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Crisscross Erasure Correction

@ Solid state storage devices store data in an (m x n) matrix of bits.

@ Typically, there are multiple devices connected column-wise or
row-wise by wires.

@ A write or read voltage is applied to a given device through the
corresponding column and row wires.
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Crisscross Erasure Correction

@ A defective device has an even lower resistance than the “on” (or
low resistance) state used for storing data.

@ As devices in the same row and column are directly connected, a
defective device may induce read and write errors in the same row

and column.
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Crisscross Erasure Correction

@ Roth in 1991 showed that the right metric to measure the number
of errors/erasures in this case is the cover metric.

@ For C e Fg™", we say (X, Y) € [m] x [n] is a cover of Cif C;; # 0
impliesie XorjeY.

@ The cover weight wtc(C) is the minimum size (X, Y)| = | X| + |Y/|
of its covers.

@ The cover distance is defined as d¢(C, D) = wtg(C — D), for
C,DeFg™".
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The Multi-Cover Metric

@ In this work, we extend the cover metric to the multi-cover metric.
° A multi-cover of C = (Cy, Ca, ..., C) € [T Fg" ™ is
= (X, V), € H, 1[mi] < [n;] such that

Ciap#0 = acXorbeY,, Viell.

@ The multi-cover weight wtyc(C) is the minimum size

L

IX] = (Xl +1Yil)

i=1

of a multi-cover of C.

@ The multi-cover distance between C, D € []i_, Fg"*"

defined as

is simply

duc(C, D) = wiyc(C — D).
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The Multi-Cover Metric

Example: An encoded tuple
C= (C1, Cg) S F3X4 X ngd'

with exactly 4 multilayer crisscross errors is of the form
Y =C+E cFy** x F3*4,

where wtyc(E) = 4.
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Crisscross Erasure Correction

@ Correction characterization: C C [, Fg'™™ can correct t errors
and p erasures if, and only if,

2t + p < dyc(C).
@ Bounds by other metrics:
wisa(C) < wiye(C) < wig(C),

where wtsg(C) = 3i_; 1k(C;) and C = (Cy, ..., Cy) € [[i_  Fg ™.
@ Bounds for the multi-cover metric: Every upper bound valid for the
Hamming metric is also valid for the multi-cover metric.

@ Singleton bound: Setm=my=...=myandn=ny +---+ ny.
Given € C [Tf_, Fg*™, we have

|C| < qm(n*dMC(CH"‘l).
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MMCD Codes

@ MMCD codes: C C []i_, F7"*™ is a maximum multi-cover distance
(MMCD) code if it attains the Singleton bound.

@ If there is an MMCD code C C (Fg*")%, and ¢ is the remainder of
d — 3 divided by n,

{qzm—1 - m(q"° —1) — (n—48)(q" — 1) + m(n - 6)(q - 1)J

£= m(@" 1) - n(q— 1) mn(g 1)

NEEII
(1)

@ Setm=n.lfg>4andn>2,orifg=3andn>3,orifg=2
and n > 4, then the upper bound (1) is tighter than

egﬁfJ+{d;3J+1. 2)
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@ Consider the product
¢
(C,D) => Tr(CiDy),
i=1

where C = (Cy,...,Cr),D = (Dy,...,Dy) € [[i_1 Fq"*", and
where Tr(-) denotes the matrix trace.

@ The dual of C C []j_; F3"" is defined as

1 i X Nj
C :{DGH]FZ’X”

i=1

(C,D) =0, forallCGC}.
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@ Consider C C F3*3 generated by
0 1
0 1 .
1 1

11 1 010
A=[100], B=|111], C=
100 010

@ C is MDS by columns and rows since |C| = 8 (dim(C) = 3) and
di(C) = dg(C) = 3.

0
0
1

@ Cis not MMCD, since dyc(C) = 2.
@ C* has dim(Ct) = 6 and dyc(Ct) = 2, hence it is MMCD.
@ Thus the dual of a linear MMCD code may not be MMCD.

@ A linear code that is MDS by rows and columns may not be
MMCD.
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Dually MMCD Codes

e Dually MMCD codes: A linear ¢ C []¢_; Fg"*" is dually MMCD if
both C and ¢+ are MMCD.

e LetC C (F5*?)" be a linear code. The following are equivalent:
@ C!is MDS by columns for all t € {0,1}*.
@ Cis MMCD.
@ Cis dually MMCD.

e IfCc CTIi_, F7"*" is a maximum sum-rank distance (MSRD) code,
then it is also an MMCD code.

@ IfCisalinear MSRD codeand mi =my = ... = my,thenCis a
dually MMCD code.
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Nested Construction

@ Letn=rsandt=r¢ Given C C (F§*°)!, define ¢(C) C (Fg*")",
where ¢ (C',C?,...,C") =

ci ¢t .. Cr1 Cli Gy - Crrﬂ | Gl C(z Dret oo C(ri,—11)r+1
G ¢ ... G Cr'+2 Clo - Crr+2 | Gl 2 Clonrz  Clilyea
G olg o .l & o . q

for C' = (C},Ch,...,C}) € (FF®) fori=1,2,...,r
® duc(¥(C)) = dmc(C) and [¢(C)] = [C]".
@ ¢(C) is MMCD if, and only if, so is C.

@ (C) is linear if, and only if, so is C, and in that case,
dim(¢(C)) = rdim(C) and ¢(C)* = ¢(C1).

@ (If Cis linear) ¢(C) is a dually MMCD code if, and only if, so is C.
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Nested Construction

e If g > t, there is a linear MSRD code C C (F§*®)! (linearized RS).
@ The code ¢(C) C (Fg*")" is a dually MMCD code.

@ We may choose g =t + 1, and ¢(C) may be decoded with a
complexity O(t¢n?) over a field of size g™/t = (t + 1)1,

@ If a product in Fy costs O(b?) operations in I, then the previous
complexity over Fy is

@ (t—1 loga(t + 1)2n)
@ This complexity is lower for larger values of .

@ However, codes for larger t require larger alphabets (g > 1),
whereas codes for smaller t can be used for smaller alphabets.
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Nested Construction

@ If £ =1 (but1 <t < n, t|n), then the previous code ¢(C) C Fg*" is
dually MMCD code for the classical cover metric (MCD code?).

@ The case t = n corresponds to the code by Roth (1991), where
¢’ € C, for a Reed—Solomon code C C IFZ and

1 2 n

c; c11 511

(o o) S oA
2 2 2

w(c‘,cz,...,c”>: o _
2 3 1

cs ¢ ... cCp

@ The case t = 1 corresponds to the code by Roth (1991) given by a
Gabidulin code C C Fg*".

@ Thecases 1 <t < n, t|n, correspond to a new family of dually
MMCD codes for the classical cover metric.

@ Their advantage is the previous alphabet-complexity trade-off.
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Open Problems

@ We only considered error-free worst-case deterministic decoding.
Probabilistic decoding as considered by Roth (1997) but in the
multi-cover metric is open.

@ List decoding for the cover metric was studied by Wachter-Zeh
(2016). The multi-cover metric case is open.

@ Crisscross insertions and deletions were studied recently by Bitar
et al. (2021), where several code constructions are given. The
multi-cover metric case is open.

@ Codes with local crisscross erasure correction was studied by
Kadhe et al. (2019). The multi-cover metric case is open.
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Conclusion

Thank you for your attention.
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