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1y unrelated fixed point theoroms e -

JntrOCUQiiOﬂ

It is the purpose of these lectures to exhibit the im-

s

v nonlinear functional analy-

%—3.

sis and some of its applications. To do this, we prove in
the first section an almost trivial fixed point theorem for
increasing maps in rather geneval oruorod gsets. In Section

- can be used to simplify

—

2 we show how this general resul

W
1)
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and unify the proofs of a variety of well known and see

.
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In Section 3 we mix the order with topological structu-

res and prove some new fixed point. theorems for not necessa-

rily continuous maps which have npelatively compact image o
are condensing., In Section 4 we de monstrate the usefulness

of these results for applications. As an example we prove 2

C
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~point boundary
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general existence theorem for quab ilinear tw
. {
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value problems with discontinuous nonlinearities.

In Section 5, finally, we give some bibliographical re-
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ferences and add some remarks ccncerning extensions and re!

hid w b

Tt i3 not the purpose cof these lectures to give the mest
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or the best possible applications. In particua-
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nes ., Moreover, it is
' fixed poiunt theorems
and 3, in a vaxilety
i ify and unify known proofs
and to obtain new results. We leave thisg to the sted |
reader {whese attention we direct to the remarks and hints
in Sﬁctioﬂ 5);
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1., Fixed Point Theoremg in Ovdcored
, Let X be a nonempty set. A binary relation = in X
- “ is called an order on X provided it is reflexive, transi-

-

tive, and antisymmetric, that is, _ .
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(i) ¥ % x for X i

(i1) % &y and y £ z implies x = z
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X
1
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% ‘ ' (idid) x £y and y £ x

A nonempty set X together with an ordex = on X is

~ Il

called an ordered set and denoted by (¥,£) , or simply by X .

: : ' We often write x 2z y dinstead of y £ x , and x'<y or
i y > x means that x £y and x ¥ y .

Let ¥ be an ordered set. An element m € X is called a

) maximal element of X 1if x = m implies X = W ; and g & X
ig a greatest element of X if = £ g for ell x & X . It is
clear that there exists at most one greatest element of X ,
and that every gréatest element is a maximal element (but not
convergely). Minimal eleﬁengﬁ.and the < are
. defined by reversing the above inequalities.

P “Let A be a nonempty

{ elament x € ¥ is callied 1 a £ = fox
: k!
- TR PR . $ 5 o k P I 3 Lo - & -
‘ call o a € a , and = ds called a lower if = £ &
k L A

Gy wy 10 . o Ml Py J I

for all a < A, It iz S SR

Ay thon we olfvwen wilite A &
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and below,

: ' Crf A is bounded above [resp., below ] and Lf the set of

x L er [ resp., lower ] bounds for A possesses a least

element, then this (necessarily unigue)

[ resp.,

5
i
. .
) 1y an order on \é}, and % !
# ; P 5 E s i
15 to be ordeced by inclusion.
_ 2 e 28 |
‘ |
it is clear that & is the least and X 1s the grea-
?
s - O N . ; o e 1o (12
test element of (X)) . Moreower, every noncmpiy subseci U
Ty 2 I3 P 4 » Y
of (P{X) has an infimua and a swrenum in (K,
. ) . e A o )
inf@R) = Wwﬁzm N {g | B«& % and s 1o ((15) w 1 U3
= U (B | BEBY . (1
’ be a least two ele~ ”
bhe the family of all nonzmpty sub-
. v inclusion. Then X is the greatasi
o fi .

element, On the other haund,
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(%) « a1 gl C X
' ) R Y
aunset gy L= .,nsl.r,r
of G)"(”) & sup ('5‘3) = A WU R, but
. no infimon, in fact, not even a lower bound in . L
: 1
A nonempty ¥ is called a
; if it is ig, for every
%,y € C , elther =% sy or ¥ S % . !
. )
element provided each chain in X dne
fimum, Finally, recall Zorn' s ama 18
the axiom of cholce and to Zermelo’s
T S T T B
T oend My e o % [ TR b
Lt A e & Loy W 10T
5 s {3 € X loa £ o}
: 4
oy,
, S s {m & X | x5 &8l .
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R oand ¥ be ordered gsets and denote the order in

gvymbol < ., A Ffungtion § 3 X - Y is

< f£{y). , and de~

! Moreovaer, £ is

obhservation W

: in of these notes.

i » {1,1) et £ : X =+ X be increasing. Then
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f : Tl £ % implies T(S (2. )) € 8 (=)
L B o Implie ( 7< o’ 8. (x50
L Thus, -a 5 f{a) and () £ b iImply
F{la,b]) < [a,bl R
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he based his second prood

proofe Zornts lemna g

{x

5D, inimal | element  m

wquently,  mo= £(m) . t

Flm) £ m ] and, consc

=
[r—.

chailn has a supramug
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resp. . dnfimum ]

nce of ¢

of a fixed polnt of § (under the assumng

3
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¥ . Then m < {m)

Suppose that X  has the stronger

# < f(x) [xesp., £z < 1 fTor all -x &€ X , of

can be })1”1)\1 ed wi

axiom of choice. This ig Zernelo's

Zermelo [ 11 or algso The

should be observed that for the proof of our basic
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fixed point theorem instead of PRQpQ‘

"copetructive' preoofs for all of the results yiver

notes. Here "constructive" means: without using tb

choice. Since we do not try to aveld the axiom o
fe P

have based our proofs

conseqguence of Zorn's lemma. O
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chain has

=2
el

be increasing. Supposea

infimum [ resp., supremum] ,

be an ordered set such that every

C

[}

1

2]

St

and

that e an element

sveh that Filx ) $x lresp., x_ % £{x )1 . tan £ has a
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We consider

Proof:

treated analogously.

of

¥

and observe that X
if

Moreover,

X Than

3

]

i

3

X, and P

¥ g
aind observe that Y
{x & ) , and £(¥ )

that every chain

mollies

very

feda

which, by the

( O

point of n

.
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def
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X
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in G{O) ; {

