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q a prime power
my, mp, -, My positive integers coprime to g
n = mt+m+---+m
Fq the finite field of order ¢
]F;’ the vector space of all n-tuples over Fq

We shall represent each element a € IF;’ as

a= (@ a1, -, Q,m-1: 020, 021, " G2 my—1;" """ P g0, Ag1,cc  Aemy—1),

where g;; € Fgfor 1 <i<£Zand 0 <j<m;—1

Definition

A linear code of length n over [y is defined as an F4-subspace of IFZ.
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AL A2, A non-zero elements of Fy

A = (L2 )

MT shift operator

A map Tj : ]F;’ — ]F;’, defined by

Ta(a) = Ta(aro, @11, -+ @ mp—1; 0 $ g0, g1, gmy—1)
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for all a € F%, is called a A-MT shift operator on FZ.
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AL A2, A non-zero elements of Fy

A = (L2 )

MT shift operator

A map Tj : ]F;’ — ]F;’, defined by

Ta(a) = Ta(ar0. @11, -+ A1y =137 g0, Ag1,cc , Agmy—1)
= (Alalyml,l, aro, M m—2, V >\Zae,ml—lv g, ae,m572)
for all a € IFZ, is called a A-MT shift operator on IE‘;‘.

Multi-twisted (MT) code [Aydin and Halilovi¢ (2017)]

A A-MT code % of length n and block lengths (m, my, - - - , my) over Fy is a linear
code, which is invariant under the A-MT shift operator Tx, that is,
TA(€) = €.
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Additive code

An additive code of length n over F is defined as an Fg-linear subspace of IFZ,.

Multi-twisted additive code [S. & A. Sharma (2021)]
A A-MT additive code % of length n and block lengths (11, mg, - - -, my) over Fy is
an additive code, which is invariant under the A-MT shift operator, that is,

TAN(E) = .
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Multi-twisted

t an integer > 2

F” (tn)-dimensional vector space over Fy

Additive code

An additive code of length n over F is defined as an Fg-linear subspace of IFZ,.

Multi-twisted additive code [S. & A. Sharma (2021)]
A A-MT additive code % of length n and block lengths (11, mg, - - -, my) over Fy is
an additive code, which is invariant under the A-MT shift operator, that is,

TAN(E) = .

@ L =1 = \j-constacyclic additive codes of length m; over F e
[Cao et al. (2015), Kaur and Sharma (2017)]

e {=1& X=1 = cyclic additive codes of length m; over qu
[Huffman (2010)]
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Multi-twisted additive codes as modules

Al MT ac
MT

Vi = Fulx]/(xm—x) for 1<i<#
¢

YV =TI Vi a A-MT module
i=1

Define 9 : ]th — Vas
PY(c) = (a(x), e(x), -, c(x)) for each c € IE‘Z,,
where

Ci(X) = Cio + Ci1X + CipX 4+ + Gy X €V forall 1< i< 4.

@ 9 is an [Fg4-linear vector space isomorphism.
@ A subset ¢ of F;l is a A-MT additive code if and only if (%) is an Fg4[x]-
submodule of V.
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Vi = Fuld/xm—x)for1<i<e

¢
VvV = T[]V aA-MT module
i=1

Define 9 : ]th — Vas
PY(c) = (a(x), e(x), -, c(x)) for each c € IE‘Z,,
where

Ci(X) = Cio + Ci1X + CipX 4+ + Gy X €V forall 1< i< 4.

@ 9 is an [Fg4-linear vector space isomorphism.
@ A subset ¢ of F;t is a A-MT additive code if and only if (%) is an Fg4[x]-
submodule of V.

In order to study A-MT additive codes of length n and block lengths

(ma, my, - -, my) over Fg, it is enough to study Fg[x]-submodules of V.
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Let g1(x), g(x),---, g-(x) be all the distinct irreducible factors of the polynomials
XM — Xy, X2 = Xg, -, X — Xy in Fglx].
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Let g1(x), g(x),---, g-(x) be all the distinct irreducible factors of the polynomials
XM — Xy, X2 = Xg, -, X — Xy in Fglx].

