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Introduction

The topic of principal interest in this treatise is the optimal solvability of linear
parabolic initial boundary value problems in strong and weak L,-settings. More
precisely, we fix any positive real number T" and set J := [0,7]. Then we consider
systems of the form

ou+Au=f on M xJ,
Bu=g ondM x J, (P)
u(-,0) =u’ on M,

where, in general, M is an oriented Riemannian manifold with (possibly empty)
boundary OM, 0; + A is a Petrowskii parabolic differential operator, B is a sys-
tem of boundary operators satisfying the Lopatinskii-Shapiro conditions, and f,
g, and u’ are given sections in vector bundles over M x J, OM x J, and M,
respectively.

These problems have already been intensely studied, in the strong setting, by
several authors, most notably by V.A. Solonnikov [62] (see also the book by O.A. La-
dyzhenskaya, V.A. Solonnikov, and N.N. Ural’ceva [45]), by M.S. Agranovich and
M.I. Vishik [1] and G. Grubb and V.A. Solonnikov [33] in the Lo-setting, and by
G. Grubb [30]. In the latter two papers even pseudo-differential boundary value
problems are considered. The results of Solonnikov in [62] and of Grubb are optimal
in the strong L,-setting.

More recently, R. Denk, M. Hieber, and J. Priiss [20], [21] established a max-
imal L,-Lg-regularity theory for (P) for differential and boundary operators with
operator-valued coeflicients using recent Fourier multiplier theorems for operator-
valued symbols. Their results extend an earlier (scalar) maximal L,-L,-regularity
result of P. Weidemaier [68], [69]. This author was the first to discover that Triebel-
Lizorkin spaces occur as trace spaces for anisotropic mixed L,-L4-Sobolev spaces.
For further optimal regularity results we refer also to D. Guidetti [34], [36].

Thus, since everything concerning optimal solvability in an L,-setting is known,
why do we come back to the study of these problems? There are two motivations
for this. First, the present work is the initial and basic step of our program to
study linear and quasilinear parabolic problems on non-smooth manifolds, that is,
on manifolds with edges, corners, conical singularities, etc. For our approach to
such problems it is of utmost importance to have complete and precise control
of the dependence of a priori estimates on all data. This information is needed
since in the presence of singularities we are led to study non-compact non-complete
manifolds with non-compact boundaries. This is in stark contrast to practical
all work mentioned above. In fact, except for V.A. Solonnikov’s early work in
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2 INTRODUCTION

the classical Sobolev space setting, in all papers known to the author it is either
assumed that M is compact, or M = R"™, or M , the interior of M, is an open subset
of R™ with a compact boundary.! In addition, to be able to deal efficiently with
quasilinear problems it is mandatory to study linear problems with low regularity
for the coefficients (A, B).

In principle, it should be possible to go through the various proofs in the lit-
erature and extract the needed information from there. However, this seems to be
more difficult than to start from scratch and derive the optimal a priori estimates
by taking care of the various dependencies. The latter we do in this work. Although
the problem is classical, we believe that there are some points of interest for experts
also.

The second, equally important, motivation comes from the desire to possess an
optimal existence theory for (P) in weak and very weak L,,-settings. This is an open
problem since the pioneering work of J.-L. Lions and E. Magenes [47] who gave a
partial solution in the Lo-setting. It is well-known that weak theories are of great
importance in the qualitative theory of (quasilinear) reaction-diffusion systems, in
problems of mathematical physics, the mathematical theory of incompressible fluids
in particular, and in control theory. Thus the second main objective of this treatise
is to provide a completion of the Lo-case as well as an extension to the L,-setting of
the Lions—Magenes theory. This aspect is explained in more detail in the following
section.

Our approach necessitates — among other things — a thorough knowledge of
anisotropic function spaces, more precisely, anisotropic Bessel potential and Besov
spaces of distributions. In the classical case, that is for scalar distributions, aniso-
tropic spaces of positive order have been extensively investigated, starting with the
fundamental contributions of S.M. Nikol’skii and his school (e.g., [51]). However,
for our purposes anisotropic Bessel potential and Besov spaces of negative order
of Banach space valued distributions, and their duality theory, are of paramount
importance. Furthermore, anisotropic trace and extension theorems on manifolds
with corners are a fundamental tool for the investigation of (P) in weak settings.
Except for a single extension theorem due to P. Grisvard [27] for anisotropic Sobolev
spaces we could not find an in-depth study of these questions. For this reason we
develop in this work the necessary machinery in order to get a firm basis for our
study of parabolic initial boundary value problems in weak settings.

This treatise consists of two parts. Part 1, the part which is presented here, is
concerned with the theory of anisotropic vector-valued Bessel potential and Besov
spaces. It also contains Fourier multiplier estimates for certain classes of symbols
which are basic for establishing maximal regularity results for constant coefficient
boundary value problems to be given in Part 2.

In Part 1 we restrict ourselves to spaces on model domains, namely on the
full space, on closed half-spaces, and on corners. The extension of our results to
manifolds is postponed to Part 2.

LSolonnikov allows uniformly regular unbounded boundaries.
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Although most of the theory of anisotropic spaces of distributions on all of R?
developed here does not cause surprises, it is hoped that even specialists of this
subject will find something of interest.

Once again I had the great fortune to get help from Pavol Quittner and Gieri
Simonett who read preliminary drafts of this paper. Besides of pointing out nu-
merous lapses and inconsistencies they also contributed valuable hints which led
to significant improvements of earlier versions. Their painstaking, unselfish, and
invaluable work is greatly appreciated.

Some notation and conventions We use standard notation for function spaces. In
particular, D, S, Oy, D/, and 8’ are the locally convex topological vector spaces
(LCS for short) of test functions, rapidly decreasing smooth functions, slowly in-
creasing smooth functions, distributions, and tempered distributions, respectively,
and are given their usual topology. Furthermore, BC, BUC, and Cj are the Ba-
nach spaces of bounded and continuous, bounded and uniformly continuous, and
continuous functions vanishing at infinity, respectively. The norm in these spaces
is denoted by |||/~ if no confusion seems likely, and ||- ||, stands for the usual norm
in L,, 1<p<oo. In general, these spaces consist of functions defined on suit-
able domains X and have values in a complex Banach space E so that we usually
write §(X, E) if § denotes any one of the preceding spaces. In the important scalar
case E = C we abbreviate (X, C) to §(X).

The norm in an abstract Banach space is generally denoted by |-|. However,
|-| stands also for the Euclidean norm in R™ (or C™) and for the usual modulus of
multi-indices. The reader will have no difficulty with the correct interpretation in
a given frame.

As usual, we denote by ¢, or ¢, 3,...), constants which may depend on oth-
erwise specified quantities «, (... and, generally, have different values in different
formulas, but are always independent of the free variables in a given setting. If M is
a nonempty subset of some vector space, then M=M \{0}. Moreover, = means:
equal except for equivalent norms.

Given LCSs E and F, we write L(E, F) for the space of continuous linear
maps from E into F' and endow it with the topology of uniform convergence on
bounded sets. Thus it is a Banach space if F and F' are Banach spaces. We set
L(E)=L(E,E), and Lis(E, F) is the subset of all isomorphisms in L(E, F), the
set of toplinear isomorphisms, and Laut(E) = Lis(F, E). We denote continuous

d
injection by <— , and F — F means that E is continuously and densely injected
in F. For further (standard) notation we refer to Section 5 of the Introduction in
H. Amann [4].

We make free use of interpolation theory and refer to Section 1.2 in [4] for a sum-
mary of the basic definitions, results, and notation. In particular, given sg, s; € R,
we always set sg 1= (1 — 6)sg + 6s; for 0 < § < 1. Furthermore, [, -]y, (,-)o,q, and
(- -)8’00 denote the complex, the real (for 1 < ¢ < 00), and the continuous interpo-
lation functor of exponent 6 € (0, 1), respectively. Thus, if Fy and F; are Banach

spaces with F; A Ey, then (Eo, E1)j . is the closure of Ey in (Ep, E1)p.c0- Since

6,00



4 INTRODUCTION

in this situation F; is always dense in (Eg, E1)g,q for 1 < ¢ < oo, for the sake of a
unified presentation we put (-, ~)g}q = (-,")g,q for 1 < ¢ < o0.

Finally, the reader is reminded that a retraction from an LCS E onto an LCS F
is a continuous linear map from F onto F' possessing a continuous right inverse,
a coretraction.

Parabolic equations

In this introductory section we explain the results for problem (P) which will
be proved in detail and much greater generality in Part 2. To avoid technical
complications we restrict ourselves to second order scalar equations on compact
manifolds and omit all lower order terms.

To be precise: we assume that M is an oriented n-dimensional compact Rie-

mannian C? manifold. We write

[:=0M, Q:=M=M\T
and set?

Q:=0xJ, =T xJ,
so that @ =M x J and ¥ =T x .J. We denote by m the outward pointing unit
normal vector field on I Furthermore, grad = grad,, and div = divy,; are the
gradient and the divergence operator on M. We also use n to denote the outward
pointing unit normal vector field on X, that is, in this case we simply write n for
(n,0) without fearing confusion. Thus 0, is either the normal derivative on T" or
on X, according to the context.

We assume (using obvious identifications)
ae ) (@, (0, oo)) = C(J, ct (M, (0, oo)))
and put
A= —div(agrad-).
Then we consider the parabolic Dirichlet problem
ou+Au=f onQ,
u=g¢g onx, (0.1)
u(-,0) =u’ on Q,
where 0 := 0, and also the Neumann problem
ou+Au=f onQ,
adpu=g¢g on X, (0.2)
u(-,0) =u" on Q.
For a more precise and concise presentation we denote by 7 = s = |5 the trace
operator for ¥, that is ‘the restriction from @ to ¥’, and by v, = |;=, the one from @
to Q; = Q x {7} for 7 € J, whenever they exist. We also identify Qg with . Lastly,
we fix x € {0,1} and put
B := xa0n + (1 — x)7.

2Readers not comfortable with manifolds may consider, at a first perusal, the case where 2 is
a bounded C? domain in R™.
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ot

Then
ou+Au=f onQ,
Bu=g on}, (0.3)
you =" on Q,

coincides with (0.1) if xy =0, and it is the Neumann problem (0.2) if y =1. Of
course, there are no boundary conditions if I' = (). In this case all explicit or
implicit references to I' have to be neglected in what follows.

For 1 < p < oo and r € {0, 1,2} we denote by Wp”(X) the usual Sobolev spaces
on X for X € {M,T}, so that %0()"() = L,(X). We identify L,(X) and L,(X) in
the obvious way. (Note I' =T".) Consequently, W (X) = W, (X). If r € (0,2)\{1},
then W, (X) = W, (X) are the Slobodeckii (or fractional order Sobolev) spaces
which can be characterized (locally, for example) by the standard Slobodeckii norm,

or by
Wy (X) = (Lp(X), WH(X))

Let E be a Banach space. Then
We(LE) =W (J,E), 0<s<l,

denotes the standard Sobolev space if s = 0 or 1, respectively Slobodeckii space if
0 < s <1, of E-valued functions on J with the usual Sobolev—Slobodeckii norm.
Equivalently,

/2" 0<s<?2, s#l.

W3 (J,E) = (Lp(J, E), W, (J,E)) 0<s<l.

s,p’
Now we can define anisotropic Sobolev—Slobodeckii spaces on X x J by
WX x ) = Ly (LW (0) AW/2(J, LX),  0<s<2,
so that Wp(O’O/Q) (X x J) = L,(X x J). We also denote by I := ¥ U 2 the parabolic
boundary of ) and set
aXWp(Zl)(H) = W;)(%xfl/p)(171/2)(g) X Wp2f2/p(Q).

It follows that

P = (0+ A, (B,7)) € LWV (Q), Lyp(Q) x 0, W >V (1)),

However, P is not surjective, in general. In fact, suppose p > 3/(2 — x). Denote
by 7oz the restriction of 79 to X. Hence gy is the trace operator from ¥ onto
' =T x {0}. Tt is well-defined; in fact,

Yos; € L(Wé(%xfl/p)(l,l/?)(g)’ V[/p2*X*3/P(I‘))'
Similarly, let By = B(-,0) be the restriction of B to the initial hypersurface 2. Then
2-2 2—x—3
By € L(W22/P(Q), W2 X=3/P(T)).
Furthermore,

Bovo = Yo=B. (0.4)
Thus, if Pu= (f, (g, uo)), we see that the compatibility condition

B('a O)UO = g|t:0
has to be satisfied.
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Motivated by this we define a closed linear subspace of BXVV,,@’I)(H) by
AW (1m), 1<p<3/(2-x),

OCeW I(I1) == {
o {(g,u%) € WV () ; Bou® = voxg }, p>3/(2-x).
Now we can formulate the following unique solvability result for (0.3) in the
‘strong’ setting.

0.1 Theorem Suppose p#3/(2—x) if T # 0. Then problem (0.3) possesses
a unique solution u € Wp(Q’l)(Q), a strong Wp(2’1) solution, iff
(f:(9.u%) € Lyp(Q) x aW, A (1)
More precisely,
P € Lis(W*(Q), Ly(Q) x OSW, D (IT))
and it depends analytically on a € C19) (@, (0, oo))

Note that this is an optimal result, a maximal regularity theorem. It can be
derived, for example, from the more general results of V.A. Solonnikov (who consid-
ers the ‘singular value’ p = 3/(2 — x) also) or of R. Denk, M. Hieber, and J. Priiss,
referred to in the Introduction. If M is smooth, that is a C°° manifold, then it also

follows from G. Grubb’s results in [30]. A complete proof covering general parabolic
systems on not necessarily compact manifolds will be given in Part 2.

For p > 3/(2 — x) we can, due to (0.4), define the trace operator vog from Q
onto the corner manifold I' =T x {0} by
Y08 1= (YoxB + Boyo)/2 € LIWZD(Q), W2 X=3/7(T)).
Then, if
(f:(9,u%)) € Ly(Q) x OFW,HD(10),
u is a strong va(z,m solution of (0.3) iff
@+ Au=f onQ,
Bu=g onX,
you =u" on €,
Yygu=h onl ifp>3/(2—yx),

(0.5)

where h := Byu" = yg9xg. The reason for writing (0.3) in this form will become clear
below.

Now we address ourselves to the investigation of the weak solvability of (0.3).
For this we need some preparation.

Let N be a compact Riemannian C? manifold, which may have corners, as is
the case for @ or X. Denoting its volume measure by dV = dVy we write

(u,v) Ny :z/ uv dV, u,v: N —C,
N

whenever this integral exists. In particular,
(N Ly(N)x Lp(N) = C
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is a separating continuous bilinear form for 1/p+1/p’ =1, the L,(N) duality
pairing, by which we identify, as usual, the dual L,(N)" of L,(N) with L, (N).

We write D(N) for the space of all test functions on N, that is, of all C? functions
having compact support in N, endowed with the usual inductive limit topology.

o

Then D'(N), the space of distributions on N, is the dual of D(N). We identify
u € L1(N) with the ‘regular’ distribution

o

o (wo)n,  peDN).
Then, given any Banach space F(N) of functions on N satisfying
D(N) % F(N) < Ly(N),
it follows F'(N)' — D'(N), that is, F(N)' is, via the L,(N) duality pairing, natu-
rally identified with a space of distributions on N. In particular, we obtain
DIN) <L F(N) <L Ly(N) = Ly(N)— F(NY <% D/(N).

The first injection on the right-hand side is also dense if F'(N) is reflexive.

Now suppose N € {X,X x J} and set {s} :=s if N =X, and {s} := (s,5/2)
otherwise. Denote by Vi/;,{s}(N) the closure of D(N) in M{S}(N). Then

WA (N) = W (V) S L(N),  0<s<2 (0.6)
Hence, setting
—{s 2 {s /
W, N = (W (V) (0.7)

with respect to the L,(NN) duality pairing (-, -) v,
Ly(N) S Wtk vy S D(V),  0<s<2,
since W;,{S}(N ) is reflexive. Thus VVP_{S}(N ) is a space of distributions on N.
We write ﬁ/'/pf{s}(]\/') for the dual of W;,{,s}(N) with respect to (-,-)n. Then
(0.6) and reflexivity imply
LyN) S W H V), 0<s<2
However, /VIZD_{S}(N) is not a space of distributions on N, in general, since D(N) is

not dense in W,*} (V) if s is big enough.

Suppose FE is a reflexive Banach space, E’ is its dual, and (-, -)p : E' x E — C
the duality pairing. Then

(v, 4 sm = /(v(t),u(t))Edt
J
defines a continuous bilinear form
<-, '>J,E : Lp/<J7 E/) X Lp<J, E) — (C
by which we identify L, (J, E)" with L,/ (J, E’). From this,
s d
VV;,/ (J, Lp/(X)) — Lp/ (J, Lp/ (X)),
and reflexivity we infer that

/

W, * (1 Ly(X)) == (W (/. Ly (X)), 0<s<1,
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is well-defined with respect to (-, -); g and

Ly(J, Ly(X)) <5 W (J, Ly(X)),  0<s<l.

Using these facts it will be shown that the negative order anisotropic Sobolev—
Slobodeckii space W};(s/ s/ 2)(X x J), defined in (0.7), can also be characterized by

WGP ) = Ly (LW, (0)) + W, 2 (1 Ly(X)),  0<s<2

Negative order anisotropic Sobolev spaces occur naturally in the study of dis-
tributional solutions of

ou+Au=f onQ. (0.8)
Indeed, a distributional L, solution of (0.8) is a function u € L,(Q) satisfying
(m0+Ap,u) = (v, fla, ¢ €DQ).
If u € L,(Q), then we see
fi=0u+ Aue€ W, (J, Ly(M)) + Ly (J, W, 2(M)).
This suggests that VVP_(Q’D(Q) might be the largest space for which (0.8) has a

distributional L, (Q) solution. Indeed, this is true if I' = (). However, in the presence
of a nonempty boundary the situation is more complicated.

To find distributional solutions for problem (0.3) if T # () we have to use a space
of test functions, ®(Q), larger than D(Q), since the latter space ‘does not see the
boundary’. The correct choice turns out to be

Q) :={peC®(Q); Bp=0, yrp=0},
where
CED(Q) == C(J,0*(M)) N C*(J,C(M)).
This follows from Green’s formula. Indeed, set
C:=—(1—x)adn + x7-
Then, given u € C2Y(Q) and ¢ € ®(Q),

T
/ / w(=0 + A)p Vi dt
0 M

T T
= / / w0+ A)udVy dt + / / CoBu dVr dt + / Yo you dVag,
0o Jum o Jr M
that is, using dVy = dVy ® dt and dVx = dVr ® dt,
(=0+ A)p,u), = (@, (0 + Au), + (Co, Bu)s + (y00, You)u- (0.9)
Thus, if u € I/Vp(Q’l)(Q) is a solution of (0.3), it follows
(F0+A)p,u), = (0, flo+ Co.9)s + (op.u’)a, ¢ e®@Q),  (0.10)

where (f, (g,u°)) = Pu.

We denote by @;%’”(Q) the closure of ®(Q) in VVP(,2’1)(Q). Then

D(Q) — 2V(Q) % Ly(Q)
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implies, due to reflexivity,
Ly(@Q) <% 2,2 (Q) = (05 (Q))’
with respect to (-, )g. However, D(Q) is not dense in ‘1)1(3’1)(@). Consequently,
@;(2’1)(62) is not a space of distributions on Q.
Put
(o, Pu) = (p, (0 + Au), + (Co, Bu)s + (Yo, You)ur-

Then, as we shall see,

o5V (Q) x WED(Q) = €, (¢,u) — (o, Pu) (0.11)
is a separating continuous bilinear form, and (0.9) implies
(. Pu) = (0 + D)y, (o) €BEVQ) x WEV(Q.  (012)

Suppose p # 3/(2 — x). It is a consequence of Theorem 0.1 that -9+ A is a
toplinear isomorphism from @5’1)(62) onto L, (Q). Hence we infer from (0.12) that
(0.11) has a unique continuous bilinear extension

,77(Q) X Ly(Q) = €, () = (0. Pu),
where
P Ly(Q) — 2,*D(Q)

is the unique continuous extension of P. This proves essentially the following gen-

~

eral theorem where we use = to denote toplinear isomorphisms.

0.2 Theorem Suppose p#3/(2—x) if T'# 0. Given any F € @;(271)(62),
there exists a unique u € L,(Q), an ultra-weak solution of (0.3), satisfying

<(_a + A)¢7U>Q = <F7 <p>Q7 p e (I)(Q)
Moreover, u is the unique strong W},@’l) solution if F' is given by

<F7 50>Q = <907f>Q + <Cgp,g>2 + <’YO<P7UO>M7 wE @(Q)7

with (f, (g,u%)) € Ly(Q) x 6;01/1/;9(2’1)(1_[). More precisely: there exist P and iy such
that the following diagram is commuting:>

P
WE(Q) ——— Ly(Q) x WM (1)
[d Ix [d
P
L,(Q) o, *Y(Q)

and Pu = F. Furthermore, P depends analytically on a € C10) (@, (0, oo))

2 d
3E — F means that j : E — F is injective with dense image.
J
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It remains to understand the structure of @, (2’1)(Q) and to represent its ele-
ments by distributions on @ and its parabolic boundary II, if possible.

For this we set
8X%_(2’1)(H) = W;)—(X-H/p)(l,l/?)(z) = W;,_Q/p(Q)
and
O\ W, > ), p=>3/(2—x),
O W, V(D) x W2 X3/2(T), p <3/(2—x).

It will be a consequence of our general extension results for manifolds with corners
that the following isomorphism theorem is true.

0.3 Theorem Suppose p#3/(2—x) if T # 0. Then
—(2.1 ~ - (2,1 cepr—(2,1
@, D(Q) = W, BV (Q) x oW, 2D ().

oL W2 (I) o= {

Using this fact we can now represent ultra-weak solutions in terms of distribu-
tions on @ and II.

0.4 Theorem
(i) Suppose p #3/(2—x) if T # 0. Fix
T € Lis(®, *(Q), W, B(Q) x oW, (11)) (0.13)

and set P_o :=TP. Then
P_y € Lis(Ly(Q), W, ®D(Q) x acW,- 1 (11))

p

and it depends analytically on a € C(19) (@, (0, oo)) Furthermore, there exists
Jx such that the diagram

|

[ARI(®) Ly(Q) x 05w, > (11)

[d Ix {d (0.14)
P-

W, @D(Q) x agew, (1)

1

18 commuting.
(ii) The dual T' of T belongs to
cis(WPY(Q) x o5e wiP ), oM (Q)).
(ii) If p > 3/(2 — x) provided T # 0, then problem (0.3) has for each
(£.9.u) € W BD(Q) x W CHPMLAE (5) s W2/P() - (0.15)
a unique ultra-weak L, solution, namely u = P:;(f,g,uo). It is the unique
u € Ly(Q) satisfying
(=04 A)p,u) = (f,E)q + (g ms + (W, ()a } (0.16)
p=T'(&n,0)

for all (&,m,¢) € D(Q) x D(X) x D(2). Furthermore, it solves (0 + A)u = f
on Q in the distributional sense.
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(iv) Suppose T'# 0 and p < 3/(2 — x). Then there exists for each
—(2,1 —(x+1/p)(1,1/2 -2 2-x—3 :
W, 2D(Q) x w, Oct1/p)(11/2) (33) W, /P(Q) x W2x /P(1)

a unique ultra-weak L, solution of (0.3), namely u = P=(f,g,ul, h). It is the
unique u € L,(Q) satisfying

(0 +Ap,u), = (£,€q + (g,m)x + (W, (o + (h,I)r }

o="T'(&n,¢,9)

forall (§,m,¢,0) € D(Q) x D(X) x D(Q) x D(T'). It solves (0 + A)u= f onQ
in the sense of distributions.

(0.18)

PRrROOF. (i) follows from Theorems 0.2 and 0.3.
As for (ii): it suffices to observe that

(5w V)’ = a7, WA

with respect to the duality pairing (-, -)s; + (-, -)o if p > 3/(2 — x), and with respect
to (-, )+ (-, )a+ (-, )r otherwise. Assertions (iii) and (iv) are now evident
except for the respective last statement. For this we refer to Part 2. O

Clearly, the ‘extended initial boundary value problem’ P_s depends on the
choice of 7. Thus the representation of the ultra-weak L, solution of (0.3) depends
on 7 also, as is indicated by (0.16) and (0.18). However, for each choice of 7
the ‘generalized’ parabolic boundary value problem P_, = 7P establishes an iso-
morphism between L,(Q) and V[/;(z’l)(Q) X 8;0%7(2’1)(1_[). Thus the ultra-weak
solvability properties of problem (0.3) are independent of the particular choice of T .
We fix now — once and for all — an isomorphism 7. (The proof of Theorem 0.3
will provide us with rather detailed information on the structure of 7.)

Suppose either I' = () or p > 3/(2 — x). Then, given (f, g, u") satisfying (0.15),
we call u ultra-weak L, solution of (0.3) iff u € L,(Q) and (0.16) is satisfied. If
I'# 0 and p < 3/(2— x), then, given (f,g,u’, h) satisfying (0.17), u is said to be
an ultra-weak L, solution of

O+ Au=f onQ,
Bu=g onl,
0 (0.19)
You =1u" on €2,
Yosu=h onT,
iff u e Ly(Q) and (0.18) is satisfied. Clearly, (0.3) and (0.19) are formal notation
only.

For the reader’s convenience we restate Theorem 0.4 using this intuitive formu-
lation.
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0.5 Theorem
(i) Suppose either I' =0 or p > 3/(2—x). Then
@+ Au=f onQ,
Bu=g onZ, (0.20)

you=u" on Q

has a unique ultra-weak solution u € L,(Q) iff

(F,9,u%) € Wy D(Q) x W OHDILAR() W72/ (@),

(i) Suppose T' # 0 and p < 3/(2 — x). Then

O+ Au=f onQ,
Bu=g onX,
you=1u" on Q,

Yosu=h onT
has an ultra-weak solution u € L,(Q) iff (f,g,u’, h) belongs to
—(2,1 —(x+1/p)(1,1/2 —2 2-x—3
W, ( )(Q) x W, (x+1/p)(1,1/ )(E) x W, /p(Q) x W2X /p(r).

(iii) The mapping (f,g,u’) — u, respectively (f,g,u’, h) — u, is a toplinear iso-
morphism onto L,(Q) depending analytically on a € c(1.9) (@, (0, oo))

It should be observed that the regularity assumptions for the data are natural
in comparison with the ones of Theorem 0.1: the order of all spaces containing w,
f, g, and u® is 2 less than the one of the corresponding spaces of the strong version.

Now, specializing to p = 2, we can compare our results with those of J.-L. Lions
and E. Magenes [47]. As usual, we write H*® for W3.

First we consider the Dirichlet problem. Theorem 0.5 guarantees that
0+ Au=f onQ,
yu=g on, (0.21)
you=u’ on Q
possesses a unique ultra-weak solution u € Lo (Q) iff
(f.9,u%) € H-PD(Q) x H-O/2V9(2) x H(9),

In Volume 2 of [47] the authors assume that 2 is a bounded domain in R™ with a

smooth boundary and a € D(Q). They put
DYQ):={veLxQ); O+ A€ Ly(Q) }

equipped with the graph norm of the maximal restriction of 9 + A € [,(D’ (Q))
to Ly(Q). They also introduce a certain space Z~(31)(Q) satisfying

“ENQ) 2 HT®Y(Q).

(1]

Ly(Q) <
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Then they prove (cf. Remark?® 1V.12.3 in [47]) that, given
(f.9,u%) € 2CV(Q) x H-W/2VI(L) x HH(Q),

there exists a unique solution v € D°(Q) such that the differential equation on @Q
is satisfied in the distributional sense and the boundary conditions in the sense
of continuous extensions of the standard trace operators. Furthermore, the map
(f,9,u’) — u is a toplinear isomorphism onto D°(Q). In addition, u is the strong
H®1 solution if the data satisfy the conditions of Theorem 0.5 with p = 2.

Note that J.-L. Lions and E. Magenes provide a maximal regularity theorem
in this case. However, by our results we can solve the Dirichlet problem for a
larger class of distributions f on @ than can be done by the Lions—Magenes theory.
Moreover, in concrete situations the space DY(Q) is not easy to handle.

Next we consider the Neumann problem. Theorem 0.5 guarantees that
O+ Au=f onQ,
adpu=g¢g onXx,
0 (0.22)
You =wu" on £,
Yopu=h onT
possesses a unique ultra-weak solution u € Lo () iff
(f,g,u’, h) € H-ZD(Q) x H=G/23/M(5) x HH(Q) x H™/2(T). (0.23)
J.-L. Lions and E. Magenes introduce intermediate spaces

Ly(D) A, H*3/25*3/4(E) R H*(3/273/4)(E)
£

and

Ly(@) S E7NQ) o H'(®)

and establish the following result (see Theorem IV.12.1 in [47]):
There exists a continuous linear map
2mCD(Q) x HPE7YA(D) x 271(Q) = DY(Q),  (f9:u") > u
such that
O+ Au=f inD(Q)
and the boundary and initial conditions
alpu =g on X, you=u’ on Q
are satisfied in the sense of continuous linear extension. Thus u is a generalized
solution of the Neumann problem

O+ Au=f ongQ,
adpu=g on X,

you =u’ on Q.

However, as observed in [47], this is not a mazimal regularity result: the data
(f,9,u°) belong to a space smaller than the ‘optimal space’ and (f,g,u’) — u is

4Roman numbers indicate chapters.
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not an isomorphism. In fact, not even uniqueness of the generalized solution is
guaranteed.

