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Non-Weakly Regular Bent Functions

Bent Functions
• p : odd prime and Fpn : finite fields of order pn.

• Fpn is an n dimensional vector space over Fp .
• Let f : Fn

p → Fp . The Walsh transform of f at α ∈ Fn
p is defined

as a complex valued function f̂ on Fn
p

f̂(α) =
∑
x∈Fn

p

ϵ
f(x)−α.x
p

where ϵp = e
2πi
p and α.x denotes the usual dot product in Fn

p .

• The function f is called bent function if |̂f(α)| = pn/2 for all
α ∈ Fn

p .
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• The Walsh coefficients of a bent function f is characterized in [3] as
follows

f̂(α) =

 ±pn/2ϵ
f∗(α)
p if pn ≡ 1 mod 4,

±ipn/2ϵ
f∗(α)
p if pn ≡ 3 mod 4,

• The function f ∗ : Fn
p → Fp is called dual of f .

• A bent function f : Fn
p → Fp with Walsh transform f̂(α) = ξαpn/2ϵ

f∗(α)
p

is called regular if ∀ α ∈ Fn
p , we have ξα = 1, and is called weakly

regular if ∀ α ∈ Fn
p , we have ξα = ξ where ξ ∈ {±1,±i} is a constant

(i.e independent from α), otherwise (i.e. ξα changes sign with
respect to α) it is called non-weakly regular.
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• We define the type of a bent function f as follows,

f̂(0) =
∑

x∈Fn
p
ϵ

f(x)
p = ξp

n
2 ϵ

f∗(0)
p then f is of type(+)

f̂(0) =
∑

x∈Fn
p
ϵ

f(x)
p = −ξp

n
2 ϵ

f∗(0)
p then f is of type(-).

(1)

where ξ ∈ {1, i} is a constant depending on p and n.
• The partition of Fn

p with respect to sign of the Walsh
coefficients of f is given in [1] as follow

B+(f) := {β : β ∈ Fn
p | f(x) + β.x is of type(+)} (2)

B−(f) := {β : β ∈ Fn
p | f(x) + β.x is of type(−)} (3)
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Strongly Regular Graphs

Definition 1 (Partial Difference Sets)
Let G be a group of order v and D be a subset of G with k
elements. Then D is called a (v , k , λ, µ)− partial difference set
(PDS) in G if the expressions gh−1, for g and h in D with g , h,
represent each nonidentity element in D exactly λ times and
represent each nonidentity element not in D exactly µ times.

A PDS is called regular if e < D and D−1 = D.
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Definition 2 (Strongly Regular Graphs)

A graph Γ with v vertices is said to be a (v , k , λ, µ)− strongly
regular graph if

1 it is regular of valency k , i.e., each vertex is joined to exactly k
other vertices;

2 any two adjacent vertices are both joined to exactly λ other
vertices and two nonadjacent vertices are both joined to
exactly µ other vertices.

Definition 3 (Cayley Graph)
G : a finite abelian group
D : an inverse-closed subset of G (0 < D and D = −D)
E := {(x, y)|x, y ∈ G, x − y ∈ D}
(G,E) is called a Cayley graph, denoted by Cay(G,D).
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D is called the connection set of (G,E).

Proposition 1 ( [8])

A Cayley graph Γ , generated by a subset D of the regular
automorphism group G, is a strongly regular graph if and only if D
is a regular PDS in G.
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Translation Schemes

Definition 1 (Association scheme )

Let V be a finite set of vertices, and let {R0,R1, . . . ,Rd} be binary
relations on V with R0 := {(x, x) : x ∈ V}. The configuration
(V ;R0,R1, . . . ,Rd) is called an association scheme of class d on V
if the following holds:

1 V × V = R0 ∪ R1 ∪ · · · ∪ Rd and Ri ∩ Rj = for i , j.
2 R t

i = Ri′ for some i
′

∈ {0, 1, . . . , d}, where
R t

i := {(x, y)|(y, x) ∈ Ri}. If i
′

= i, we call Ri is symmetric.
3 For i, j, k ∈ {0, 1, . . . , d} and for any pair (x, y) ∈ Rk , the

number #{z ∈ V |(x, z) ∈ Ri , (z, y) ∈ Rj} is a constant, which
is denoted by pk

ij .
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Remark 1
2- class symmetric association schemes are strongly regular
graphs.

Definition 2 (Translation Scheme)

Let Γi := (G,Ei), 1 ≤ i ≤ d : be Cayley graphs on an abelian group
G, and Di are connection sets of (G,Ei) with D0 := {0}. Then,
(G, {Di}

d
i=0) is called a translation scheme if (G, {Γi}

d
i=0) is an

association scheme.