For 1 < u <r, let us define

dy deg gu(x)
ay = gcd(t, dy)
gu(x) = guo(X)gu1(X)- - gua,—1(x), the irreducible factorization of the

polynomial gu(x) in F gt [x]
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Enumeration formula for A-MT add

Let g1(x), g(x),---, g-(x) be all the distinct irreducible factors of the polynomials
XM — Xy, X2 = Xg, -, X — Xy in Fglx].

For 1 < u <r, let us define

dy deg gu(x)
ay = gcd(t, dy)
gu(x) = guo(X)gu1(X)- - gua,—1(x), the irreducible factorization of the

polynomial gu(x) in F gt [x]

The polynomials g, ,(x) for 1 <u <rand 0 < h < ay — 1 are all the distinct

irreducible factors of the polynomials x™i — \; over Ith for1 <i<U4.
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Forl1<u<r 1<i<{fand0< h<ay—1, let us define
{ 1 if gu(x) divides x™ — X; in Fy[x];
0

fui = otherwise,
¢
€ = izzleu.,-
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modules

Algebr: r of A-MT additive codes
Enumeration formula for A-MT additiv

Forl1<u<r 1<i<{fand0< h<ay—1, let us define

o 1 if gu(x) divides x™i — X\; in Fg[x];
Cuwi = 0 otherwise,
¢
€u = Z €u,i
i=1
Fglx]
F = 4
! (gu(x))
F r[x]
F . _atd
wh (8un(X))

By the Chinese Remainder Theorem, we have

r oay—1 r
Ve @ @ <eu'1fu'h’ eu,Z}-uvh, e 'eu,efu,h> = @gu
u=1 h=0 =

Gu

Note that Gy is an €, t-dimensional vector space over F, under the component-wise

addition and the component-wise scalar multiplication.
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T additive

Theorem [S. & A. Sharma (2021)]

@ Each A-MT additive code ¢ of length n and block lengths (my, my, - - - , my)
over IFq; can be uniquely expressed as

,
¢ =P %u.
u=1

where %, is an Fy-subspace of G, for each u.

@ Conversely, if €y is an Fy-subspace of G, for 1 < u < r, then the direct sum

r
¢ =P %
u=1

is a A-MT additive code of length n and block lengths (my, my, - - - , my) over

The subspaces %1 - are called the constituents of %.

8/36



Some preliminaries Multi-t r finite fields

ver finite fields
s modt
Algebraic struc of A-MT additive codes
Enumeration formula for A-MT additive codes

Enumeration formula for A-MT additive codes of length n over F

For positive integers k, n with 1 < k < n and a prime power ¢, the number of
distinct k-dimensional subspaces of an n-dimensional vector space over Fy is given by

the Gaussian binomial coefficient
[ - (@"-1)(q"—a)---(q" —q"")
klg  (q"=1)(g*—q)-- (" — g 1)

Recall that [(')’]q =1.
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Enumeration formula for A-MT additive codes of length n over F

For positive integers k, n with 1 < k < n and a prime power ¢, the number of
distinct k-dimensional subspaces of an n-dimensional vector space over Fy is given by
the Gaussian binomial coefficient

[ - (" -1)(q"~q) - (q"—q"")
kg (g*=1)(g*—q)-- (" —q*1)’

Recall that [(')’]q =1.

Theorem [S. & A. Sharma (2021)]
The total number of distinct A-MT additive codes of length n and block lengths
(my, my, - -+, My) over Fge is given by
r eut €
Ny = [ .
-1(E15),)
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Are MT additive codes over finite fields asymptotically good?