The fact that in the case of the Neumann problem there may occur a space of
distributions on I' has already been observed (if p = 2) by C. Baiocchi [15] (also see
Section IV.12.3 in [47]). This author established an isomorphism theorem for the
Neumann problem, however between D°(Q) and

Ly(Q) x H-G/23/0(2) x H=Y(Q) x H™Y2(I).
This is a much weaker result than (0.22), (0.23).
We repeat that the Lions—Magenes theory as well as C. Baiocchi’s result are
restricted to p = 2, whereas 1 < p < oo in our work.

In H. Amann [3] we introduced the concept of very weak L, solutions for
1 <p<oo. More precisely, a very weak L, solution of (0.3) is a function
u € C(J,L,y(Q)) satisfying

<(78 + A)¢7U>Q = <SO7 f>Q =+ <Cg079>7' + <’YO§0’UO>Q7 ZBS .
Theorem 11.4 of [3] guarantees that, given o > 0, problem (0.3) has for each
(f,g,u’) € C° (J, W;;BQ,(Q)) x C° (J, W;,_X_l/p(I‘)) x Ly(82), (0.24)
where
— !/
W;jé(Q) ={veWi(Q); Bu=0},
a unique very weak solution satisfying, in addition,
u e C(J, Ly(Q) NCH(J, W, 5()).

Note that W;g(Q) is not a space of distributions on . Hence there is some
ambiguity in (0.24): namely, g could be omitted since it can be identified with an
element of V[/p_g(Q) (cf. Section 11 in [3]). In fact, in Theorem 10 of H. Amann [6]
it is shown that

W3 () =2 W,72(Q) x W, X 1/7(T).

p

To compare very weak and ultra-weak solutions we recall
m/p—(erl/p)(Ll/?)(z) — Lp(J7 [/Vp—X—l/P(F)) + W;)—(x-&-l/p)ﬂ (J7 L,,(l")).

Consequently,

co(J, W;)—x—l/p(r‘)) SN W;g—(x-%l/p)(l,l/?)(g).
This implies that every very weak solution is an ultra-weak one. The main difference
between very weak and ultra-weak solutions is the fact that the latter possess a dis-
tributional time derivative belonging to W;,’l (J, Lp(Q)), whereas such information
is not available for very weak solutions.

The concept of ultra-weak solutions, introduced in the present work, is a vast
generalization of the one of very weak solutions. In addition to allowing for a more
general class of data, ultra-weak solutions lead to maximal regularity results, that
is, isomorphism theorems. It is not possible to derive such a theorem within the
theory of very weak solutions.

The idea of very weak solutions has been adapted to the Navier—Stokes equa-
tions in H. Amann [7] (also see [8], [9]). Subsequently, this work has been extended
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by a number of authors and applied to derive new regularity results (see, for ex-
ample, G.P. Galdi, C.G. Simader, and H. Sohr [26], R. Farwig, G.P. Galdi, and
H. Sohr [24], R. Farwig, H. Kozono, and H. Sohr [25], K. Schumacher [58]). Follow-
ing the lines of H. Amann [7], [8], [9], the theory of ultra-weak solutions can also
be extended to the Navier—Stokes equations. This will be done elsewhere.

One of the most important fields of research in which parabolic equations with
distributional data on the boundary are unalterable is control theory. Starting
with the early work of J.-L. Lions and his school (cf. Chapter VI in [47]), most
of the mathematical control theory for systems governed by partial differential
equations has been developed in the Lo framework (cf., for example, I. Lasiecka
and R. Triggiani [46] for more recent developments). This setting imposes severe
restrictions on the possible choice of controls on the boundary. For instance, it
does not allow the use of point controls on 3. The situation is very different with
the L, theory, since for p sufficiently close to 1 we can consider arbitrary Radon
measures as boundary data. In fact, using the theory of very weak solutions, this has
already been shown in H. Amann [6] and, in the nonlinear framework, in H. Amann
and P. Quittner [12]. For further applications of the theory of very weak solutions
to control theory we refer to H. Amann and P. Quittner [13], [14]. Using the theory
of ultra-weak solutions we can improve on those results as is indicated now.

For a separable locally compact space X we denote by M (X) the Banach space
of all bounded complex-valued Radon measures on X. Then M(X) = Cy(X)’ with
respect to the identification

<u,<p>co(><):/xsodu, (p, 1) € Co(X) x M(X).

Using this characterization and Sobolev embedding theorems for anisotropic spaces
we find

M(Q) x M(Q) — W, ED(Q) x W,72/7(Q), p < (n+2)/n,
and

M(E) x M(T) = W CFVPDER () s WEXT3/P(T), p < (n+2)/(n+1-x).

The following theorem is an easy consequence of these embeddings and Theo-
rem 0.5.

0.6 Theorem Suppose I' # 0 and p < (n+2)/(n+1—x). Then, given
(1,15 p,0) € M(Q) X M(X) x M(€) x M(T),
there exists a unique ultra-weak solution v € L,(Q) of

O+ Au=p on Q,
Bu=v onX%,
You=p onQ,
You =0 on I
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In other words, there exists a unique u € L,(Q) satisfying

«_3+AM%@Q=:é£@rhéndu+[¥ﬂp+zﬁwa

e =T'(&n,¢9)
for all (§,1,¢,9) € D(Q) x D(X) x D(Q) x D(I"). The map (u,v,p,c) — u is lin-
ear and continuous and depends analytically on a € C(+0) (@, (0, oo))

Note that p < 2 unless x =1 and n < 2.
As an extreme case we see, for example, that the Dirichlet problem
O+ Au=0 onQ,
yu =0 on %,
You =0 on €,
YoBU = 0z, on I

has a unique ultra-weak L, solution if p < (n+2)/(n+1) and 04, is the Dirac
measure with support {zg}.

Theorems 0.1 and 0.2 concern the border cases s = 2 and s = 0, respectively,
of the solution space %5(1’1/2)(62). It is to be expected that, by interpolation, one
can derive maximal regularity theorems for (0.3) in intermediate spaces, that is,
for 0 < s < 2. By and large this is correct. We do not give details here but refer
the reader to Part 2. The difficulty resides in concrete characterizations of the
pertinent interpolation spaces. For this we have to have a thorough understanding
of interpolation properties of anisotropic Besov and Bessel potential spaces in the
presence of boundary conditions, questions which are addressed in Part 1 of this
treatise.



CHAPTER 1

Multiplier estimates

This chapter is of preparatory nature. We discuss the concept of anisotropic
dilations and derive multiplier estimates for parameter-dependent symbols. These
concepts are of basic importance for the whole treatise.

Although we are mostly interested in the case of ‘parabolic weight vectors’ we
consider the general anisotropic case. This can be done without additional com-
plications. In fact, the general setting and consequent use of appropriate notation
clarify many results which would appear mysterious otherwise. In addition, general
anisotropic function spaces are of interest in their own right.

1.1 Anisotropic dilations

A systematic study of anisotropic Banach spaces, more specifically, anisotropic
Bessel potential and Besov spaces, is based on weighted dilations of the underlying
space R? and corresponding linear representations on suitable spaces of distribu-
tions. In this section we introduce these dilations and fix the setting for the whole
part.

Let G be the multiplicative group (I@*, -yand V an LCS. A linear representation
of G on V is a map

G- LYV), t—T;
satisfying
T.T; = Tsta Ty = 1y.
It follows that {T; ; t € G } is a commutative subgroup of Laut(V), and
(T,) ' =T =Ty

for t € G. The representation is strongly continuous if (¢t — Tiv) € C(G, V') holds
forveV.

Throughout this part

deN and w = (W1,...,wq) € N is a fived weight vector.

We denote by

w the least common multiple of {w1,...,wq}

17
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and set!
Wl i=wi + - Fws, a-w:i=atw o+ oty
for a = (at,...,a?) € N4,
We define an action of G on R? by
tex = (12t ... t¥igd), t>0, zeR% (1.1.1)
the (anisotropic) dilation with weight w.

Let E be a Banach space. The (anisotropic) dilation with weight w is defined
on S(R?, E) by

oru(z) = u(t - x), ueSMRYLE), zeR? (1.1.2)
for t > 0. It is extended to S’(R%, E) by setting
ou(p) = til“"u(al/tga), ueS'RYLE), ¢eSRY. (1.1.3)

The most important examples in our context are the trivial weight vector
(1,1,...,1) and the 2m-parabolic weight vector (1,...,1,2m), where m € N. In
the first case, (1.1.1) and (1.1.2) are the standard (isotropic) dilations on R<.

Now we collect the basic properties of o; in a proposition and leave its simple
proof to the reader.

1.1.1. Proposition The map t — oy is a strongly continuous linear representa-
tion of (R*,-) on S(RY, E) and on S'(RY, E). It restricts from S'(R%, E) to a rep-
resentation on Lq(}Rd7 E) for 1 < q < oo, which is strongly continuous for ¢ < oo,
and possesses the following properties:

(i) ooy =t*“a,00% o€ N4,
(i) flovullg =719 Jully, ue Ly(RYE), 1<q< oo
(ili) Fooy =t"1wlgy 0 F, t>0.

1.2 Homogeneity

In the investigation of linear elliptic and parabolic boundary value problems,
Fourier analysis plays a predominant role. In this connection one has to study model
problems on R% and half-spaces thereof which lead to Fourier multiplier operators
being (anisotropically) homogeneous and parameter-dependent. In this section we
introduce spaces of parameter-dependent functions which are homogeneous with
respect to dilations with weight w and collect some elementary properties. The
systematic use of parameter-dependent homogeneous functions will greatly sim-
plify our calculations and allow the control of the parameter-dependence in various
estimates, which is crucial for our approach.

Throughout this part we also assume?

H is a closed cone in C containing RT = R +40.

IThe simultaneous use of boldface and standard letters for vectors in N is inconsistent, of
course. However, it is justified by the particular role of the weight vector and allows us to denote
by w the least common multiple of the components of w.
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We put
Z:=R?xH,
denote its general point by ¢ = (£,1) with € = (¢1,...,¢%) € R? and 5 € H, and
write
an :==a(,n): R — E, n € H,
for a: Z— E. We also extend the anisotropic dilation with weight w to Z by
setting

teC:=(t<& tn), t>0, ¢(=(&n) e’ (1.2.1)
and
ora(C€) = a(t- () (1.2.2)
fora: Z— FE.
Suppose z € C. A map a: Z— Eis positively z-homogeneous (with re-
spect to the action (1.2.1)) if

owa = t*a, t > 0. (1.2.3)

Let S be a nonempty set. We define an equivalence relation ~ on (0,00)° by
setting

fr~gfor fig: S— (0,00) <= (1/k)f < g < kf for some k > 1.
In particular,
-l ~ - Ml

means that ||-||; and ||-||2 are equivalent norms on a given vector space.

In the following lemma we present some elementary properties of positively
homogeneous maps. They are basic for the computations to follow below.
1.2.1 Lemma Suppose a € C’(z,E) and a, € CK((R)",E) for some k € N

and all n € I:I, and a is positively z-homogeneous. Also suppose M € 0(2, (O,oo))
is positively 1-homogeneous. Then
(i) ot0ga =1""*“d¢a, |a| <k, t>0.
(i) Set
Gi= (/M) ¢, CeZ
Then M((fy) =1 and

92a(C) = M2 (0)d¢a(Gy), e Z (1.2.4)
(i) [M = 1] is compact.
(iv) If Ne 0(2, (O,oo)) is positively 1-homogeneous, then N ~ M. Furthermore,
(1/k)M <N < kM
implies M =1] C [x~! <N < &].

2More generally, H can be a closed cone in CV containing Rt := (RT +40) x {0} for some
N > 2. However, such generality is not needed in this work.
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PROOF. (i) follows by differentiating (1.2.3) and using Proposition 1.1.1(i).
(ii) Since ¢ = M(() « ¢, the positive 1-homogeneity implies M(¢) = M(Q)M(fy)-
Hence M((y;) = 1. Furthermore, by (i),

¢ a(C) = om(¢)0¢ alGa) = M(O)*""“6¢ a(w)

for ¢ € Z.
(i) is a consequence of the closedness of H and the continuity of M. Moreover,
setting
K= M| oo, in=1) V IN]| oo m=1)
assertion (iv) is obvious. O

For k € N and z € C we write
HE(Z, E)

for the vector space of all a € C(ZE) which are positively z-homogeneous and
satisfy
ay € CH(RY),E),  n#0,
and
lall3 == max [19¢al]oc, =y < 00

for some positively 1-homogeneous M € C(z, (0, oo))

Clearly, |||}, is a norm on H%(Z, E), and this space is independent of M in the
sense that another choice of M leads to an equivalent norm. In fact, if N belongs
to C(Z, (0, oo)) and is positively 1-homogeneous, then N ~ M and, consequently,

I1M3es ~ 111152
by Lemma 1.2.1(iv).
It is easily verified that H¥(Z, E) is a Banach space (with any one of its
norms |||}, ). Hence
HZ(Z,EB):= (| HE(Z, E)
keN
is a Fréchet space.

1.3 Quasi-norms

Of particular importance are positively 1-homogeneous scalar functions a such
that
a, € C*(RY),  neH, (1.3.1)

being positive, and satisfying a triangle inequality. We call them quasi-norms.3

More precisely, we denote by

Q:=9(2)

30ur terminology is different from the one used by other authors, for example by H. Trie-
bel [66], and should not be confused with their concepts. In particular, a quasi-norm (in our sense)
is not isotropically homogeneous, in general.



1.3 QUASI-NORMS 21

the set of all Q € H$®(Z) satisfying (1.3.1) and

0<QE+0)<QQ)+QE), ¢ (el (1.3.2)
Each Q € Q is continuously extended over Z by setting Q(0) := 0.
1.3.1 Remarks and examples (a) Suppose Q € Q and set

dQ(f,g) = QO(E - f)’ £ €€ R?.
Then dq is a translation-invariant metric on R. It follows from Lemma 1.2.1(iv)
that dq ~ dm for M € Q.
(b) Put

d . 1/2w
N = (DI + ) 7, ez,

j=1
Then N € Q and it is called natural w-quasi-norm. Note that dy is the Euclidean
distance on R? iff w = 1.

PRrOOF. It is obvious that N is smooth, positive, and positively 1-homogeneous
and (1.3.2) holds. For 1 < j <d,

ON(C) = (1/w;) &7 /=D & IN() 7
From this and w/w; € N we infer by induction
[OEN(Q)] < ce(k,w),  al <k, (€[N=1],

where k € N (cf. Lemma 1.4.2 below). Hence ||N||7N_Lk < c(k,w). O
1

(c) Suppose w is clustered in the following sense: there are positive integers
£, dy,...,dp, vq,...,Vp satisfying
W= (V1,..., V1,V .oy Vayeo gy, V).
— —— ——

dq do de

Set
d:=(dy,...,d¢), v:i=(vi,...,).

Then (d,v) is a reduced weight system associated with w, and

R =R x ... x R%

is the corresponding d-splitting of R?. We then denote the general point of R¢ by
r = (x1,...,27) with z; € R% and write ¢ = (£1,...,&) for the dual variable.* We
also set

vi=w

so that v is the least common multiple of vq,...,v,. Finally, A, defined by

¢ 1/2v
MO = (SlaP ), ez,
i=1

belongs to Q and is called (d, v)-quasi-norm.

4The reader is advised to observe carefully the distinction between &£, the i-th component
of £ € R?, and the d;-tuple &;. Here and in similar situations we do not notationally distinguish
between a d;-tuple and a vector in R% .
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Note that it is not assumed that the v; are pair-wise disjoint. Thus w is always
clustered by the trivial clustering (or non-reduced weight system)

¢t=d, d=(1,...,1), v=(w1,...,wq).
In this case A = N.
(d) Let w be the 2m-parabolic weight vector for some m € N. Then
d:=(d-11), v:=(1,2m)

form the (canonical) reduced 2m-parabolic weight system. We then write
x = (2, 1) for the general point of the corresponding d-splitting, and £ = (¢, 7) for
the dual variable. Then

A©Q) = (1™ + 72 + ™)V, ¢eZ.

If m = 1, then the metric dy is equivalent to the usual parabolic metric

> \/If’—g’l2+|7—?l (1.3.3)

on R%,
(e) Put E(0) := 0 and let E(C) be, for ¢ € Z, the smallest t > 0 satisfying
e P =P = L
Then E belongs to 9 and is called Euclidean w-quasi-norm.

PROOF. From s«t«( = (st)+( we see that E is positively 1-homogeneous. To
prove (1.3.2) we follow J. Johnsen and W. Sickel [41]. We have to show that, given

¢, ¢ el

d
\ﬁj (s n+n'l?
2w; + 2
; (E(Q+E())™  (E(Q)+E()

Note that a(t«(,t+ (') = a(¢, (') for ¢ > 0. Hence we can assume E(¢) + E(¢') =

Thus E(¢) <1 implies

d

N

2w] 2 — 2
220 TEQ? T EQ
and, consequently,

[C+T< IS+ ¢ < B(Q) +E(C) =1,
that is, a(¢,¢') <1
By differentiating the identity
2
1=[(1/E(¢)) - ¢

and solving for 0;E(¢) we obtain

d
OE(C) = B2 (D wi (€2 /E(Q>) + In* /E(0)?)
k=1

for 1 < j < d. Hence
|0;E(Q)] < |€7] <1 for E(C) =
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From these formulas we see by induction that E, € C*°(R?) for n € H and
HagE”oo,[E:l] < C(k)v |a| <k, kel
This proves the claim. O

1.4 Products and inverses

The present section is essentially an exercise on calculus. Its purpose is to
establish simple sufficient criteria for some functions to belong to H* for suitable
k € N and z € C. For later applications it is important to control the dependence
of norm estimates on all involved quantities.

Throughout the remainder of this part
e w is clustered;

e (d,v) is a reduced weight system for it.

In accordance with the d-splitting of R? we write

a:(alv"-;a[) GNdl X oo XNdZ :Nd
and note - w = |ag| vy + - - + || vp. We also put
A
Il = [1les ¢ 1= G-

In the following, we denote by
HX(Z,E)
the closed linear subspace of HZ°(Z, E) consisting of all a therein such that a, be-
longs to C*° (R4, E) for n # 0. Note that Q(Z) C H(Z).

1.4.1 Lemma

(i) Let By x Ey — E be a multiplication of Banach spaces.’

extension satisfies
lecl(ZaEl) X leCz(ZaEQ) _>Hk (ZvE)

z1+22

Then its point-wise

fork e N and z1, 29 € C. It is a multiplication as well.
(ii) Forne H, B
(a—ay) € E(H?O(Z,E), OM(]Rd, E))

PROOF. (i) Since
ot(ab) = (ora)osb, (a,b) € Hfl (Z,Ey) x 'Hljz (Z,E»)

the statement follows from Leibniz’ rule.
(ii) By Lemma 1.2.1(ii)
0%ay ()] < AR e, EE€RY, neH,
for || < k and k € N. Now the claim is obvious. O

5A multiplication & x £ — &£ of LCSs is a continuous bilinear map.
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Now we consider invertible elements of H%. For this we first establish a semi-
explicit formula for derivatives of inverses

1.4.2 Lemma Suppose m € N, X is open in R?, and a € C™ (X, Laut(E)).
Set

at(z) = a(x)™!, z e X.
Then a=' € C™(X, Laut(E)) and, given a € N% with |a| = m,
0%t = Z Z epa Y (0% a)a™t - (0% a)a, (1.4.1)
j=1B€Bj o

where
Bjo = {B=1{f1.....0}; BeN’, |B|>0, ) Bi=a}, el
PROOF. Recall that Laut(E) is open in £(F) and
inv : Laut(E) — Laut(E), b b ?
is smooth with
(9inv(b))e = —b"'eb™ ", be Laut(E), ce L(E). (1.4.2)
(For this and further results on calculus in Banach spaces used below we refer to

H. Amann and J. Escher [11, Chapter VII].) Hence a=! € C™ (X, Laut(E)).

From (1.4.2) and the chain rule we infer
djat = —a Y (9ja)a™t, 1<j<d
Now the claim follows by induction. O

1.4.3 Lemma Suppose a € H°(Z,L(E)) with a(¢*) € Laut(E) for { € Z.
Then
a~t € HZ,(Z,L(E)), lla  a < e(llall, la™ oo 1a=115 k)
for ke N.

PROOF. (1) Setting & =0 and M = A in Lemma 1.2.1(ii) we find that a(¢)
belongs to Laut(E) for ¢ € Z. Hence a(¢)a™!(¢) = 1g implies

1g = Jt(aafl) = (crta)atafl = t*acya” "

and, similarly, 15 = oy(a"'a) = t?o4(a"1)a. Thus t*oa~! = a~!, that is, a=! is

positively (—z)-homogeneous.
(2) Suppose « € N¢ satisfies 0 < |a] ==m < k. Let j € {l,...,m} and let
{B1,...,B;} belong to Bj o. Then we infer from Lemma 1.2.1(ii) and (1)

(0 a)a™(¢) = A7 ()d a(¢F)a 1 (7). (1.4.3)
Consequently, due to 5, + -+ §; = o,
la= (0% a)at - (0% a)a™ ()] < eA™Rez>w((), s Z (1.4.4)

where
¢ = c(llally, la™ oo, a=1))-
Now the claim follows from Lemma 1.4.2. O
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1.5 Resolvent estimates for symbols
In this section we assume

e F is a finite-dimensional Banach space.

We denote for s € R by
PBs(Z,L(F))
the set of all a € HZ°(Z, L(F)) which are ‘positive’ in the sense that
o(a(¢*)) C [Rez > 0], el
Note
Q(Z) C P1(2). (1.5.1)

Since [A = 1] is compact, a is continuous on 2, and the spectrum is upper semi
continuous, there exists x > 1 such that

o(a(¢*)) € Rez>1/k), |a(¢H)| <k,  (eZ (1.5.2)
Given any k > 1, we write
Ps (k) = Ps(Z, L(F); &)
for the set of all a € B, (Z, L(F)) satisfying (1.5.2). Hence

Bs (2, L£(F)) = | B (2, £(F); ).
Set .
©(k) := arccos(1/k?). (1.5.3)
From o (a(¢*)) C [|2] < |a(¢*)]] it follows
o(a(¢*)) € [Rez > 1/k]N[|2| <K CSpwy,  CEZ (1.5.4)
for a € Ps(x), where®
S, = [|argz| < o] U {0}, 0<p<m.
Hence a(¢) = A®(¢)a(¢*) implies

o(a(C)) CSpimyy  CEZ, a€Ps(k). (1.5.5)

The next lemma establishes a resolvent estimate which is uniform with respect

to a € Py(k).
1.5.1 Lemma Suppose k > 1. Then

-1 c(k)
‘()\—I-CL(C)) ‘ < ma

foralls € R and a € ‘ﬁs(Z,E(F);ff).

C € 27 A€ ST(‘*LP(2I€)7

6We denote by argz € (—m, ] the principle value of z € ¢.
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PROOF. By introducing a basis, we can suppose that F' = C so that £(F) is
identified with CV*V,

(1) Assume b € CV*N is invertible. Let b® be the algebraic adjoint of b, de-
fined by
b* = det(b)b~* (1.5.6)

and given explicitly by
bt = [(—1)7*Bi] " e CVXN, (1.5.7)

where Bi is the determinant of the matrix obtained by deleting the j*" row and
the k' column of b.
Assume p > 1 and o(b) C [|z| > 1/p]. Then |detb| > p~® and (1.5.6), (1.5.7)
imply
671 < e(N)p™ [N

(2) From (1.5.4) we infer

dist (J(a(C ), [larg(2)| > ¢(2)] U {0}) > rsin(p(2k) — (k) =: ol
Since [|arg(z)| > ¢(2r)] U{0} = =S;_(2x) it follows
U(/\ + a(c*)) C [|Z| 2 l/p(‘%)]v A€ STK‘—(p(QK)? C € 2

If |A| > 2k > 2]a(¢*)]|, then

-1 - o /3L AT 2

|(/\+a(C )) |§|/\‘ 1’(14'@(4 )//\) |SWSH-
From this and step (1) we deduce
|(>‘ + a(C*))71| < lc_|(_ﬁ|))\|a A€ STI'—LP(QH)? C € za

for a € P,(x). Now the assertion follows from

a(O) = A—® AT® a(C)N! __°

[(A+a(0) | @AM +alC) ] < T

since AfS(C)S.,T_S(,(QH) - Sﬂ_w(2n). [l

Now we extend this resolvent estimate by including derivatives.

1.5.2 Proposition Suppose kK > 1. Then

aw 1] - C(l€7 ||a||7‘l’;7k)
max |A77 &)o ()\—Fan) 1(€)| < W

lal<k
for €€RY, neH, AN€S; oo, KEN, s€eR, and a € R, (Z,L(F);r). If
s >0, then
c(r, [|allpr, k)

, €H, AESi_uim,
[ + A ! #(2%)

Aa»waa A —1 o <
ma A5 9° (A -+ ag) o <

for k € N and a € B, (Z,L(F); k).
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PRrOOF. Let 3 € N satisfy 0 < |3| < k. Then we deduce from Lemma 1.5.1
and (1.2.4)

0/(A+a)(A+a)7|

(0a)(A +a) "]

(RSB [ale
- As + |

for A € S;_,(26) and a € P (k). Now the assertion follows from Lemma 1.4.2 (cf.

step (2) of the proof of Lemma 1.4.3), the last estimate being implied by A*(¢) > |n|®
for s > 0. O

< c(K)A7 lallpge

Suppose a € P (Z7 E(F)) for some s € R. Denote by #(a) the spectral angle
of a, that is, the minimum of all ¢ € [0,7/2) such that ¢ (a(¢)) C Sy for all ¢ € Z.
It follows from (1.5.2) and (1.5.5) that 1(a) is well-defined. Fix any ¢ € (v(a), 7/2)
and suppose h : §¢ — C is holomorphic. Let I be any positively oriented contour
contained in éw and containing o (a(¢*)) for all ¢ € Z in its interior. It follows
also from (1.5.2) (see (1.5.4)) that such a I" exists. Denote by 7T" the image of T’
under the dilation (z — 72) : C — C for 7 € C. Then A*(Q)T contains o(a(¢)) in

its interior and is contained in S,. Hence

1
h(alQ) =
(00 = 5w AS(O)T
is well-defined for ¢ € Z. It follows from Cauchy’s theorem that h(a(¢)) is inde-
pendent of the particular contour I' and angle . In fact, the well-known Dunford
calculus (cf. [22, Section VII.1]) shows that h(a(¢)) depends only on the values of h

on o(a(()).

By means of Proposition 1.5.2 we now establish estimates for derivatives of h(a).
They are of importance in connection with Fourier multipliers as will be apparent
in the following chapters.

h(A) (A —a(¢)) " dx

1.5.3 Lemma Suppose s € R and k > 1. Set
Qo = [Rez > 1/26] N [|2] < 2k] C Sy (25)-
Then

glli>]<€|/\a'”(€)3?h(a(€))l <k, lallrge, k) [Blloons)0as  CEZ, kEN,

for all a € B (Z, L(F); /1) and each holomorphic function h on §¢(3N).

PROOF. Let h : éw(gn) — C be holomorphic. Denote by I' the positively ori-
ented boundary of 2s,. Then

2rih(al0) = [ BVO=al0) Tar= [ gl (utal0)
As ()T —As(QOT
for ¢ € 2, where
g: C\Sr_yi3e) = C, = h(—p)
is holomorphic, —A*({)I' € C\S;_ (35 for ¢ € Z, and 191loo,—as () = [|Alloo,as ()T
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Fix (o € Z. There exists a neighborhood U of (jy in Z such that a(fa(U)) is
contained in the interior of —A®({y)I". Thus, by Cauchy’s theorem,

M@ =h@O) =g [ glpra©) e cev
Consequently,
RNDO =57 [ | oWE (ural©) (U

for o € N?. Since this holds, in particular, for ¢ = ¢y and (; is arbitrary in Z we find

O =57 [ o (et al0) o2

T 2m
Now Proposition 1.5.2 implies

A ()aeh(a)(C)] < ¢ /

|dlu’|
g M

¢) + [ul

<e / 19(A°(0)2)] 1d21/12] < esup |B(A*(C)2)]
-T zel

for || <k and ¢ € Z, where ¢ depends on , llall+¢x, and k only. O

Now we specialize to particularly important cases, namely power functions and
exponentials. Recall that log z = log |z| + ¢ arg z and

ho(A) = A\ =e*log? A e,
is the principal value of the logarithm and the power function, respectively. Since
h. is holomorphic,
a®:=hy(a): Z— L(F)
is well-defined for a € B, (Z, L(F)). Furthermore,
a =1p, a''=a, a2 =a"a>, 21,29 € C,
by the Dunford calculus. Note (a,)* = (a*), =: a;, for n € H.
1.5.4 Proposition Suppose s >0 and k > 1. Then

max A5 0%az|loc < ek, lally, k) (Inf* /26)7 = eltm =122
lal<k :

fora € ‘,BS(Z,L'(F),K), n e |:|, and Rez <0.
PROOF. Since
‘hz(A)‘ < ‘)\|Rez €|Imz\<p(2m)’ = é@(mﬂ)’
the assertion follows from Lemma 1.5.3. O

1.5.5 Remark Suppose a € B, (Z,,C(F); K) for some s > 0 and k > 1. Fix any
¥ € (¢(a),7/2). Then an easy modification of the proof of Lemmas 1.5.1 and 1.5.3

shows that the term el ™ #1¢(2%) in the estimate of Proposition 1.5.4 can be replaced
by el ™ #1¥_ In this case ¢ depends also on v (a) and 1/(1# — 1/1((1)). O
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Next we turn to exponentials. For ¢ € R we denote by g; : C — C the entire
function A — e~ **. Then

e ' = gi(a) : Z— L(F)
is well-defined for a € B, (Z, £L(F)). Furthermore, the Dunford-calculus shows that

{e7t(©) ; t € R} is a continuous subgroup of L(F). Tt is well-known (eg., Sec-
tion 12 in H. Amann [2]) that ¢ — e~**(©) is the unique solution in £(F) of

t+a(Qu=0onR, u(0)=1p,
for ¢ € Z.
1.5.6 Proposition Suppose s >0 and k > 1. Then

. —t —t|n|®/2
ma A5 071 oo < e, s ) e 1

fort>0, ne I:I, k€N, andaE%S(Z,E(F)7/<;).