) ]

[ resp.

only the first case. The second case 13
fixed point in Sw(xo} : Let

X ] fx). € x} NS (iof , o
is not egpty gxo € X) and E(X_) € X_ .
chain in X_ , it has an infimom o . in

s fla) f(cj < for all ¢ € C , that

C

.
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a 1s

his shows that every chain in X has an
roposition {1.2), applied to X_ , glves

| F(x) = x} 0S8 (x)+d .
, -0
greatest fixed point in 5 _(x_) @ Let
vy 8 X_ | F_gy}
i well~-defined (by (&)), nonempty
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varified
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¥

existence of a fixed point of £ in ¥,
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«
. In the following,
: if every chain has an
(1L.5) ¢
Y oand let £ o X X

be increasing.

i : rroof:-Apply Theorem (¥.4) to the

igs called

and a supremim.

chain completes

n o d oy ey o 1 ey R
crdered seat

Suppose that bthere exist

o, v € f{y) . and
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chain complete orderved
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and .a oreatest filxed point
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attice possesses a le

2. Some Applica tiong

onLnL theoremn.
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A. Tarski's

TGN B s TR

¥ , there exist supix,y} and inf{x,yr . A lattice

4

infimam. Tt should be observed that evefy comploue

ast and a greatest element.

'E")

F'amh/n 1: The power set (F(X) of an arbitrary set X

e S E R i SaTr

puie
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a complete lattice with respect to the natural order. 0

B ]

fxample 2: The natural numbers R with their natuwal

prder form a lattice such that every order bounded subset

has an infimum and a supremum, that is, IR is a Dedekind

complete lattice, Hence every order interval (that is,

every closed bounded interval) in IR is a complete

/
lattice, O
Bxample 3 Let (X,84,1) be a g-finite weasuwre space
and denote by Lp(X,ﬁ;u) , 1 & p ==, the standard Lebes~

of) measurable veal-

gue spaces of (equivalence class

valued functions on X . Define iwal oxder in

L (%,dhu) by: "f £ g Aff £(x) £ g(x) for walwost all

X", Then L _(X,é:}) is a Dedekind complete lattice
P
(¢.g, Dunford~Schws [11). In paviicular, vy order
. a4 s - i, . . . . !
interval in L _(X,0u) 1s a compiete IlLt cr, {1 | N
]
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An ordered set X 13 called a lattice 1if, for evexry pair
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if every nonemplty subset possegses a suprenun




1 ‘ v As an immediate conseguence of

Jatitice and

(2.1) Theorem (Tarski): Let X be a

ng. Then L
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Tet ¥ = (X,d) be a metric space, Amap £ ¢+ X » ¥ is

called a generalized conc“action if there exists a constant

: gubset M of X with (M) ¢ M,
: dismeter of M , that is, dian(D = sup{d(x,v) | x,¥v & M} .

for all x,y € X and some v < 1 , is & genevalized

- contracition. {
i . . .
5 ) ;
. Every quasi-contraction (as stulied for |
: .~ ,
5 N - - Y Ty . - ) o (. P
b example by Li. B. Ciri€ [ 1] ) is a generalized contrac
£ !
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: tion, where £ ¢ X - ¥ is called a quasi-contraction il
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K,y & X,

2

Vore gauerally, if theve exists a constant vy <1
and a natural number wu such that
. .. . : i 3
A (%), F()) € max {a¢ (= x},d(fj( Y
3 4 2 ? 2. 3
A,k =En

4G, y) A (E (7))}

for all =x,y € X, then £ is a generalized contraction., [l

2.2) fheorem: Every generalized contraction on a nonempty,

B bounded, complete metric space has a unique fixed point,
Proof: Since Pix(f) , the seit of all fixed points ol .
ig invariant under £ , it follows that diam(Fix(£)) = 0 ..
Hence £ . has at most one fixed point,
. Let
v - ~ - P b
, : : M= (AC X | 4+ A=A ,
and define a binary relation =
A< B 1f elther A = B .
’

Then 1t 1s easily verified that X = (& =) 1s an red setb
(X € .

: We claim now that every chain ©  in 3% has an infinum,

v o LV

Since this is obvious 1if ©

- ¥ 5 oy 1N
L, wWa can

a

(T\
3
¢
M
e
=
O
:
R
©
-
o
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e
0
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. Conseqguentlv,

= ddan (£(C))

Y

diam (D) = diam

Gy £ v diam(X)

< oy diam
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and, by induction,

e
L

- & {

such
n

This implies that ¥ ig a Cauchy
.
completeness, the exists an elenentt x & X
Y. P » N . s IR e T e 2 o 9
which implieg, in particular, that x &€ N &

is closed) . Moreover, MO ¢ = {x} since
n -+ « ., Hence
(§00)) = £(NE) Cn{fEy'] ¢ ey
¢ ’

which shows that

é 1Y
£ing)

ve

DA

Since, for every C € ¥ , there exists &

e L2007 - .
it follows

nt <opc FIET

S, n Y

: 2 W s P
for all ¢ € ¥ , that i s ¥
- Y . “ & .. ”
B € » is a lower bound for I , it fo

. and consequently,

BCA{LEECY tC e:-zf’} cnf = £(N

¥

that is, B < 0g . FThus N = inf (¥
in %  has an infimum.
For each A €¥ , let ¢(a) = F(AY

closednegss of

O

f“ / . o c O E A N -
T(¢(A)) = E < f£(n) C =
Thus ¢ maps 4 into iltselfl. Moreover,

i

,
&
[

P
t

9

o

hat v = %,
Y
@ each ¢ € L

a set
ter. Thiue, by

{x}
£ with D ¢

her hand, 12
B C for

and

avarys

Ry < A (by




(x) < x , we can apply Theo-

Co

equently, ¢

of a nonemply subset A of

vom {1.4) to deduces

-

¥ osuch that A& =

3
¥

= diam(F(A)) < v dl (A

Aiam (A) = dian

ueptly, diam(A) = 0 , Thus A = {a} = T({a}) = (£(a)}
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¢, Condensing Maps