Kabatyansky (1977)

Cyclic additive codes of length
p“ over finite field F, are
asymptotically good

q is a primitive root modulo a prime
p satisfying g?~! # 1 (mod p?) and
by assuming Artin's conjecture on
primitive roots

Chepyzhov (1992)

Cyclic additive codes of prime
lengths over finite fields are
asymptotically good

By applying Chebyshev’'s Theorem
for prime numbers

Shi et al. (2018)

A-constacyclic additive codes
of prime power length m over

]Fq, are asymptotically good

The polynomial x™ — X is
irreducible over Fy

Shi et al. (2018)

Cyclic additive codes of prime
power lengths over finite fields
are asymptotically good

By assuming Artin’s conjecture on
primitive roots
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Are MT additive codes over finite fields asymptotically good?

Cyclic additive codes of length q is a primitive root modulo a prime
Kabatyansky (1977) p? over finite field F, are p satisfying g?~! # 1 (mod p?) and
asymptotically good by assuming Artin's conjecture on
primitive roots

Cyclic additive codes of prime

Chepyzhov (1992) lengths over finite fields are By applying Chebyshev’'s Theorem
asymptotically good for prime numbers
A-constacyclic additive codes
Shi et al. (2018) of prime power length m over The polynomial x™ — X is
]Fq, are asymptotically good irreducible over Fy
Cyclic additive codes of prime By assuming Artin’s conjecture on
Shi et al. (2018) power lengths over finite fields | primitive roots

are asymptotically good

Artin’s conjecture on primitive roots (1927)

An integer a, which is neither a perfect square nor equal to —1, is a primitive root
modulo infinitely many primes.
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symptotically good

Let .F = {€;}i>1 be a sequence of additive codes %; of length n;, dimension k; and
Hamming distance d; over F: such that lim {n;} = co.
1—00

ki
@ The rate Rg of the sequence .# is defined as Rg := limsup {—’} .
iboo L1

@ The relative Hamming distance A & of the sequence % is defined as

d.
Ag = liminf {J
i—o0 n;
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Let .F = {€;}i>1 be a sequence of additive codes %; of length n;, dimension k; and
Hamming distance d; over F: such that lim {n;} = co.
1—00

ki
@ The rate Rg of the sequence .# is defined as Rg := limsup {—’} .
iboo L1

@ The relative Hamming distance A & of the sequence % is defined as

d.
Ag = liminf {J
i—o0 n;

A sequence ¥ = {‘Ki}iZI of additive codes over F . is said to be asymptotically good
if it satisfies AzRg > 0.

11/36
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1-generatol litive codes
MT additive c symptotically g

p odd prime number satisfying gcd(p, q) = gcd(p, g —1) =1
mg = pY,y>1for1<i<¥¢

Aio= A for1<i<¢

e multiplicative order of A

fixed primitive (ep”)-th root of unity

_ Fqlx]
S R
F e [x]
— q
R BEC RS

In view of this, any A-MT additive code of length n = p?¢ and block lengths

(p",pY,---,p") over F 4+ can be viewed as an S-submodule of RE.

12/36



Are MT additive codes over finite fields asymptotically good? rator A-MT additive

additive codes are asymptotically good

Or(q) the multiplicative order of ¢ modulo T
S = O (q)
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MT additive codes are asymptotically good

Or(q) the multiplicative order of ¢ modulo T
S = O (q)

Let Op(q) = f. Let us write ¢/ = 1+ p?c, where d > 1 and c are integers with
gcd(p, ¢) = 1. Further, we see that

4 ify>d+1;

eoew(q)olﬂ(q){f ify<d

From now on, we assume that the integer -y satisfies v > d + 1, so that we have
e =4

13/36
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MT additive codes are asymptotically good

Let hy(x) be the minimal polynomial of the element 7 over Fq. Note that h; (x)
divides x*" — X in Fq[x] and deg h;(x) = ©. Now let us define

I = (he s
Kpr = <x;:(;)X R
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Let hy(x) be the minimal polynomial of the element 7 over Fq. Note that h; (x)
divides x*" — X in Fq[x] and deg h;(x) = ©. Now let us define

I = (he s
Kpr = <x;:(;)X R

By the Chinese Remainder Theorem, we get
S (h(x)s® Jp'y and R 2 (hi(x))r & ’Cp'y.