PROOF. Due to |e™*| = e7*Re? this is immediate from Lemma 1.5.3. O

1.6 Multiplier spaces

We denote by
MR E) = Mg, (R, E)
the set of all a € C4T((R?)", E) satisfying

lallad = mase 470"l < .

It is a Banach space with the norm ||-|| a1-

In later chapters we shall show that the elements of M(R?, E) are Fourier
multipliers for various function spaces. This will explain the choice of d 4 ¢ for the
order of smoothness. Moreover, the importance of the following simple technical
lemma will then be obvious.

1.6.1 Lemma

(i) Let Ey x Es — E be a multiplication of Banach spaces. Then its point-wise
extension satisfies

M(R?, E1) x M(R?, E3) — M(R%, E)
and it is a multiplication.
(ii) Assume k € N and a € C(z,E) satisfies a, € C*((RY)", E) forn € H. Then
[AT 0% (o1 an)llco = (A7 0%y |0
forn € H and lo] < k.
(iii) Suppose Rez > 0. Then
(a = opa,) € E('H‘ﬁ;é(z, E),M(]Rd, E))
and
lopmanllae < Inl= " flallpae, e,
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PROOF. (i) follows from Leibniz’ rule.
(ii) Note
oy Al =T AL, sER. (1.6.1)
Thus, due to Proposition 1.1.1(i),
A0 (o1 an) = n|* AT 0, (0%ay)
= 0"y (119 AT*)0"a)
= o)y (A< 0%ay).
Now the assertion follows from Proposition 1.1.1(ii).
(iii) By (1.2.4),
0% ay(€)] < A7 0(Q) [lallygare < |0l T AT (C) Jall o

for a € H  and n € H. Thus (ii) implies the statement. O



CHAPTER 2

Anisotropic Banach scales

It turns out that many properties of anisotropic Banach spaces can be obtained
by Fourier multiplier theorems, irrespective of the underlying concrete realization.
For this reason we now introduce a class of M-admissible Banach spaces by re-
quiring that they are Banach spaces of tempered distributions on which Fourier
multiplier operators with (scalar) symbols in M(R?) act continuously.

2.1 Admissible Banach spaces

Let Fy x Ey — Ej be a multiplication of Banach spaces. For m € S8'(R¢, E;)

we put
dom(m(D)) = {u € S'(R%, Ey) ; mu € S'(RY, Ey) }
and
m(D)u := F'mFu = F~1(mu),
denoting by F the Fourier transform.! Then m(D) is a linear map from its domain
in S’'(R%, Ey) into S'(R%, Ey), a Fourier multiplier operator with symbol m.
Note that
S(RY, E») € Oy (R%, Eo) € dom(m(D)).

Furthermore, m € Oy (R%, Ey) implies
m(D) € L(S(R?, Ey),S(RY, Ey)) N L(S'(RY, Ey), S'(RY, Ey)). (2.1.1)
Now we fix a Banach space E and set
S=8p:=SRLE), §=8;:=8R%E).

We write §, or §g, for § (Rd, E) if the latter is a Banach space of tempered E-valued
distributions on R? containing S.

We say § is an (M-)admissible Banach space (of distributions), provided
i sLgls,
ii m(D)u € § and
(i) m(D) (2.1.2)
lm(D)ullg < ellml|a [lullz
for (m,u) € M(R?) x S.

d
Since S is dense in &', condition (i) is equivalent to S — § — §.

ISee Section 1I1.4.1 in H. Amann [4] and [10] for notation and facts from the theory of
vector-valued distributions of which we make free use.

31
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If § is M-admissible, then there exists a unique extension in £(F) of the linear
map m(D) : § — §, which shows § C dom(m(D)).

The following simple observation is of fundamental importance for what follows.
Here F', Fy, Fy, and Fy are finite-dimensional Banach spaces.

2.1.1 Proposition Let §g be admissible. Then §rpgr is also admissible and
MR L(FLF)) = LF e, Seer), m— m(D)
is linear and continuous. Furthermore, the map
M(RY, L(Fy, Fy)) x M(RY L(Fy, Fy)) — L(Feer.SEer,),  (a,b) — (ab)(D)
is a multiplication. In particular,
MR L(F)) = L(Fper), m— m(D) (2.1.3)
is a continuous algebra homomorphism.

PROOF. (1) Suppose F; = C for i =0, 1,2 so that E ® F; is canonically iden-
tified with E by identifying e ® 1 with e for e € E. Suppose my,ms € M(R?) and
u € S. Then? (€)F*m7 and (£)*mym,1 belong to Lo, (R?, E) for each k € N. Con-
sequently, miu, mamit € O = O (R4, E). Hence mq(D)u = F1(mi2) € Oy
and mgf(ml(D)u) =momiu € Of. This implies

ma(D)my (D)u = F~ (maF (my(D)u)) = F~ ' (mam, )
= (mgml)(D)ﬂ S 01\/[
for u € S. Since my, my € M(R?) it follows my (D)u € § and ma(D)(my(D)u) € §
for u € S. Now we obtain

ma(D)my(D)u = (mamq)(D)u, u €y,
by density and continuity. Since it is obvious from (2.1.2) that
M®Y) = L(F), m —m(D)
is linear and continuous, the assertions follow in this case.

(2) By introducing a basis in F; we can assume F; = CMi. Consequently,
L(F;, F;) = CNi*Ni and Frer, is canonically identified with §g7 the N;-fold prod-
uct of §. Now the statement follows by applying the result of step (1) component-
wise in the obvious way and by taking Lemma 1.6.1(i) into consideration. O

2.1.2 Corollary Let g be admissible and Rez > 0. Then

(a — (opan)(D)) € LI(HN(Z,L(F1, F)), LB Eor, SEor)) (2.1.4)
and
(@1 an) (D)@ eor, soer) < clnl™ " lallyare,  neH.
PRrOOF. This follows from Lemma 1.6.1(iii) and Proposition 2.1.1. O

“Recall (§) = (1+ [¢[%)1/2.
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The next lemma explains, to some extent, why we consider smooth homoge-
neous functions although derivatives of order at most d + 1 are needed in connec-
tion with Fourier multiplier operators. Recall m™(¢) = m(¢)~! for £ € R? and
m: RY — Laut(F).

2.1.3 Lemma Let § be admissible. Suppose

m € Oy (R, Laut(F))  and m™' € M(R, L(F)).
Denote by M the §Frgr-realization of m(D). Then M is closed and densely defined
in §per, 0€ p(M), and M~ =m~1(D).

PROOF. Since m~! € M(R?%, L(F)) implies m™! € Lo (R%, L(F)) it follows
from m € Oy (R%, L(F)) and Lemma 1.4.2 that m~* € Op (R, L(F)). Hence,
by (2.1.1),

m(D) € Laut(Spgr) N Laut(Shep), m(D)™' =m™ (D). (2.1.5)
From this we see that M is well-defined and closed, and, since
m(D)uESC&'E@,F, UGSE@;F,

it is densely defined. From (2.1.5) we also infer that M is bijective. Proposition 2.1.1
implies

m~Y(D) € L(Frar)-
Now the statement is clear. (|

The next lemma shows that, starting with one admissible Banach space §, we
can construct a wide variety of admissible spaces related to §. This will be exploited
in Section 2.3 below.

2.1.4 Lemma
(i) Let § be admissible. Suppose F1 satisfies (2.1.2)(i) and a € Oy (RY). If
G,(D) € £IS(S, 31),

then §1 is admissible.

(i1) Let (§o,S1) be a densely injected Banach couple such that §o and §1 are ad-
missible. Suppose 0 < 0 <1 and

(o €{l o ()83 1<g< 00}
Then o := (Fo,T1)e is admissible.
PrOOF. (i) Note am € Li joc(R%) for m € M(R?). Also
a(D) € Laut(S) N Laut(S’).
Hence
a(D)m(D)u = (am)(D)u = m(D)a(D)u, u€esS,
and, consequently,
m(D)v = a(D)m(D)a(D) v, ves.
By the M-admissibility of §,
Im(D)ollg, < lla(D)]le,s0) IM(D)lees) lla(D)olls < c lvlls,

for v € S. Hence §; satisfies (2.1.2)(ii).
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(ii) Since
d d
S — Sl — gea
condition (2.1.2)(i) holds for Fy. By interpolation we obtain also the validity of
condition (2.1.2)(ii). O

2.1.5 Corollary Suppose m € Opr(R?) and 1/m € M(R?). Let § be admis-

sible and denote by M the -realization of m(D). Then® D(M) 4 § and D(M) is
M-admissible.

PROOF. From Lemma 2.1.3 we infer M € Lis(D(M),§). Hence we obtain the
claim from step (i) of the preceding proof. O

2.2 Parameter-dependence and resolvent estimates

We now introduce parameter-dependent admissible Banach spaces and consider
Fourier multiplier operators in such spaces. In particular, we derive resolvent es-
timates and semigroup representation theorems in such spaces. For the reader’s
convenience we begin by recalling some simple general facts.

Let X and ) be LCSs and suppose ¢ € L£(X,Y). Then the image space pX
is the image of X in )} under ¢ endowed with the unique locally convex Hausdorff
topology for which @, defined by the commutativity of the diagram

¥
X

pX CY

/@j (2.2.1)
)

ker(p

is a toplinear isomorphism. Of course, the non labeled arrow represents the canon-
ical projection.

2.2.1 Remarks (a) X is an LCS such that o X — Y and ¢ is a continuous
surjection onto pX. If P is a generating family of seminorms for X, then, setting

ply):=inf{p(x); € " (¥)}, yEpX,

the family {p; p € P} generates the topology of pX. If X = (X, ||-]|) is a Banach
space, then X is one also with the ‘quotient norm’

y = lyllex = inf{ 2] ; 2 € o™ (y) }.
In particular, if ¢ is injective, then
Iyllox =l ylla, v epX,

and ¢ is an isometric isomorphism from X" onto pX.

Proor. This is a consequence of the closedness of ker(y) and standard prop-
erties of quotient spaces. O

3Recall that D(M) is the domain of M endowed with its graph norm.
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(b) Let Xy and Z be LCSs such that Aj < X and y J, Z. Writing pXj
for (p 0 1)X) it follows
pXy — pX — Z.
If 7 has dense image (resp. the images of ¢ and j are dense), then the first (resp.
second) injection is dense.

PROOF. The first assertion is obvious. The second one follows from (2.2.1) and
the continuity of the canonical projection. O

(c) If X is a reflexive or a separable Banach space, then X is also reflexive
or separable, respectively.

PROOF. Quotients of Banach spaces modulo closed linear subspaces possess
these properties. O

FoerRandnElllweput
p; =tVoy, t>0.

Let a, € C(Z) and u € S'(R%, E') be such that a,(D)u is well-defined in S'(R?, E).
Then we infer from Proposition 1.1.1(iii)

2L © an(D)u = 1= a1y F - (ay )
= [p|7 el F oy, (ag) = || F (0, a0 )op Fuo (2.2.2)
= [n]™" F = (0g)an) Forigu = (015a) (D)p] 1
for all such u € §'(R%, E).
Assume § = §g is admissible and F is finite-dimensional. Put & := §ggr and,
for n € H,
Gy = p) & ={u€ Spgp; P, u € Fear}

endowed with the norm*

U= ”uHQSw,n = ||P¥/Wu||®'
It follows from Remarks 2.2.1 that &, ,, is a Banach space satisfying

d d
Seper = G4y = Sper,

and plvnl is an isometric isomorphism from & onto &, , with (PVm)*l = pY/InI'
2.2.2 Lemma Suppose a € C’(Z,E(F)) is such that either
() ay € On (R, L(F))

or

(ﬁ) Ojp|Qn € M(Rd,ﬁ(F))
forn € H. In case (o) denote by Dy, the domain of the &-realization of (o), a,)(D)
and by D., , the one of the &, , -realization of a,(D), endowed with the graph norm.

4The reason for considering y-dependent norms will become clear in Section 4.14 below when
we study parameter-dependent Besov spaces.
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If (B) holds, then put D, := & and D, , := &, . Then the diagram of continuous
linear maps

d (O\W\an)(D)
(15 -— D7I

Pin| l: Pin| l: Pin| l =
d an(D)

Gy n ~— D,y

vsn
is commuting, the vertical arrows representing isometric isomorphisms.

Proor. This follows easily from Proposition 2.1.1, (2.2.2), and the preceding
remarks. (]

2.2.3 Proposition
(i) Suppose oy, a, € M(R?, L(F)) forn e H. Then ap(D) € L(B,,,) and
llan(D)lzce.,..) = l(@man) (D)) < cll(oman)llm
forn e H.
(ii) If Rez >0, then
(a = ay(D)) € L(HELNZ, L(F)), L(&.,))

and

lan(D)llece., ) < clnl= 7|

a”Hd:re
forne H.

PROOF. Assertion (i) is immediate by Proposition 2.1.1, the preceding lemma,
and the isometry of p?m.
(ii) is a consequence of (i) and Lemma 1.6.1(iii). O
Now we can prove the main results of this section. For this we assume
s>0 and a€ P, NHZ(Z,L(F)).
Then a,, € Op (RY, L(F)) for n e H by Lemma 1.4.1(ii). Hence a, (D) belongs to
L(Spgr) N L(SEer) and, consequently,
A

v, the &, -realization of a,(D),

is well-defined. For a Banach space X we denote by H_(X) the set of all negative
generators of exponentially decaying analytic semigroups on X.

2.2.4 Theorem Suppose s > 0. Then Sy_,2x) C p(—A, ;) and
A, € HoNBIP(®,,).

More precisely, assume k > 1. Then
(nl” + D T+ Ay ) o, + €T N(AL0) Moo, < ek llallygare)

fort,y €R, nE€H, X\€ESy_piam), and a € By(Z, L(F); k) NHE(Z, L(F)).
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PRrOOF. (1) Denote by B, the &-realization of o,a, (D). It is a consequence of
Proposition 1.5.2 and Lemmas 1.6.1(ii) and 2.1.3 that A + B,, is closed and densely
defined in &, has zero in its resolvent set, satisfies (A + B,) ™! = (A + oy,a,) "H(D),
and

(Il + DT+ By) ™M) < ek, llallyare)
for A € Sy_,(2r) and n € H. As in part (1) of the proof of Lemma 1.4.3 we find
A+ opay) ™t = oy +ay)
Now Sr_(2x) C p(—A,,) and A, , € H(B, ;) as well as the asserted estimates for

(A+ A, )"t follow from Lemma 2.2.2.

(2) The second part of the claim follows similarly from Proposition 1.5.4 and
the last part of Proposition 2.1.1. O

7

2.2.5 Remark Assume s >0, x> 1, and a € B, (Z,L(F); ) NH(Z, L(F)).
Let 1(a) be the spectral angle of a. Then it follows from Remark 1.5.5 that ¥ (A, ;)
the spectral angle of A, ,, is bounded above by 1 (a) for n € H and v € R. O

5

The next theorem shows, in particular, that the semigroup generated by —A- ,,
is the Fourier multiplier semigroup with symbol e~ . It also gives an explicit
bound exhibiting the n-dependence.

2.2.6 Theorem Suppose s >0, v € R, and k > 1. Then

et A0 othnl®/2s

28, < (ks [lallyare)

and

et = (e~*)(D)
fort>0, ne H, and a € Bs(Z,L(F),r) NH(Z,L(F)).
PRrROOF. (1) Proposition 1.5.6 and Lemma 1.6.1(ii) imply
o™ la < ek, llallygare)e™ 12t >0,

for n € H.

N (2) Fixn e H. Denote by by ', the negatively oriented boundary of S;_ . (2y)-
ince

U(—A%n) C (C\Sﬂp,gp@,{)
by Theorem 2.2.4, semigroup theory implies

1 1

—tA At —1 At —1

Y = A = — D

e 27 o eV A+ A, )T dA 57 /FDQ e (A +ay) (D) dA
1

=— M\ +ay) "t dN(D) = e7"(D)
211 T
for ¢ > 0. Indeed, the next to the last equality follows from the last part of Propo-
sition 2.1.1, and the last one from Cauchy’s theorem. Taking into account (1) and
Proposition 2.2.3(i), the assertions follow. d
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2.3 Fractional power scales

Starting with an admissible Banach space § we now introduce the (two-sided)
fractional power scale generated by § and

J = Al(D)

in the sense of H. Amann [4, Section V.1]. In addition, we also consider parameter-
dependent versions. As will be shown in the next chapters, our abstract approach
unifies and simplifies the general theory of (parameter-dependent) concrete function
spaces.

We put
S:=SMRLE), S§:=S8R%E).
Since A7 € Oy for z € Cand n € H it follows that
Jy = AL (D)
is well-defined and satisfies
Ji € Laut(S) N Laut(S'), Joate = gz (2.3.1)
for z,2z1,20 € C and 1 # 0, where Jg =ids/. We set J* :=Jf, J, = JT}, so that
J=Ji.
Let § := S(Rd, E) be an admissible Banach space. We put
F=FRLE)=JF=({ueS; Juecg} ||

)
where

Mg =177 II5
for s € R. For’yGRandnGl:lwealsoput

Sy = S’Yﬂ?(Rdv E):= P\Vmg

and

85 1= Iy S
for s € R and endow these spaces with their natural norm.

2.3.1 Lemma The diagram

.
Pin|
§ — . Ynm
JF l = Iy ° J =
y—s
Pl .
3 %

is commuting, and all these isomorphisms are isometric.
PRrROOF. It follows from (1.6.1) and (2.2.2) that
Jy o= p\’yn\ o (UWAI_TIIS)(D) ) piy/lnl = anTS oJ %o p’ly/lnl' (2.3.2)
This shows that the claim is true. ]
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Henceforth, we use the symbol ? to mean: equal except for equivalent norms,

uniformly with respect to n € Izi, that is, n-uniformly. We also write > for
uniformly equivalent norms.

In the following theorem we collect the basic properties of the spaces §° and
their parameter-dependent versions §7

2.3.2 Theorem Let § be admissible and suppose v € R. Then:

(i) 85, is a Banach space and
S, LE, =8, s>t (2.3.3)

(ii J is an isometric isomorphism from 3’5+t onto §, , for s,t € R.

(iii

oz, < clal 11
s admissible.
Given sg < s1 and 6 € (0,1),

gfysn f 33 ¥s nﬂgffln]

gt s,teR, ne H.

(iv

)
)
) §
(v)

PROOF. Let (u;) be a Cauchy sequence in §°. Then (J%u;) is a Cauchy
sequence in §. Thus J°u; — v in §, hence in &', for some v € §. By (2.3.1),
u; —u:=J *vin S’. This shows v € F° and u; — u in §°. Thus §° is a Banach
space. Since §7 , is isomorphic to §* it is one too.

From S A 5 4, S’ and Lemma 2.3.1 it follows
Stz .S, (2.3.4)
Corollary 2.1.2 with n = 1 implies J~* € L(§) for s > 0. Hence, by Lemma 2.3.1,
10 ey = 17 Mo 200 e < 172 1T 8 lleq)

and, similarly,
1T e < Il 10 2l 2@y )

Consequently,
1 N ey = 1T lew,  neH. (2.3.5)
Suppose t < s. Then
lullg: = 1ulls, ., < 19575, 1 T5ulls, ., < clnl™ (2.3.6)

From this and (2.3.4) we obtain §3 , < §¢ . Thus (i) is proved. (ii) follows from
Lemma 2.3.1 and (iii) from (2.3. 6) We shall obtain (iv) from Lemma 2.1.4(ii) once
(v) will be established.

To prove (v) we use (ii), guaranteeing that Jp° is an isometric isomorphism
from §5%, onto Fyq and from §5, onto §3t 0. Hence we can assume sg = 0.
From Theorem 2.2.4 we infer that the §, ,-realization of J; has bounded imaginary

powers whose norms are bounded independently of € H. Now the assertion follows
from Seeley’s proof [60, Theorem 3]. (Also see H. Triebel [65, Theorem 1.15.3].) O
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2.3.3 Remark Suppose s > 0. Then we identify J, with the §, ,-realization
of A%(D). Hence Jﬁ is a closed linear operator in §,,, with dense domain S;n
Consequently,

85 = (dom(J0), || ll52 ).

where [|-[|zs = /5 - ll3,., is equivalent to the graph norm of dom(Jp), due to
the fact that 0 € p(J;). The bounded inverse of Jy, also denoted by J. %, is
the §, ,-realization of A *(D) and §73 is easily seen to be the completion of
@ Iy 15,.,) in & Thus

(35, s €R] (2.3.7)

.m0

is the fractional power scale generated by (3., J;) in the sense of H. Amann
[4, Section V.1]. Theorem 2.3.2(v) and [4, Theorem V.1.5.4] imply that it is the
interpolation extrapolation scale generated by (§,,,J,) and [-,-],, 0 <€ <1. O

The fact that we use the same symbol, namely J3, for A; (D) € £(S') and for
its restriction to §7 , is justified and cannot cause confusion since these operators
coincide on S and the latter space is dense in §7 .

2.3.4 Corollary Fiz so € R and let [&5, ; s € R] be the fractional power
scale generated by (830, Jy). Then &3 = F315.

The next lemma will be of repeated use.

2.3.5 Lemma Let § be admissible and v,s € R. If a € Bs(Z), then

I-llss,,, » lan(D) - lls.,.,-

RELN]
PROOF. Since, by Lemma 1.4.3, A=% and a~! belong to H>,(Z), Lemma 1.4.1(i)
implies A*a=1,A=%a € HZ(Z). Thus

Iy = (A*a™ 1), (D)ay(D)

n
and

ay(D) = (aA™?),(D)J;
imply the assertion, due to Proposition 2.2.3(ii) and Lemma 2.3.1. O

2.3.6 Corollary Let Q be a quasi-norm and v € R. For s € R andn € H set
8, =({ues; QDueF ) I e:,)
where
Illes, == 19(D) - 5,.,-
Then &3, ? S5 for s €R.

Our next lemma clarifies the mapping properties of derivatives in fractional
power scales.
2.3.7 Lemma Let § be admissible, s,v € R, and o € N%. Then
0% € L(83.0850")
n-uniformly.
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PRroor. Set .
a(Q) = E"ATYY(C), (= (&m) el
Then a € H°(Z) by Lemmas 1.4.1(i) and 1.4.3, since (¢ — &%) € Ha.w(Z). Hence
an(D) = D*J; % € L(Fy,,)
n-uniformly by Corollary 2.1.2. Thus Theorem 2.3.2 implies
D = (D*J; ) Jr € LTS, Tym)
n-uniformly. Now the assertion follows from Theorem 2.3.2(ii) and the commuta-

tivity of D and J°. O

We close this section by proving a renorming theorem whose importance will
be clear when we consider concrete realizations of fractional power scales.

2.3.8 Theorem Let § be admissible, v € R, and m € N. Then the following
are equivalent:

(i) vwedyy;
(i) 0% € vy, @ w < mw;
(iil) w8/ ueF,,, 1<j<d

Furthermore,

d
Fllags ~ 3 W™ 10" s, ~ 1™ Il + 1877 - Is,.,.

a-w<mw j=1
PROOF. (1) From Theorem 2.3.2(iii) and Lemma 2.3.7 we deduce
1D czms 5,0 < ™™™, n#0.
Consequently,

d
™ -l + DN g, <0 D0 ™ 07 D, < cll-lamy

v.m
j=1 a-w<mw

for n € H.
(2) Put
d
b(Q) 1= Y ()% + p*, (el

j=1
Then b € P2, (Z). Hence |[|-|[z2. > |6,(D) -3, by Lemma 2.3.5. Now we infer

from Theorem 2.3.2(ii)
I-lzs, = 195 - llsze, o 102 (D)7 - 5, (2.3.8)

Since ) , ,
/Wi —w _ W/ Wi 7w W/ w;
Dj *J, ij “Jy Dj J
and (&7)“/@i A= € HE implies

D}U/wj Iy € L(Syn)s ||D}U/wj I e, <6 n # 0,
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we deduce from

d
by(D) = [n|** + > D3/

Jj=1

and (2.3.8)

d
_ _ 2 i r—
lullss , < clba(D)Jyulls,., < c(I 17, uls, ., + 3102 0=l )
j=1

d
< (Il lulls,., + > 1D uls,,)

j=1
for n € H. This implies the claims. ]

In Part 2, where we shall consider function spaces on manifolds, still another
form of part (iii) of this theorem will be of importance. For this we denote for
keN

Vku:={0%; |a| =k}, V:=V,
whenever 0%u is well-defined. We arrange this m(k)-tuple® by the lexicographical
ordering. For smooth functions we set

1/2
(VEu| = (Z \aauﬁ)
o=k
so that |V*u| is the Euclidean norm of the “vector’ V¥u, and
IVl = [ [V ul ||

whenever |-|| is a norm of a Banach space of which |V¥u| is a member.

Using this notation, the following corollary is obvious.

4 i
2.3.9 Corollary |-ss ~ 0™ |-[l5,., + Siy IV

H n,7y "

m(k) =30 1= (7071,



CHAPTER 3

Fourier multipliers and function spaces

In this chapter the theory of anisotropic vector-valued Bessel potential and
Besov spaces on R is developed. Similarly as in the isotropic scalar case, it is
based on Fourier analysis. Whereas in the case of Besov spaces no restrictions on
the Banach spaces have to be imposed, a powerful theory of vector-valued Bessel
potential spaces requires a limitation of the class of admitted target spaces.

3.1 Marcinkiewicz type multiplier theorems

A Banach space E is a UMD space if the Hilbert transform is bounded
on Ls(R, E). Then it is bounded on L, (R, E) for each ¢ € (1, 00) and E is reflexive.

Every finite-dimensional Banach space is a UMD space. If F is a UMD space,
then L,(X,p, E) is a UMD space as well whenever 1 < g < oo and (X, pu) is a
o-finite measure space. Every Banach space isomorphic to a UMD space is such a
space, and if F is a UMD space, then E’ is one as well. Every Hilbert space is a
UMD space, and so is every closed linear subspace of a UMD space. Finite products
of UMD spaces are UMD spaces. If (Fy, E1) is an interpolation couple of UMD
spaces, then Ejg and Ey 4, 1 < ¢ < oo, are UMD spaces for 0 < ¢ < 1. More details
and proofs are found in H. Amann [4, Section IIL.4] (also see P.Ch. Kunstmann and
L. Weis [44]).

Following G. Pisier [52], a Banach space E is said to have property («) if
there is a constant ¢ such that for each n € N and ( e”,am) € E x C with |ag;] <1,

/ / ’ s)r; t)a”e” dsdt < c/ / ri(t)ei; Edsdt

i,j=1
where (r;) is the sequence of Rademacher functions7

7;(t) = sign(sin 27 7t).

Every finite-dimensional Banach space has property («). If E has property («),
then each closed linear subspace of it, each Banach space isomorphic to F, and
Ly(X, pu, E) have this property as well, where 1 < ¢ < oo and (X, p1) is a o-finite
measure space. If E is a UMD space with property («), then E’ has property (a) as
well. We refer to P.Ch. Kunstmann and L. Weis [44, Section 4] and the references
therein for more details and proofs.

We denote by
Ma := Ma(R?)

43
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the set of all m € C*((R%)") satisfying

m||me ;=  max sup |£%0%m < 00
Il = x| s [6°0rm(e)

and
Mi == Mi(RY)
is the set of all m € C?((R)") satisfying
. lal | 9o
m i= max sup m < 0.
Illei= _mac | s [ef!j0"mie)
Then
Ma = (Ma, ||| ma) and Mi = (M, |- [|mi)
are Banach spaces. (Ma and Mi should remind the reader of Marcinkiewicz and
Mikhlin, respectively.) Note Mi — Ma.
3.1.1 Theorem Suppose 1 < q < co and E is a UMD space. Then
(m — m(D)) € L(Mi, L(Ly(R?, E))).
If E has also property (a), then
(m — m(D)) € L(Ma, L(Ly(R?, E))).

This result is due to F. Zimmermann [73]. Different proofs (in more general
settings) have been given by L. Weis and coauthors and by R. Haller, H. Heck, and
A. Noll [37]. F. Zimmermann has also shown that property (o) cannot be omitted
if the vector-valued Marcinkiewicz multiplier theorem is to hold (also see [40]).

Suppose = C. Then the second assertion is a nonperiodic version of the
Marcinkiewicz multiplier theorem [49] (see S.M. Nikol’skii [51] or E.M. Stein [63,
Section IV.6]). The first claim is a variant of Mikhlin’s Fourier multiplier theorem
(e.g., L. Hérmander [39]). Further historical details are given by H. Triebel in
Remark 2.4.4.4 of [65].

The following theorem, an easy corollary to the preceding theorem, is of fun-
damental importance for what follows.
3.1.2 Theorem Suppose 1 < g < co. If either
w=w(l1,...,1) = (w,w,...,w) and E is a UMD space

or
E is a UMD space with property (),

then L,(R%, E) is M-admissible.
PROOF. Suppose a < (1,1,...,1). Then
()] = (|&7]P/ ) @il < Ay (€)™

for 1 < j < d. Hence |£%] < AF« (&) for € € RY. Consequently ||| sma < |||l a1, that
is M — Ma. f w=w(l,...,1), then

4. Nlal/2 4.
et = (1) < (X 1eP+1)
j=1 j=1

so that M — Mi. Now the claim follows from Theorem 3.1.1. O

o] w/2w

= AP = AFe(6),  ¢eRY,
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Unfortunately, it is not true that Theorem 3.1.1 holds for operator-valued sym-
bols. This follows from a result of Ph. Clément and J. Priiss [19], combining
it with characterizations of maximal L,-regularity for evolution equation due to
N.J. Kalton and G. Lancien [42] (cf. [44] for more details).