Let X o= {X,d) be a netric space, The jAurxtow

o .in ¥ is defined, for every

a(%)'ﬁm inf{e > o | B can be coverad

da

‘ by I ’.’ Sk b 1‘.‘ . A - o A P 12 A -
T is not too difficult to show that « has the following }L“

Ty

B denote unomn% hounded subsebs O

perties {(where A  and

X };

rotally hounded.
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ontinuous!)
is compacty. Then € is condensing. (For a proof of
these facts end for many rolated rasults cof.
and Browder [ 1] .)
The followir is the
the theory of condensing maps. It generalizes, in
Banach's contx rinciple as well as
fixed point i
o ‘3 . - : vl $y S S
(2.3) Tie Laet X be & non Y.
bounded, end convex subset of some Banach v, and sSuppos
that £ ¢ ¥ ¥ is cand continuous. Then I has
fixed point.
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r (X) i= osug Hx il o

wr L2 T8 X
P A

Then rX(K) is the radius of the smallest closed ball with

center at x , containing K , and ¢{X) . ig¢ the rvadius of the
smallest closed bell with center in K , containing R . Finally,

KC r= {x €K v (X} = v (X)) .

point

o
o

It is clear that, for every m € MW, there exis

xm € ¥ - such that » _

‘:«-&

for all % € K ., Since K 1 losed and convex, il is weaklsy.

o
~

closed, hence weakly compact, since X € X and ¥ is weakly i

ccmpu“i, Therefore, by the Ebexlein-Omulian theoremn (e.g. Dun- : |
' |

3

. . ford-Schwartz [1 1), K is weakly 3@cdf"ii,3i3

there exzists a subseguence (x_ ) of (xn} unvew’iL; woealklv
. ol /

o some X¥ € K as k v« , Since for every x € K , the Lunco-

b

~

|
|
tion y = llx-yll "is weakly lower sequentially continuous, it i
follows that

|

11 x & K .

HeFex!l £ r(X) for sl

Hence x* € K and K_ ¥ ¢ . L -

2

Observe that, for every v € K , the set

vsed and convex., hence K is alsc closed and convex since,; -

i<
Ay i




{  Finally we observe that diam(K) > o implies

diam(Kc) < diam{X) . Indeed,

diam(Kc) = sup ix=~yil £ r{X) < diam(K) ,
_ X,¥ EX o
.by normal structure, o

(b} Let , _
= {ACX | gt A=Co(r)},"

ordered by inclusion. Then ¥ is an ordered set such that

every chain ﬁ) has an infimum, namely N f(by the weak compact-

ness of X and the finite intersection property of é’).

?or e:;very AI e ¥ ; let
§(a) t= [SS(EA)) ] . S L
Thén,_by part (é), ¢ is an inc?easing selfmap of: %?',>and
$(X) £ X.. Hence Theorem (1.4) implies the existence of a non-
empty set X € X such that ' |
T K = [co(£(K)) ], .
.Sﬁpbose ﬁow that diam(f(X)) > o . Tﬁen, again by pért {a),

diam(K) = diam [ cO (f(K)) lo < diam(co £ (X))

i

diam £(K) £ diam (K} ,
where the last inequality is a conseguence of the nonexpancive-

mpolies f(K) = {a} . Hence

Lde

ness of £ . This contradiction

[cO £(K) ] ¢ = {a} , and, therefore, K = {a} . This shcws that

a=fla) . s Y

»

(2.5) Corollary {Browder, Géhde): Let X be a nonempty,

-
-

closed, convex, bounded subset of a uniformly convex Bansch

space. Uthen every nonexpansive selfmap of X has a Ffixed point-
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t is easily verified that the sequence (XP)

tte

Then

has the property that

< < % < < < <
¥, S ¥, S Xy S eee cer S X S Xq 5 Xp
Hence X, = f(X2k~1) t x and X = f(XZk} b2,

2kl
£

is continuous

»

. Consequently, if

1A
»

wvhere X
at % and % , it follows that x = £(X) < £(x) =X .

$
Moreover, if £ has a fixed point, then it is contained

in the interval [x,%1] . o - . , )
P ' ‘

In the following we shall show that the above example 18,

in somne senée, typical. In fact, we shall show that there exlst
two points %,% € X such that X = £(%) < £(%) = & ,.and that.
all stsible fixed pbints of f avre contained in {%,%} . Con-
sequently, if x <Y implies either f(x) # Yy oOF £(y) $ X

it follows that £ has precisely one fixed point.

We begin with a much more gener

intertwined. o A
/4y

(2.6} Lemma: Let ¥ be a chain complete ordered set posses

2 least and a greatest element. Le

that

<
m
&

» g(.,y) + X =X is increasing for every

X - X ie decreasing for every

(11)  g(x, )

. Then there exist two -points % € X such that %X = 2
g(x,%) = % and a(%,x) = & . Horecver, if  fx) = glx,x) fo

4N ?

all x € X , then

al result concerning so~called

£ g1 X x X~'X be amap su
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be decreasing. Then there exist polints X,X € X with
?

Y= £(3) £ £(R) = & such that Fix(f) € [X,R1 .
' Moreover, if

(i) either x <y implies £(x) ¥y or £(y) ¥ x .,
P 2 . ‘ . * .
{iil) or £ has at most one fixed point,
4
then f has a unigue fixed point. '

Proof: Let be the least element of X [resp., let H
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be the greatest element of X1 ‘and let R := f{im) [resp.,

W ot= F(i)] . Then X_:=[m,] 'is a chain complete ordered set

O

:

peossessing a leas

o
~to

- and a greatest element. Since f{X) C Xo ;

Follows that Tix(f) C XO . Hence, by letting g(x,y) = [(y}

! ()
@]
[t
2
:—..l
;_,,:.
o
W
H

XO and applying Lemma (2.6} to XO , we obtain

+he first part of the assertion.