To study the asymptotic properties of MT additive codes of length p7£ over qu, we
will view the set ’Cf,w as a sample space, where each sample of IC%, is chosen with
equal probability.
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Are MT additive codes over finite fields asymptotically good?

MT additive codes are asymptotically good

Let hy(x) be the minimal polynomial of the element 7 over Fq. Note that h; (x)
divides x*" — X in Fq[x] and deg h;(x) = ©. Now let us define

I = (he s
Kpr = <x;:(;)X R

By the Chinese Remainder Theorem, we get
S (h(x)s® Jp'y and R 2 (hi(x))r & ’Cp'y.

To study the asymptotic properties of MT additive codes of length p7£ over IE‘q;, we
will view the set ’Cf,w as a sample space, where each sample of IC%, is chosen with
equal probability.

Theorem [S. & A. Sharma (2022)]

Multi-twisted additive codes over finite fields are asymptotically good.
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MT additive codes are asymptotically good

Outline of the proof |

Let {7;};>1 be a strictly increasing infinite sequence of positive integers satisfying
v >d+1foralli>1and lim{v;} = oco.
1—00

For each positive integer i, let us take

i = Op(q)=fr
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MT additive codes are asymptotically good

Outline of the proof |

Let {7;};>1 be a strictly increasing infinite sequence of positive integers satisfying

v >d+1foralli>1and lim{v;} = oco.
1—00

For each positive integer i, let us take

i = Op(q)=fr

For each positive integer i and a;(x) = (a;, (%), a;,(x), -, a;,(x)) € icfm, let

Ga; = {(F()ay (x), f(x)as, (%), -+ f(X)a, () : f(x) € Ty} C Ky

be the random MT additive code of length pYi¢ and block lengths (pYi, pYi, .- ., pi)
over Fye defined over the probability space Kﬁﬂi'
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MT additive codes are asymptotically good

Outline of the proof Il

Theorem [S. & A. Sharma (2022)]

1

If § is a positive real number satisfying hqt(é) < 1— g, then we have

Jim {Pr(A(%s) >06)} =1,

where hg:(-) is the q'-ary entropy function.
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MT additive codes are asymptotically good

Outline of the proof Il

Theorem [S. & A. Sharma (2022)]

If § is a positive real number satisfying hqt(é) <1l-— %, then we have

Jim {Pr(A(%s) >06)} =1,

where hg:(-) is the q'-ary entropy function.

Theorem [S. & A. Sharma (2022)]

Let {v;}i>1 be a strictly increasing infinite sequence of positive integers satisfying
7v; > d+ 1. Then we have
f

i R} = L

16/36
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MT additive codes are asymptotically good

Outline of the proof Il

Theorem [S. & A. Sharma (2022)]

Let § be a positive real number satisfying kg (6) < 1 — Tlt There exists an infinite

sequence F = {%;};>1 of MT additive codes ¢ of length pYi¢, block length p”i and

i—d
dimension f’ﬂ; over F,r with lim {pi} = oo, such that
1—00
@ Ry = Ilim{R(%)} = i > 0, and
i—00 pdét
@ Ar=lim{A(%)} > 6.
1—00
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Are MT additive codes over finite fields asymptotically good? 1generator A-MT additive codes

MT additive codes are asymptotically good

Outline of the proof Il

Theorem [S. & A. Sharma (2022)]

Let § be a positive real number satisfying kg (6) < 1 — Tlt There exists an infinite

sequence F = {%;};>1 of MT additive codes ¢ of length pYi¢, block length p”i and

i—d
dimension f’ﬂ; over F,r with lim {pi} = oo, such that
1—00
@ Ry = Ilim{R(%)} = i > 0, and
i—00 pdét
@ Ar=lim{A(%)} > 6.
1—00

As a consequence of the above theorem, we deduce that
@ The class of A-constacyclic additive codes of length p over F is
asymptotically good when the polynomial x?” — X is reducible over Fq.