Let FE and F be Banach spaces. A subset 7 of L(E, F) is said to be R-bounded
if
H erzjjHLz((O,l),F) sc || Z TjTs ||L2((0,1),E)
j=1 j=1

for n € N and (Tj,z;) € T x E. The infimum of all such ¢ is the SR-bound of T
and denoted by (7). It is obvious that an PR-bounded set is bounded and

sup |1 ze,ry < R(T).
TeT

Using this concept we can formulate an extension of Theorem 3.1.1 for the case of
operator-valued Fourier multipliers.

3.1.3 Theorem Suppose 1 < g < oo, E and F are UMD spaces, and m be-
longs to C4((RY)", L(E, F)). If

M = {[¢]*10*m(€) ; a < (1,...,1), €€ (RY)}
is R-bounded in L(E,F), then
m(D) € L(Ly(R*, E), Ly(R%, F))
and
[m(D)|| < ¢R(M)
where ¢ depends on E, F, d, and q only.
If, in addition, E and F have property («), then M can be replaced by

{e0m; a<(1,...,1), £ RY ).

In the 1-dimensional case the sufficiency part of the first assertion is due to
L. Weis [70]. Extensions to n dimensions are given by Z. Strkalj and L. Weis [64]
and R. Haller, H. Heck, and A. Noll [37]. Other proofs can be found in the memoir
of R. Denk, M. Hieber, and J. Priiss [20] and in the survey of P.Ch. Kunstmann
and L. Weis [44].

The extension of the Marcinkiewicz’ multiplier theorem to operator-valued sym-
bols, that is, the second part of Theorem 3.1.3, is due to R. Haller, H. Heck, and
A. Noll [37]. A different proof appears in [44].

In the paper [19] by Ph. Clément and J. Priiss the SR-boundedness condition
is shown to be also necessary for the analogue to the Mikhlin theorem to hold (see
also Section 3.13 in [44]).

There are many sufficient conditions for a family of bounded linear operators
to be R-bounded (see R. Denk, M. Hieber, and J. Priiss [20] and P.Ch. Kunstmann
and L. Weis [44]). We restrict ourselves to cite just one particularly simple and
useful criterion.
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3.1.4 Proposition Let E and F be Banach spaces and K a compact subset
of C. Suppose m is a holomorphic map from a neighborhood of K into L(E,F).
Then m(K) is R-bounded in L(E, F).

PRrROOF. This is Proposition 3.10 in [20]. O

3.2 Dyadic decompositions and Fourier multipliers

Let Q be a quasi-norm and set

Q=0%:=[Qo<2, U=0%:=p2"'<Q <2, kel
Note Q; NQy =0 for |j — k| > 2.
Fix ¢ € D(R?) satisfying

P(€) =1 for Qo(§) < 3/2, supp(¥) C Qo. (3.2.1)
Put
) = () =2+ &) = (&) —oa(€),  EERY,
and B .

Yo =, Y = 09—k, ke N. (3.2.2)

Then 1y, is smooth with support in € and

Z¢k = 03-n?, n e N. (3.2.3)
k=0

Hence (1) is a smooth partition of unity on R¢, induced by 1, subordinate to
the Q-dyadic open covering ().
Given ¢ € S(R?) and a € N4,
lpd*(09-n1) = 1)[oc =0, 1 — o0,
where 1(¢) =1 for ¢ € R%. Consequently, oy-n1) — 1 in Op(RY). Hence we infer
from (3.2.3)

> k=1 in On(RY). (3.2.4)
k=0

Thus, given u € &’ := Sy = §'(R%, E),

o0
Y pi=1u inS
k=0

and, consequently,

> Yp(Dju=u inS, (3.2.5)
k=0
due to F € L(S').

In the following, we denote by

Mo(R%, E)
the set of all m € C4T¢((R?)", E) satisfying
Imlm, := max [[A§*0%M| 0 < 00.

la|<d+£
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It is a Banach space with norm ||-|| s, and
MR E) — My(RY, E).

3.2.1 Proposition Let ¢ satisfy (3.2.1) and let () be the anisotropic parti-
tion of unity on R induced by it, subordinate to the Q-dyadic open covering ().
Suppose

§e{BUC,Cy,L,; 1<p<oo}
and set Fg = F(RY, E). Also assume that By x Ey — Ey is a multiplication of
Banach spaces.

If a € M(R%, Ey), then
(¢Yra)(D) € L(FE,»SE,)

and
(¥40)(D) € £(Loo (R, Ey), BUC(R, Ey))
for k € N with
sup [(¥ra)(D)|| < cllaf mo

and
[(thoa)(D)| < cllallm,
where ¢ = ¢(Q, ¥, d) is independent of a.

PRrROOF. (1) By the convolution theorem (see H. Amann [10], for example, for
the vector-valued case)
(Yra)(Dyu = F~ (Yra) * u.
Hence the assertion follows from well-known elementary properties of convolutions
(e.g., [5, Theorem 4.1]) provided we show v,a € FL;(RY, E;) and

[rallzr, < cllall g, k€N, ac MRLE), (3.2.6)
where ka = M for k=0, and ka =Mpifk e N.
(2) Assume we have shown

ID*(¥ra)ll L, e 1) < collall 57, (3.2.7)
for k€N, a=(ai,...,ap) with |a;| =d; + 1, and a € M(R?, E1). Then, by the
Riemann-Lebesgue theorem,

2 F 1 (Yra) = F1(D*(¥ra)) € Co(R?, Ey)

and

2 F = (ra) o < e1(eo) llall g, (3.2.8)
for k€N, a=(a1,...,ap) with |a;| =d; + 1, and a € M(R?, E;). The multino-

mial theorem implies

a9 = (@) 4+ @) P < edy) S e
‘O{ilzdi+1

for ke Nand 1 <3 </. Thus

4
|yt |xg|d@+1 < C(d)H
i=1

(e7)
|25

, r € RL

\a1|:d1+1
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Now we infer from (3.2.8), setting cs := ¢1(co),
F o Wa)(@)] < ex o[ ~BTE ezl T T lall g, € R

for k€N and a € M(R? E;). From this and the Riemann-Lebesgue theorem
(3.2.6) follows, where c3 = cac; with

e ;:/ dm—i—/ |x1\7d1’1~ ~|£L'g‘7d271 dx < 0.
[l2|<1] [lz[>1]

Hence it remains to prove (3.2.7).

(3) From Leibniz’ rule we deduce

07 (Woa)] < c(v) 3 107l xa, < () max 0%l xa, < ) lall i xer,
BLa -

hence
[0%(woa)ll < e(v, Q) lallm,  lol <d+¢ ae MR E).
(4) Suppose k > 1. Note
aow—|w|=lag|vi+ - Flaglve—divy — - —dpvp =11+ F i > 1
for « = (o, ..., ap) with |a;] = d; + 1. Thus (3.2.2) and Proposition 1.1.1 imply
[0% (ra)lx = [0 (02-x (boara)) [}, = 277 lo-20% (dosra) |x
= 27 Mo lD 9% (Yogea) |1 < [0 (Poara)lls

for a = (aq,...,ap) with |a;| = d; + 1. Using Leibniz’ rule and Proposition 1.1.1
once more we find

|aa(1202ka)| <c Z |35(02ka)‘ X = ¢ Z A |02k85a| X -

BLa B<a

Lemma 1.2.1(iv) implies k1A < Q < kA for some k > 1. Hence

Qn C 2k < Ag < 28t1k),  keN (3.2.9)
Since 2F « £ € Q, for € € Q; we thus find

2 | (0200%a) (€)] < (26)7“AG (28 - €) [0%a(2" - ©)| < (26)7* |l al| o
for £ € 4. This implies
0% (ogea)| < c(h, Q,d) [|a] sy Xo

for « = (a1,...,a4) with |o;| =d; +1 and k € N. From this and step (3) we ob-
tain (3.2.7). This proves the proposition. O

3.2.2 Remark Put ¢ := 02%1’/; for k € Z. Then (pk)kez is a Q-dyadic res-
olution of the identity on (R?), subordinate to the open covering (Xj)rez, where
Y = [2F71 < Qo < 281 for k € Z. Then, given a € Mo(R%, E),

(pra)(D) € L(E,,TE,)

and
(¢ra)(D) € L(Lso, (RY, Ey), BUC(R?, Ey))
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with
sup [|(pra)(D)[| < cllallmo,,
kEZ

where ¢ = ¢(¥, Q, d) is independent of a.
PRrROOF. This is obvious by the above proof. O

Proposition 3.2.1 is an extension of Proposition 4.5 of H. Amann [5] to the
anisotropic situation. Besides of being used in the following section it is the basis
for the proof of a general multiplier theorem for operator-valued symbols in Besov
spaces which is given in Section 3.4 below. It is the proof of Proposition 3.2.1 in
which we need d + ¢ derivatives of the symbol a, whereas the Marcinkiewicz and
Mikhlin multiplier theorems require at most d of them. To have a unified treatment
we use throughout d + ¢ derivatives in the definition of M(R?, E).

3.3 Besov spaces

Throughout this and the next three sections
® D,Po,P1,4,90,91 € [17 OO] and S, 50, S1, teR.
As usual,
Ly(E) =¢,(N,E) :=L,(N,u; E)
where p is the counting measure, and
C()(E) = Co(N, E)
is the closed subspace of £, of all null sequences in E.
It is convenient to put
. ! = (i,,i) e R
v 2 vy
Set Q := A and suppose 1) satisfies (3.2.1). Denote by (1)) the partition of unity
induced by 1, subordinate to the A-dyadic open covering (). The (anisotropic)
Besov space
B;(qu - B;{qu(Rd’E)
associated with the (anisotropic) dilation (1.1.2) is the vector subspace of
S' =8, =S8R E)
of all u for which
(2" (D)u) € £,(L,y(RY, E)),
endowed with its natural norm
o ks _ ks
ByY T H(2 wk(D)“)qu(Lp) - H(2 ||7/’k(D)u||Lp(Rd»E))Heq' (3.3.1)

We denote by

[[ul

Bk = BX(RUE),  p# oo,
the closed linear subspace of B;,/Olé consisting of all u satisfying
(2" (D)u) € co(Lp(R?, E)),

and

A

BiY = BLY(RY, E)
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is the closed linear subspace of Bgé,l; made up by those u for which

ks 6, (Co(RY, E)), q< oo,
(2 wk(D)U) S {Co(co(RdaE))v ¢ = .

In the isotropic case w = (1,...,1), where v = 1, we write, of course, B, , for B;,/qu.

Clearly, (3.3.1) depends on the choice of ¢ and the particular selection of the
special quasi-norm A. The following lemma shows that a different choice of (Q, )
leads to an equivalent norm.

3.3.1 Lemma Let Q be a quasi-norm, let Y® satisfy (3.2.1), and denote by
(wg) the partition of unity induced by ¥, subordinate to the Q-dyadic open cov-
ering (Qg) of R%. Denote by BE,/qV’Q the Besov space defined as above, but with
(A, %) replaced by (Q,yR). Then Bf,,/q"’Q = Bf,{q".

Proor. Fix k > 1 such that (3.2.9) is true and choose m € N with x < 2™.
Then

.

QR 2l < Ag <2V = Oy, K EN, (3.3.2)
and, similarly,
QF € [Ag < 2™ =: Qg . (3.3.3)
Set
m+1
Xk,m = Z Yiti, Y :=0for j <O0.
i=—m—1

Then we see by (3.2.3) that

Xk:,m|Qk,m = 1a Supp(Xk,m) C Qk,m-{-l-
Consequently, by (3.3.2) and (3.3.3),

YR =V Xkm,  kEN (3.3.4)
Choosing a = 1 in Proposition 3.2.1 it thus follows
m—+1
IR (D)ully < elxiem(D)uly < e D duri(D)ull,

i=—m—1

for £ € N. This implies
1= vR (D)) Iy, 1,y < @ erD)u)ll,, 1,

that is, By — B/Y*?. By interchanging the roles of (A, ) and (Q,%)Q) we obtain
B;,/qV’Q - st)y/qu- u

Anisotropic Besov spaces have been intensively studied — in the scalar case —
by S.M. Nikol’skii and O.V. Besov by classical methods (see the monographs of
S.M. Nikol’skii [51] and O.V. Besov, V.P. I'in, and S.M. Nikol’skii [17] for addi-
tional references). Fourier-analytic approaches, as the one used here, are due to
H. Triebel [66, Section 10.1], H.-J. Schmeisser and H. Triebel [57], M. Yamazaki
[71], [72] (also see W. Farkas, J. Johnsen, and W. Sickel [23] for further references),



3.3 BESOV SPACES 51

who used various quasi-norms. In particular, M. Yamazaki based his comprehen-
sive treatment on the Euclidean quasi-norm E, and most later writers followed this
usage.

All the above references deal with the scalar case. Isotropic vector-valued Besov
spaces have been investigated by P. Grisvard [27] and H.-J. Schmeiler [53] under
various restrictions on s and p. The general situation is dealt with in H. Amann [5]
(also see Section 15 in H. Triebel’s book [67] and, for further historic references,
H.-J. Schmeifler and W. Sickel [55]).

In the following, we collect the basic properties of anisotropic vector-valued
Besov spaces and give only brief hints concerning proofs. Many theorems carry
over without alteration from the scalar case to the vector-valued situation. To a
large extent we can follow the isotropic approach in H. Amann [5]. Complete details
will be given in the forthcoming second volume of H. Amann [4].

We set
E;(E) = Lq(Nvﬂs;E)a
where p* is the weighted counting measure assigning the value 2%¢ to {k} C N.

Then the proof of Lemma 5.1 in H. Amann [5] carries over to show that
0(Ly) = 0(Ly(RY, E)) — ByY,  (vk) = Y xk(D)vk, (3.3.5)
i

with
Xk = Yr—1 + Y + i1, (3.3.6)

is a retraction and u — (¢ (D)u) is a coretraction. Hence Bply is a Banach
space, since it is isomorphic to a closed linear subspace of the Banach space EZ(L,,)
(cf. Proposition 1.2.3.2 in H. Amann [4]).

The next theorem collects some of the most important embedding results.

3.3.2 Theorem The following embeddings are valid:

S— By — Bylr =8, g <q, (3.3.7)
and
ByilY — ByyY, s> so. (3.3.8)
Furthermore,
By — B, s1>s0, s1— |wl|/p1=s0— |w|/po (3.3.9)

PROOF. (1) Assertions (3.3.7) and (3.3.8) are obtained by obvious modifica-
tions of the proof of Proposition 2.3.2.2 in H. Triebel [66].

(2) Statement (3.3.9) follows from the anisotropic version of the Nikol'skif in-
equality: if p; < pg and r > 0, then

Jo(D)uly, < er™ O/m=1m) (DY, we S, (3.3.10)
for all ¢ € D(R?) with supp(p) C [Ag < 7.
To prove (3.3.10) we first suppose r = 1. Then

o(D)u = (Yp)(D)u = ¢(D)p(D)u,
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the convolution theorem, and Young’s inequality imply o(D)u € Cy = Co(R%, E)
and

le(D)ulloe < IF [l lo(D)ullp, = ¢ llo(D)ullp,
for u € &', since F~'¢p € S(R?) — Ly, (R?). Hence
le(D)ullpy < ll(D)ullss™ /P p(D)ullB/P < clle(D)uly,
This proves (3.3.10) in this case.
(3) Now suppose r # 1. Then supp(o,¢) C [Ag < 1]. By Proposition 1.1.1,
(orp)(D)u = F_l((argo)ﬂ) = Ul/r]:_lgoj’:aru
and, consequently,
(o) (D)ull, = rIIP |l (D) (1) -

Thus, by step (2),

rllPolo(D) (0u) [y < er VP (D) (071,
for u € §’. This implies (3.3.10) since o, € Laut(S’). O

This embedding theorem is in the scalar case due to M. Yamazaki [71, Theo-
rem 3.4], where the proof of Nikol'skil’s inequality is based, as usual, on the maximal
function. Also see Proposition 7 in W. Farkas, J. Johnsen, and W. Sickel [23] where
a more general result involving anisotropic Triebel-Lizorkin spaces is given.

Using retraction (3.3.5) it is not difficult to see that S is dense in B;{q" for

pV q < o0, and in éf,/q" if pV g = co. Thus, in order to allow for a unified treatment,
we put

é;,/q'/ = B;,/qu7 q \/p < o0,

so that, in general,
l%;(qu is the closure of S in B3/Y. (3.3.11)

Retraction (3.3.5) and well-known facts from interpolation theory (cf. J. Bergh and
J. Lofstrom [16, Theorem 5.6.1] and H. Triebel [65, Theorem 1.18.2]) imply

(B Byl )o.q = Byf” (3.3.12)
and .
(B;?q/ou’ B;}q/f)g,q = st)?q/u (3.3.13)

for sp # s1 and 0 < 6 < 1. Thus the reiteration theorem for the continuous inter-

polation functor gives
A A

(Bod”  Bod)3 oo = Byod (3.3.14)

6,00

so# sy and 0 <6< 1.

Next we study duality properties of anisotropic vector-valued Besov spaces.
Note that the density of S(RY) in é;,/qu(]Rd) implies (é;(qy(Rd))/ — &'(R%) with
respect to the S’(R?)-S(RY)-duality pairing. An analogous result is true in the
vector-valued case if F is either reflexive or has a separable dual.
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First we note that L. Schwartz’ theory of vector-valued distributions guarantees
the existence of a unique separately (in fact: hypo-)continuous separating bilinear
form

(,): S xS —C, (u,u)— (U, u),
the S~S-duality pairing, such that

(u', u) :/ (u'(z),u(x)),de, (v, u) € Sp xSk
Rd
(cf. H. Amann [10, Theorem 1.7.5]). We also call it L,~duality pairing.
3.3.3 Theorem Let either E be reflexive or E' separable. Then
Bily R, BY = B, (R, E)
with respect to the 8- S-duality pairing.

PRrROOF. The proof of this result is based on retraction (3.3.5) and known du-
ality properties of vector-valued L,-spaces. To guarantee L,(R?, E)' = L, (R%, E’)
we have imposed the above assumptions on E, although it would suffice to suppose
E has the Radon-Nikodym property. Details will be given in Volume II of [4]. O

3.3.4 Corollary Let E be reflexive.
(i) If 1 <p,q < oo, then B;,/qu is also reflezive and
v /. —s/v
(B;,/q (Rd7E)) = Bpﬂq/’ (Rd’E/)'
(ii) If pAg> 1, then BIS,,/qV is the bidual of é;(qy with respect to the S-S-duality
pairing.
It should also be remarked that
As/v / —s/v
(BLY®,E) = Bl (R, E)
is true without any restriction on FE.
3.4 Fourier multipliers in Besov spaces

In this section we establish a general Fourier multiplier theorem with operator-
valued symbols, an extension of Theorem 6.2 in [5] to anisotropic Banach spaces.
Using it we can derive several additional interpolation results and prove important
renorming theorems.

First we present an isomorphism theorem which, together with the multiplier
theorem, will allow us to make use of the general results on admissible Banach
scales established in earlier chapters.

3.4.1 Theorem Suppose B € {B,é}, Then
Jt e Lis(BY IV, BylY),
uniformly with respect to s, p, and q; and (J*)~! = J~t.

PRrOOF. This follows by modifying the proof of Theorem 6.1 in H. Amann [5]
in a by now obvious way (defining x; by (3.3.6)). O
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It should be observed that the following multiplier theorem does not require
any restriction on the underlying Banach space E. This is in stark contrast to the
Marcinkiewicz multiplier theorems of Section 3.1.

3.4.2 Theorem Suppose B € {B, é} and let By x E5 — Ey be a multiplication
of Banach spaces, Then

(m = m(D)) € LMRY, By, £(B;/¥ (R, Ba), By (RY, Fo))).

PROOF. Due to Proposition 3.2.1 the proof of Theorem 6.2 in H. Amann [5]
carries literally over to the present anisotropic setting. O

It should be noted that Remark 3.2.2 can be used to prove a multiplier theorem
for homogeneous Besov spaces using operator-valued multipliers of Marcinkiewicz
type. We refrain here from giving details.

On the basis of Theorem 3.4.1 we impose the following CONVENTION:

We fiz any ¢ € D(R?Y) satisfying (3.2.1) with Qo = A

and endow Bg/q" with the norm u +— H (Y (D)u) Heq(Lp)'

If s # 0, then B;/q” is given the norm u +— ||J8u||32(;.
The following theorem will be most important for the rest of this treatise.

3.4.3 Theorem The anisotropic Besov scale [é;(qy ; s € R] is the fractional
A
power scale generated by (B,O,,/qu, J). It consists of M-admissible Banach spaces.

PRrROOF. This follows from (3.3.7), (3.3.11), Theorems 3.4.1 and 3.4.2, and The-
orem 2.3.2(iv). O

As an immediate consequence we obtain from Theorem 2.3.2(v)

Bl Byif*lo = By, so#s, 0<0<L. (3.4.1)

3.5 Anisotropic Sobolev and Holder spaces

In this section we study anisotropic Besov spaces of positive order and investi-
gate their relation to classical function spaces. For this we suppose’

§e{BUC,Cy,L,; p# o0}
and put for k£ € N
F =FYRUE) ={ueF; 0ueF, arw<kv},
equipped with the norm

(Sewcelult) . §=1L,

MaXg-w<kv|| 0% o otherwise.

u = ||u| gro s =

Here we mean by § = BUC, for example, the symbol BUC and not the Banach space
BUC(R?, E), etc. This dual use of § should cause no confusion to the attentive reader.
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Thus §°/¥ = §. Also recall that v = w is the least common multiple of wy, . . ., wq,
hence of vy,...,v,. For § = L, we write VVpky/" = F/Y. If E =C, then W},ky/"
is the classical anisotropic Sobolev space of S.M. Nikol’skii [51].

3.5.1 Example Let w be the 2m-parabolic weight vector. Then, if p # oo,
u € VV;Zm’l)(Rd, E) iff u, Osu, 0%u € L,(R%, E), la| < 2m.

Moreover,
2m

wis [lullp + 19eully + Y IIV5ullp
k=1
is an equivalent norm for W;,(Qm’l)(Rd, E).
Similarly, u € BUC’(2’”’1)(R‘7Z7E)7 respectively u € C’éQm’l)(Rd,E), iff u, Ou,
and 9%u with |a| < 2m belong to BUC(R?, E), respectively Co(R?, E), and

2m

k
wr Jlullse + 10sulloc + D I VEulloc
k=1

is an equivalent norm. O

The following ‘sandwich theorem’ gives important inclusions between Besov
and classical function spaces.

3.5.2 Theorem If k € N, then

Bl Lowkviv LB < BEYY. pt oo, (3.5.1)

and
B — BUCK/¥ — Bkl (3.5.2)

and
B & ohiv & gl (3.5.3)

ProoF. It follows from u =Y, ¥y (D)u for u € S’ that
ol < 32 e (DYl = Fl e

Consequently,
BYY < L, (3.5.4)
Ifu e Bgé:; then ¢, (D)u € L. Hence, recalling (3.3.6), it follows from (3.3.4) that
Ye(D)u = Pr(D)xx(D)u € BUC,
setting @ = 1 in Proposition 3.2.1. This improves (3.5.4) in the case p = oo to

BY* <, BUC.

0,1
On the other side, using Proposition 3.2.1 once more,
Jullpgre = sup (D)l < ellull

This proves L, — BO,/O'Q, and, as above, BUC — Bgé,'f)o. Thus (3.5.1) and (3.5.2)
are true for k = 0. Moreover, (3.5.3) follows for k¥ = 0 from this and (3.3.11).
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The assertion for £ > 0 is now obtained by Theorems 2.3.8 and 3.4.2, observing
that the density of S in § is not essential in the proof of Theorem 2.3.8. (|

The following proposition shows that anisotropic Besov spaces of positive order
can be obtained by interpolation from classical function spaces.

3.5.3 Proposition Suppose 0 < s < kv and k € N. Then
B;/qu = (LP’ I/Vpky/u)s/kl/,qv p 7é o, (355)
and
Bsé,'; = (BUCa BUCkV/V)S/ku,qa (356)

and

B3L% = (Co, CpYT)° (3.5.7)

s/kv,00*

PRrOOF. This is implied by (3.3.12), (3.3.14), and the preceding theorem. [

3.6 Renorming theorems

First we introduce equivalent norms for Besov spaces of positive order. To do
this we need some preparation.

We denote by {73, ; h € R?} the translation group, defined on S by
(thu)(z) :=u(z + h), zeRY wes,
and extended to S’ by
(hu)(p) = u(r_np),  ueS, peSRY).
Then the difference operators

Np =1, — 1, AFL= AN keN,

are well-defined on &’.
For h = (hy,...,h¢) € RM x - x R* we set h;:=(0,...,0,h;,0,...,0). If
s > 0, then we put?

s/l/7p7q (Z || ||~ s/v;

if ¢ # oo, and

1/q
”P HL ¢ (R4:)* dhi/\hildi)) (361)

A[s/w]-ﬁ—l
h;

[/ 1= qoax || 1hal =/ A7 (3.6.2)

Then the following important renorming theorem is valid.
3.6.1 Theorem Suppose s > 0. Then

N [ P a

2[5] is the greatest integer less than or equal to & for &€ € RT.
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PROOF. Let eq,...,eq be the standard basis of R%. It is not difficult to see
that {7, ; t >0}, 1 <j<d, is a pair-wise commuting family of strongly contin-
uous contraction semigroups on § € { BUC,L, ; 1 <p < oco}. Moreover, A;, the
infinitesimal generator of { 7y, ; t > 0}, is the §-realization of 0; € L(S’). Using
this, Theorem 1 in H.-J. Schmeifler and H. Triebel [56], Proposition 3.5.3, and
Theorem 2.5.1 of H. Triebel [65] we obtain the assertion. O

3.6.2 Remark The integer [s/v;] + 1 in (3.6.1) and (3.6.2) has been chosen to
avoid a further parameter dependence. It could be replaced by any k; € N satisfying

For 1 <i < /¢ we set
R(d;di) ::Rdl X"'X@X"'XR‘M

where, as usual and in related situations, the hat over a factor (or component) means
that the corresponding entry is absent. The general point of R(%%:) is denoted by

Xy = (T1, .., Tiye v, Tp), (3.6.3)
and we put
w(ag, ) i=w(T1, .o Tie1,y ' Tig 1y -, Te)- (3.6.4)
If £ = 1, then dy = d and we set R(%4) := {0} = R°. Note
SR, E) :=FE for § € {L,, BUC, Cy}.
Suppose u € L,(R?, E) with p # co. Then, by Fubini’s theorem,
u(ag, ) € Lp(Rd'i,E) a.a. z; € R4,
and
U = (33; — u(xs, )) € LP(R(d’di),Lp(Rdi, E))
In fact,
Ui+ Ly(RY, E) — LP<R(d’di)va(RdiaE))

is an isometric isomorphism. This is not true if p = oo (e.g., H. Amann and J. Escher
[11, Theorem X.6.22 and Remark X.6.23]). However, it is not difficult to see that

U : Co(R E) — Co (R4 Cy(R%, E)) (3.6.5)

is an isometric isomorphism.

To simplify the writing we set
s _ s d — RS
Bi/Y = By/* (R, E) := B3/¥
and, if s > 0,

Hs/u,p = [']S/u,p,p'

The next theorem shows that B;/ ¥ can be characterized as an intersection space
for s > 0 (cf. S.M. Nikol’skil [51] for related results in the scalar case).
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3.6.3 Theorem If s > 0, then
¢
By/v = () Ly (R4 By/(RY, E)),  p# o,
i=1
and
A e A
BLY = () Co (R4, B (R, B)).
i=1
PROOF. Set k; := [s/v;] + 1. If p # oo, then, by Fubini’s theorem,
|| |hi|7s/l’i

k,
Aplly ||y ana inga

= (/R(M” [u(%’,)]i/%p d{l?g) 1/p' (3.6.6)
This implies
-l + Tl s p ~ mAx [l gaan gy
so that the first assertion follows. o
Similarly,
= Ul |y = s o] 307
From this and (3.6.5) we obtain the second assertion. O

Let Ey,...,E, be Banach spaces satisfying F; — ) for some LCS ). The
sum space, L FE;, of Fy,..., E, is defined by

SE =Y Ej={yecY; I B withy=z 4+, }
i=1

and is equipped with the norm
n
v Iyls, =it {3 leills, s y =21+ +a |
i=1

For the reader’s convenience we include a precise formulation and a proof of the
following duality theorem which seems to be folklore and is often rather vaguely
stated (see, e.g., Theorem 2.7.1 in J. Bergh and J. Lofstrom [16]).

3.6.4 Proposition Let X be an LCS such that X i E; for1 <i<n.
(i) E} — X', so that XE; is well-defined and
YE; = (NE;)
with respect to the duality pairing
(@, 2)nE, == (), 2)p, + -+ (), 2)E,, (2',z) € XE] x NE;
and any x, € E! with 2} + -+ + x}, = 2'.
(ii) If En,..., E, are reflexive, then NE; and LE; are so too.
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PrOOF. (1) Set Fi := []"_, E;, endowed with the {.-norm. Denote by M the
closed subspace of all (z1,...,x,) satistying 1 = --- = z,,. Then

f:M—=Y, Wy .,y)—y

is a continuous linear map whose image equals ﬂ?zl FE;. Hence f is an isometric
isomorphism from M onto NE;.

(2) Put Fy :=[[\~, E; and equip it with the ¢;-norm. Then
add: Fy =Y, (z1,...,2,)— in
i=1

is a continuous linear map and XFE; = add F;. Hence Y F; is a Banach space by
Remark 2.2.1(a).