\

Tf condition (i) is satisfied, then the rémaining part of ths
2

assertion is trivial. Hence suppose that £

.

has at most one

o o . 2 L. , . .
fixed point. Since £ is increasing, Theorem (1.4) implies thal

2

Fix(fz) = {x_} . By applying £ to the'equation f (xo) = go ;.
. e n? : -2, . "\ ; o .
find that I(f (xo}) = f (x(xo)) m.f(xo) , that is,

-
g
T

: _ .2 » , - w
“F(x ) € Pix(f%) = {x_} . Hence f({x ) = x_, and the assertion
o’ o . o o)
2

follows from the fact that Fix(f) C Pix{(£f") . O
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3. Fixed Points in Ordered Topological Spaces

41 -y

Let ¥ be an ordered set and a topological space. Then X

~is called an ordered topological space (0TS ) provided each of

e
[V

the sections 8 (x) and 8&_ (%) , x € ¥ , is closed. C Consequen

ly, every orvder- interval in an OTS is closed.

Example 1: Let 'E be a real topological vector space.
.
A subset P of E is called ' P4+PCP 5
- ﬁ{+P,é P , PN (~pP) = {0} , and P = P . 1t is easily : -
e k ver rified that evefy cone is nonempty (o € P) and con—
vex, CGiven a cone P 1in E , we let = <y iff -

1 - 4 ) Leh3
nat & 18 an

[
[x3

y = x &P . Then is easily verified t
order on E having the additional properties that

x <y dimplies x+ 2=y + 2z and Ax < Ay - for ell

z€E and A€ R, (that is, £ is
"

E ). This order is said,to be induced by P and (B,

is called an ozdorgd topolo;i~a1 vector space (OTVE). &

write often E or (E,P) instead of {(£,%) , and P is

called the positive cone of the GIVS. 3ince, for every

x € ¥ , we have cbviously §_(x} = x z P, it is cleaxr

that S _(x) is closed. Hence every OIVS is an OIS. i

. Exemple 2: Let X be a locally compact Hausdorff space

%

. and denote by C(X) the vector space of all rveal-valuad

coéntinucus furections on
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_ pk(f) i= wmax | f(x)! , where K rus through all coupact
E e v x € K .

: subsets of X .) The positive cone inducing the natural
order on C(X) 1is denoted by C+{“) and defined by
. . C (X)) := {£ECX) | £(x) 2 0 for all x € X} .

It is easily verified that C(X) is an OTVS, in,fact,'an
ordered locally convex topological vector space with the

natural order. Moreover, if X is compact, then C(X) is

an crdered Banach s@ace (oBS)., O A -

i

Example g; Let . (Xﬂﬁgu) be a o~finite measure space and

e ‘ let E = Lp(X,&Qu) , 1 S psSw (cf. Example 3 of Section
2.A). Then the cone . _ ' -

+ : ' : ' :
LP(X,éﬁu) 1= {f € R | £f(x) 2 0o for yra.2. x € X} defines

“ . oy

‘2 an OBS. 0o .

. n R

Example 4: Let @ be an open subset of TR and denote
by WP(Q) , K€ W, 1Sp<o, the standard -Sobolev spaces ol
real-valued distributions whose derivatives up to the order

+ . .
k belong to LP(Q) . Then the coune WE(Q) N LP(Q) induces

the narural order in Wg(ﬂ) , and w;(g) is an 0BS. 0O

The following elementary lemma implies the fundamental fact

" that every -compact OTS is chair complete.
v
(3.1) Lemmai Every relatively compact chain in an OTS tas
an infimum and. a supremum.

Proof: Let C be a relatively compact chain in some ors .

1=

For every ¢ € C ,

el '




i
b ———" e

(1) A (c) = ETEATE ¢

s}
—

s
0

Hence A, (¢) i1s compact;, and it is easily verified that the o
family {A,(c) | ¢ & C} has the finite intersection property.

~ Hence there exist elements m, and m, such that

m, € N{A _(c) | ¢ &C}C oL .

Thus (1) inmpliies I, & Ai(c) C $i(c) for every ¢ € C , that
is, m_ < c £m, for evexry ¢ € C . Suppose thatl % > ¢ , that
is, C C 8_(x) . Then ¢ c Sm(x) and,'simce m, € ¢ , it follows
that m, < % .« This shows thaﬁ, m, = sup(C)‘J Similarly it
follows théﬁ m_ = inf(C) . 0 CTT e L

{3.2) Corollary: Every compact OIS is chain compléte.

Let S be a nonempty set and ¥ a topological space. Then

amap £ : S X is called relatively compact if  £(8) is 3
compact in X .

After these preparations it ig now easy to prove the follo-
wing fixed point theorem for (not necessarily continuous) rela~
tively compact increasing maps. ’

<

(2.3) Theorem: Let X be an OTF and let £ :+ X » X Dbe
relatively compacit and Increasing. Suppdée that there exists an -
element % € X svch that xS f(xo) | respe, f(xo) < XQI ‘

. - - Then £ has a least [resp., greatest | fixed point in
S+(XO) [ resp., S”(XO) 1.




Proof: Observe that Y += f(X) is a compact OTS (with‘thé 
induced oxrder, of course}, and that fY s £lY maps Y into
itself, is inc%easing, and has the property that

t.le(fY) = Fix(f) .

Let Yo = f(xo) € Y and observe that Yo = fy(yo) {resp.,
fY(yo) = ] . Hence the assertion follows by applying Theorem
(1.4) and Corcllary (3.2) to the map fY on ¥ . 0

(3.4) Coroilary: Let X ‘be.an 07S and let f ¢ X - X“be
increasing and relatively édmpaét.én order>iﬁ€erﬁdls.—§§p§ése

"t . that there exist points §,§ € X such Ehat § <9, v < f(§} ;

. s ) g
and £(¢) £ ¢ . Then £ has a least and a greatest Ffixed point

in [Y,9) .
Proof: Apply Theorem (3.3) to the OTS (v,91. O

Of course, it is easy to prove a fixed point theorem for re-
latively compact intertwined maps which corresponds to Corollary
(2.7). We leave this to the reader, but we include a resulit con-

cerning decreasing maps.