@ The class of cyclic additive codes of odd prime power lengths over finite fields is
asymptotically good without applying Chebyshev's Theorem and without
assuming the unresolved Artin’s conjecture on primitive roots.
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Dual codes of MT additive codes

Trgt 4 trace map from F,e onto Fq

Ordinary trace bilinear form [Huffman (2010)]

The ordinary trace bilinear form on [FZ, isa map (-, ) : IFZ, X ]FZ[ — Fy, defined as
¢ m;—1

(a.byo=>Y_ > Tryqlaijbi;)V abe ;.
i=1 j=0

@ The ordinary trace bilinear form (-, -)¢ is a non-degenerate and symmetric
bilinear form on ]FZ,.
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Dual codes of MT additive codes

The Hermitian trace bilinear form on IFZ[ is defined only when f is an even integer.
t=2AU A=2%1 where a>1 and the integer U is odd

6% a non-zero element of quA satisfying v + 'qu =0
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Trace bilinear forms
5-du A-MT additive code

Dual codes of MT additive codes

The Hermitian trace bilinear form on IFZ[ is defined only when f is an even integer.
t=2AU A=2%1 where a>1 and the integer U is odd

6% a non-zero element of quA satisfying v + 'qu =0

Hermitian trace bilinear form [Huffman (2010)]

The Hermitian trace bilinear form on F”, is a map (-, -)y : F”, x F”, — Fg, defined as
q q q
2 mi—1

/
(@ by =3 S Try g(vay b} ) ¥ a, b € L.
i=1 j=0

@ The Hermitian trace bilinear form (-, -) is a non-degenerate, reflexive and
alternating bilinear form on IF;’[.
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Trace bilinear forms
Dual codes of MT additive codes A

d-dual \-MT additive code

Let ¢ > 2 be an integer satisfying t Z 1 (mod p). Define ¢ : Fye — Fyr as

d(a) = al + af + ...+ foreach ac Fyr.

Note that
o p(a) =Try 4(a) —oaforall o € Fu.

@ ¢ is an Fy-linear vector space isomorphism.
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Dual codes of MT additive codes

Let ¢ > 2 be an integer satisfying t Z 1 (mod p). Define ¢ : Fye — Fyr as
d(a) = al + af + ...+ foreach ac Fyr.

Note that
o p(a) =Try 4(a) —oaforall o € Fu.

@ ¢ is an Fy-linear vector space isomorphism.

* Trace bilinear form [Sharma & Kaur (2017)]
The * trace bilinear form on IF;‘, isamap (-, )x: IE‘;’[ X ]FZ, — g, defined as
£ mi—1

(a,bye = Trge (aijd(b;j)) V a,be Fl:.

i=1 j=0

@ The x* trace bilinear form (-, -)« is a non-degenerate and symmetric bilinear form
on ]F;‘,, and is alternating in the case when g is even.

20/36
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4-dual code of A-MT additive code
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4-dual code of A-MT additive code

/\/ — (>\171'>\271’”_ ’>\Zl)

The §-dual code

If € is a A-MT additive code of length n and block lengths (my, my, - - - , my) over
]qu, then its 8-dual code €16 is defined as

@i ={aew :(acs=0foralcew}.

The §-dual code €16 of a A-MT additive code % is a A'-MT additive code of length

n and block lengths (my, my, - -+ , my) over qu.

21/36



Trace bilinear forms

Dual codes of MT additive codes 5-dual code of A-MT additive code

Definition

A A-MT additive code € of length n over Fq; is said to be
@ J-self-orthogonal if it satisfies @ C €.
@ §-self-dual if it satisfies € = €1s.
@ d-complementary dual if it satisfies € N €6 = {0}.
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Trace bilinear

Dual codes of MT additive codes 5-dual code of A-MT additive code

Definition

A A-MT additive code € of length n over Fq; is said to be
@ 6-self-orthogonal if it satisfies 4 C €.
@ o-self-dual if it satisfies € = €1s.
@ 6-complementary dual if it satisfies € N €15 = {0}.

