Multilayer crisscross error and erasure correction

Umberto Martínez-Peñas
University of Valladolid (UVa)

25th MTNS, Network Coding Session,
Universität Bayreuth 2022

Crisscross Erasure Correction

- Solid state storage devices store data in an $(m \times n)$ matrix of bits.
- Typically, there are multiple devices connected column-wise or row-wise by wires.
- A write or read voltage is applied to a given device through the corresponding column and row wires.

Crisscross Erasure Correction

- A defective device has an even lower resistance than the "on" (or low resistance) state used for storing data.
- As devices in the same row and column are directly connected, a defective device may induce read and write errors in the same row and column.

Crisscross Erasure Correction

- Roth in 1991 showed that the right metric to measure the number of errors/erasures in this case is the cover metric.
- For $C \in \mathbb{F}_{q}^{m \times n}$, we say $(X, Y) \in[m] \times[n]$ is a cover of C if $C_{i, j} \neq 0$ implies $i \in X$ or $j \in Y$.
- The cover weight $\mathrm{wt}_{C}(C)$ is the minimum size $|(X, Y)|=|X|+|Y|$ of its covers.
- The cover distance is defined as $\mathrm{d}_{C}(C, D)=\mathrm{wt}_{C}(C-D)$, for $C, D \in \mathbb{F}_{q}^{m \times n}$.

The Multi-Cover Metric

- In this work, we extend the cover metric to the multi-cover metric.
- A multi-cover of $C=\left(C_{1}, C_{2}, \ldots, C_{\ell}\right) \in \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$ is
$X=\left(X_{i}, Y_{i}\right)_{i=1}^{\ell} \in \prod_{i=1}^{\ell}\left[m_{i}\right] \times\left[n_{i}\right]$ such that

$$
C_{i, a, b} \neq 0 \Longrightarrow a \in X_{i} \text { or } b \in Y_{i}, \quad \forall i \in[\ell]
$$

- The multi-cover weight $\mathrm{wt}_{M C}(C)$ is the minimum size

$$
|X|=\sum_{i=1}^{\ell}\left(\left|X_{i}\right|+\left|Y_{i}\right|\right)
$$

of a multi-cover of C.

- The multi-cover distance between $C, D \in \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$ is simply defined as

$$
\mathrm{d}_{M C}(C, D)=\mathrm{wt}_{M C}(C-D)
$$

The Multi-Cover Metric

Example: An encoded tuple

$$
C=\left(C_{1}, C_{2}\right) \in \mathbb{F}_{2}^{4 \times 4} \times \mathbb{F}_{2}^{4 \times 4}
$$

with exactly 4 multilayer crisscross errors is of the form

$$
Y=C+E \in \mathbb{F}_{2}^{4 \times 4} \times \mathbb{F}_{2}^{4 \times 4}
$$

where $\mathrm{wt}_{M C}(E)=4$.

1	0	0	1
0	1	0	1
1	1	1	0
1	0	0	1

1	1	1	0
1	0	1	0
0	1	0	1
0	1	1	0

$\mapsto \quad$| 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |

0	1	0	1
1	0	0	0
0	1	1	1
0	1	0	0

Crisscross Erasure Correction

- Correction characterization: $\mathcal{C} \subseteq \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$ can correct t errors and ρ erasures if, and only if,

$$
2 t+\rho<\mathrm{d}_{M C}(\mathcal{C})
$$

- Bounds by other metrics:

$$
\mathrm{wt}_{S R}(C) \leq \mathrm{wt}_{M C}(C) \leq \mathrm{wt}_{H}(C)
$$

where $\mathrm{wt}_{S R}(C)=\sum_{i=1}^{\ell} \mathrm{rk}\left(C_{i}\right)$ and $C=\left(C_{1}, \ldots, C_{\ell}\right) \in \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$.

- Bounds for the multi-cover metric: Every upper bound valid for the Hamming metric is also valid for the multi-cover metric.
- Singleton bound: Set $m=m_{1}=\ldots=m_{\ell}$ and $n=n_{1}+\cdots+n_{\ell}$. Given $\mathcal{C} \subseteq \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m \times n_{i}}$, we have

$$
|\mathcal{C}| \leq q^{m\left(n-\mathrm{d}_{M C}(\mathcal{C})+1\right)}
$$

MMCD Codes

- MMCD codes: $\mathcal{C} \subseteq \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$ is a maximum multi-cover distance (MMCD) code if it attains the Singleton bound.
- If there is an MMCD code $\mathcal{C} \subseteq\left(\mathbb{F}_{q}^{m \times n}\right)^{\ell}$, and δ is the remainder of $d-3$ divided by n,

$$
\begin{align*}
\ell \leq & \left\lfloor\frac{q^{2 m}-1-m\left(q^{n-\delta}-1\right)-(n-\delta)\left(q^{m}-1\right)+m(n-\delta)(q-1)}{m\left(q^{n}-1\right)+n\left(q^{m}-1\right)-m n(q-1)}\right\rfloor \\
& +\left\lfloor\frac{d-3}{n}\right\rfloor+1 \tag{1}
\end{align*}
$$

