏`
i=1 F

m×ni
q , we have

|C| ≤ qm(n−dMC(C)+1).
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MMCD Codes

MMCD codes: C ⊆
∏`

i=1 F
mi×ni
q is a maximum multi-cover distance

(MMCD) code if it attains the Singleton bound.
If there is an MMCD code C ⊆ (Fm×n

q )`, and δ is the remainder of
d − 3 divided by n,

` ≤
⌊

q2m − 1−m(qn−δ − 1)− (n − δ)(qm − 1) + m(n − δ)(q − 1)
m(qn − 1) + n(qm − 1)−mn(q − 1)

⌋
+

⌊
d − 3

n

⌋
+ 1.

(1)

Set m = n. If q ≥ 4 and n ≥ 2, or if q = 3 and n ≥ 3, or if q = 2
and n ≥ 4, then the upper bound (1) is tighter than

` ≤
⌊

2qn

3n

⌋
+

⌊
d − 3

n

⌋
+ 1. (2)
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Duality

Consider the product

〈C,D〉 =
∑̀
i=1

Tr(CiDi),

where C = (C1, . . . ,C`),D = (D1, . . . ,D`) ∈
∏`

i=1 F
mi×ni
q , and

where Tr(·) denotes the matrix trace.

The dual of C ⊆
∏`

i=1 F
mi×ni
q is defined as

C⊥ =

{
D ∈

∏
i=1

Fmi×ni
q

∣∣∣∣∣ 〈C,D〉 = 0, for all C ∈ C

}
.
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Duality

Consider C ⊆ F3×3
2 generated by

A =

 1 1 1
1 0 0
1 0 0

 , B =

 0 1 0
1 1 1
0 1 0

 , C =

 0 0 1
0 0 1
1 1 1

 .

C is MDS by columns and rows since |C| = 8 (dim(C) = 3) and
dR

H(C) = dC
H(C) = 3.

C is not MMCD, since dMC(C) = 2.

C⊥ has dim(C⊥) = 6 and dMC(C⊥) = 2, hence it is MMCD.

Thus the dual of a linear MMCD code may not be MMCD.

A linear code that is MDS by rows and columns may not be
MMCD.
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Dually MMCD Codes

Dually MMCD codes: A linear C ⊆
∏`

i=1 F
mi×ni
q is dually MMCD if

both C and C⊥ are MMCD.

Let C ⊆ (F2×2
q )` be a linear code. The following are equivalent:

1 Ct is MDS by columns for all t ∈ {0,1}`.

2 C is MMCD.

3 C is dually MMCD.

If C ⊆
∏`

i=1 F
mi×ni
q is a maximum sum-rank distance (MSRD) code,

then it is also an MMCD code.

If C is a linear MSRD code and m1 = m2 = . . . = m`, then C is a
dually MMCD code.
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Nested Construction

Let n = rs and t = r`. Given C ⊆ (Fs×s
q )t , define ϕ(C) ⊆ (Fn×n

q )`,
where ϕ

(
C1,C2, . . . ,Cr) =


C1

1 C2
1 . . . Cr

1 C1
r+1 C2

r+1 . . . Cr
r+1 . . . C1

(`−1)r+1 C2
(`−1)r+1 . . . Cr

(`−1)r+1
Cr

2 C1
2 . . . Cr−1

2 Cr
r+2 C1

r+2 . . . Cr−1
r+2 . . . Cr

(`−1)r+2 C1
(`−1)r+2 . . . Cr−1

(`−1)r+2
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

C2
r C3

r . . . C1
r C2

2r C3
2r . . . C1

2r . . . C2
t C3

t . . . C1
t

 ,

for C i = (C i
1,C

i
2, . . . ,C

i
t ) ∈ (Fs×s

q )t , for i = 1,2, . . . , r .

dMC(ϕ(C)) = dMC(C) and |ϕ(C)| = |C|r .

ϕ(C) is MMCD if, and only if, so is C.

ϕ(C) is linear if, and only if, so is C, and in that case,
dim(ϕ(C)) = r dim(C) and ϕ(C)⊥ = ϕ(C⊥).

(If C is linear) ϕ(C) is a dually MMCD code if, and only if, so is C.
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Nested Construction

If q > t , there is a linear MSRD code C ⊆ (Fs×s
q )t (linearized RS).

The code ϕ(C) ⊆ (Fn×n
q )` is a dually MMCD code.

We may choose q = t + 1, and ϕ(C) may be decoded with a
complexity O(t`n2) over a field of size q`n/t = (t + 1)`n/t .

If a product in F2b costs O(b2) operations in F2, then the previous
complexity over F2 is

O
(

t−1 log2(t + 1)2`3n4
)
.

This complexity is lower for larger values of t .

However, codes for larger t require larger alphabets (q > t),
whereas codes for smaller t can be used for smaller alphabets.
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Nested Construction

If ` = 1 (but 1 ≤ t ≤ n, t |n), then the previous code ϕ(C) ⊆ Fn×n
q is

dually MMCD code for the classical cover metric (MCD code?).

The case t = n corresponds to the code by Roth (1991), where
ci ∈ C, for a Reed–Solomon code C ⊆ Fn

q and

ϕ
(

c1,c2, . . . ,cn
)
=


c1

1 c2
1 . . . cn

1
cn

2 c1
2 . . . cn−1

2
...

...
. . .

...
c2

n c3
n . . . c1

n

 .

The case t = 1 corresponds to the code by Roth (1991) given by a
Gabidulin code C ⊆ Fn×n

q .

The cases 1 < t < n, t |n, correspond to a new family of dually
MMCD codes for the classical cover metric.

Their advantage is the previous alphabet-complexity trade-off.
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Open Problems

We only considered error-free worst-case deterministic decoding.
Probabilistic decoding as considered by Roth (1997) but in the
multi-cover metric is open.

List decoding for the cover metric was studied by Wachter-Zeh
(2016). The multi-cover metric case is open.

Crisscross insertions and deletions were studied recently by Bitar
et al. (2021), where several code constructions are given. The
multi-cover metric case is open.

Codes with local crisscross erasure correction was studied by
Kadhe et al. (2019). The multi-cover metric case is open.
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Conclusion

Thank you for your attention.

Martínez-Peñas, U. Multilayer crisscross 16 / 16