Reciprocal polynomial

If f(x) =ap+ ax+ -+ ax* is a non-zero polynomial of degree k in Fg[x] such
that f(0) # 0, then its reciprocal polynomial is defined as
i) =

xk

Fo 0D =& @+ aaxt o+ aodh)

@ A non-zero polynomial f(x) in Fg[x] is called a self-reciprocal polynomial if it
satisfies (fT(x)) = (f(x)).

@ Two non-zero coprime polynomials f(x), g(x) € Fg[x] form a reciprocal pair if
they satisfy (fT(x)) = (g(x)).
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Enumeration formulae

Suppose (by relabelling g, ,(x)’s if required) that

® g1o(x),, -, 8la-1(x), - & 0(x), - rgel,ael—l(x) are all the distinct
self-reciprocal polynomials,

@ ge11,0(x), gg]Jr],o(x). cee ,gel+1,ael+1—1(x)r ggﬁl'aelﬂ,l(x), o 8oy 0(%),
gZZ NGO ,gez.%_l(x), ggz ~ _,(x) are all the polynomials forming reciprocal

' ]

pairs, and

© 80,+10(X), 8oyt lapy s —1(X), -+ 8y 0(X), -+, 8oy, —1(%) are the remaining
polynomials that appear in the irreducible factorizations of the polynomials
XM — Xy, x™M2 — Xy, .-+, x™ — X\, over Fe.
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Enumeration formulae

Recall that for 1 < u < rand 1< i<¢, we have

1 if gu(x) | x™ — X; in Fg[x];
G =
w 0 otherwise.

Foree+1<w<eandl1 <i</y let

€

o1 i gh(o) | am = X in Folx];
The 0 otherwise.

S o= {vilsv<eady =1} M = Cwi
i€Tw

T = {L2,---,ea}\N Tw = Py el{u,i
i€y,

Tw = {i:1<i<tley=¢ } w =Y €wi
€Ty,

T, = {L2-,0\Tu

24 /36



4 self-dual A-MT additive codes
f-orthogonal A-MT additive des
Enumeration formulae )-complementary dual A-MT additive codes

Necessary and sufficient conditions for the existence of a §-self-dual A-MT
additive code

Theorem [S. & A. Sharma (2021)]

There exists a §-self-dual A-MT additive code of length n and block lengths

(my, my, - -+, my) over ]th if and only if the irreducible factors of the polynomials
XM — Xy, x™M2 — X, -, x™ — Xg in F e [x] are either self-reciprocal or they form
reciprocal pairs and €, is an even integer for 1 < v < ¢e.
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& self-dual A-MT additive codes
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Enumeration formulae -

Enumeration formula for d-self-dual A-MT additive codes

Theorem [S. & A. Sharma (2021)]

If all the irreducible factors of the polynomials x™ — X1, x"™ — Xy, --- x"™ — X, in
Fye [x] are either self-reciprocal or form reciprocal pairs (i.e., es < ey) and €yt is even
for 1 < v < ey, then for § € {0, %,y}, the number M of distinct §-self-dual A-MT

additive codes of length n and block lengths (my, my, - -+ , my) over F e is given by
(evt/2)—1 [ Nwt
dy(ept—2b—1) Nuwt
m=T]w ]| II @ +v] I] <Z[Z]d)
veES veET> b=0 w=e;+1 \d=0 q

where for each v € 77, the number 9, equals

R (Evt/2)*1( ept—2a—2

qg z + 1) when ¢ € {0, x}, g =3 (mod 4) and
eyt =2 (mod 4).

a=0

(€t/2)-2 , i za
° IT ( l22 2—1—1)When(S:Oandqiseven.
a=0
€t/2-1 , rza
o I (q z + 1) when either § =y or § = * and g is even.

a=0
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6 self-dual A-MT additive codes
& self-orthogonal A-MT additive codes
Enumeration formulae )-complementary dual A-MT additive c

Enumeration formula for d-self-orthogonal A-MT additive codes |

Theorem [S. & A. Sharma (2021)]