- Set $m=n$. If $q \geq 4$ and $n \geq 2$, or if $q=3$ and $n \geq 3$, or if $q=2$ and $n \geq 4$, then the upper bound (1) is tighter than

$$
\begin{equation*}
\ell \leq\left\lfloor\frac{2 q^{n}}{3 n}\right\rfloor+\left\lfloor\frac{d-3}{n}\right\rfloor+1 \tag{2}
\end{equation*}
$$

Duality

- Consider the product

$$
\langle C, D\rangle=\sum_{i=1}^{\ell} \operatorname{Tr}\left(C_{i} D_{i}\right)
$$

where $C=\left(C_{1}, \ldots, C_{\ell}\right), D=\left(D_{1}, \ldots, D_{\ell}\right) \in \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$, and where $\operatorname{Tr}(\cdot)$ denotes the matrix trace.

- The dual of $\mathcal{C} \subseteq \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$ is defined as

$$
\mathcal{C}^{\perp}=\left\{D \in \prod_{i=1} \mathbb{F}_{q}^{m_{i} \times n_{i}} \mid\langle C, D\rangle=0, \text { for all } C \in \mathcal{C}\right\}
$$

Duality

- Consider $\mathcal{C} \subseteq \mathbb{F}_{2}^{3 \times 3}$ generated by

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), \quad C=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

- \mathcal{C} is MDS by columns and rows since $|\mathcal{C}|=8(\operatorname{dim}(\mathcal{C})=3)$ and $\mathrm{d}_{H}^{R}(\mathcal{C})=\mathrm{d}_{H}^{C}(\mathcal{C})=3$.
- \mathcal{C} is not MMCD, since $\mathrm{d}_{M C}(\mathcal{C})=2$.
- \mathcal{C}^{\perp} has $\operatorname{dim}\left(\mathcal{C}^{\perp}\right)=6$ and $\mathrm{d}_{M C}\left(\mathcal{C}^{\perp}\right)=2$, hence it is MMCD.
- Thus the dual of a linear MMCD code may not be MMCD.
- A linear code that is MDS by rows and columns may not be MMCD.

Dually MMCD Codes

- Dually MMCD codes: A linear $\mathcal{C} \subseteq \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$ is dually MMCD if both \mathcal{C} and \mathcal{C}^{\perp} are MMCD.
- Let $\mathcal{C} \subseteq\left(\mathbb{F}_{q}^{2 \times 2}\right)^{\ell}$ be a linear code. The following are equivalent:
(1) $\mathcal{C}^{\mathbf{t}}$ is MDS by columns for all $\mathbf{t} \in\{0,1\}^{\ell}$.
(2) \mathcal{C} is MMCD.
(\mathcal{C} is dually MMCD.
- If $\mathcal{C} \subseteq \prod_{i=1}^{\ell} \mathbb{F}_{q}^{m_{i} \times n_{i}}$ is a maximum sum-rank distance (MSRD) code, then it is also an MMCD code.
- If \mathcal{C} is a linear MSRD code and $m_{1}=m_{2}=\ldots=m_{\ell}$, then \mathcal{C} is a dually MMCD code.

Nested Construction

- Let $n=r s$ and $t=r \ell$. Given $\mathcal{C} \subseteq\left(\mathbb{F}_{q}^{s \times s}\right)^{t}$, define $\varphi(\mathcal{C}) \subseteq\left(\mathbb{F}_{q}^{n \times n}\right)^{\ell}$, where $\varphi\left(C^{1}, C^{2}, \ldots, C^{r}\right)=$