Given a d-class translation scheme (X , {Ri}
d
i=0), we can take union

of classes to form graphs with larger edge sets which is called a
fusion.
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Cyclotomic Schemes

Definition 3 (Cyclotomic Scheme)

Let Fq be the finite fields of order q, F⋆q be the multiplicative group
of Fq, and C0 be a subgroup of F⋆q s.t. C0 = −C0. The partition
F⋆q \ C0 of F⋆q gives a translation scheme on (Fq,+), called a
cyclotomic scheme.

Each coset (called a cyclotomic coset) of F⋆q \ C0 is expressed as

C(N,q)
i = w i⟨wN⟩, 0 ≤ i ≤ N − 1,

where N|q − 1 is a positive integer and w is a fixed primitive
element of F⋆q . The eigenvalues of the cyclotomic scheme given by

Ψ1(C
(N,q)
i ), called Gauss periods, where Ψ1 : Fq → C

⋆ defined by

Ψ1(x) = ϵ
Tr(x)
p be the canonical additive character of Fq.
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Some Previous Results on Strongly Regular Graphs

It is known that one of the tools to construct partial difference sets
are bent functions. In [5], it is proven that pre-image sets of the
ternary weakly regular even bent functions are partial difference
sets.
Let f : Fpm → Fp be a p-ary function, and
Di := {x : x ∈ Fpm |f(x) = i}. The following is due to [5]

Theorem 1 (Y. Tan, A. Pott, and T. Feng)

Let f : F32m → F3 be ternary function satisfying f(x) = f(−x), and
f(0) = 0. Then f is weakly regular bent if and only if D1 and D2 are both

(32m, 32m−1 + ϵ3m−1, 32m−2, 32m−2 + ϵ3m−1) − PDSs,

where ϵ = ±1. Moreover, D0 \ {0} is a

(32m, 32m−1 − 1 − 2ϵ3m−1, 32m−2 − 2 − 2ϵ3m−1, 32m−2 − ϵ3m−1) − PDSs.
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Remark 2
In [5], the authors stated that weak regularity is necessary for
Theorem 1 since it does not hold for the ternary non-weakly
regular bent function Tr6(w7x98).

Later, Ozbudak and Pelen observed a relation between following
sporadic examples of ternary non-weakly regular bent functions
and strongly regular graphs [2].
• For the following examples we have q = 729, and N = 13. Let

w be a fixed primitive element of F36 .
• C0 be the multiplicative subgroup of F36 generated by w13. For

1 ≤ i ≤ 12, Ci denotes the i-th cyclotomic coset of C0 and
given by Ci = w iC0.
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Example 4

f2 : F36 → F3, f2(x) = Tr6(w7x98) is non-weakly regular of Type (−). Dual
of f2 is not bent and corresponding partial difference sets and strongly
regular graphs are non trivial.

• B+(f2) is a (729, 504, 351, 342)-PDS in F36

• B⋆− (f2) is a (729, 224, 62, 71)-PDS in F36

By using Magma, we compute B+(f2) and B−(f2). We observe that
B+(f2) =

⋃
i∈{0,3,5,6,7,8,9,11,12} Ci and B−(f2) =

⋃
i∈{1,2,4,10} Ci . Hence B+(f2)

and B⋆− (f2) are 2-class fusion schemes and correspond to non trivial
strongly regular graphs.
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Example 5

f3 : F36 → F3, f3(x) = Tr6(w7x14 + (w35x70)) is non-weakly regular
of Type (−). Dual of f3 is not bent. Corresponding partial difference
sets are non trivial.
• B+(f3) is a (729, 504, 351, 342)- regular PDS in F36 .

• B⋆− (f3) is a (729, 224, 62, 71)- regular PDS in F36 .

Again by Magma computations we have,
B+(f3) =

⋃
i∈{0,1,2,4,5,6,9,11,12} Ci and B−(f3) =

⋃
i∈{3,7,8,10} Ci . Hence

B+(f3) and B⋆− (f3) are 2-class fusion schemes and correspond to
non trivial strongly regular graphs.

Remark 3
Non-trivial strongly regular graphs correspond to f2 and f3 are from
a unital: projective 9−ary [28, 3] code with weights
24, 27;VO−(6, 3) affine polar graph ([9]).
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Finite Projective Planes

• q : odd prime and PG(2, q) finite projective plane of order q

• L := {ℓi}
q2+q+1
i=1 be the set of lines and B := {Pi}

q2+q+1
i=1 be the

set of points in PG(2, q) .
• Equivalently, symmetric (q2 + q + 1, q + 1, 1)− design
• Consider the regular action of F⋆

36/ < w13 > over the set of

cyclotomic cosets {C(13,729)
0 ,C(13,729)

1 , . . . ,C(13,729)
12 }.