(3) Let the hypotheses of (i) be satisfied. Set F} := [T, E, endowed with the
£1-norm. Then Ff = (Fx)' by means of the duality pairing

<yﬂ7y>Foo = <y§7y1>E1 + -+ <y1ﬁwyn>En; (yﬁay) S Flﬂ X F1~

By step (1),
nE; LM <& Py

where i(M) = M is closed in Fi,. Thus, by duality,

FFw oy
From i(m) = m for m € M and ¢ (y')(m) = ¢/ (im) = y'(m) it follows that ¢’(y') is
the restriction y'| M to M for y' € F.
Since i is injective and has closed range,
im(i') = ker(i)* = M’, ker(i') = im(i)* = M*.
Hence there exists a unique 9 for which the diagram

7;/

\ =

Fi/M+

Ff

M/

is commuting.
(4) Suppose z’ € (ﬂEi)/ and set m’ = f/(z') € M’. Then

(@ @)nm, = (F'7 (m), @) = (w7 (@),

(3.6.8)
= <y§,l’>E1 +ee <ny7x>En

for z € NE; and 4 = (4f,...,9%) € F! with y?| M = m/. Note that E/ — X’ im-
plies
(e, x)p, = (e}, z)x, rEX.

79
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Hence it follows from X C NE; and (3.6.8) that
(' 2)np, = Wb+ + b ), reX. (3.6.9)
Thus, if % € F! also satisfies §¥ | M = m/, we find
y§+...+yn:ﬁ+...+§”§l.
(5) Since f~!is an isometry from NE; onto M we obtain from
<II7I>ﬂEi = <m,7 fﬁl(‘r)>M
that
I s = 12"l .y -
The Hahn-Banach theorem guarantees the existence of m* € F1ﬁ with m#| M = m’
and ||m?|| ¢ = [|m||ar. Set ' := mi 4.+ ml. Then y € LE! and
1
Iy s < Im#ll s = ll2" .y -
Hence we see from (4) that
g: (NE) = XE, 'y
is a well-defined bounded linear map of norm at most 1.
(6) Suppose y' € LE! and y* € Flﬁ satisfy y' = yg + -+ yh. Then
h(y/)(.’E) = <y§ax>E1 +ot <y§ux>Ena T € NE;,
defines
h(y') € (NE)', () lemy < 1] -

This being true for every such y#, it follows that h maps L E! onto (NE;)" and has
norm at most 1. Combining this with the result of (5) proves claim (i).

(7) Let Ey, ..., E, be reflexive. Then M, being a closed linear subspace of the
reflexive Banach space F, is reflexive. Hence its isomorphic image NE; is also
reflexive. Now (i) implies the reflexivity of X F;. O

In order to apply this proposition we first prove a density theorem which will
repeatedly be useful.

3.6.5 Lemma Suppose m,n € N and p # 0co. Let § be a Banach space with
SE®",E) L 5L SR, E).
Then D(R™*™, E) is dense in L,(R™,F).

PROOF. Let € >0 and u € L,(R™,§) be given. Since D(R™,F) is dense in
L,(R™,F) there exists v € D(R™, §) with
lu—vllL,®ng <e/2.
Set K := supp(v), denote by Ck the measure of the 1-neighborhood of K in R™,

and fix C7 > 2011{/’). By continuity and compactness we find § € (0,1) and y1,...,y,
in K such that

lo(y) — v(ye)llz < e/Ch, yeUy:={z€eR™; |z —y| <4},
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and such that {U; ; 1 <k <r} is an open covering of K. By the density of
D(R™, E) in S(R™, E), hence in §, we can assume v(yg) € D(R™, E). Denote by
{r ; 1 <k <r} asmooth partition of unity on K subordinate to this covering.
Then

wi= Y Ypv(y) € DR™,F).
Since w — v = Y ¥ (v(yx) — v) and 0 < ¢y, < 1, it follows

lw(z) —v(@)lls < (6/C1) Y tnl(x) <e/Cr, x| Uk,
hence
lw = vll, e 5) < (£/C1ICHT < /2.
Due to w € D(R™T" E), this proves the claim. O

By means of this result and duality we can now give another representation for
some Besov spaces of negative order.

3.6.6 Theorem Let E be reflexive and suppose 1 < p < oo and s > 0. Then
’
—s/v - d,d; —s/vi (mds
By = ZLP(R( ), B/ (R E)).
i=1

PRrOOF. This is a consequence of Duality Theorem 3.3.3, Theorem 3.6.3, and
Proposition 3.6.4. ]

If p is finite, then there is still another useful representation of B,S),/qu. For this

we set

w = (w2, .., wq),

provided d > 2, of course.
3.6.7 Theorem Suppose s > 0. Then®
By = B3/ (R, L,(R*™, E)) N L, (R, By (R*, E)), p # o0,
and A A A ’
BLY = BLY (R, Co(RIL, B)) N Co (R, BELY (RTL, E)).
If E is reflexive and 1 < p < oo, then
B,*" = B (R, LR B)) + Ly (R, B,/ (R, B)).

PROOF. The first assertion is clear by Theorems 3.6.1 and 3.6.3 (by (3.6.6) and
(3.6.7) in particular), and by the density of S(R, S(R*"!, E)) in S(R%, E) which is
easily verified (cf. Lemma 1.3.7 in H. Amann [10]). The second claim follows from
Theorem 3.3.3, Proposition 3.6.4, and Lemma 3.6.5. (|

Clearly, there is nothing which singles the first coordinate out. Thus everything
above remains valid mutatis mutandis if we replace z' by another coordinate 7.
Such a relabeling of coordinates will be frequently used in what follows, often
without explicit mention, as in the following example.

3Tt should be observed that for this theorem vector-valued Besov spaces are needed, even in
the scalar case E = C.
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3.6.8 Example Let w be the 2m-parabolic weight vector. Suppose s > 0.
Then
B2 = Ly (R, By(R*™Y E)) N BY*™ (R, LR, E)),  p# oo,

and
BE*™ = ¢y (R, B, (R, B)) N BL*™ (R, Co(R™, E)).

Furthermore,
By /) = L (R, By (R, E)) 4 By /2 (R L, (R4, E)),

provided 1 < p < oo and F is reflexive. U

3.7 Bessel potential spaces
Throughout this section we suppose
® D,Po,P1 G(LOO); S,So,Sl,tGR;
e F is a UMD space which has property (a) if w # w(1,...,1).

Anisotropic Bessel potential spaces are defined by*
HiY = H/Y (R E) := L, (3.7.1)
In other words, [H;/V ; s € R] is the fractional power scale generated by (Ly, J).
3.7.1 Theorem

(i) H,f/y is an M-admissible reflexive Banach space and
H"(RYEY = H*/Y (R, E)
with respect to the Ly,-duality pairing.
(i) H"™ =W for k € N.
(i) BIY <5 Hy S Byl
(iv) Forsg#s1 and 0 <6 <1
(o Hy )y = Hy

and
(Ho Hyt/)g g = B/, 1<¢<o0.

PROOF. (i) The first assertion follows from Theorems 2.3.2 and 3.1.2. The
proof of the duality assertion is similar to the one for Besov spaces and will also be
given in Volume II of H. Amann [4]. The reflexivity is then a consequence of the
one of E.

(ii) is a consequence of Theorem 2.3.8.

4This definition makes sense for arbitrary Banach spaces, and much of the theory developed
below remains true in such a general situation (cf. H.-J. Schmeifler and W. Sickel [54]). A note-
worthy exception is (ii) of Theorem 3.7.1. Since this property renders the Bessel potential scale
useful in practice, we restrict ourselves throughout to the UMD space case.
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(iii) Theorem 3.5.2 guarantees

d d »
B, — L, — BY
From Theorem 3.4.1 we infer BS = .J ng,q for 1 < g < co. Now the claim is clear
(iv) This statement follows from (iii), Theorem 2.3.2(v), and (3.3.12) O
Our next theorem is an analogue for anisotropic Bessel potential spaces to the
characterizations of anisotropic Besov spaces given in Theorems 3.6.3 and 3.6.6
3.7.2 Theorem

14
ﬂ (R4 HS/vi(R%, E)), s> 0,

Hiv = ;
Z (R4 go/vi(R% | E)), s <0.

PRrOOF. (1) Fix s > 0. For 1 <i </ set

ai(&) == (L+ &>/ g e RY.
Note a;(&) ~ (&)*/7. Hence

a;(Dy,) € Lis(H"(R%, E), L,(R%, E)).
Denote by A; the point-wise extension of a;(Dy,) over L, (R(¢d), HS/W (R%, E)).
Then

A; € Lis(L, (R4 H3/Y (R E)), L,(R, E)).
(2) Define

a(§) = ai(§1) + -+ ae(&e), §

=(&,...,&) €eRY =R x ... x R%,
On the basis of Lemmas 1.4.1(i) and 1.4.3 one verifies
a/A5, A5 Ja € M(RY).
Consequently,
[ull gore = 1T7ullp < cl|AT/allam la(D)ull, < CZ @i (Dz; )ullp
‘ ¢
= CZ [Aull, < CZ HUHLP(RW’%),H?” (R4 | E))"
i=1 i=1
This shows

l
I:= ﬂ LP(RM,di)’HS/w R%, E)) & H;/,,_
=1

(3) We also find a;/A; € M(R?) for 1 <i < ¢. Thus, similarly as in the pre-
ceding step,

[Aiullp < el ullp = ellull o
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Hence

4
D I Awully < ellull o

i=1
so that HIS,/V — I. This proves the theorem for s > 0.

(4) If s <0, then the claim follows from what has just been shown, Proposi-
tion 3.6.4, Theorem 3.7.1(i), and Lemma 3.6.5. O

There is an analogue to Theorem 3.6.7 for Bessel potential spaces.
3.7.3 Theorem If s> 0, then
HY = L,(R,HY* (R E)) N Hy/" (R, L,(R*™, E))

and
H*/ = Ly(R, Hy*/* (RI™Y E)) + H, /" (R, L,(R*, E)).

PROOF. Since
s/v d—1
lu(, 2 )”Hg/”l(]R E) = [[(D1)*/*u HLP(]R E)’ ' €eR,

Fubini’s theorem implies

Ju ”i (RS (R,E)) /Rd 1/|<D1>S/u1u(x171-/)|pdx1 dx’

/ H S/Vl 17')Hip(Rd—1)dzl

|u|| b/Vl(RL (Re=1,F))"

Hence Theorem 3.7.2 implies the assertion. O
3.7.4 Example Let w be the 2m-parabolic weight vector. Then
H PR E) = L, (R, Hy(RY, E)) N Hy*™(R, L,(R*™, E))
and
H, 020 (R, B) = L, (R, H, " (R, B)) + Hy*27 (R, L (R, B))
for s > 0. If s = 2mk for some k € N then
we fullp + 105 ull, + V2 ull,
is an equivalent norm for HS*™** (R, E).

PRrROOF. This follows from Corollary 2.3.9 and Theorems 3.7.1(ii) and 3.7.3. O

As a first application of this Theorem 3.7.2 we prove a Sobolev-type embedding
theorem for anisotropic Bessel potential scales, an analogue to (3.3.9).

3.7.5 Theorem Suppose
— |w|/p1 = s0 — |w|/po, 81 > Sp.

Then Hpt'¥ — HO'.
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PROOF. (1) Suppose w is isotropic. Then the assertion has been shown (even
without assuming that E is a UMD space) by H.-J. Schmeifiler and W. Sickel [54].

(2) Suppose sgp > 0. Then we obtain the claim from Theorem 3.7.2 and the
isotropic case.

(3) If s9 <0, fix t > —so. Then J' € Lis(H;? ™", Hy?) for j =0,1. Thus the
statement is a consequence of step (2). O

In the scalar case the results of this section are well-known, except perhaps for
the second part of Theorem 3.7.3; see S.M. Nikol’skii [51] and P.I. Lizorkin [48],
and the references therein.

3.8 Sobolev—Slobodeckii and Nikol’skil scales

In this section
e F is a UMD space which possesses property (a) if w # w(1,...,1).
o 1 <p<oo.

As in the scalar case, E-valued isotropic Sobolev—Slobodeckii spaces are defined by

W =W: (R E Hy €l 3.8.1
p =Wy (RY B) = B;, s€e€R\Z. (38.1)
On this basis we introduce the anisotropic Sobolev—Slobodeckii scale
(W 5 s € R]
by setting
¢
() Lp (R4 Wo/vi (R, E)), s >0,
i=1
M/;Ds/u — %s/u(Rd,E) — Lp’ s =0,
¢
> Ly (R4 W/ (R E)), s < 0.
i=1
The following theorem is an analogue of (3.8.1)
3.8.1 Theorem Fors e R
mv /v : _ :
— H) , if s = mv with m € Z,
P By, ifslvi¢Z, 1<i<L
PRrROOF. This follows from (3.8.1) and Theorems 3.6.3 and 3.7.2. O

Note that I/Vps/ ¥ is neither an anisotropic Bessel potential nor a Besov space if
s # mv and s/v; € Z for at least one i € {1,...,¢}.

3.8.2 Theorem For s € R
—s/v - S/l’ d N/
W,/ = WY (R E)
with respect to the Ly,-duality pairing (-, -), and VVPS/V is reflexive.

PROOF. This is an easy consequence of Proposition 3.6.4 and Lemma 3.6.5. [
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For s > 0 we set

L —s [s]+1
[us pii = H |hil HA;“ ullp HLP((]Rdi)"dhi”hi‘di)
and .
[u]s,p;ia S ¢ N,
[u]spii == . . (3.8.2)
”Vrlu”Pa s € Na
where, of course, the index 4 is omitted if £ = ¢ = 1. Furthermore,
H']]s/u,p = fgaé(gﬂ ]]s/uz,pz (3.8.3)
and
- lls /v = I-lp + [-1s /v p-

It is now easy to prove a useful renorming theorem for the Sobolev—Slobodeckii
spaces of positive order.

3.8.3 Proposition If s >0, then ||| /v ~ [|*[|s/wp-

PRrROOF. It is an immediate consequence of (3.8.1) and Theorems 3.6.1 and
3.7.1(ii) that ||-|l, + [-]s/v, p:i is an equivalent norm for Lp(R(d’di),T/I/Zf/y"'). Now
the claim is clear. t

3.8.4 Theorem If sy # s and 0 < 0 < 1, then

(We e W )y = Bl
PROOF. This follows from Theorem 3.8.2, formula (3.3.12), Theorem 3.7.1(iv),

and the reiteration and duality theorems of interpolation theory (cf. 1.2.6.1 and
1.2.8.2 in H. Amann [4]). O

The next result is an analogue of Theorem 3.6.7 for the Sobolev—Slobodeckii
scale.

3.8.5 Theorem Suppose s > 0. Then
M/ps/u KN Lp (R7M/ps/w,(Rd_17E)) N V‘/ps/wl (R, Lp(Rd_l,E))
and

W,o/v = L, (R, W,/ (RTY E)) + W, %/ (R, Ly (RYL, E)).

PROOF. Since A is equivalent to the natural w-quasi-norm it follows
¢
VI/;,S/V - Lp(Rdflvms/wl (R, E)) N ﬂ Lp (Rdfl,%s/wj (R,E))
j=2
If s/wi € N, then we deduce from Theorem 3.7.1(ii) and Fubini’s theorem
Ly, (R We/“r (R, B)) = Wi/ (R, L,(RY™Y, B)). (3.8.4)
If s/w; € R\N, then (3.8.4) follows from (3.6.6).
By definition,
’
Ws/w Rd 1 E m Rd 1 Ws/w] (R E))

Jj=2
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This proves the statement for %S/ Y. The assertion about V[/p_s/ ¥ follows now by

duality. O

3.8.6 Example Let w be the 2m-parabolic weight vector. Then
%(5,5/2771) - LP(R,VV;(Rdil,E)) N %3/2771 (R, LP(RdflvE))
and
VV;D_(S’S/QW) - LP<R, I/I/;)_S(Rd_l,E)) + V[/;)—s/Qm (R, Lp(Rd_l,E))
for s > 0. Furthermore, if s = 2mk + j + 0 for some j,k € N with 7 <2m — 1 and
0<# <1, then

ue V[/;)(S,S/Qm) (Rd, E) iff u, 81{6“, Vi',mk’-’_ju S Lp(Rda E)
and, provided (j,6) # (0,0),

1/p
[afu] (G+0)/2m.pit = (/ [3tku(x’, ')]Z()j-&-@)/Qm,p dx/) < o0

Rd—l
and, if 8 # 0, also

4 , 1/
(V2T 4yl pear = (/R [Vzmkﬂu(.,t)};p dt) " < .

In particular, if m =1 and 0 < € < 1, then
u e VVp(e’e/z) iff uw € L, and [u]g p.ar + [u]g/gm;t < 0
and
u € W;,(l’lm) iff uw € Ly, and ||Varullp + [u]r /2, p < 00,
and
= ‘/Vp(1+9,(1+9)/2) iff u c Lp and ||vx/u||p + [vac'u]Q,p;x’ + [u](1+9)/2,p;t < 00,
where |||, is the norm in L, = L,(R%, E).
PRrOOF. This follows from the preceding theorem and well-known renorming

results for isotropic Slobodeckii spaces (e.g., Theorem 2.5.1 and Remark 2.5.1.4 in
H. Triebel [65], whose proofs carry over without change to the E-valued case). O

Besides the Slobodeckii spaces the Nikol’skil spaces form an important subclass
of Besov spaces. As in the scalar case they are defined in the isotropic situation by

N — NO(RA B Hp, s €N,
p =Ny (L E) = By, s€RT\N.

In analogy to the definition of the Sobolev—Slobodeckii scale the anisotropic
Nikol’skil scale [N,}q/u : 5> 0] is defined by®

‘
N3/ = N3/*(R%, E) = (] Lp(R@4), N3/7 (R, E)). (3.8.5)
i=1
Defining [-]s/up,00 by replacing p in (3.8.2), (3.8.3) by oo, it follows from Theo-
rem 3.6.1 and Proposition 3.8.3 that

H'HS/lI,p,oo = HH;D + [[']]S/u,p,oo (3'8'6>

5Note that this scale is defined for s > 0 only and that we do not treat the case p = 1.
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is an equivalent norm for N;/ Y. Furthermore, the following analogue to the first
part of Theorem 3.8.5 is valid:

N3/ = Ly (R, Ny/* (R4, B)) N N3/ (R, Ly (R, E)). (3.8.7)

We leave it to the reader to write down explicitly the meaning of these facts in the
case of the 2m-parabolic weight vector.

As usual, ﬁf;/'/ is the closure of S in N,f/u. This defines the anisotropic small
Nikol’skil scale whose importance lies in the fact that it is a densely injected
Banach space scale. Scalar isotropic and anisotropic Nikol’skii spaces have been
introduced by S.M. Nikol’skif in [50] and have been intensively studied by him and
his school; cf., in particular, his book [51].

3.9 Holder scales

Now we suppose
e F is an arbitrary Banach space.
For k € N we set
CE=CHRLE) == ({ueCy; 0"ueCo, |af <k}, |]lko0)-

It follows that C¥ is a closed linear subspace of BUC*, hence a Banach space. It is
not difficult to see that

C¥ is the closure of S in BUC*.

In analogy to (3.8.1), but restricting ourselves to s > 0, we define an isotropic
Banach scale, the small Holder scale, by

C5, seN,
Bs, seRT\N.

On this basis the anisotropic small Hélder scale is introduced by

Gy = C3(RLE) =

¢
o = Gy (R, B) := [ Co (RIS, Gp/™ (R, B))
i=1
0/v ., _
for s > 0, and C)' ~ := Cy.
Similarly as in the proof of Proposition 3.8.3, we see

”'Hcg/" ~ H'HS/V,OO = ||||<>o + [H]S/V,oo- (3~9~1)
It also follows from Theorem 3.6.3
cv =BV, s/uiéN, 1<i<Ct. (3.9.2)

From (3.3.13), (3.5.7), and the reiteration theorem for the continuous interpolation
functor we deduce

(€, C ) = BE, 0<sp<s, 0<O<1. (3.9.3)
There is also an analogue to the first part of Theorem 3.8.5, namely,
Civ = Cy(R, G5/ (R E)) N Cy/“ (R, Co (R, E)) (3.9.4)

for s > 0.
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Using (3.9.2) we can now complement our embedding results by the following
anisotropic version of the SOBOLEV EMBEDDING THEOREM.
3.9.1 Theorem Suppose k € N, 1<p,q< o0, and s >t+ |w|/p. Then
Byl =yl
If 1 <p< oo, then
H;/V (i) CS/V7
provided E is a UMD space which has property («) if w # w(1,...,1).
PRrROOF. This is a consequence of Theorems 3.3.2 and 3.7.5, and of (3.9.2). O

In the following example we consider the particularly important case where w is
the 2m-parabolic weight vector. In this situation we set for 0 < 6 < 1

(@', t) = v(y',1)|

[V]6,00;07 :=SUp  SUP

tER g/ 3/ €RI—1 |.'I/'l — y/|9
and , ,
['U]H .= sup sup |’U($ ,S) — ’U(l‘ 7t)|
;0050 T
a/€RI—1 s,tER |s —t[°

where here and in similar situations it is understood that ' # 3’ and s # t, respec-
tively. We also put

[v]o .f sup lv(2',5) —v(y', 1)
,oo;par +— .
’ (@ s), (0 (|77 = ¥'|2 4 |s — 1])0/2

Thus [-]9,c0;par is the §-Holder seminorm with respect to the parabolic metric (1.3.3)
on R = R4~ x R. It is not difficult to verify

[J6,00ipar ~ [-]o,0050 + [-]o/2,00:t- (3.9.5)
3.9.2 Example Let w be the 2m-parabolic weight vector. Then
C§* P (RY, B) = Co (R, C3(RYL, B)) N Cy* (R, Co(R?, E))
for s >0. f m=1and 0 <6 <1, then
= [|ulos + [u]p,c0ipar
is an equivalent norm for Cé‘”’“’(Rd, E),
u = [ulloo + [[Varulloo + [u]1/2,00:
is an equivalent norm for Cél’l/z) (R4, E), and
U= [Julloo + [ Varulloo + [VZ’”]G,OO;I’ + [u](1+9)/2,oo;t

1+e,(1+9)/2)(Rd )

is an equivalent norm for Cé , where ||-||oo is the maximum norm

on R?.

PRrROOF. This follows by easy arguments from (3.9.4) and (3.9.5). O






CHAPTER 4

Distributions on half-spaces and corners

This last chapter of Part 1 contains an in-depth study of trace and extension
theorems for anisotropic Bessel potential and Besov spaces. Of particular relevance
for the weak theory of parabolic problems are such theorems for spaces on corners.
Most of these results are new and far from being straightforward extensions of
known theorems.

4.1 Restrictions and extensions of smooth functions
We denote by
H? := Rt x R?!
the closed right half-space in R? and by 9H? = {0} x R¢~! its boundary.! Given

any open subset X of H¢, a point z € X NOHY, and a map f from X into some
Banach space, by the partial derivative 0y f(z) at 2 we mean the right derivative

O1f (@) = Jim (f(z +ter) = f(2)) /1,

of course.
Let F' be a Banach space. We write
S(H?, F)

for the Fréchet space of all smooth rapidly decreasing F-valued functions
on HY. Tts topology is induced by the family of seminorms

U Qp.m(u) := max sup (z)* |0%u(x)], k,m €N, (4.1.1)
’ lal<m 4epd

thus by restricting the usual seminorms of S(RY, F) to H¢. It contains D(H¢, F),
the space of test functions on H?, as a closed linear subspace, where D(H?, F) is
given the usual LF-topology. This space has to be carefully distinguished from

D(HY, F)
which is identified with a subspace of D(R, F) by extending u € D(H, F) by zero

over H?.

We shall now construct an extension operator from S(H?, F) into S(R?, F).
For this we employ the following lemma which is taken from R. Hamilton [38].

1We often identify OH? with R4~!. The reader will easily recognize which representation is
used in a given formula.

71



72 4 DISTRIBUTIONS ON HALF-SPACES AND CORNERS

4.1.1 Lemma There exists h € C"X’(H‘%*,R) satisfying

/ t* |h(t)| dt < oo, s € R, (4.1.2)
0
and -
(-1)’“/ thh(t)dt =1, kez, (4.1.3)
0
as well as
h(1/t) = —th(t), t>0. (4.1.4)

PROOF. Denote by
C\Rt - C, 2z~ 24
the branch of z'/4 which, for = € R*, satisfies (x +i0)*/* = /4. Then
(x—i0)/* =424 x>0
Put
f(z) =1 +2)texp(—(1 -9z — (1 +i)z7Y), zeC\RT.
Then
flx+1i0)= (14 x)_le_(xl/4+x71/4) (cos(x1/4 — 7Y% 4 sin(at/4 — :1:_1/4))
and
flx —1i0) = f(z +10), r € RT.

Let T be a piece-wise smooth path in C\R™ running from co — 40 to oo + 0. Then,
by Cauchy’s theorem,

/ 2P f(2)dz = 2i / (1+ x)*lxke*(zl/uw_lﬂ) sin(zt/* — 274 dz  (4.1.5)
r 0

for k € Z. Since 2‘f(z) — 0 for each £ € N as |z| — oo, we can apply the residue
theorem to deduce that

/ 2F f(2) dz = 2mi Res(f, —1) = 2m'(—1)ke*2\/§,
r

thanks to (—1)1/* = (1+4)/v/2. Thus, putting
h(t) == w7 Le2V2(1 4 ¢) " Lem T ginl/4 — =1/
for t > 0, we see that (4.1.3) is true. The remaining assertions are obvious. (]

We write x = (y,z') for the general point of H? with y € R*. Then, given u in
(L1 + Loo)(HY, F), we set

eu(x) ::/ h(t)u(—ty, ") dt, a.a. x € —HY, (4.1.6)
0
and
u(x), aa. xec HY
etu(x) == . (4.1.7)
eu(r), aa. zc —HY

We do not indicate dimension d in this notation since it will be clear from the
context.
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4.1.2 Lemma Suppose 1 < p < co. Then
et € L(SHY, F),S(RY, F)) N L(L,(HY, F), L,(R%, F)).

PROOF. (1) The assertion concerning the L,-spaces is immediate by (4.1.2)
and

A ey (4.18)
for 1 < p < o0, and
vl e, ry < Wl Lo e, my + 1V Lo (—14, Y-
(2) Suppose u € S(H?, F). Then, given o € N, it follows from (4.1.2) that
0% (cu)(z) = (—1)*' /0 h t* h(t)0u(—ty, 2') dt, =z € —H". (4.1.9)

Thus eu € C®°(—H?, F) and (4.1.3) implies 0%u(0, 2') = 9*u(0, 2’) for ' € R% and
a € N, This proves etu € C®(R?, F).
From (4.1.2) and (4.1.9) we easily deduce e* € £(S(H?, F),S(R%, F)). O
We denote by
T SRYF) - S(HL F),  w s u|HY
the point-wise restriction operator for H<.

4.1.3 Theorem r* is a retraction from S(RY, F) onto S(H?, F), and e* is a
coretraction.

ProoOF. This follows immediately from Lemma 4.1.2. O

This is the well-known extension theorem of R. Seeley [59], who based its proof
on a discrete version of Lemma 4.1.1, extending the classical reflection method
(e.g., Lemma 2.9.1.1 in H. Triebel [65]).

The trivial extension operator for H¢,
eg + (L1 + Loo)(HY, F) = (L1 + Loo) (R, F),
is defined by

N w on H¢,
egu = -
0 on —H-"“.

We set
SMHYF) :={ue SH!,F); 0°|dH! =0, « € N }.
It is a closed linear subspace of S(H?, F'), hence a Fréchet space.

4.1.4 Lemma D(H?, F) is dense in S(H?, F).
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PrOOF. (1) Set pu(z) := u(x — h) for z,h € RY. For t > 0 put
pt = ’r'+ [¢] Ttel [e] eg

where e; = (1,0,...,0) € H% Since differentiation and translation commute it is
easily verified that {p; ; t >0} is a strongly continuous semigroup on S (]Ii]Id, F).
Note

supp(pyu) C te; + HY, u € S(I[-O]Id, F), t>0.

(2) Suppose
uwe S, F), supp(u) C tey +H? for some ¢ > 0.
Fix ¢ € D(RY) with ¢(x) =1 for |z| < 1 and put ¢, := p(x/r) for r > 0. Then
Uy 1= PpU € D(]ﬁld,F), r> 0.

Since (x)* < (x)k*1/r for |z| > r and since u, — u = (¢, — 1)u and 9”¢, vanish for
|z] < 7 and B € N?\{0} we obtain from Leibniz’ rule

sup (2)* |0% (u, — u)(z)]

zeH?
< cla, k) Z =10 sup (2)* |09 Pu(z)| < ek, m)r~ qrirm(u)
B<a zeH?
- |z >r
for |a| <m, k,m €N, and r > 1. Thus u, — u in S(H?, F) for r — oo. This and
(1) imply the statement. O

It is clear that in the above definitions and theorems we could have replaced H¢
by the left half-space —H¢ using obvious modifications. We denote the correspond-
ing extension and restriction operators by e™, e, and r~, respectively.

Following essentially R. Hamilton [38], we set
ra =rt(l—er7), 1y i=r (1—etrh). (4.1.10)
Then
re € L(S(RY, F), S(+HY, F)). (4.1.11)
However, a more precise statement is true. For this we first note some simple but

fundamental observations (cf. Proposition 1.2.3.2 in H. Amann [4]).

4.1.5 Lemma Let X and Y be LCSs and suppose r : X — ) is a retraction
and e a coretraction. Then
p=er € L(X) (4.1.12)
is a projection,
X =im(p) @ ker(p) = e @ ker(r),
and
r € Lis(e), V). (4.1.13)
PROOF. Clearly, p? = (er)(er) = e(re)r = er = p. Hence
X =1im(p) ® ker(p) = pX @& (1 — p)X.