$$
\left(\begin{array}{cccc|cccc|c|cccc}
C_{1}^{1} & C_{1}^{2} & \ldots & C_{1}^{r} & C_{r+1}^{1} & C_{r+1}^{2} & \ldots & C_{r+1}^{r} & \ldots & C_{(\ell-1) r+1}^{1} & C_{(\ell-1) r+1}^{2} & \ldots & C_{(\ell-1) r+1}^{r} \\
C_{2}^{r} & C_{2}^{1} & \ldots & C_{2}^{r-1} & C_{r+2}^{r} & C_{r+2}^{1} & \cdots & C_{r+2}^{-1} & \cdots & C_{(\ell-1) r+2}^{(} & C_{(\ell-1) r+2}^{1} & \cdots & C_{(\ell-1) r+2}^{(-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
C_{r}^{2} & C_{r}^{3} & \cdots & C_{r}^{1} & C_{2 r}^{2} & C_{2 r}^{3} & \cdots & C_{2 r}^{1} & \cdots & C_{t}^{2} & C_{t}^{3} & \cdots & C_{t}^{1}
\end{array}\right),
$$

$$
\text { for } C^{i}=\left(C_{1}^{i}, C_{2}^{i}, \ldots, C_{t}^{i}\right) \in\left(\mathbb{F}_{q}^{s \times s}\right)^{t}, \text { for } i=1,2, \ldots, r
$$

- $\mathrm{d}_{M C}(\varphi(\mathcal{C}))=\mathrm{d}_{M C}(\mathcal{C})$ and $|\varphi(\mathcal{C})|=|\mathcal{C}|^{r}$.
- $\varphi(\mathcal{C})$ is MMCD if, and only if, so is \mathcal{C}.
- $\varphi(\mathcal{C})$ is linear if, and only if, so is \mathcal{C}, and in that case, $\operatorname{dim}(\varphi(\mathcal{C}))=r \operatorname{dim}(\mathcal{C})$ and $\varphi(\mathcal{C})^{\perp}=\varphi\left(\mathcal{C}^{\perp}\right)$.
- (If \mathcal{C} is linear) $\varphi(\mathcal{C})$ is a dually MMCD code if, and only if, so is \mathcal{C}.

Nested Construction

- If $q>t$, there is a linear MSRD code $\mathcal{C} \subseteq\left(\mathbb{F}_{q}^{s \times s}\right)^{t}$ (linearized RS).
- The code $\varphi(\mathcal{C}) \subseteq\left(\mathbb{F}_{q}^{n \times n}\right)^{\ell}$ is a dually MMCD code.
- We may choose $q=t+1$, and $\varphi(\mathcal{C})$ may be decoded with a complexity $\mathcal{O}\left(t \ell n^{2}\right)$ over a field of size $q^{\ell n / t}=(t+1)^{\ell n / t}$.
- If a product in $\mathbb{F}_{2^{b}}$ costs $\mathcal{O}\left(b^{2}\right)$ operations in \mathbb{F}_{2}, then the previous complexity over \mathbb{F}_{2} is

$$
\mathcal{O}\left(t^{-1} \log _{2}(t+1)^{2} \ell^{3} n^{4}\right)
$$

- This complexity is lower for larger values of t.
- However, codes for larger t require larger alphabets $(q>t)$, whereas codes for smaller t can be used for smaller alphabets.

Nested Construction

- If $\ell=1$ (but $1 \leq t \leq n, t \mid n$), then the previous code $\varphi(\mathcal{C}) \subseteq \mathbb{F}_{q}^{n \times n}$ is dually MMCD code for the classical cover metric (MCD code?).
- The case $t=n$ corresponds to the code by Roth (1991), where $\mathbf{c}^{i} \in \mathcal{C}$, for a Reed-Solomon code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$ and

$$
\varphi\left(\mathbf{c}^{1}, \mathbf{c}^{2}, \ldots, \mathbf{c}^{n}\right)=\left(\begin{array}{cccc}
c_{1}^{1} & c_{1}^{2} & \ldots & c_{1}^{n} \\
c_{2}^{n} & c_{2}^{1} & \ldots & c_{2}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n}^{2} & c_{n}^{3} & \ldots & c_{n}^{1}
\end{array}\right)
$$

- The case $t=1$ corresponds to the code by Roth (1991) given by a Gabidulin code $\mathcal{C} \subseteq \mathbb{F}_{q}^{n \times n}$.
- The cases $1<t<n, t \mid n$, correspond to a new family of dually MMCD codes for the classical cover metric.
- Their advantage is the previous alphabet-complexity trade-off.

Open Problems

- We only considered error-free worst-case deterministic decoding. Probabilistic decoding as considered by Roth (1997) but in the multi-cover metric is open.
- List decoding for the cover metric was studied by Wachter-Zeh (2016). The multi-cover metric case is open.
- Crisscross insertions and deletions were studied recently by Bitar et al. (2021), where several code constructions are given. The multi-cover metric case is open.
- Codes with local crisscross erasure correction was studied by Kadhe et al. (2019). The multi-cover metric case is open.

Conclusion

Thank you for your attention.