+

(2.5) Theorqg;‘Let X be an 0TS having a least or a grestes:?

element, and let £ : X - X be decreasing end relatively compaC

If either

| .- (i) x <y implies f£{x) ¥y or fly) % x,
or
. .2 ‘ o , -
(i3) £ has &t most one Fixed point,

then f  has & uvnigue fixed point.




A\

Proof: Let m € ¥ . " re 2 € X
satisfy i let = f he Y ils a compact
oTs and Y is a decreasing selfmay £. Y . Moreover,

¥ has a greatest [ resp., least] element, namel E(m)y [ resp.,
1
. o i p &

f(m) ] . Hence the assertion follows from Theorem (2.8) and

»

Corollary (3.2).

We extend now the basic fixed point theorem (Theorem (3.3))
to the case of (not necessarily continuous) condensing maps.

/

(3.6) Theorem: Let X be a bounded, complete, ordered

metric space, and let §F ¢ X + ¥ be increasing and condensing:

If there exists a point X € X such that Xo’m e { resp..

f(xo) < XO

in S+(XO) '{resp;,‘ S“(XO) ] .

Proof: Ve consider the case that %

case is treated analogously.

Let

¥oi= | % X, € A=A and Fix(f) O

hY

e o -2 0
oxdered by incluslon, and observe that every chain ¢ in ®

has an infimun (ﬁamely'-F1€)c Let é(A) ETET U {x Then

. i - ”"(. 1] N . 13 3
¢ is an increasing selfmap of 4 which satisf
Hence, by Theorem (1.4), there exists a subset
that

B = f(B) U {x ).
(Bl U L)

“his lmplies that B has the following properties:

] then £ has a least [resp., greatest ] Ffixed poin?

o
e




(W) £(B) € B
(11) B D Fix(f) N §,(x ) ;
(iid) X, € B and x, € flx)) i
N (ivf B is compact, since
o« (B) = o (F(B) U {x }) = a(£(B))
(wheré ‘a denotes the measure bf noncompactness) implies
a(B) = o ( f being condensing). The assertion folloﬁs'now by
“applying Theorem (3.3) to £IB . o .. o “
- We ieaéé—it.to the reader to formulate and prove the exten-
Vsidns of Cérollary (3.45 ahd Theofem (3.5), as well as the

corresponding result for intertwined maps, to the case.of con-

denging functions.




"

- and econvex, it is weakly closed. This implies that X := [V,¥
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4. Applications

A. An.Abstract Pixed Point Theorem .

As an eagy conseguence of Corollary (3.4) we prove the
following general fixed point theorem for increasing maps in

ordered locally convex topological vector spaces.

(4.1) ftheorem: Let E be a reflexive, locally convex, orde-

.red, tqpolégical vector space, and let vy € .E satisfy Yy = %
Su?pose that f :-[y,J] -+ B is increasing such that

(i) Yy S E(E and £ 9

(i) £OF,01) is bounded.

o

Then - £ has a least and a greatest fixed point. -

Proof: Since 'E is reflexive, every bounded set iz relative-

ly weakly compact (that is, relatively compact with respect to

the topology o(E,E')). Since the positive cone of ¥ ds closed

pe—

endowed with the induced weak topolegy, is an 07TS. Moreover,
f ¢ X >3 (by (1)) and £ is relatively compact {(by (1ij)}.
Henco the assertion foliows from Corollary {(3.4). ]

(4.2} Remark: Since (i) and the fact that £ 1is increasing
imply that £(,5)C [v,91 , condirtion (ii) is automatically

PR

satisfied if the order intervals in B  are bounded. This is

e Y 2. Ve daTr p e AT 0l m e & e d e o £ - .
easily soen to be the case if the pesitive cene of B L

o -




I
]
|

(which is the case iff therxe exists a generating family of semi-

norms Q on E such that o S I 4 implies g(x) < q(y) fos

all gq € Q , that is, iff each seninorm in @ is monotone). In

- particular, if E is an OBS, then its positive cone is normal

1A

Y

1£f there exists a positive constant vy such that o = x

implies. kil £ v liyil. , - v

~

. B. Nonlinear Two-Point Boundary Value Probleins

-

Tn this subsection we consider boundary vaiue problemé (BVP
with posgsibly discontinuous nonlinearities. For this purpose, 1
¢ be a measurabie subget of WD .énd'let £:0 x IR+ IR
Then, for éQéry function wu ¢ @ = IR , let |

Fu) (%) s= £(x,u(x))

R is sald to b

&

for all ¥ € @ . The function .f : © x 1R

“admissible if, for every u € C(%) , the function F(u) Iis

nmeasurable.

‘Example 1: Suppose that, for every & € R, the fimerion
£(.,8) : @ » R 1is measurable. Moreowver, suppose that there
exist points -» < go <g, < ... < im < « such that, for
> > H

a.2. x € & , the function £(x,.) is continwus in

SRR B AP

ol v

} and left continvous at the points &

L.

Then -
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Indeed, by replacing £ by £ - £(.,0) , we can

assume without loss ofgenerality that f£(.,0) = o .

Suppose that u & G(R) and let ¢ be the characte-

_ k
e . - =]
.. ristic function of the measweble set u ((gkml,gk} R
k= 0,.00.,m+1 , where 'Ewl i e and gm+? HE N
Then : - ' v

P(u) = F(Z uy, ) = L FuY¢ .
k Ik
k k ,
Consequently, it suffices to show that F(u) is measurable

' -1 1w .
on u ((gk.""lsgk] ) fo-‘-'_ EQ'.“ ‘09gae,mi1 .

By standard arguments one deduces the existence of a

of simple functions swuch that

eguence 3, ). )
sequence (sK’J)J e W .
Sk,j > u!(?kwl,ik] pointwise as j—+= , and such that
' -]
LAx) € (& { T x € (£
St ¢ ) € (&, ;580 for every ' x € u (&, g8 ] ),’ y
- k = 0y000,m 5, and j € W, Hence, by the continuity of
£(x,.) -om (gkwlsgk] ., 1t follows that
’ - {
Flg, .) > F u g, £
( ..\.;J) (U) on (()K’mla)k} )
ag j=® ., Therefore it remains to show that F(s) is

P

measurable, where s = & aij is a simple function. But

this follows from

F(s) = L B(aj)xA.