Moreover, rp = r implies ker(p) C ker(r). Thus, since p = er gives the converse
inclusion, ker(p) = ker(r). From this we deduce that r is a continuous bijection
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from pX onto Y, and e is a continuous inverse for r|pX. Hence pX = e) and
(4.1.13) is true. O

4.1.6 Lemma Let Y and Z be LCSs and suppose r : Y — Z is a retraction.
If X is a dense subset of Y, then r(X) is dense in Z.

PROOF. Choose a coretraction r¢ for r. Suppose z € Z and U is a neighborhood
of z in Z. Then r~1(U) is a neighborhood of r¢(z) in ). Hence there exists
xr € X Nr~Y(U) due to the density of X in ). Then r(z) € r(X) N U. This proves
the claim. O

4.1.7 Theorem r{ is a retraction from S(R, F) onto S(+H, F), and el is
a coretraction.

PROOF. Theorem 4.1.3 and Lemma 4.1.5 imply, with p~ = e~ r™,
ker(r~) =ker(p”) =im(l —p~).
Clearly, if u € ker(r~), then u(x) = 0 for € —H<. Hence
rg =rt(1—p7) € L(SRY, F),S(H?, F))
and rd efu = u for u € S(Hf}ld, F). This proves the H4-claim. The proof for —HY is
similar. O
4.1.8 Theorem The following direct sum decomposition is valid:
S(RLF) = etSH?, F) @ e S(-H, F).

PROOF. Due to Theorem 4.1.3 and Lemma 4.1.5 it is enough to show that,
setting S := S(RY, F),

(1-p")S =ey S(-H F). (4.1.14)
Since (1 — p*)u vanishes on H? for u € S, its restriction 7~ (1 — p*)u to —H? be-
longs to S(—H?, F). Hence ey~ (1 — p*)u = (1 — p*)u which proves (4.1.14). O

Clearly, there is a similar decomposition if H? is replaced by —H?<.
efrt +egry =1s

4.1.9 Corollary , r*ef =0, and rfe¥ = 0.

4.1.10 Remark Of course, the extension operators e™, eg and the restriction
operators rT, rar depend on the Banach space F' as well which we do not notationally
indicate. This is justified by the following observation: suppose F} — Fj and denote
by 7"?;.) the retraction from S(R?, F;) onto S(H?, F;) and by ea) the corresponding
extension. Then the following diagram is commuting;:

SR, F) — S(RY, Fy)

+ + + +
eH) “ € ") I €0

SHY ) —> S(H?, Fy)

In this sense 7+ and e and, consequently, T(T and 68' are said to be independent
of F, or universal.

PRrROOF. This is obvious by the construction of these operators. O
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4.2 Distributions on half-spaces

Let F' be a Banach space, X and Y LCSs, and f a continuous linear map
from X into Y. Then, given u € L(), F'), the pull-back f*u =wo f of u with f
belongs to L(X, F), and

1" € L(LW, F), £(X, F)).
In particular,
i X =Y = " LY, F)— LX,F), u—u|X,

which means that i*u = u|X is continuous on X for u € L(Y,F). If X is dense
in Y, then ¢* is injective. Thus

iix Ly = i LOLF)— L(X,F). (4.2.1)
Also note
feLis(X,Y) = f elis(CV,F),LX,F), (f'="1" (422
In the special case F' = C we have L(X,C) = X’. Thus (4.2.1) generalizes
xdy = yox.

Suppose r : X — ) is a retraction and e : ) — X a coretraction, that is, the
diagram

Yy
is commuting. Then
L(X,F) ~——— LV, F)
4.2.3
N (1.2.)
LY, F)

is also commuting. Hence e* is a retraction from £(X, F) onto L(Y, F), and r* is
a coretraction. Moreover, setting p := er,

rie* = (er)* = p*
shows that p*, the pull-back of p, equals the projection r*e* associated with (4.2.3).
Recall that D’ (Hiﬂd, F), the space of F-valued distributions on ﬁd, is defined by
D'(HY, F) := L(D(H?), F).
In analogy, we denote by

D'(H%, F) := L(D(H"), F) (4.2.4)
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the space of F-valued distributions on H?, and by
S'(HY F) = £(S(HY),F) and S'(HY F):=L(S(H?),F) (4.2.5)
the space of F-valued tempered distributions on H?, and on ]ﬁld, respectively.
An obvious modification of step (2) of the proof of Lemma 4.1.4 shows
DY, F) <& S(HY, F).
Using this (with F' = C) it follows from (4.2.1)
S'(H, F) — D'(H, F).
Similarly, we deduce from Lemma 4.1.4
S'(HY, F) — D'(H?, F).
Thus the elements of S'(H%, F) and S'(H% F) are indeed distributions on H¢
and H?, respectively.

Note that
SHY F) x SHY) — F, (u,¢) — [ updz (4.2.6)
Hd
and
S(HY,F) x SHY) — F, (u,¢) — [ upds (4.2.7)
Hd
are bilinear continuous maps satisfying
/ ©d%udx = (—1)l°l / ud*pdr, ae N4, (4.2.8)
He He
in either case. Given u € S(HY, F), respectively u € S(Jﬁld, F), denote the map
p up dx
Ha

in the first case by T, and in the second one by Tu Then
T:=(u—T,): SH F)— S'H,F)
and ) ) )
T:=(uwT,): SHF)— S H,F)
are continuous linear injections. By means of 7' we identify S(H¢, F') with a linear
subspace of S’(H¢, F'). In other words,

S(H?, F) — S'(H?, F)
by identifying u € S(H?, F) with the F-valued distribution

@ = u(p) =Tup = / upde,  ¢e S(H?).
Hd

It follows from (4.2.8) that 0%u is identified with the distributional derivative 0*T,
of T,. Similarly,
SHY, F) — S'(H?, F)

by identifying u with T,,. These injections correspond to the canonical embedding

S(RY, F) <L S'(RY, F)
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which identifies u € S(R?, F') with

@H/ﬂ{duapd:ﬂ, @ € S(RY).
These canonical embeddings will be used throughout.

4.2.1 Lemma If (u,¢) € S(HY, F) x S(RY), then et u(p) = u(rg ¢).

PROOF. The definition of etu € S(R?, F) gives

(etu)(p) = /]Rd petudr = /Hd pudr + /Hd peudx. (4.2.9)

By Fubini’s theorem

0 0 [e%s)
/ oy, )euly,-) dy = / ©(y,) h(t)u(—ty,-) dt dy
- 0

— 00

where we used (4.1.4) in the next to the last step. Thus

/ peudxr = —/ (ep)ude. (4.2.10)
_Hd Hd
Define eu on H? by replacing x € —H? in (4.1.6) by = € H%. Then

oyl { ply.a), y<0,
gp(y,2’), y=0.
Hence
rg ey, o) =t (L —eTr7 )y, a") = p(y,2') — ep(y,2’) (4.2.11)
for y > 0 and 2’ € R4~ Now the assertion follows from (4.2.9) and (4.2.10). O

After these preparations we can prove the following fundamental retraction
theorem for tempered distributions on H?.



4.2 DISTRIBUTIONS ON HALF-SPACES 79

4.2.2 Theorem The following diagram is commuting:

et €9
SHLF) =——= SRLF) ——= SHLF)

rt rd
K K K
o () ()"
S'(HL F) ——= S'RLF) ——= S'(HYF)

and (ed)* and (eT)* are retractions with respective coretractions (rg)* and (rT)*.

PrROOF. (1) Lemma 4.2.1 guarantees the commutativity of the diagram

et

SH?, F) S(R?, F)
Do
S'(HY, F) S (R F)

Given v € S(R?, F) and ¢ € S(H?),

o) = [ ovde= [ vefids = () o)

This proves the commutativity of

T’+
S(H?, F) SR, F)
'( (eg)” {
S'(HY, F) S (R F)

Now the assertions for the left half of the diagram of the statement follow from Theo-
rems 4.1.3 and 4.1.7, the fact that S(R?, F) is dense in S'(R%, F), and Lemma 4.1.6.

(2) Suppose u € S(H?, F) and ¢ € S(R?). Then
(edu)(p) = / updr = / urtpdz.
Ha Ha

Thus efu = (rT)*u for u € S(H?, F) so that

€
S(HY, F) S(RY, F)
|
S'(H*, F) S'(R4, F)

is commuting. As in the proof of Lemma 4.2.1 we obtain from (4.2.11)

(rgu)(p) =uletp), ueSRLF), ¢eSH).



80 4 DISTRIBUTIONS ON HALF-SPACES AND CORNERS

This shows the commutativity of

S(HY, F) i S(R?, F)
e
S'(HY, F) S (R F)

Now the assertions for the right half of the diagram of the claim follow again from
Theorems 4.1.3 and 4.1.7, the density of S(R?, F') in S'(R?, F'), and Lemma 4.1.6.

(3) The last part of the statement follows from Theorems 4.1.3 and 4.1.7 and
from (4.2.3). O

This theorem shows that (rg)* and (e )* are the unique continuous extensions
of et and rT, respectively. Thus we can use the same symbols for them without
fearing confusion, that is, we set

Ti=(eg)",

T e et =), ry= (e,

Evidently, corresponding results are valid for r—, e™, 7, and e, .

4.2.3 Corollary The diagram
SR, F) = et S(H?, F) @ ey S(—HY, F)

RO O
S'(RY,F) = et S'(HY, F) & e S'(—H?, F)

is commuting. An analogous statement holds if H is replaced by —H.

PRrROOF. This is a consequence of Theorem 4.1.8 and the preceding considera-
tion. O

The crucial observation formulated in Lemma 4.2.1 and Theorem 4.2.2 are due
(in the scalar case, of course) to R. Hamilton [38].

4.2.4 Theorem
(i) If u € 8'(R%, F), then r+u is the restriction of u to H in the sense of distri-

butions, that is,
rtu(p) =ulp), ¢ e D(HY).
(i) Set

ha(RYF) == {ve SR F) ; supp(v) C H? }.
Then
H{Hd(Rda F) = ea_sl(Hda F)

PROOF. (i) Since rtu € §'(H?, F) and ru(p) = u(ef @) for ¢ € S(HY), the
assertion follows from the density of D(H?) in S(H?) and the identification of
¢ € D(HY) with ef .
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(i) For u € 8'(H%, F) and ¢ € D(RY) with supp(y) C —H? we obtain
etulp) = u(r*p) =0.
Hence e S'(HY, F) C Sjo(R, F).
Conversely, suppose v € Sj, (R?, F). Then, given v € S(f]lf]ld), the density of

D(-HY) in S(—H?) and 1) = ey for ¢ € D(—H4) imply 0 = vieg¥) = r-v(v).
Thus r~v = 0 and, consequently, e"r~v = 0. Hence

v=(1-er")v€elSH,F),
since (the analogue of) Corollary 4.2.3 shows
S' (R, F) = el S'(HY, F) @ e~ S'(-H, F).
From this we infer Sj;, (R, F) C ef S'(H, F). O
4.2.5 Corollary r{ is an isomorphism from Sj,(R%, F) onto S'(H?, F).
PRrROOF. This follows from (4.1.13). O

By means of this isomorphism S’(H¢, F) is often identified with the space of
F-valued tempered distributions on R? which are supported in H?.

‘We introduce bilinear forms
(-, )ga on S'(HY F') x S(H?, F)

and
(-, yma on S'(HY, F') x S(HY, F)
by
(u' u)ga = (et efu)
and
(v, v)ga = (ef v, eTv),
respectively.

4.2.6 Theorem These bilinear forms are separately continuous and satisfy

<U’,U>]§Hd = Aﬂd<u/(x),u(x)>F dx, (u',u) € S(]H[d’F/) X S(]If]ld,F),
and

(V' v)ga = / (V' (z »dr, (W', v) € S(HY, F') x S(H?, F).

PROOF. The continuity assertion is immediate from the corresponding property
of {-,-) on &'(R%, F') x S(RY, F) and the continuity of et and eg .
Suppose u' € S(H¢, F"). Then etu’ € S(Rd F’) and, consequently,

(W, u)ga = (eTu/ e u / (etu u(x)) , dx
z/Hd<u’(x),u(m)>dm,
"

since eju vanishes on —H?. This proves the assertion for (-, )z.. The one for
(-, g follows by an analogous argument. O
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4.2.7 Corollary For (v',w) € §'(R%, F') x S(R%, F),

+

(W' w) = (rtw’ rdw)ge + (rg w', 77 w) _pa

and

(W', w) = (rgw’, rw)ge + (r-w', 7o w) .

PROOF. Suppose w = ¢ ® f with ¢ € S(R?) and f € F. Then the assertion is
an easy consequence of Corollaries 4.2.3 and 4.1.9. Hence it holds for w belonging
to S(R%) ® F by linear extension. Now we obtain the statement by continuity and
the density of S(R?) @ F in S(RY, F) (cf. H.Amann [10, Theorem 1.3.6(v)]). O

4.3 Corners
For k € {1,...,d} we set
K{ := (R*)* x RT*
and call it standard closed k-corner in R?. Note K¢ = H¢. The interior of K¢,
K¢ = (RT)* x RIF,
is the standard open k-corner. Any subset of K% of the form I} x --- x I;, x R4~F

with I; € {R*, R*} and being different from Kg and Kg is called standard partially
open k-corner. A 2-corner is also called wedge.

For 1 < j < k the closed j-face of Kg is defined to be
oK :={zecK¢; 27 =0}.

It is linearly? isometrically diffeomorphic to KZ:} by means of the natural diffeo-
morphism
oK =KI“L x (2t 29, 2% (4.3.1)

by which we often identify (%-Kg with sz without fearing confusion. Note

k
oKy = | o;Ky!
j=1
and ‘ _
0, KE =0 KINOKE ={xecK{; 2 =af =0} = Kg:g

for i # j. Also observe that K is a partially open standard k-corner in R iff

K = Kg\ U oK, (4.3.2)

jeJ*

where J* is a nonempty proper subset of {1,...,k}. Set® J := {1,...,k}\J*. Then

K =K{\ |JoK{

jeJ

2Linearly (isometrically) diffeomorphic means, of course, that the diffeomorphism is the
restriction of an (isometric) automorphism of R¢.

30ur notation implies that face leKfcl belongs to K iff j € J. These faces are the essential
faces of K.
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is the complementary corner of K. We also put
@y =g, (kD =KL

Clearly, S(K¢, F) is the space of all smooth F-valued rapidly decreasing func-
tions on K¢, where dju(x) for z € 9;K¢ and 1 < j <k is the right derivative of
u: K¢ — F. Tt is a Fréchet space with the topology induced by the seminorms
obtained by restricting (4.1.1) to K¢.

Let now K be any (closed, open, or partially open) standard k-corner in R?,
that is, K is given by (4.3.2), where now J* is any (possibly empty or not proper)
subset of {1,...,k}. Given a Banach space F, we denote by S(K, F') the closed
linear subspace of S(K¢, F') consisting of all u satisfying

07" zi—o = 0, meN, jelJ*.

It is a Fréchet space. The space of tempered F-valued distributions on K is
defined by

S'(K,F) := L’(S(K),F).
It follows from (4.2.6)—(4.2.8) that

SK,F)x S(K*) = F, (u,p)+— / up dx
K
is a continuous bilinear map satisfying

/ ©d%udx = (—1)l°l / ud%pde, o e N (4.3.3)
K K

Similarly as in Section 4.2 we identify u € S(K, F') with the F-valued distribution
T, € §'(K*, F) given by

o= u(p) :=T,p = /Kugodm, p e S(K").

This is possible since u — T, is injective. Thus
S(K, F) — S'(K*, F).
For u € §'(K*, F) we define distributional derivatives 0%u for a € N by
0%u(p) = (-1u(@%), ¢ eSEK".

By (4.3.3) this definition is meaningful in the sense that it extends the classical
derivative, that is, The, = 0°T, for u € S(K, F).

The purpose of the following considerations is to generalize the results of the
preceding sections from half-spaces to corners. For clarity, we first consider the case
of wedges (so that d > 2).

It is convenient to set X =Y :=R and Z := R% 2. Moreover, X* and Y+
equal R* with R~ := —R*. Then

Ké=XtxYtxZz Ki=X*txV+xZ

The partially open standard wedges are X+ x Y+ x Z and X+ x V+ x Z. We
also need to consider the three closed wedges X~ x Y+t x Z, X~ xY~ x Z, and
X1t xY~ x Z as well as their open and partially open subcorners. Related to
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these four wedges are the four half-spaces X* x Y x Z and X x Y* x Z. All these
wedges and half-spaces are obviously linearly diffeomorphic to standard wedges

or H,

For abbreviation we write

S)N(X? = 8()} X 57 X Z,F),

We also set

(rx,ex):= (rk,ex

% (T%,@X

X,Y € {R,R* R}

)= (TJXae(J)F,X%

where r;} : Sxxy — Sx+xvy is the point-wise restriction, and 68_, y is the trivial

extension S)-{+ v

: 0 .
Ty Sxxy = Sxxy+, Ty Sxxy =Sy ¢

and corresponding coretractions ey and €Y.

— Sxxy = R%, etc. Of course, there are analogous retractions

y+o

Using Theorems 4.1.3 and 4.1.7 and definitions (4.1.6) and (4.1.7) it is not
difficult to verify that the following diagram of retractions and corresponding core-

tractions is commuting:

Si*xY

X H ek

SXXY

x “ ex

SX+XY

Ty
_—
-~

€y

TY
—_—
-——

€y

Y
—_—

B

€y

Se

Xtxy+

rx H ek

SXXY+

< “ ex

Sx+xy+

(4.3.4)

Then we can apply Theorem 4.2.2 to obtain the following commuting diagram of

retractions:

’
X+txy+

% H eX

/
XxY+

< H ex

S

Xtxy+

’
X+xYy

X H ek

/
SXXY

x H ex

!
i*xY

TY
_ >
-—

€y

Ty
—_—
-+

€y

Ty
—_—

-~

€y

!
X+xv+

% H ex

’
Xx}./Jr

< H ex

S’

X+><).’+

(4.3.5)

Moreover, given any space of the first diagram, it is densely injected in that space
of the second diagram which sits at the same position. For example, looking at the

left lower corners, S

X+xy+

d
— S,

Xtxy+’
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For 1 < i < d we denote by
ri: S'(RYLF) - SR x RT x R F)

the point-wise restriction, and by e; its coretraction, constructed in Sections 4.1
and 4.2 (modulo a relabeling of coordinates). Similarly,

e SR x RT x R F) — S'(RY, F)

is the trivial extension, and r? is the corresponding coretraction.
Let K be any standard k-corner in R?. Using notation (4.3.2) set?
rR = H 5 H r?*, eK = H e; H 62*. (4.3.6)
jed  jredr jeJ  jreJr

Then the preceding considerations extend easily to imply the validity of the follow-
ing generalization of Theorem 4.2.2.

4.3.1 Theorem The diagram

TK
SR, F) ——— SK,F)

ex
[ e
TK
S' (R, F) ——= S'(K*,F)
ex
is commuting, g is a retraction and e s a coretraction for it.
Similarly as in the case of half-spaces, we introduce a bilinear form

(,k: K F)xS(K,F)—C
by
(' u)k == (ex~u', exu). (4.3.7)

Then we obtain a generalization of Theorem 4.2.6:

4.3.2 Theorem The bilinear form (-, )k is separately continuous and deter-
mined by its values on S(K*, F') x S(K, F) which are given by

(v u)g = /<u’(:c),u(x)>F dz, (v',u) e S(K*, F') x S(K, F). (4.3.8)
K
PROOF. The first two statements are clear. Write

eg = E10-+-0€, eK*:gTo...ogz

with &;,¢f € {e;, e?} and note that for each ¢ either €; or €} is the trivial extension.
Thus formula (4.3.8) is a consequence of Fubini’s theorem. O

A1 any product of maps or spaces we always use — unless explicitly indicated otherwise —
the natural ordering such that the object with the lowest index stands on the left.



86 4 DISTRIBUTIONS ON HALF-SPACES AND CORNERS

4.4 Function spaces on corners

Throughout this section we suppose®

e FE is a UMD space which possesses property () if w # w(1,...,1);
o 1<p<oo, 1<g< o0

o 1<k<dand K is a standard k-corner in R?.

Suppose F(R?, E) is a Banach space satisfying

SRY E) <L 3R, E) L S' (R, E). (4.4.1)
It follows from Theorem 4.3.1 and Remarks 2.2.1 that
3K, E) := rx3(RY, E) (4.4.2)
is a well-defined Banach space satisfying
S(K, E) <L 3(K, E) <% (K, E). (4.4.3)

Choosing for § the symbol éz/; we so obtain the anisotropic Besov scales
[ B3y (K, E) ; s €R],
for § = H,f/” the anisotropic Bessel potential scales
[HY*(K,E); s €R],
for § := ]szf/ ¥ the anisotropic small Nikol'skil scales
[N;“(K,E) ; s e RT],
and for § = CS/ ¥ the anisotropic small Holder scale
[C5(K,E); s e RT]
on K.
Similarly as in the case of R", the anisotropic Sobolev—Slobodeckii scale
[We/Y(K,E) ; s eR]
on K is defined by
Wl (i, B) = {Héj:(K, E), seZ,
BV (K, E), s€R\Z.

In general, the diagram

F(RY, E) = F(K,E)
& A (4.4.4)
3K, E

5For simplicity of presentation and since it will suffice for our purposes we consider only
UMD spaces and p € (1, 00) although some of the following results could be shown for an arbitrary
Banach space E and p € [1, oo].
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is commuting. Thus rk is a universal retraction, and eg a universal coretraction
for it, in the sense that, given a Banach space &(R?, E) satisfying

F®RYE) L oRY E) L SR, E),

the diagram
TK
FRLE) ——= 3K E)

[d N {d (4.4.5)

TK
6(RLE) —— 6K, E)
€K

is commuting. Furthermore, r is also independent, in an obvious sense, of the pa-
rameters p, ¢, and s subject to indicated restrictions. This parameter-independence
is also meant when we use the qualifier ‘universal’.

We now collect some important consequences of (4.4.4) of which we shall make
frequent use in the following, often without explicitly referring to the theorems
below.

4.4.1 Theorem The Besov, Bessel potential, small Nikol'skii, small Holder,
and Sobolev-Slobodeckii scales on K possess the same embedding and interpolation
properties as the corresponding scales on RY.

PRrROOF. This follows from Remarks 2.2.1, Proposition 1.2.3.2 in H.Amann [4],
and from (4.4.4). O

Lemma 2.3.7 shows that differentiation behaves naturally with respect to the
order of the Banach scales on R?%. The same is true for the K-case.

4.4.2 Theorem Suppose o € N¢. Then 0 is a continuous linear map from
Bili (K, E) into By ™" (K, B)

and from
HY(K, E) into H{* )/ (K, E).

Ifk € Nand kv > o - w, then 0% is also a continuous linear map from ng/"(K, E)
into C{F' =)/ (K E).
ProOF. (1) Suppose K = H?. Given u € Hg/y(]HId, E) and ¢ € D(H%),
0% (eTu)(p) = (=)l (etu)(0%9) = (=1)*lu(0"¢) = 0%u(p).
From this, Lemma 2.3.7, Theorem 4.2.4(i), and (4.4.3) we infer that 0“u belongs
to Hzgsfa'w)/y(Hd, E). Thus the diagram

vV (WY E) ———  HY*(RYE)
o o° (4.4.6)
+

Hy MWL E) ———— Hy (R E)
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is commuting. This proves the assertion in this case for the Bessel potential scale.
The proof for the other cases is identical.

(2) Assume K = He. If u € Hy (H?, E), then efu € H;/Hgd(]Rd,E) by The-

orem 4.2.4(ii), using obvious notation. It is clear that then 9%(eju) belongs to

(s—aw)/v
Hp,Hd

placing H?, e*, and 7+ in (4.4.6) by He, ed, and rf, respectively. This way we
deduce the assertions for K = H<.

(3) Using (1) and (2) the assertions for the general case follow now by an
obvious argument from the definition of ex and 7. O

(R, E). From this we see that we obtain a commuting diagram by re-

Our next theorem shows that Sobolev—Slobodeckii and small Holder scales of
positive order on K can be characterized intrinsically. For this we define
|| : ”s/l/,p,]K

etc. by restricting integration (respectively the essential supremum) in (3.8.3) to K.
For example, suppose s > 0 and d; < k. Then

_ —ps/v [s/vi]+1 d
8 = [y PP NN gy

4.4.3 Theorem
(i) Suppose s >0. Then ||-||s/upx is an equivalent norm for %S/V(K, E), and
IIls/v,00,x s one for C§(K, E).
Thus if k € N and - w < kv, then
ue WH™(K,E) iff 0°ue Ly(K, E),
and
uwe CH(K,E) iff 0%ue Co(K,E).
(i) Suppose s > 0. Then
uwe BYY(K,E) iff ue Ly(K,E) and [u]y/, px < o,
and u € C’S/"(K, E) iff u belongs to the closure of S(K, E) in
{ue BUCK,E) ; [u]s/u,00x <00}
PROOF. (1) Trivially,
Ireollpxe = [vllpx < llvll,, v € SR E).

Thus, given u € L, (K, E), it follows ||ul[,x < [[ur,z, by definition of the quotient
norm of rgL,. On the other hand, Lemma 4.1.2 and the definition of e and ex
imply
lexull, < cllullpx, — veSK, E).

From this we infer ||+ ||z, < c|||lp,x. This proves rgL,(R%, E) = L,(K, E). Simi-
larly, rxCo(R%, E) = Co(K, E). Thus (i) is true if s = 0.

(2) Assume s = kv for some k € N. Then (i) follows from (1) and the fact,
obtained from (4.4.6), that 0% commutes with rg and eg.
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(3) Suppose s > 0. Givenu : RT — E and t > 0, set ¢;u(y) := u(ty) for y > 0.
Then one verifies AX o), = 1), 0 A for 7, > 0 and k € N.
Set X := L,(RY"! E). Then, by substitution of variables and (4.1.2),

p

[ ke

5UHLP(—R+7X) (H'Ri» dT/T)

/30 -sp /0 ‘/ +1 %u( dt” dyf

0
/ sp/o ‘/ h(t)(AE:ST] 1u)(—ty)dtH]D dyf
0 —00 0

< / PSP /C ‘ /C ts—l/P |h(t)| } C’[,«S]Jrl ’dtH dZ ar
0 0 0

<cl|re

“HL,)(RtX) HLP(H'R""dr/T)

=c [u]gpde;l.

This and (4.1.8) imply

[ +

et ul? = [u]i”p’Hd;l + HT*S HA[TS]H

6UHLP(—RJHX) HLp(u‘v,dT/T)
<c [u]i,p,Hd;l'

Analogously, [etu]s 001 < ¢[U]g00 ma,1. From this and the definition of the (quo-
tient) norm for B;/ Y(H?, E) it follows

||u| B;/V(]Hld,E) < C(Hu”p,Hd =+ [u]s/u,p,Hd)a S S(Hda E)

Similarly,

[l cs/¥ (e, E) < cllulls/p,o0, 1, U € S(Hd, E).

Since the converse estimates are obvious, (ii) is true for s # kv, provided K = H¢.
It is easy to see that it also holds for K = H?. Now the extension to an arbitrary
standard corner K is obvious and left to the reader. (]

Lastly, there is a duality theorem on K which is the analogue of Theorems 3.3.3
and 3.7.1(1).

4.4.4 Theorem Suppose 1 < q < oco. Then B;/q"(K, E) and H;/"(K, E) are
reflexive. Moreover,
s/v - p—s/v %
Bp,/q (K, E) = B, (K ,E') (4.4.7)

and ,
Hy/Y(K,E) = H,"" (K", E'). (4.4.8)

PROOF. (1) Since, by Lemma 4.1.5, B;C;’(K7 E) is isomorphic to the closed
linear subspace eKB;/qV(K E) of By/Y(R? E) and the latter space is reflexive,
Bi/Y (K, E) is also reflexive.

(2) Set px := exrx. Then (4.4.4) and Lemma 4.1.5 imply
B: (R, E) = ex B/ (K, E) ® (1 — px) By/Y (R, E) (4.4.9)
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and

B,*/Y(RLE') = ex- B, /Y (K*, E') & (1 — py-) B/ (R, E'). (4.4.10)

Suppose f = eg-g and u = (1 — px)v with g € B;Z,"(K*, E'Yandwv € B;{;(Rd,E).
We claim
(f,u) = 0. (4.4.11)
Since S(R?) ® E is dense in S(RY, F), hence in Bf;,/q"(]Rd7 E), it suffices to prove the
claim for u = ¢ ® & with p € S(R?) and ¢ € E. In this case
<f, U> = <<6K*g, (]— - eKTK)(p>7§>E'
Now it follows from Theorem 4.2.2 and definitions (4.3.6) that

<€K*9, (1- GKTK)QO> = <9a rr(l — eKTK)SO> =0.
This proves (4.4.11).
(3) From (4.4.9)—(4.4.11) we deduce

(W', w) = (pr-w’, prw) + (1 — pg=)w’, (1 — px)w)
= (v, u)g + <(1 — p)w’, (1 — pK)w>
for (w',w) € Bp_,i;,u(Rd,E’) X B;,/q"(Rd,E) and (u',u) := (rg=w’, rgw). Hence, as

rg and rg« are isomorphisms on the first summand of (4.4.9) and of (4.4.10),
respectively, we see that

() By IY(K*, E') x BY¥(K,E) - C
is a separating continuous bilinear form. This implies
B, */¥(K*, E') — B/* (K, E)’ (4.4.12)
with respect to (-, -)k.