For 6 € {0, *, v}, the number 9 of distinct d-self-orthogonal A-MT additive codes of
length 7 and block lengths (my, my, - - - , my) over F e is given by

e 2 Nwt Nwt—ky
_ Nuwt Nwlt — kl
m=TT=n I (0% X ™. 7 ]
v=1  w=e;+1 \k=0 174V j,—0 2
where for 1 < v < ey, the number 9, equals

(evt—2)/2
o Z [(e,,t—Z)/Z

k

=1 eyt—2d X )
] H (q z + 1) when v € J; and § € {0, x} with either
7 d=0

eyt is even and g =1 (mod 4) or €, =0 (mod 4) and g =3 (mod 4).

eyt/2 k—1
2 Epl—ca—.
° g[eyz/]qg(q LZZdZ—&-l) when v € 71, 6 € {0, %}, g=3 (mod 4) and

eyt =2 (mod 4).
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6 self-dual A-MT additive codes
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Enumeration formulae )-complementary dual A-MT additive c

Enumeration formula for d-self-orthogonal A-MT additive codes Il

(evt—2)/2 B
(eut —2)/2 ateat
° Z: [ . ]q}i[o (47 +1) +
ept/2 2
eyt —2)/2 ept—2d 2
Z G2 [( vk/ - 1)/ ] H (qtf + 1) when v € J;, 6 = 0 and
k'=1 94 @ —o
both €,t, g are even.
(ept—1)/2 -1
(evt—1)/2 ept—2d—1 _ _
° % [ k ]qg(q Z  +1) when v € 7; with either § =

and both €yf, g are odd or § = 0 and €yt is odd.

eyt/2 €pt/2 k-1 eut—2d ) h s o
° kz:%[ k ]qg(q + )WenV€J1WIt either 6 =y or § = *

and both €,t, g are even.
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Enumeration formulae )-complementary dual A-MT additive codes

Enumeration formula for d-self-orthogonal A-MT additive codes IlI

eyt/2 evt/)2 k-1 M : ) ) .
¢ Z [ k ]qd,,]._.[ q +1) when v € 7 and €yt is even.
k=0 b=0
(evt—1)/2 fetl
(et —1)/2 dy(eyt=2b) .
° ; [ k ]quH q ° + 1) when v € J, and €, is odd.
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Enumeration formulae

Enumeration formula for §-complementary dual A-MT additive codes |

Theorem [S. & A. Sharma (2022)]
For & € {0, %, v}, the number ® of distinct §-complementary dual A-MT additive
codes of length n and block lengths (my, my, - - -, my) over Fye is given by

@:ﬁmy ﬁ Dw ﬁ <i [G;t]qd),

v=1 w=e;+1 s=e+1 \a=0
where for e; +1 < w < e, the number D, equals
Nwt owt Twt
zw: zw: zw: <qkdw(nwt—k) ["lwt] [th] [Tw[] )
k=0 k; =0 kp—0 k Jqawlkydgawl ko d gaw

and for 1 < v < e, the number ®, equals

ept—1

k(eyt—k) t/2
2+ E q 7 [EIZ//Z ] , when v € J; with either § = <y and €,t is even
= q
k |ske€en

or § = x and both €,t, g are even.
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Enumeration formulae b-complementary dual A-MT additive codes

Enumeration formula for -complementary dual A-MT additive codes Il

ept—1 ept—1
v Met_k+1) (evt —1)/2 < (ert=Rk1) (evt —1)/2
02+ Z [ k)2 ]q+ Z [(kfl)/z]qz
le even kls odd

when v € 71, 6 € {0, *} and both e,,t q are odd.