3

cand the presupposed measwability of f£(.,8) .. 0

s

Suppose now that p € CI(ER,(crw)) and that f:10,1]x%" ~ IR

ig admissible. Then we consider the BVP

CL, . - '
} (» e Jeu" ] o= £(x,u) in  (c,i) ,
(1) _ Voo :
: . v{on) = u{l) = o . .
Py a solution of (1) we mean a functicn u  belonging Lo




. -
ACl{o,ll = {u € leo,l} f u! absoluteiy continueus}
such that u(o) = u{(l) =0 ‘and ’
S Ipa))ut (0) 1" = £(x,ulx))
zifor a.a. x € (0,1) . A function v 1is called a subsolution of
(1) if v € AC lo,11, v(io) 0 , v(1) £ o , agd
- [pvx))vi(x) ] < f(x,v(x)) .
. for a.a., x € (0,1} . Supersolutioﬁs are defined by‘r@versgn;"
the above inequalities. -
- - Eﬁéﬁﬁlﬁggf Suppose that f(g,&) > 0o for all - -
| (x,8) €lo,1]1 x R . Then v = o is a subsolution
for (1. If, for some &O ER, f(x,go) S o for T
~a.a. %€ {e;1) , then the constant funétion v - EG
‘is a supersolution fof (.- O
nfter tﬁéﬁe preparations we prové now the folloﬁing ex;étené
theorem for the BVP (1) .
(4.2)‘2Q§2£§ﬂ:5uppose that V ;s a subsolution and Vv is &
supersolution for (1) such that v <y (pointwise). Morascver,
\ sﬁppqse that there exists a constant a2 o such that
’ £(x,8) = £(x,n) 2 ~al(E~n)
- for all x € [o0,1] and £ = min v g ﬁ < £ < max ¥ =: £ . Thel

_the BVP (1) has a least and a greatest solution in the order 1in~

terval [v,%1 (with respect to the pointwise order).

: &€
P - - 7 , - R U
Proof: Tovr every ¢ € IR, let ¥(f) = | pi{nian and obserVve
o 5 o)
that P(c) =0 , P € C{(Im) , &and P is strictly increasing.

Ll




|
I
|
|
r

Hence P possesses a strictly increasing inverse

QO o= Pml € CZKI) , where =L := P(IR) C IR,.such that

Let g(x,£) = £(x,0(8)) for (x,8) € [o0,11x I . Then (1)

is equivalent to the BVP

g g(X,V) in (O;-l) I

(2)

v(o) = v(1} = o ,

which is easily verified by means of the transformation

v 1= P(u) . Moreover, w := P(v) is a subsolution for (2),

W = P(¥) is a supersolution for (2), and w £ W .

Let n o= P(E) , f 1=P(8) , and g
f e=  max Q' (n) m’;' max W%ET > Q .
n<n < 7H £ <t < 2 P .
Then it follows that, for all x € [o,1] and h < n<E £ f

g(x,£) = g(x,n) = £(x,0(g)) -~ £{x,Q(n))
2 -a(@(5)-0(n) = - a8 (E-n) .

Thus, for every x € [o0,11 ; the function

£ > hix,5) = g(x,§) + abg

o

is increasing on [n,n ] and the BVP (2} is equivalent i

1)

v 4+ gfv = h(x,v) in f{o,1) .,

(3)

vi{o) = V(l) = 0 -

Clearly, w is a subsolution for (3) and w is a supersolution

for (3) such that w < % . Moreover, if H(v) (x) == hi{x,v(x)) for

all wE€ {o,1], then H: Clo,11~ Lm(Q,l) and H 1is increa-

© P

s sing on {w,&] (with re&pect to the natural orders in Clc,1]

and Lm(ofl))c

It is well known that the linear BVP




! » -v" 4+ afv = a in (Oll) ;
(4)

v(o) = v(1) = 0

possesses a unigue Green's function ¢ € C([o,1] » [o0,1]) with

.G 2z o such that, for every a € Lm(o,l) , the unique solution

v & ACl[o,l] of (4) is given by
viz) = [ G(x,yaly)dy , x&lo,11 .
5 ,

Using these facts, it is easily verified that the BVP (3) [ ang
hence (1) ] is equivalent to the Hammerstein integral equation

| 1
’ v = [ Glx,y)hly,viy))dy . oS xS 1,
; o R

T(v) := [ G(.,y)h{y,v(y))dy
4 o

for all v € [w,%]cClo,1] . Then

Py

T 2 iwl‘:\} ]'»)’ C{Orl‘] .1

and T is increasing and relatively compact (due to the Arzela

ot

Ascoli thecrem) but, of course, -in general not continuous. Hence
' S

the assertion follows immediately from Corollary (3.4), provide

[

we show that

oY

w < T(w and T <@ .

»
H

To verify the first inequality let U = w - T(w) , and
>

suppose that y := - max q(2) ¢ .. Observe that
: .05x<g51

‘u(o) £ o u(l) € o, and

-q" + fU =-w" 4+ cBW -~ h(.,W(.)) £ 0

for a.a. x € (o,1) , since w is a subsolution for (3). Hence

‘there exist a point Xo € (o0,1) such that u(xo) = v and a

neicghborhced I € (o,1) of SN such +hat u(x) = v/2 for all
S o _




satisfy x <y and integrate the above

and 'y . Then- S

y .. - - -
o2 [ (~u"+opu) z ~[ut(y)~u(x) ]+ wq‘"gl(wax:) '
3 .

 which shows that u' is strictly increasing on Io . Hence U

is strictly convex on IQ ; which contradicts the fact that u

attains its global maximum at x_ € I . Hence U = w - T(w) £ o .