• Further Observations: This action induces an automorphism
of order 13 on PG(2, 3). The cyclotomic cosets correspond to
points of PG(2, 3) and B−(f2) corresponds to a line of
PG(2, 3). Similar arguments hold for B−(f3).
• Namely, if we multiply the set

{C(13,729)
1 ,C(13,729)

2 ,C(13,729)
4 ,C(13,729)

10 }

by w recursively we obtain all of the lines in PG(2, 3).
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• Let ℓ0 := {C1,C2,C4,C10}, ℓi := w iℓ0, i ∈ {1, . . . , 12} are the
13 lines in PG(2, 3). Then,

L =
{
{C1,C2,C4,C10}, {C2,C3,C5,C11}, {C3,C4,C6,C12},

{C4,C5,C7,C0}, {C5,C6,C8,C1}, {C6,C7,C9,C2},

{C7,C8,C10,C3}, {C8,C9,C11,C4}, {C9,C10,C12,C5},

{C10,C11,C0,C6}, {C11,C12,C1,C7}, {C12,C0,C2,C8},

{C0,C1,C3,C9}
}

• Observe that B−(f3) = ℓ6.
• B−(f2), B−(f3) can be viewed as lines at infinitiy and B+(f2),

B+(f3) can be viewed as the affine plane AG(2, 3).
• In [4], The authors stated that ”Non-weak regularity of f2 was

verified by computer calculations, however, proving this result
theoretically and probably finding the whole class of similar
functions remains an open problem.
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• It is natural to think that these two functions belong to an
infinite class of non-weakly regular bent functions arising from
finite geometry.

Conjecture 1

Let q = p2m, m ≥ 2 ∈ Z, and N = pm−1
p−1 . Then, there exists a

non-weakly regular bent function f : Fq → Fp with
B−(f) =

⋃
j∈I1 C(N,q)

j corresponds to a hyperplane of PG(m − 1, p)

at infinity, and B+(f) =
⋃

j∈I0 C(N,q)
j corresponds to AG(m − 1, p),

where I0, I1 be a partition of the set {0, 1, 2, . . . pm−1
p−1 − 1} with

|I0| = pm−1, |I1| =
pm−1−1

p−1 .
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Irreducible Cyclic Codes

Definition 4 (Irreducible Cyclic Codes)

f(x) : an irreducible divisor of x r − 1 ∈ Fp[x], where gcd (r , p) = 1.
The cyclic code of length r over Fp generated by (xm−1)

f(x) is called an
irreducible cyclic code.

Alternatively, Let q = pm and N be an integer dividing q − 1. Put
n = q−1

N . Let α be a primitive element of Fq and let θ = αN. The set

C(N, q, β) = {c(β) := (Tr(β),Tr(βθ),Tr(βθ2), . . . ,Tr(βθn−1)) : β ∈ Fq}

is called an irreducible cyclic [n,m0] code over Fq, where m0

divides m.
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Theorem 2 (McEliece)

Let N0 := gcd(N, q−1
p−1). Then,

wt( ¯c(β)) =
n(p − 1)

p
−

p − 1
pN

Ψ1(βC
(N0,q)
0 ).

Hence, find the weight distribution of the irreducible cyclic codes is
equivalent to the evaluation of the eigenvalues of the cyclotomic
schemes.
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• Let us consider the case q = p2m, m ≥ 2 ∈ Z, and N = pm−1
p−1 .

• It is easy to see that F⋆p ⊂ C(N,q)
0 . Hence, the eigenvalues of

the corresponding cyclotomic scheme are integers
• Let χ be a multiplicative chacter of order N of Fq. Then the

following eaquation gives the relation between Gauss sums
and Gauss periods

G(χ) =
N−1∑
i=0

Ψ1(C
(N,q)
i )χ(w i),

where w is a primitive element of Fq.
• m = 2: semiprimitive case. C(N, q, β) is a two weight

irreducible cyclic code
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Three-Weight Irreducible Cyclic Codes

• By Gauss Sum we have

G(χ) =
N−1∑
i=0

ηiξ
i
N ,

where ηi = Ψ1(C
(N,q)
i ) are Gauss periods and ξN = e

2πi
N .

• ηi ’s are inetgers. Hence, G(χ) ∈ Z[ξN].
• m = 3: For p = 3, 5, 7 by Magma we verify that C(N, q, β) is a

three-weight irreducible cyclic code.

Conjecture 2

Let p be an odd prime, q = p6, and N = p2 + p + 1 . Then,
C(N, q, β) is a three-weight irreducible cyclic code.
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Thanks...
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