(4) Suppose f € Byl (K,E)'. Then g:= frg € By/Y (R?, E)'. Hence Corol-
lary 3.3.4 implies g € B;fq//u(Rd,E’). Thus rg+g € B;Z,V(K*,E’). By the argu-
ments of step (2) we find

(re-g, u)x = (g, exu) = f(u), u € B;S),/qV(Ka E).
Combining this with (4.4.12) we obtain assertion (4.4.7).

(5) The proof for the Bessel potential spaces is literally the same, except that
we have to use Theorem 3.7.1(i) instead of Corollary 3.3.4. O

4.4.5 Remark The notation introduced above and used throughout most of
this treatise is extremely convenient for handling function spaces on corners. How-
ever, it should be observed that in the particular case of half-spaces it is different
from standard usage. This stems from the fact that we build our theory on the closed
half-space H"™ whereas it is common practice to consider the open half-space, usually
denoted by R’;. For example, ‘our’ Sobolev-Slobodeckii space W, (H") corresponds

to the ‘usual’ W’ (R’}), whereas W;f(H") is usually written as Vi/;j(RiL ete. O
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4.5 Traces on half-spaces
Throughout this section
e F is a UMD space which has property (o) if w # w(1,...,1);
e I<p<oo, 1<qg<oo; (4.5.1)
o d>2.
Recall that w’ = (wa,...,wq) and that Lemmas 3.3.1 and 2.3.5 imply
By/¥(RY E) = By*(R%. E), Hy*R% E)=H)“R"E).

The following proposition is the basis for defining a universal trace operator for
all Besov and Bessel potential spaces of sufficiently high order.

4.5.1 Proposition Suppose s > wi/p. Then
B}y (RY, E) — BUC(R, Ly(R*"", E)) (45.2)
and
H3/Y(R?, E) — BUC (R, L,(R*™, E)). (4.5.3)

PRrROOF. (1) In the scalar case (4.5.2) is a special case of the more general
Proposition 1 in W. Farkas, J. Johnsen, and W. Sickel [23]. It is easily verified that
their proof carries over to the vector-valued situation.®

(2) Since H,.f/u(Rd7 E)— B;{;(Rd, E) by Theorem 3.7.1(iii), the assertion fol-
lows from (4.5.2). O
Note that
v C’(R,S'(Rdil,E)) — SRV E),  u— u(0)
is a well-defined linear map, the trace operator (with respect to z* = 0). Given
any Banach space §(R?, F) satisfying (with obvious identifications)
S(RY, B) — §(RY, E) — C(R, (R, B)),
the restriction of v to F(R%, F) is again denoted by ~ and called trace operator
on F(R?, E). The image space 7§(R?, E) is the trace space of F(R? E). Thus
V§RYLE) — S' (R E),
that is, each element in the trace space is a temperate distribution on R?~1.
In the cases of interest for us we have more information. Namely, by Proposi-
tion 4.5.1,
v: B¥(RY E) — Ly(R E)
is well-defined for s > wy /p. Similarly, if s > wy/p, then
7: Hy/*(RYE) = LR, E).
Thus, if s > w1 /p,

YBi¥ (R, E) — L,(R*, E)

6By Lemma 1.2.1 all quasi-norms are equivalent. Thus, instead of basing our considerations
on A, we can equally well use the Euclidean w-quasi-norm E, as these authors do.
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and

VHSY(RY E) — L,(R*™, E).
In fact, in these cases the trace spaces can be explicitly characterized by anisotropic
Besov spaces.

4.5.2 Theorem Suppose s > w1 /p. Then
VB (RY B) = Bty /P (R E) (4.5.4)
and
yHSY (RY, E) = BE—«/P)/@ (R E). (4.5.5)
Moreover, v is a retraction possessing a universal coretraction.

PROOF. (1) In the Besov space case the assertion follows by literally transcrib-
ing the proof of the corresponding part of Theorem 3 of W. Farkas, J. Johnsen, and
W. Sickel [23].

(2) To prove (4.5.5) we need the vector-valued anisotropic Triebel-Lizorkin
spaces F;/qV(Rd,E) which are defined as in the scalar case (see [23] and, for the
vector-valued isotropic case, Section 15 in H. Triebel [67] or H.-J. Schmeifiler and
W. Sickel [54]). It is not difficult to verify, writing for abbreviation Bf,(q" for
B3 (RY, E) etc.,

B;?{V%FIT{V%V[/;)”‘/”<—>FZTO/O”L>B;’?({O", m € vN.

Using J! € CiS(FZE;ZH)/V, F;/qu) for s,t € R and (3.7.1) it thus follows
FYY s H3/Y s F3/2 s€R. (4.5.6)

p,1 Pp,007
Next one verifies that the proof of Proposition 8 in [23] carries over to the vector-
valued situation to give

V(BY (R B)) = y(FX(RY, B))
(also see Proposition 10 in [54]). Hence the assertion is obtained from (4.5.6)

provided we show that v is a retraction from

F3/Y(RY, E) onto BE~1/P/« (R4 E)

p,q

for ¢ € {1, 00}. This is done by modifying appropriately the proof of Theorem 2.7.2
in H. Triebel [66]. O

4.5.3 Remark In the scalar case it is well-known that
FS o (RY) = HS(RY), 1<p<oo. (4.5.7)
However, this is not true, in general, in the vector-valued situation. In fact, the

vector-valued analogue of (4.5.7) holds iff F is a Hilbert space (cf. Remark 7 in
H.-J. SchmeiBer and W. Sickel [54]). O

The trace operator for H? is defined by

— +
Yome =o€

The following theorem is almost evident. To simplify the notation we write H
instead of H<.
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4.5.4 Theorem Suppose s > w1 /p. Then vau is a retraction from
BY¥(H, E) onto BS7/P/ (W, E)
and from
H3/"(H, E) onto BS~*/P)/“ (9H, E).
It possesses a universal coretraction.
PrOOF. We consider the H-case. The proof for Besov spaces is identical.
First note that yom maps §° := H,(H, £) continuously into
93° 1= B*~1/P)/< (OH, E).
Let v¢ be a universal coretraction for «. Then
Ve =11 0" € LIOFE,T°).

Suppose v € S(OH, E). Then v§uv € §* for all t > 0. Thus y§yv is smooth by the
Sobolev embedding theorem 3.9.1. Hence, given 2’ € R4,

YorYomv(z') = (rTy)(0,2") = v°0(0,2") = vy (a’) = v(2’).
This proves vy V50 = v for v € S(OH, E). Thus, by density and continuity, 7§y is

a right inverse for vysy. O

4.6 Higher order traces on half-spaces

Unless explicitly stated otherwise, throughout the rest of this part it is assumed
e F is a UMD space which has property («) if w #w(l,...,1);
o 1l<p<oo, 1<g< o0

We write H := H? and denote by n the outer (unit) normal on OH, that is,
n :=(—1,0,...,0). Then, given j € N,

0%, := (=1 yom 0 O]
is the the j-th order normal derivative on OH. Note 99 = yap.

Generalizing the Trace Theorem 4.5.4 we shall now show that 97, is a retrac-
tion onto appropriate boundary spaces. The proof will be based on a well-known
characterization of real interpolation spaces by analytic semigroups due to H. Ko-
matsu [43]. For the reader’s convenience we formulate this theorem here since it
will also be used later.

Henceforth,
Ly = Ly(RT, dt/t)
for abbreviation. Recall that H_(X) is the set of all negative infinitesimal gen-

erators of exponentially decaying strongly continuous analytic semigroups on the
Banach space X.
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4.6.1 Proposition Let X be a Banach space and A € H_(X). Then, given
0<f<1andmeN,

T H Htm(l_e)Ame_tAxHX |

L3
is an equivalent norm for (X, D(Am))0 .
PROOF. See, for example, Theorem 1.14.5 in H. Triebel [65] for a proof. O

For completeness we include the case j = 0 in the following theorem, although
it is already covered by Theorem 4.5.4. Note, however, that our construction of a
universal coretraction is independent of the latter theorem.

4.6.2 Theorem Suppose j € N and s > wi(j + 1/p). Then 82, is a retraction
from
BIY(H, E) onto B <1 0F/P)/< (o1 E) (4.6.1)
and from
H3/*(H, E) onto BSG<1U+1/p)/< (9H, E). (4.6.2)
There exists a universal coretraction 5 for it. Furthermore, 75 is for every s € R

a continuous linear map from the space on the right side of (4.6.1), respectively
(4.6.2), into the one on the left side.”

PROOF. (1) It follows from Lemma 2.3.7 and Theorem 4.5.4 that 8%, maps the
first space of (4.6.1), resp. (4.6.2), continuously into the second one.

(2) First suppose s = w1 (j + m) for some m € N. Then, by Theorems 3.7.1(ii),
3.7.3, and Section 4.4,

H/"(H,E) = L,(RT, H/* (R¥™, E)) n W™ (RY, L,(R", E)).  (4.6.3)

Denote by w’ the least common multiple of ws, . ..,ws and set
/ 2w’ d 1 pji2w jw; 1/20" / d—1
K& m) = (Il + ol ) 7, ¢ eriY, pen.

Then F := L,(R?! E) is admissible and [Hf/w’ (RLE) ; t € R] is the frac-
tional power scale generated by (F,Ky(D')).
Put A := K{*(D’). Theorem 2.2.4 implies

AeH_(F), D(A*) =gt/ (RIVE),  keN (4.6.4)
In particular, by (4.6.3)
H/Y(R", E) = L,(RT, D(A7T™)) n W™ (RT, F). (4.6.5)
(3) Set
4
Y = (t — (=1)7 %e_tAv), t>0, veF. (4.6.6)
7!
Then
u ky 70
ke = —1)i ki AF—igt <k<i
o™ ;( ) (i)(j—i)! e 0sksy

"Observe that this means that any two realizations of 'y]c- on different function spaces coincide

on all common elements. Henceforth, we express this by calling such a map again universal.
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Consequently,
1)ka%~50(0 0, 0=k=s-1, 46.7
O S (167
Furthermore,
1 izt i il i a ,
TN = D" ) ————— A e — ADVHS.
J g( )(2)07271)! J
Hence, by induction,
J
I =N et ATTme A, (4.6.8)
i=0
where ¢; = ¢;(j,m). Thus
J
1107 ™50 @lle [, ey < S0 IIEPAH e Aup . (469)

i=0
Fixie{l,...,j}and set 0 := (m —1/p)/(i+m) so that i + 1/p = (¢ + m)(1 — 6).
Then Proposition 4.6.1 implies
H ||ti+1/pAi+me—tA

vlr| L; < loll(r.pcaitmy,,- (4.6.10)
From (4.6.4) and Theorem 3.7.1(iv) we infer
(F, DA ™))g, = (F, B0 (RS0, )

- 1(m—1 ! rmpd—1
= B m=/p)/W (R B,

P

For abbreviation, we set
Hg/u — Hg/"(]HI,E), 3Hg/v — BI()U—wl(J'H/p))/w' (6H, E)
for o € R. Then (4.6.9) implies
||8j+m7jc-v\|Lp <c ||v||aH;/u. (4.6.11)
(4) By the definition of ~¢

[ 150l passm) ||Lp(]R+) <c| ||Aj+m7;””F HLP(Rﬂ

) ) 4.6.12
< CH ||t]+1/PAJ+m67tA,UHF | - ( )

Hence it follows from (4.6.10), as in step (3),
|"7]C‘UHLP(R+,D(AJ'+’")) < C||’UH6H§/V. (4.6.13)

Since F is a UMD space, Theorem 2.3.8, Proposition 3.8.3, and Theorem 4.4.3
imply
N

Iz, @+ + |l L, ®+,F)

is an equivalent norm for W7*™(R*, F). Hence we infer from (4.6.5) and estimates
(4.6.11) and (4.6.13)
NS € LOHSY, HEY).

Now (4.6.7) implies that +§ is a coretraction for 07,
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(5) Suppose w1 (j + 1) < s < wi(j +m) for some m € N. Then, by step (4),
v € g(aH;Jl(j-H)/V,H;Jl(j-ﬁ-l)/v) N E((‘?H;l(j+7”)/’/7H;)Jl(j“rm)/l/).
Thus by complex interpolation, using (3.4.1) and Theorems 3.7.1(iv) and 4.4.1, it
follows that ¢ is a coretraction for 97, € E(Hg/", (?H;/V).
6) Assume s < w1(j + 1) and set p:= w1(j +1) — s. Then
( J p j

ATPlr = KTP(D') € L(OHY™, 0H UHDv)

tA

by Lemma 2.3.1. Since e ** commutes with the powers of A it follows that there

exists a unique extension of 7§ over BH;/ Y. again denoted by the same symbol,
such that the diagram

(&

Vi
w1 (j+1) /v w1 (j+1)/v
ale(J )/ le(] )/
A—P/@1 AP/w1
Vi
OHL" HY

is commuting. Note that the map represented by the right vertical arrow is well-
defined on smooth functions as a map acting with respect to the variable z’ only.

pen G/

Hence by density and continuity it is well-defined on all of . It is clear

that ~§ is a coretraction for 8} if s > wi(j + 1/p). This proves (4.6.2).

(7) Statement (4.6.1) follows now by interpolation, due to (3.3.13) and The-
orems 3.7.1(iv) and 4.4.1. The universality of 7§ is obvious and the last claim is
obtained by observing that there is no restriction from below on s in step (6). O

4.6.3 Theorem Let j; € N satisfy j1 < --- < jg. Then there exists a universal
map ¢ from

k
BY Ut/ (9H Y into By (H, E) (4.6.14)
=1
and from
k
[ BS:—«Gtv/eD/e" (oM, E) into Hy/* (H, E) (4.6.15)
1=1

for s € R such that

O (g 06" = g" if s> w5+ 1/p).

In particular, ¥¢ is a universal coretraction for (93, ...,0%%) if s > wi(jx + 1/p).
PROOF. It is clear that (9!, ..., 07 ) is a continuous linear map from the second

space of (4.6.14), respectively (4.6.15), into the first one, provided s > wy (ji, + 1/p).

Denote by 7§ the universal map constructed in the preceding proof such that
it is a coretraction for 97, if s > wy(j + 1/p). Note that (4.6.7) implies 9%, ~v¢ = 0 if
j<kand s >wi(j+1/p). Suppose (¢',...,g") belongs to the product space in
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(4.6.14), respectively (4.6.15). Set ug := fyflgl. If2<i<kand uy,...,u;_1 are
already defined, then put

'y;(g’ — i _q), if s> wi(Gi +1/p),
Ui ' =Ui—1+ 9 .
V5,9 otherwise.
This induction argument defines uy, in é;(q" (H, E), respectively in HS/U(H, E), and
Oliug, = g' if s > wy(j; + 1/p). Thus, setting v°(g',...,g*) := ug, one verifies by
induction that ¢ has the stated continuity properties. O
4.7 Vanishing traces

Our next theorem gives an important characterization of anisotropic Besov and
Bessel potential spaces on H in terms of the corresponding spaces on H and higher
order trace operators.

4.7.1 Theorem
(i) Suppose k € N and wi(k+1/p) < s <wi(k+141/p). Then
Byl¥ (H,E) = {ue By (HE); &u=0,0<j<k} (4.7.1)
and
HY/Y(HE)={uec HY/*(HE); &u=00<j<k}. (4.7.2)
(i) Ifur(—1+1/p) < s <wi/p, then
Byly(H,E) = By (H.E),  q# oo,
and
HiY(H,E) = H/"(H, E).
(iii) Suppose 0 < s < w1/p. Then
By/(H, E) = BylX (H.E).
PROOF. (1) Let the hypotheses of (i) be satisfied. Theorem 4.6.3 implies
that the second space in (4.7.1), respectively (4.7.2), is a closed linear subspace

of é;(q” (H, E), respectively Hy'¥ (H, E), and it is obvious that l%;,/q"(ﬂfﬂ, E), respec-
tively Hﬁ/ Y(H, E), is contained in it. Thus it suffices to show that S(H, E) is dense
in the space characterized by vanishing traces.

(2) Fix any ¢ satisfying s < ¢ < w;(k+ 1+ 1/p). Then, by® Theorem 3.3.2,
BY/*(H, E) < B}y (B, B).
Furthermore, using also Theorem 3.7.1(iii),

BY/¥(H, E) < H:/¥(H, E).

8For simplicity, we refer here and in similar situations only to embedding and interpolation
theorems, etc., on R%. This is justified by the results of Section 4.4.
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Suppose u € HS/U(H, E) satisfies 92 u = 0 for 0 < j < k. Let € > 0 be given. Then
there exists v € B}t,/ Y(H, E) satisfying

|lw — v||H;/./(H)E) <e.

Hence the norm of 9%v = —97 (u —v) is estimated in B,(gsfwl(jﬂ/p))/w/(@H, E)
by ce for 0 < j <k. Let 7 be a coretraction for (89,...,0F), guaranteed by
Theorem 4.6.3. Set

w:=v—~(v,...,0%). (4.7.3)

Then w belongs to B}g/u(H7 E), satisfies 92w = 0 for 0 < j < k, and

lu— w||H;-/u(H7E) < ce.

This shows that ‘
{ueB/YM,E); dlu=00<j<k} (4.7.4)
is dense in the second space in (4.7.2).
Similarly, we see that (4.7.4) is dense in the second space of (4.7.1). Thus it
suffices to prove the assertion for
BYY(HLE), wi(k+1)<s<w(k+1+1/p). (4.7.5)
(3) Let s be as in (4.7.5). Suppose
u € {’UEB;/V(H,E) s u=0,0<j Sk}.
Since S(H, E) is dense in BY/” (H, E), given ¢ > 0 we find v € S(H, E) with

llu — UHB;/V(H’E) <e.

Define w by (4.7.3). Since v € Bf,/V(H, E) for ecach t > 0, Theorem 4.6.3 and the
Sobolev embedding Theorem 3.9.1 imply

we CPH,E) = C{H,E),  d{w(0,2/)=0, 0<j<k.
t>0
Thus we can assume

we CENBYY(H,E),  0u(0,2))=0, 0<j<k (4.7.6)

(4) Let F be a Banach space. Choose ¢ € D(RT) satisfying ¢(t) =1 for
0<¢t<1/2and ¢(t) =0 for t > 1. Put p.(t) := ¢(t/e) for t > 0 and £ > 0. For
v € L,(H, F) put (¢:v)(z) := @ (t)u(t,z’) for a.a. z = (t,2') € H. Suppose m € N.
Proposition 1.1.1(i) and (ii) and Leibniz’ rule imply

lecvllm.p < cllvllm.p e>1, ve W(H,F). (4.7.7)
It is obvious that, given v € L, (H, F'),
pev — vin Ly(H, F) as € — o0. (4.7.8)
It follows from Proposition 3.5.3 and Theorem 4.4.1 that
B} (H, F) = (L, (H, F), W, (H, F))T/m’p, 0<7<m.

Thus
I-llsy < ell-Ip~"™ -l (4.7.9)
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Hence we deduce from (4.7.7) and (4.7.8) that, for 7 > 0 and v € B (H, F),
pev — v in By(H, F') as € — oo. (4.7.10)
Let X := L,(R¥” 1, E) and YV := B;/w, (R4=1 E). Then Theorems 3.6.7 and 4.4.3

imply
By/Y(H, E) = L,(RT,Y) N By* (R", X). (4.7.11)

Suppose u satisfies (4.7.6) and set u = u(-,2’) from now on. Then p.u € D(RT,Y).
This shows that we can assume

u € D(RT,Y), Pu(0)=0, j=0,...,k (4.7.12)

Then (1 — ¢.)u € D(R*,Y) and it is obvious that (1 — ¢.)u — u in L,(RT,Y)
as € — 0. Set m:=k+ 2. Thus we see from (4.7.11) and Theorem 3.6.1 that it
remains to show, due to u — (1 — ¢ )u = p.u and Remark 3.6.2,

IAR (peu) (W) %
lpeul? 0 = / / hps/wl h —0 (4.7.13)

(5) By induction one verifies

as € — 0.

m

AR (peu)(y) = Z(T;)Aﬂ%(ym;’“iu(y + jh). (4.7.14)

Jj=0

Fix j € {1,...,m}. Note App:(y) = 0 if y > . Thus, by a change of variables,

// 1A% e (y) A0 uly + jh)|I% dy dh

hps/w R
N o (4.7.15)
_ 51 ps/wi |A ‘p ||A6t ( (Z +t.7))|| dz
tp(S/wl m+j) tp(m—j)

By the mean value theorem we deduce, setting x := z + tj,

1A% u(e))llx

< (et)y™I /01 e /01 0™ Tu(e(@ + (11 + -+ + Tij)t)) HX dr - dTm—j.
From 9'u(0) = 0 for 0 <4 < k and the fact that u has compact support it follows
0" Iu(ex) = (ex)? v (e), r € RT,
for some v; € D(R',Y’). Hence
1A% u(ez)|lx < ¢ge™ M (14 1),

Similarly, 4
Ao <¢t!,  0<y<1, 0<t<1
Thus we find that the first double integral in (4.7.15) is estimated from above by

1
celtpm—1-s/w) / pplm—s/w)-1 gy
0

Since m — s/w; = k4 2 — s/wy > 1 — 1/p this integral exists. Hence the first inte-
gral in (4.7.15) is from estimated above by ce?, where 0 := 1+ p(k + 1 — s/w;1) > 0.
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(6) Fix § > 0 such that u(y) = 0 for y > §. Since p.(y) = 0 for y > ¢ it follows

pe(y) A7 u@)l% 6||Am Wk, dh
e e [

§cs/ pp(m—s/wi)= Ldh < ce.
0

From this and step (5) we infer, due to (4.7.14), that (4.7.13) is true. This proves
assertion (i).

(7) Suppose 0 < s < w;/p. It is clear that é;/qu(]lfﬂ,E) is a linear subspace
of B;{QV(H E). Similarly, HS/"(]HI E)cC HS/"(]HI E). Thus, as above, it remains to
show that D(H, E) is dense in Bp(qV(H, E), where 0 < s < wy/p. But this follows

from steps (5) and (6) setting there m = 1. This proves (iii) and assertion (ii) for
s> 0.

(8) The missing part of statement (ii) is now obtained by duality, due to The-
orem 4.4.4. (]

Observe D(H, E) <, S(H, E) and (4.4.3) imply that é;g’(]ﬁl,E), respectively
HS/"(]ﬁL E), is the completion of D(H, E) in B;,/qu (H, E), respectively HS/V(IHI, E).
Hence, e.g. Theorem 2.9.3 in H. Triebel [65], Theorem 4.7.1 is well-known in the
(scalar) isotropic case. Note, however, that even in this case our proof differs
substantially from the one given in Triebel’s book.

4.7.2 Corollary If s < wy/p, then D(H, E) is dense in é;(q"(H, E) and in
1" (1, E).

PROOF. Setting §F*(X) := é;(qV(X, E), resp. §°(X) := HIS,/V(X7 E), where X
equals either H or H, the claim follows from

§' () = §' () <> 3" (H)
for t > 0 with s <t < wy/p. O

Note that —n = (1,0,...,0) is the outer unit normal of —H, thus the inner
unit normal of H. Suppose j € N and s > w;(j + 1/p). Then

&, = om0 &) € L(BYY (—H, E), BSy <1 0H/D) (9w, E))
is the j-th outer normal derivative for —H on d(—H) = 0H and
&, € L(BYY (H, E), BS, < U/ (gm, B))
is the j-th inner normal derivative for H on 0H. For u € é;(qu (H, E) it follows
du= (=1, u. (4.7.16)
Similar results are valid for u € H;/V(H, E).

The following patching theorem shows that there is a converse result. It is an
easy consequence of Theorems 4.6.3 and 4.7.1.
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4.7.3 Theorem Suppose either s < wy/p or
wi(k+1/p) <s<wi(k+1+1/p) (4.7.17)
for some k € N. Let
u* € BylY (+H,E), resp. vt € H/*(+H, E),

and suppose

Fut = (=19 u", 0<j<k, (4.7.18)
if (4.7.17) is true. Set

ut on H,
u =

u- on —H.
Then u belongs to é;(qy(Rd, E), respectively H;/"(Rd, E).

PROOF. (1) Let (4.7.17) be satisfied. Set §°(X) := é;(qy(X, E), respectively
F(X) = H;/V(X, E) for X € {R% +H}. Let v :=u" —rte u~. Then v € F*(H).
Hence (4.7.16) and (4.7.18) imply

Hov=>ut —dle u” = ut — (=170 ,,u” =0.
Thus v € §*(H) by Theorem 4.7.1. Therefore w:=e u~ +efv € F(R?) with
r~w=u" and r*w =rte"u" +rTefv = ut. Consequently, u = w € F*(R?).
(2) Suppose s < wy /p. Then D(+H, E) is dense in §*(+H) by Corollary 4.7.2.

It is obvious that the claim is true for u* € D(+H, E). Hence the assertion holds
in this case as well. 0

4.8 Normal boundary operators on half-spaces

In this section we assume in addition
e [ is a finite-dimensional Banach space and
Fo, ..., F, are nontrivial linear subspaces thereof; (4.8.1)

o 0<myg<mg << my are integers,

where ‘nontrivial’ means # {0}. Then F := (Fp,..., F,) is said to be a sequence
of range spaces and m := (mo, ..., my) an order sequence of length n + 1.
We set

B =B(F):={b=(by,...,by) € L(F,TI[_oFi) ; bi is surjective }. (4.8.2)

It is easily verified, by introducing a basis in F' and identifying it with CV, for
example, that
B is open in L(F, [/ F;). (4.8.3)
Given a finite-dimensional Banach space G, we identify a € L(F, G) with
l1®a: EQF—-E®G, e®f—eaf

sothat a € L(E® F,E® G).
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Keeping this identification in mind we define, for b € B, a normal boundary

operator B of order m,, for the half-space H = H¢ by
B=Bb):=(B...,B"), B :=0bom,

where ‘normal’ refers to the fact that the b; are surjective.

We assume

5 e {H By
and often write §*(H) for §°(H, F ® F'). We also define
8[33?(8]1{) 868« (aH E®F H Sq w1(mi+1/p))/w/(aH’E®Fi)

D,

for s € R, where it is understood that ¢ = p if §° = S/" Note 0pF°*(0H, E ® F)
is independent of b € B. It depends only on the order sequence m and on F.
Moreover, given s > wy(m, + 1/p),

B — L(F°(H),053°(0H)), b B(b)
is a well-defined analytic map. In fact, it is the restriction to B of a continuous
linear map.

The following theorem is an easy generalization of Theorem 4.6.3. It is of great
importance in the weak theory of elliptic and parabolic boundary value problems
developed in Part 2.

4.8.1 Theorem Suppose b € B. There exists a universal map B¢ = B°(b) from

[ BYs— it/ (9H, E © F,) into H3/*(H,E ® F)
i=0
and from

HB sowrmitl/p)/w OH B @ F) into BY/Y (H,E ® F)
1=0
for s € R, satisfying
B'B(g°, ..., 9") =g" if s> wi(m;+1/p). (4.8.4)
In particular, B¢ is a universal coretraction for B if s > wi(m, +1/p). The map

b — B(b) is analytic on B, uniformly with respect to s € R.

PROOF. Suppose b € B. Since b; : F — F; is surjective, we can find a right
inverse b : F; — F for it. Set

HB(s w1 (mi+1/p))/w’ (0H,E @ F), s €R. (4.8.5)

Theorem 4.6.3 guarantees” the existence of a universal R € £(&*(0H), §*(H)) sat-
isfying
8Z‘i72(h0,...,h") Zhi, s> wi(m; +1/p).

9Recall E® F =~ EN with N :=dim(F), and EN 2 Ly(X, 1, E) with X :={1,..., N} and
1 the counting measure. Thus F ® F is a UMD space which has property («) if E has it.
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Then
g=1(g"...,g") — B°g:=R(159",...,b59")
defines a universal B¢ € £(953*(0H), §*(H)) for s € R such that
BiBg = b0l R(b59°, ..., beg™) = bibig' = g, s> wi(m; +1/p).
Hence B¢ is a universal coretraction for B if s > wy(my, + 1/p).

It is not difficult to verify that we can choose the right inverse b$ such that the

map B — L(F;, F), b S is analytic. Now the last assertion is obvious. O
We define
35 =Ss(H) = {ueFMH); Bu=0, s>w(m+1/p)} (4.8.6)

for s #wi(m; +1/p) and 0 < j <n. In other words, §3 is the kernel of B|F?,
where B|§° contains only those parts of B which are well-defined. In particular,
5 =F°if s <wi(mo + 1/p). Note that §5 is not defined if s is one of the singular
values wy(m; +1/p), 0<j <n.

4.8.2 Corollary Suppose s > w1y (m,, +1/p) and b € B. Fiz a coretraction B¢
for B. Then

3°(H) = §3(H) & B°0sF* (OH).
PRrOOF. Lemma 4.1.5. 0

Suppose m € N with m > m,, and
e cither m, < m or F; # F for at least one ¢ € {0,...,n}. (4.8.7)
Let F = (ﬁo, . ,ﬁ’ﬁ) and m = (Mo, . .., Mmx) be a sequence of range spaces and an

order sequence of length m, respectively. Then (?, ﬁ_:b) is complementary to (F,m)
to order m, provided:

(i) {mo,...,mu}U{mo,...,mz} ={0,...,m};
(ii) If m; ¢ {mo,..., Mz}, then F; = F ;
(iii) If mg ¢ {mo,...,mn}, then Fj, = F;

(iv) If m; = iy, for some k € {0,...,7}, then F = F; @ F}.

In the ‘scalar case’ where dim(F') = 1 (then we identify £ ® F =2 F ® C with E,
of course) these conditions reduce to (i), that is,

{mo,...,mu} ={0,...,m}\{mo,...,mp}.