A gimilar argument shows that T(%) <€ & . i




5. Notes and Remarks

ection 1:

A A SR AR

.. Our basic result, namely Theorem {(1.4), does not seem to
be in the literature in its given form. However it is closely
related to some earlier results by Kolodner [1] , Tartar {1,2],

and Bakhtin [11 . In fact, Kolodner [1] has observed that an

- : ) - £
J

increasing function mapping an order interval into itself has

at least one fixed point, provided each chain has a suprenun

{or each chain has an infimum) . ' o o

, _
Tartar [ 1,2 ] has shown that an increasing selfmap-of an
order interval has a leasi fixed point 1f each chain has a’ supx

murm. Lf, in addition, foxr every palx of points a,b , Lhere

exists supl{a,b} . then there exists also.a greatest fixned

" Bakhtin [1] considers a commuting family F of.increasing

maps such that x £ £(x) for all x € X and all fer . By

using transfinite induction and a hypothesis which is close O
. the assumption that every chain has a supremum, he proves the
existence of a least common Fixed point for the family F .

g

We refer to the papers by Tartar [1,2] for some applicatiol

_of his results to problems in nonlinear differential equations




Section 2:

: -

The appixc iong of Theorem (1.4) in Subsections A-~D have

been motivated by a roc>xt paper of Fuchssteiner [ 1] . This
- author deduces these fixed point theorems (as well as some
others) also from a general result for a selfmap I of an

ordered setr ¥ -such that f(x) g x for all x € X . However

I+ should be remarked that recently Brézis and Browdex

,

|
the two approaches are different.

[1] have given a general abstract principle nvolving order

(.J_

“structures, which has many applications to problems in nonlineaxr

functional analysis. We do not discuss the relation of -thei:
clear that order structures play a vather important rdle in
nonlinear functional analysis and further studies of these

aspects may lead to important insights and new results.

Subsection A s

ut not.

(o]
ol

3

1S

principle with the results of the present paper. However 1t 1€
Theorem (2.1) has been proved by Tarski in 1¢

rski [271 ). This th

1 oY
orem hazd be

]

S’.L

published by him until 1855 (%%
reprO’ﬂ‘ed in the 1948 edition of G. Birkhoff‘s book on lattice

theory, where "a proper historical reference had been omitted

L

Y . .
the -

[

by mistake". For this reason, Theorem (2.1} is often callec

"Birkhoff-Tarski theorem”.

.For applh:aricns of Tarski's theorem

-0 quasi-variational inoguars

’ {11, where Surith=

% e o, R N ) P . oy e den
lities we yefer to the survey art

o~ £ - o, — - Y S
roefarences can be found.




e

.
L

arski

showed also

-

that Fix(L)

W

is a complete lattice,

though not necessarily asublatt i ce of X . Davis Ll] proved
the fallowiﬁg éonverse to Tarski's theorem: "IZ e&ery increa=-
i.sing map in a lattice X has a fixed point, then X 1is a
éOmplete lattice.” Hence Theorem (1.4 implies the known fact
“haﬁ a lattice is complete 1ff every chain possesses a supre-

num (resp., ianfimum).

Subsection B

not the nuuercus

We do discuss genexalizations

Bﬁt should like to

{_4.

contrection ma nciple, we

C

pring

Thoorem (2,2) is contained in Fuchssteliner

that

,.Q_

.on C

C o

l.

facts about measures of noncompactness, set

Foxr

-

ceatractions,

1

-of

.

5

ooz

ole)

-
wen

twined

L

1

o

ng naps

epr

and

and also Browder [1}

condensing maps we rclierw

where

can be found (in particular,

0

£, W Y
furth

m&(lk)\’o}* ii

o
(SR

so~called

exanples

ecgentationg).

Condensing maps occuris

of differential equations

exanmple.

ion
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eot

D
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from Schauder's fixed point thedorem without any further

tion on f . If, however, £ is only continuous (and not conpact)

41

Subsection E

The rather trivial results of this subsection are new. It ,'"
should be pointed out that Condition (i) in Theorem (2.8) is,
of course, only a sufficient condition for the existence of

a fixed point.

, 3
In the special case that X is an oxder interval in some

OBS and £

s

X - X is continuous and has relatively compact

image, the existence of a fixed vnoint of f .follows, of course,
&
restric-

then the existence of a fixed point cannot be guaranteed without

further restrictions [like conditions (i) and (ii) of Theorem

(2.8) ], even if £ has the rather strong property of being
decreasing. It would be of interest to obtain better results for
decreasing maps which .could bridge the apparent gap between
Theorem k2.8) and the situation where Schauder's fixed poiht

theorem applies.

The results concerning "intertwined" maps (e.g. Corollary

(2.7)) and, in particular, decreasing maps, should be applicablé
to nonlinear integral and differential equations, namely to

situations where Schauder's fixed point theorem does not apply.

(In this connection c¢f. also Theorem (3.5) and the papers of

Stuart [1] and - Xuiper [21] ).

-
».
N -
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Section 3:
The fixed point theorems of this section are new. Some

results which are closely related to Theore@”(3.3) in the con-

Ltext of OBSs are contained in Bakhtin [1 ] . The existence of

at least one fixed point unJer the hypotheses of Theorem (3.6),
but with the stronger assumptilon that f is a strict set con-
traction (that is, there exists a constant y < 1 such that
W(£(B)) S ya(B) for all bounded'subsets B of X ) has been
ever Legge:t did not- obtain the QXlstence of least [ resp.;

greatest fixed point.

The fact that there exists a least and/or & glea+p°t flv tel

‘point can be very helpful for deducing further information, €.

uniqueness results. We do not go into details but refer the

o4
8

reader to the survey article Amann [1 1 where many resulu of

[6)]

this type for continuous maps are given. By using the above re-

sults, it is easy to extend a von51derable unount of the theoren

" given there to discontimmus maps {but, 'of course, not the topold

gical raoultO.whlch have been p;ov ed by fixed point index argu”

ments). In particular, by sing minorants and maJoxaqtb, or by

imposing conditions conzerning the asymptotic behaviour of the
maps (e.g., asymptotic linearity) it is also possible to deduc

the existence of a second fixed point in cases where already OP

. fixed point is explicitly kncwn.