= €v 2 = v v —2)/2
D S N A S TR A

ki |s even ki |s odd

veE J, and § € {*, 0} with either €yt even and g =1 (mod 4) or

eyt =0 (mod 4) and g =3 (mod 4).

ept—1 t—1
z k(evt—k) r€yt/2 ewtk—k2—1 eyt (ept —2)/2
2 -1
D & ; a : [k/z]qfr ; qa *(q> )[(k—l)/z]qz
k is even kis odd

when v € 71, § € {0, *}, ¢ =3 (mod 4) and €, =2 (mod 4).
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Enumeration formula for d-complementary dual A-MT additive codes IlI

ept—1 ept—1
v Mept k1) (evt —1)/2 < (ew Bkt1) (evt —1)/2
e 2
+ Z [ k/2 LJF; [(kfl)/z]
kIS even k is odd
when v € J;, 0 =0, g is even and €t is odd.
ept—1
2 eptk—k2— (evt —2)/2 _ _
o2+ > g7 {(@+a-1[* |+ gk — gk g
/2 q?
k is even
=il
(evt —2)/2 U )24 (ept — 2)/2
X 2 h €N, 0=0
[(k—g)/z] * ; a [(k-1)/z]qzwe”” S
k is odd
and both €,t, g are even.
ept—1 k-1 (evt—a)dy
Z k(ept—K)dy 1)evi—a
° 2+Zq 2 H q(ka)dy ) when v € 7.
k=1 a=0 \ q 2z —(=1)k=a
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Open questions

Some open questions

o Classification of §-self-dual, §-self-orthogonal and §-complementary dual MT
additive codes over finite fields up to equivalence.

@ Generator theory for MT additive codes over finite fields.

@ The study of skew MT additive codes over finite fields, their duality and
asymptotic properties.

@ The study of MT additive codes over finite commutative chain rings and their
duality properties.

33/36



References |

[ Aydin, N. and Halilovié, A.,
A generalization of quasi-twisted codes: multi-twisted codes,
Finite Fields Appl. 45, pp. 96-106 (2017).

a Cao, Y., Chang, X. and Cao, Y.,
Constacyclic Fg-linear F -codes,
Appl. Algebra Engrg. Comm. Comput. 26(4), pp. 369-388 (2015).

a Chepyzhov, V. V.,
New lower bounds for minimum distance of linear quasi-cyclic and almost linear
cyclic codes,
Probl. Peredachi Inf. 28(1), pp. 39-51 (1992).

ﬁ Huffman, W. C.,
Cyclic Fg-linear F:-codes,
Int. J. Inf. Coding Theory 1(3), pp. 249-284 (2010).

ﬁ Kabatiansky, G. A.,
On existence of good cyclic almost linear codes over nonprime fields,
Probl. Peredachi Inf. 13(3), pp. 18-21 (1977).



References ||

B

) B & @

Kaur, T. and Sharma, A.,
Constacyclic additive codes over finite fields,
Discrete Math. Algorithms Appl. 9(3), 1750037, pp. 35 (2017).

Sharma, A. and Kaur, T.,
On cyclic Fg4-linear ]th—codes,
Int. J. Inform. Coding Theory 4(1), pp. 19-46 (2017).

Sharma, S. and Sharma, A.,
Multi-twisted additive codes over finite fields,
Beitrage Algebra Geom. 63(2), pp. 287-320 (2021).

Sharma, S., Sharma, A.,
Multi-twisted additive codes over finite fields with complementary duals,
Probl. Inf. Transm. 58(1), pp. 32-57 (2022).

Sharma, S., Sharma, A.,
Multi-twisted additive codes over finite fields are asymptotically good,
Cryptogr. Commun. pp. 1-17 (2022).

Shi, M., Wu, R. and Solé, P.,
Asymptotically good additive cyclic codes exist,
IEEE Communications Letters 22(10), pp. 1980-1983 (2018).



Thank you...

36/36



	Some preliminaries
	Multi-twisted codes over finite fields
	Multi-twisted additive codes over finite fields
	Multi-twisted additive codes as modules
	Algebraic structure of -MT additive codes
	Enumeration formula for -MT additive codes

	Are MT additive codes over finite fields asymptotically good?
	1-generator -MT additive codes
	MT additive codes are asymptotically good

	Dual codes of MT additive codes
	Trace bilinear forms
	-dual code of -MT additive code

	Enumeration formulae
	 self-dual -MT additive codes
	 self-orthogonal -MT additive codes
	-complementary dual -MT additive codes

	Open questions