AR

relatively simple settings. In particular, we consider only re-

rential eguations in unbounded domains, cf. Stuwart [ 3] ). |

- Subsection A '

>Tychonoff thborem, plOVlded £ is weakly centinucus. But

As already mentioned in the introduction, it is the purpose

of this sectlon to demonstrate the applicability of the results

of Section 3. For this purpose we have restricted ourselves to

latively compact maps. But of course, there are also applications

s

to problems involving condensing maps (e.g. in the case of diffe-

Of course, the existence of at least one fixed point under

the hypotheses of Theorem (4.1) follows frcem the Schauder-

“J-
n

fte

the advantage of Theorem (4.1) Lhdt no contlnul ty assumption
has been made. This fact facilitates its application to concrete

sxtuatlons considerably (e.g. to the study'of weak solutions of

nonl;ngar elliptic differential eGLdtJan in unbounded domalns}

Subsection B

For simplicity we have restricted ouxr considerations to

n

!
=
0]

Dirichlet boundary condit-ons, but Jt is obvious that the

nethod applies to any kind of Sturm-~Liouville boundary conditions.

. The giﬁeh examplé has been motivated by some-pépers»of
Chand%é and Fleishman [1] and Fleishuman and Mahar {11 . In these
papers the authors sfudyhtwo—point boundaxy vaiue problems with
discontinuovs nonlinearities and they give also some physical

-

motivations for their rese urch. By using an iteration scheme they




increasing functions, which implies essentially that CGreen’'s

imposing certain symmetry conditions

Iy

establish the existence of a least and a greatest solution
between a sub- and a supersolution. However, in order to prove

the convergence of the iteration scheme to a solution, they

have to single out a class of functions on which the nonlinear

operator (coxreﬁpond'ng to T in our case) is actually contin
ous. This is achieved by LestrchJng the nonllnbar operater to

!
;
§
l
function has to be increasing in its first variable. It is o~

vious that this requirement 1is rather restrictive and that onl

~

a particular .type of boundary conditions can be handled by thi

methcd. in particular, these authors are unable to treat the

_rather natural case of Di irichlet boundary conditions -without

|
| -

CQur approach which is based on the general fixed point
theorem proved in Section 3 (Theorem (3.3)) does not neecd any
hypotheses of this type and is much more flexible. In particu
lar, it is also applicable to rather general nonlinear ellipt
boundary value problems of the form

. n
Au = f(x,u) in Q@.C R ,
where A 1is a strongiy un:formly elliptic differential opere

%
of second order (e ' Au = “Au ), tocother with bﬁuniwry Cﬂ

ditions of the form

u = 0 on 0

|
]
or ]
- |
<= = g(x,u) on 32, |
9B |

. L4
where B8 is an outward polnting, nowhexre tangent, Sm-ftﬁ reg
field on 30 . In the case of the Dirichlet boundary cond L*
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or if g is linear in u , a result corresponding to Theoreém
(4.2) can be obtained by.means of Tarski's fixed point theoremn.
Indeed, in this case the above BVP can be reduced to an eqguiva-

. lent fixed point equation of the form

u = KF(u) .
in Lp(Q) ¢+ 1 < p < e, Here K 1is a positive compact lineaxr
operator on Lp(Q) , and F s an"increasing {(possibly discon-

tinuous) map on LP(Q} . Moreover, if v is a subsolution and

¥ is a supersclution for the corresponding BVP, it follows that

’

V_S'ngg) and KF(V) £ ¥ . {(For details in the case of-continuous -

maps cf. Aﬁann {1] and the bibliégraphy therein.)

In the case of nonlinear bocundary conditions; thé problem of
finding (appropfiatgfweaks sclutions to the elliptic BVP cén e
reduced to an‘equivalentifixed poiné equation u = T(u) in
C{(R) . Here T is an increasing, relatively compact map of the
form } | -

S T(W = S(F(W,G(x (),
where S : C(Q) *x C(3g) » C(RQ) is a’compact positive linear

operator, namely essentially the solution operator for the

" linear BVP
Ay = f in o |,
- ~ e ’ .a:‘l = : . -

Moreover, F corresponds to the nonlinearity f£fix,u) , € to
. -the nonlinearity ¢(x,u)., and 1 : C(3Q) = C(39) is the trace

operator. In this case (that is, in the case of nonlinear boundary

conditions), the full strength of Theorem (3.3) (or Corollary
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(3.4)} is needed, since the underlying ordered set is not a
complete lattice. (We refer’ to Amann [ 2 ] for the precise defi-
nition of S, ?F G , and =« and their properties in the conti-
nuous case. It is ﬁot oo difficult to handle the discontinuous
case by making use of the results given in that paper.)

v g

It should be remarked that general el]nptlc BVPs of the ébOVG

type can not be handled by the method used by Fleilshman and co=-

workers, since there is no naturail definition of an increasing
map in ;veral variables which can be used to prove that_the ites
tion scheme is convergent. (For a vpry special case {which is,

in fact, reduced to an oxdinary dlffuf@ﬂil&] equation} and which

}..l.
n
i3
o
(—;-
o
[l
[t
{-A-

technical, we refer to Fle shman [l )

Fjiall§ we should like to mention tnaL the fixed point theox
of this paper are also applicable to elliptic
problems in unbounded domains, as well as to para bOllQ initial

boundary value problems. For further studies of BVPs with digcon

tinuities we refer to Kuiper {11] and Stuart [2] .

General Remark

via

$oda

. Almost all the results of Sections 3 and 4 are nearly tr

if the maps are continuous. In this case the least [ resp.,
“greatest ! fixed point of { can be nhtained by the monotone

iteration scheme X f(xk) , kK € W, For this fact and many

e Ay Ty 1)
[ON N O TRFE WIRSY S DO [ .
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