Let (I~F, ﬁz) be complementary to (F,m) to order m. Denote by m the projection
of F onto F; parallel to Fy, if (iv) is satisfied. Suppose b € B(F) and b € %(ﬁ) Then

B-B0) = (B,....B"), B —%om
is complementary to B to order m, provided
bimik @ b (1 — k) € Laut(F)
if m; = my, with (4,k) € {0,...,n} x {0,...,7n}.
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Note that (4.8.7) implies B # 0, and B is a normal boundary operator. Fur-
thermore,

(B,B) € L(F°(H), 955 (OH) x 955°(0H)), s> wi(m +1/p).

4.8.3 Remarks (a) Let m > m,, satisfy (4.8.7). Then there exists a bound-
ary operator B complementary to B to order m.

PROOF. (1) Let G be a proper linear subspace of F' and suppose b € L(F,G)
is surjective. Choose an ordered basis {g1,...,gm} of G and extend it to an or-
dered basis {fi1,..., fn} of F. Denote by [bg] € CMXN the corresponding matrix
representation of b. Since b is surjective the M rows of [bg] are linearly inde-
pendent. Hence there exists an ordered subset {h1,...,hp} of {f1,..., fn} such
that the (M x M)-submatrix of [bF] containing only the corresponding columns is
nonsingular. Denote by x the projection onto the subspace H of F spanned by
{h1,...,ha}, parallel to the subspace H spanned by the remaining elements of
{fi,-.-, fn} Then F = H & H and

Cz:[bx b(1 - x)

€ Lis(H® H,G & H).
0 1—x

Hence by @ (1 — x) € Laut(F).
(2) Write
{7710,---777%} = {O,...,m}\{mi 3 F; :F}.
g & {mi; 0<i<njset ﬁ,&;: F and by, == 1. Otherwise we see from step (1)
that there exist a complement Fj of F; in F and a surjective b, € L(F, F}) such

that b;m; @gk(l — T;k) is an automorphism of F'. This defines a normal boundary
operator B complementary to B to order m. (]

(b) For s € R set

e (OH) = [ BYr V™ (om, E @ F).

j=0
Given
(9,9) € 98" (OH) x 0zF*(OH),
define _
¥1(9.9) € BY UV GH, E@ F),  0<j<m,
by
g, if j =m; ¢ {mo,...,mz}, 0<1i<n,
<pj(g,§):: gk, if j =my & {mo,...,my}, 0 <k <7,

g ogt, ifj=m; =my, (i,k)€{0,...,n} x{0,...,7}.

Set ¢(9,9) == (¥°(9,9),---,¢™(g.9)). Then
¢ € Lis(953°(0H) x 53°(0H), dcF*(OH)).
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PROOF. It is obvious that ¢ is a continuous linear map. Given f € 9¢F*(0H),
set g' := mf and §* := (1 — mx) f if m; = my. It is now clear how to define g*
and g* for the remaining values of i and k so that f — (g,g) is a continuous inverse
of . O

(c) Let B be complementary to B to order m. Define ¢; € Laut(F) for
0<j<mby

bj, if j=m; ¢ {mo,...,Mu},
¢ = by, if j =my & {mo,...,mn},
bt ® (1 — i), if j = my = .
Set
®(B,B)=C=(C"...,.C™), C’:=c;0J.
Then the diagram
(B,B)

05" (OH) x 055° (OH)

N

0cF° (OH)
is commuting if s > wq(m + 1/p). In particular,
(B,B)u=0+ du=00<j<m (4.8.8)
if s >wi(m+1/p).
PrROOF. Obvious. U

In many important situations a boundary operator complementary to B is given
rather naturally as, for instance, in Example 4.8.6 below.

4.8.4 Theorem Let (4.8.7) be satisfied and let B be complementary to B to
order m.

There exists a universal
B € L(053° (), §5(H))
such that it is a coretraction for Bg := B|SB H) if s > wi(m+1/p).
wi(m+1/p) <s<wi(m+1+1/p), (4.8.9)
then (1 — g%gg, gfg) is a toplinear isomorphism from
F5(H) onto F°(H) x 953 (9H).
PROOF. Set C:= ®(B,B). Let C¢ be a universal continuous linear map from

0cF*(OH) into F°(H) such that it is a coretraction for C if s > wi(m + 1/p). The
existence of C¢ follows from Theorem 4.8.1.

Put
Bf :=C0.¢(0,) € LT (OH), §* (H)).

Then Bj is universal.
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If s > wi(m+ 1/p), then it follows from Remark 4.8.3(c) that
(B.B)Bgg=¢"0CoC0p(0.)=(0.9),  §€ I3 (OH).
Thus the image of g% is contained in §3 and ngcBg = g for g € 05§°(0H). Hence
Bg is a universal coretraction for Bg if s > wi(m + 1/p).
Note (§3)z(H) ZS?B,E)(H)' Thus, by (4.8.8) and Theorem 4.7.1, (§3)z(H)
equals §°(H) if (4.8.9) is satisfied. Now Lemma 4.1.5 implies the assertion. O
The importance of this theorem lies in the fact that it allows to represent the

dual of F3(H) in terms of distributions on H and on 0H. This fact, basic for the
weak theory of parabolic equations, is made precise in the following theorem.

4.8.5 Theorem Let (4.8.7) be satisfied and let B be a normal boundary oper-
ator on OH complementary to B to order m. Suppose

wi(m+1/p) <s<wi(m+1+1/p).

Choose a universal coretraction g% for gB' Then (1 - g%gg,gg)/ is a toplinear
s/v

isomorphism from Hp/ﬁB(]HI, E® F) onto

H;S/V(H’ E® F) % H B;(wal(fnle/p’))/w/(aH’ E® ﬁl)
i=0
and from B;,/,Z(H, E® F)" onto
Bp—s/V(H_]L E® F) % H Bg(s—wﬂfnﬁ-l/}?/))/w/(aH’ E® ﬁz)
i=0
ProOF. This follows from the preceding theorem, and Theorems 3.3.3, 3.7.1(i),
and 4.4.4. (]

We illustrate this theorem by first order normal boundary operators which are
of particular relevance for the weak theory of reaction-diffusion systems.

4.8.6 Examples (Reaction-diffusion boundary operators)
Let x € L(F) be a projection and set Fp:= (1 — x)F and Fj := xF. Suppose
a € L(F) satisfies
xax € Laut(Fy), (1—x)a(l—x) € Laut(Fp). (4.8.10)
Set
B := xadn + (1 — x)vom.

Since F' = Fy @& F1 = Fy x Fy we write, accordingly,

B = (BOaBl) = (( - X)V@Haxaaﬂ)-
Then, given g = (¢°, ¢%) € Fy x Fy,

Bu=g iff B = g0 and Blu = ¢
Note that B° is a (zero order) Dirichlet and B! a (first order) Neumann boundary
operator. It is obvious from (4.8.10) that B is a normal boundary operator on 0H.
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(a) It is clear that B := (1 — x)adp + x7m is complementary to B to order 1.
Thus, if
wi(l+1/p) <s<wi(2+1/p),

then H;,/yll; (H, E ® F)' is toplinearly isomorphic to
Hy*/Y(H,E® F) x By 6=/P)/" (9H, E g Fy) x By (¢=1(+1/P)/@" (9H, E @ Fy).

In particular,

S/V ~ —s/v —(s—w1(2—1 4
/Y (HE®F) =H,*"(H,E®F)x B, s~ C-U/n/(9H E ¢ F)

P’ vou
and

HY/% (H,E® F) = H,*/Y(H,E @ F) x B, =10V« (5H, E @ F).

(b) Suppose x ¢ {0,1}. Then BY .= X7om is complementary to B° to order 0.
Thus, if
wi/p<s<wi(l+1/p),
then

H;//”éo (]HLE@ F)/ o Hp_S/V(H,E ® F) > Bp—(s—wﬂl—l/p))/w/ (GH,E ® Fl)
(¢) Obviously, analogous results hold for B;/ YH,E®F). O

4.9 Interpolation with boundary conditions

The following ‘interpolation theorem with boundary conditions’ plays a funda-
mental role in the weak theory of elliptic and parabolic boundary value problems.
We use the assumptions and notation of the preceding section. To simplify the
writing we omit (H, £ ® F') in the notation of function spaces so that
HY = HY/Y(H,E ® F) ete.

4.9.1 Theorem Suppose sg,s1 € R and 0 € (0,1) satisfy

wi(=14+1/p) < sp <wi/p, wi(my+1/p) < s, 80 < 81, (4.9.1)
with sg > 0 if ¢ = 0o, and
s9,81 # wi1(m; + 1/p), 0<i<n. (4.9.2)
Then
(o Hy o = HIY B Bl = B
and

so/v I7S1/VN0 - (PSo/V Hsi/UN0 - pse/v
(Hp ’Hp,B )0#1*(prq ’Bp,qu)H,q*Bp,q,B'

Before we prove this theorem we recall some facts from interpolation theory.

Denote by S the strip [0 < Rez < 1] in the complex plane and by Sy the com-
plex line [Rez =] for 0 <9 < 1.

Let Ey and E; be Banach spaces with Eqy — Ey. Write F(Ey, Eq) for the
Banach space of all bounded continuous f : S — Ejy satisfying f|S; € Co(S;, E;)
for 7 = 0,1 and being holomorphic in S , endowed with the norm

[ = fll7z, e = max sup |f(2)]g,-
]_071265]‘
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Then [Ey, E1]g is for 0 < 6 < 1 the image space of the evaluation map
F(Eo, E1) — Eo, f+ f(0)

(see A.P. Calderdn [18]; also cf. J. Bergh and J. Lofstrom [16] or H. Triebel [65]).
Suppose f € F(Fy, E1) and 0 < ¥ < 1. Then, cf. Remark 2.2.1(a),

LFO + i)l gm0 < fllFoe,  tER (4.9.3)

Indeed, given t € R, set g¢(z) := f(z+it) for z € S. Then ¢, € F(Ey, E1) and
gt(0) = f(9 +it).
For t € R set
J(t, e) := max{|lello, t|lell1}, ee Fy.
Then the J-method of real interpolation theory guarantees e € (Ey, E1)g,q iff there
exists f € C((0,00), E1) satisfying

et ()]

L <o, e= / F(t) digt, (4.9.4)
a 0
the integral converging in Ey (e.g., Chapter 3 in [16] or Section 1.6 in [65]).

PRrROOF OF THEOREM 4.9.1. (1) Note that §z — §°' implies

(%, 85 )o — (§°°,5°)s,

where (-,-)s equals either [-, -], or (-,-)g -

(2) From (1) and Theorems 3.7.1(iv) and 4.4.1 we obtain
(e Hy g Ho.

Similarly, by invoking (3.4.1),
AN TR i

(3) Denote by (E;, E; g) either the pair (H;j/u7 H;’é”) or (B,‘:fq/u, B;fq/,lé). Sup-

pose u € [Ey, E1 ple. Then there exists a function f in F(Ey, E1 ) with f(6) = u.

Suppose m; satisfies wy(m; + 1/p) < sg. It follows from (4.9.3) and step (1)
that the restriction of f to [# < Rez < 1] is a bounded continuous map into F*°
being holomorphic on [# < Rez < 1]. Thus h := B'f is a bounded continuous map
from [# < Rez < 1] into B,(,?g‘“l(mi“/””/“ (OH, E ® F;) which is holomorphic on
[0 < Rez < 1] and vanishes on S;. Thus u € § by the Three Lines Theorem (cf.
Theorem VI1.10.3 in [22]). This proves

[HY H g — HL (4.9.5)
and
(B Blglo — B (4.9.6)

(4) Suppose
s1 > wi(my, +1/p). (4.9.7)
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Denote by m the largest integer 4 satisfying wq(i + 1/p) < s1. Let b§ : F; — F be
a right inverse for b;. Then m; := b$b; is the projection of F' onto F; parallel to
G; :=ker(h;), and F = F; & G; (cf. Lemma 4.1.5). Thus

Biu = b0l u = 0 < m0niu = 0. (4.9.8)

Consider the normal boundary operator C = (C°,...,C™) with C/ = 9J,. Set
m
Oes§* = By TP OH, E@ F),  0c§* =[] 0esF".
3=0

Then
Cl e L(F°,00:F°) if s >wi(j+1/p), (4.9.9)
and Theorem 4.8.1 guarantees the existence of a universal C® € L(9:F*%,F°) for
s € R, satisfying
Ccice(q,...,g™) = ¢ if s> wi(j +1/p). (4.9.10)
From (3.4.1) we infer
[0c8°°, 0cF o = 0cF°°. (4.9.11)
(5) Suppose u € Fg. Choose hi € F(9e:iF*,00:F%) as follows:

Mo, ifsg>wi(§+1/p), j& {mo,...,mn},
R (0) = (1 —7m)0miu, if sg>wi(j+1/p), j=mi 0<i<n, (4.9.12)
0 otherwise.
Due to (4.9.9) and (4.9.11) this is possible. Then (4.9.8) and (4.9.9) imply
f=CnY,...,hK™") € F(F,3%). (4.9.13)
Thus
0= 1(0) € 3,33 o (49.14)
Moreover, by step (1), u — v belongs to §*¢ and satisfies
Cl(u—v) =Clu—C'Co(h(0),...,K™(0)) =0,  sg>uwi(j+1/p),
due to (4.9.10) and (4.9.14). Hence Theorem 4.7.1 and sy > sp > wi(—1+1/p),
with s9 > 0 if §° = é;/;, show that u — v € § (H, E ® F).
From Theorem 4.4.1 we infer

§Y(HE®F)= (0 E®F),§ (HE®F)],.

Since (4.9.1) and Theorem 4.7.1 imply §°(H, E ® F) = §*° and since §*' (H, E ® F)
is contained in §} it thus follows §*° (]HI, E®F) C[§%,85]o. Consequently, u — v
belongs to [§°°, §5 ]o which, together with (4.9.14), implies u € [§*, F}j Jo. Hence
the inclusions converse to (4.9.5) and (4.9.6) are valid. This proves the assertions
for the complex interpolation functor, provided (4.9.7) is satisfied.

(6) Now suppose s1 < wy(my, + 1/p). Fix any ¢ bigger than wy(m, + 1/p) and
set n:= (51— s0)/(t — s0). Then Fy = [F*,F%], by what has just been shown.
Hence by the reiteration theorem

[3%°, 3510 = [3°, 3%, sln]y = [3°°, Fhlne = T%,
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the last equality following again from the results of step (5). This proves the
assertions for the complex interpolation functor.

(7) Suppose wy(m, +1/p) < top < t1. Assume
ue (388500, — §.80, = B
Choose f such that (4.9.4) is satisfied with e =u and (Eo, E1) = (§3,84). For
0 < e <1 it is obvious that
1/e 1/e

B fl)ydt/t = Bf(t)dt/t =0
£ €
since the integrals exist in §%. This implies Bu = 0, that is, u € B;"q/ )"
(8) Conversely, suppose

A
€ Bry” = (8.8,
By Theorem 4.8.1, B is a retraction from §° onto dgF® for s > wi(m, + 1/p)
possessing a universal coretraction B¢. Thus P :=1— BB is a projection from

(3', 35, onto (3, T2)5, (cf. Lemma 4.1.5 and Propositions 1.2.3.2 and 1.2.3.3
in [4]). As above,

Pu— /oo PF(t) dtt /OO £ dt/t = u

since Pf(t) = f(t) € 33 for t > 0. Thus u € (3}3,F3 )y, Combining this with the
result of step (7) we obtain
(F4,34)5, = Bl/x. (4.9.15)
(9) Choose € > 0 such that
Spte € (wl(mi +1/p),wi(miy1 + 1/]9))

if sy belongs to this interval, where m,1 := oco. Then, by the validity of the
theorem for the complex interpolation functor, [§°°,§4 ]o+e = &5"i5. Thus the
reiteration theorem implies

(5, 88)80 = (8, 58 lo-e. 5, 8lore) o,
= SR, = B
where the last equality follows by applying the result of the preceding step (with
my, replaced by m;), provided sp > wi(mq + 1/p). If
wi(=1+1/p) <s <wi(mi+1/p),

then §% = §° by Theorem 4.7.1 and the definition of §%. Thus (4.9.15) holds in
this case also. This proves the theorem. O

4.9.2 Corollary

(i) Suppose wi(—1+1/p) < sg < s1 with So, s1, 50 ¢ wi(m; +1/p) for 0 <i<n.
Then

so/v s1/v so/Vv Aso/v psi/vy - Hse/v
[Hys Hys lo=Hys o [Bys Byasle = Bns
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and
A A

so/v s1/v\0 - so/v s1/v\0 - Ase/l/
(HPJS ’HP,B )9&1 - (Bnqﬁ’Bp,q,B)G,q - Bp,q,B'

(ii) Suppose s,0s # wi(m; + 1/p) for 0 < i <mn. Then

Ss/v N0 - SOs/v
(Lyp, Bp,q,B)ew = PprBr L<r<co

PRrROOF. (i) follows easily by reiteration from Theorem 4.9.1.

(ii) Fix s; > s with s > wi(my +1/p). Then, choosing s¢ := 0, it follows
from (i)
Byl = Ly 5
Hence, by Theorem 4.9.1,
s1/v . ps/v As/v Ss/v $1/v7\0
(LP’ Hp}B )5/5171 - Bp,l,B - Bp q,B — B (LP’ Hp,lB )

Qs p,00,8 5/s1,00

and the reiteration theorem implies

As/v \0 - s1/v7\0 . pHos/v
(LP’Bp,q,B)G,T - (LP’Hp,B )95/81,7“ - Bp,r,B’

that is, the claim. O

The interpolation result for the complex interpolation functor and Bessel poten-
tial spaces is due, in the isotropic scalar case (that is, for E = C), to R. Seeley [61]
and, for p =2, to P. Grisvard [29]. In the latter paper P. Grisvard characterized
the real interpolation spaces between L, and the Sobolev—Slobodeckii spaces W 5.
The extensions of those results to include general (isotropic scalar) Besov spaces
is due to D. Guidetti [35]. None of these authors imposed condition (4.9.2). If
sp = m; + 1/p for some 4, then the interpolation space of exponent 6 is not a closed
subspace of §°¢ but carries a strictly stronger topology which can be described by
a non-local norm. For simplicity, we do not consider singular values in this work.

Our proof for the complex interpolation functor follows essentially R. Seeley.
The simple and elegant method to deduce the statement for the real interpolation
method from the result for the complex one is due to D. Guidetti.

We conclude this section by considering two special instances which are of
particular importance in the weak theory of elliptic and parabolic equations.

4.9.3 Examples (isotropic spaces) We suppose w = (1,...,1), that is, we
consider isotropic spaces. We also assume m € N\ {mg,...,m,}.
(a) (Sobolev—Slobodeckii scales) For 0 < 6 < 1 we set

[.7.}0’ 1f0mEN7
(-, )o = (,-)o,p otherwise.

Then
(LP7VVp7TLB)S/m = VVpS,B
for 0 < s <m with s ¢ {mo,...,mp}.

Proor. This follows from (3.8.1) and Theorems 4.4.3 and 4.9.1. O
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(b) (small Nikol’skif scales) For s € (0,00)\N and m € N with m > s,

A

(va pT,nB)(s)/m,oo = NE,B'
Furthermore,
(N;?B’N;,IB)g,oo = [N;?B’N;,IB}H = N;fB
for 0 < sp < s1 and 0 < 0 < 1 with sg, s1, 9 ¢ N.
ProOF. Obvious by Corollary 4.9.2 and the definition of the small Nikol’skii
scales. O

4.9.4 Examples (2m-parabolic weight vector) Let w = (1,...,1,2m) for
some m € N and write H? = H" x R. Suppose m,, < 2m and

se€(0,2m)\{m; +1/p; i=0,...,n}.
(a) (Sobolev—Slobodeckii scales) If s ¢ N, then
(Lo x R), L, (R WPR () N W (R, Ly(HD)))

= (Ly(H" x R), W3V (H" x R))

s/2m,p
= WM T < R) = W™ (R, Ly(ED)) 0 Ly (B, Wy (H)).
Otherwise

[L,,(H’” x R), Ly (R, W25 (H")) 0 W (R, LP(HT))}

s/2m

= H:/*™ (R, L,(H")) N Ly (R, W 5 (H")).
PRrOOF. Suppose s ¢ N. From Theorem 4.9.1 we know

2m,1 . 2m,1 . 2mo,0
(vaVVp(,B ))9,10 = (LP7H;(7,B ))047 = B;(q,B )’

provided 2m@ # m; + 1/p for 0 < i < n. Since § = s/2m ¢ Z we find, by Theorems
3.8.1, 3.8.5, and 4.4.3, BUE"" =W Together with Example 3.8.6 this
implies the first assertion.

If s = 2mé € N, then, by Theorem 4.9.1,
2m,1); . 2m,1); . 2m0,0
[Lp’VV;)(,Bm )}0 = [Lp7H]57Bn )]6 = H;Bn )
Similarly as above, but invoking Theorem 3.7.3,

HOP"? = B (R, L,(H")) N L, (R, H3 (H")).

Since Hg?}}e (H") = W, g(H") the second claim is also valid. O

(b) (small Nikol’skif scales) If s ¢ N, then
0
(Zo (B x B), W) (R, L) 0 Ly (R WER (D)) -

0 . 2(s,s/2 r
:N;Bs/ ™(H" x R))

s/2m 00

= (Ly(H" x R), W 3™V (H" x R))
= NP (R, Ly (EL)) N Ly (R, N3 (H)).

PROOF. This follows by arguments similar to the ones in (a). g
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4.10 Traces on half-open wedges

In this and the following two sections we prove analogues of the boundary
retraction Theorem 4.8.1 and some of its consequences for wedges. First we consider
the case of partially open wedges to prepare ourselves for the proofs of the next
section. For this we need some background material which we discuss first.

Given Banach spaces X <, Xop, we put
H-_ (X1, Xo) := H_(Xo) N L(X1, Xo)-

Thus H_ (X1, Xo) consists of all negative generators A of exponentially decaying
analytic semigroups on Xy satisfying D(A4) = X; (cf. H. Amann [4, Lemma 1.1.1.2]).
We also set H = H.

The proof of the next lemma is postponed to Part 2.
4.10.1 Lemma Fiz k € (w/wy)N and set
B:=(d%,...,07Y), C:=(On,...,0%), (4.10.1)

and
A= A" (D) € L(S'(RY, E)). (4.10.2)

For D € {B,C} denote by Ap the restriction of A to H;%/V(H, E). Then

Ap € H_(H.'5"" (H, E), L,(H, E)) N BIP(L,(H, E)).

p

Observe that k = kw/w; for some k € N and w = v imply 2kv = 2kw;. Hence
¢
AP (D) = (143 (~A0,))
i=1

which, due to v/vy; € N , shows that Ap is well-defined.

In the following proposition and in similar situations we do not notationally dis-
tinguish between a linear operator and its various uniquely determined restrictions
and extensions in a given scale of Banach spaces.

4.10.2 Proposition Suppose k € (w/wl)N. There ezists
A€ H_(H/Y(H,E), L,(H, E))

satisfying
A" € Lis(H{"9=1/*(H, E), H3*/¥ (I, E)) (4.10.3)
and
A7 € Lis(BY VY (H, E), Bya'Y (H, E)) (4.10.4)
forr,s € R with
-2+ 1/p < min{s,r + s} <max{s,r+ s} <k+1/p. (4.10.5)
Moreover,
AP € H_(HY/Y(H, E), L,(H, E)) (4.10.6)

for 0<p<k+1/p.
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PROOF. (1) Define B by (4.10.1) and A by (4.10.2). Then, by Lemma 4.10.1,
Ap € H_(H2%"/"(H, E), L,(H, E)) N BIP(L,(H, E)). (4.10.7)

p
It follows from Theorems 4.9.1 and 4.7.1

[L,(H, E), H25Y (W, B)] ,, = H3/*(H, E) (4.10.8)

s/2k

for 0<s<k+1/p with s#35+4+1/p, 0<j<k—1. From this and Theorems
3.7.1(iv) and 4.4.1 we deduce by reiteration that (4.10.8) holds in fact for all
s € (0,k+1/p).

Set A := (Ap)'/?*. Then (4.10.7), R. Seeley’s theorem [60], and (4.10.8) imply

s\ - kwy /v . swi v/
D(A%) = [L,(H, E), H)\s"* (H, B)] ,, = H3/* (H, E) (4.10.9)

for 0 < s < k+1/p. From this, (4.10.7), and Corollary I11.4.6.11 in H. Amann [4]
we infer (4.10.6).

(2) Denote by [(Ea, Ay); a> 71] the interpolation extrapolation scale of or-
der 1 generated by (LP(H, E), A) and [+, -]y, 0 < 6 < 1, in the sense of Section V.1.5
of [4]. Tt follows from (4.10.9) and Theorem V.1.5.4 in [4]

B, = HV/Y (W, E), 0<a<k+1/p.

The latter theorem also implies (4.10.3) for 0 <r,s,7 +s <k + 1/p.
(3) Define C as in (4.10.1) and set

AP = AT (D) € L(S'(H, E")).
Denote by .Aﬁc the restriction of A to H;,k’gl/"(H, E'). Then

A e H_ (B2 (B, E'), Ly (H, E')) N BIP (L, (H, E))

p

by Lemma 4.10.1. From Theorem 4.9.1 and an additional reiteration we find,
similarly as in step (1),

HY(H B = BV HE),  0<s<1+1/p.

Put Af:= (Ag)l/zk. Let [(E%, A%); a > —1] be the interpolation extrapolation
scale of order 1 generated by (Lp/ (H, E’),An). Then, as in step (2),

B = HOWY(HE),  0<a<2, a¢N+1/p,

and

(A%)" e Lis(H Y (], B, H3 (H, E)) (4.10.10)
forr,s e Rwith 0 <r,r+s<1+1/p". By Theorem 4.4.4

(VY (H,E")) = Hy*/Y(H,E),  seR. (4.10.11)

It is an easy consequence of (4.10.6), (4.10.11), and Theorem V.1.5.12 in [4] that
A¥ = A’ in the sense of unbounded linear operators with respect to the L, (H, E)-
duality pairing. Hence A_, = (A%) for a > 0 by Theorem V.1.5.12 in [4] and
reflexivity. Since

Bo = (Hy* /(B E) = Hy* M ([ELE),  0<a<1+1/y,
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we thus obtain the truth of claim (4.10.3) for all » and s satisfying (4.10.5) from
Theorem V.1.5.4 in H. Amann [4] by taking into consideration A™ = (Ag)"/?* and
(A% = (AQ)/h.

(4) Assertion (4.10.4) follows now from (4.10.3) by interpolation due to Theo-
rems 3.7.1(iv) and 4.4.1. O

Suppose K is a standard wedge in R%. We denote by 7, the trace operator for
the variable z* (defined in the obvious way). Then
Y8,K ‘= T9,K © Vp O €K

is the trace operator for the face 9,K. Let!?

g e{H)”. BJ"},  seR
Then 7,k is well-defined on §° for s > w, /p.

We write n, = —(6}, ..., 64) for the outer normal on the p-face 9,K of K. Then,
given m € N,

3:?0 = (—1)mVapK6;n
is the m-th order normal derivative on 9,K, and
m s s—wy(m+1 wp
on e L(3° (K, E), By "tV g K, B)) (4.10.12)
for s > w,(m + 1/p), where'!
w; =w = (wa,...,wa), ws=(wi,ws,...,wq)
Observe that, using the notation of (3.6.3) and (3.6.4),
O ul@p) = (1) 0 u(x5,0), uve S(K,E), zedk
Now we assume that K is a half-open (that is, partially open) wedge. Thus,
without loss of generality,
K = R* x HI!
and, consequently, 01K =2 H¢! is the only essential face of K.
We also assume, as in Section 4.8,
e [ is a finite-dimensional Banach space and
Fy, ..., F, are nontrivial linear subspaces thereof; (4.10.13)
o 0<myg<mg<---<my are integers.
Again
B =B(F):={b=(bo,...,bn) € L(F,[]]_oF:) ; b; is surjective }.
Given b € 9B, we define a normal boundary operator for the face 01K by
By =Bi(b) := (BY,...,B}), = b0y

10For simplicity, we restrict ourselves from now on to the most important case p = ¢, although
some of the following results can also be shown if p # q.

HHere and below, we formulate all results for the case d > 2 and leave it to the reader to
carry out the obvious modifications if d = 2. Recall F(R®, F) = F.
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We set

0,3 (0K, E® F) := H B}()sfw1(mi+1/P))/w/ (DK, E® F).
i=0
Note that this space is independent of b € 9B. It depends only on the weight vector m
and on F.

The following theorem is an analogue of Theorem 4.8.1 for half-open wedges.
Here we denote by w’ the least common multiple of {ws, ..., w4}
4.10.3 Theorem Fiz any k € N satisfying kw' > max{wim,,w }. Assume
wi(mp +1/p) +wa(—2+1/p) < s <wi(k+1/p), (4.10.14)
where k := kW' Jwa. Let b € B. Then there exists a universal map
Bf = B5(b) € L(08,3° (01K, E® F),3*(K,E® F))
satisfying ‘ ‘
BiBS(g°,...,g") = ¢' if s> wi(m;+1/p).
In particular, BS is a universal coretraction for By if s > wi(m, + 1/p). The map
b — B$(b) is analytic on B, uniformly with respect to s in the indicated range.

PROOF. For notational simplicity we omit £ ® F' in this proof.
(1) By Proposition 4.10.2 we can choose

B e M_(Hg/ (HY), L,(H))

satisfying

B e £iS(HzgS+T)w2/ul(Hd_l),H;Wz/w/ (Hd—l))
and ) )

B" € Lis(BYme2/@ (H471), Baw/« (HI71)) (4.10.15)
for

-2+ 1/p < min{s,r + s} < max{s,r +s} <k+1/p.

Set A := B¥i1/%2_ Since w1 /we < kw' /we = k it follows from (4.10.6) and (4.10.3)
that

AeH_(HP/ (HYY), Ly(H'™Y)), D(A) = HJ /< (H!)
for j € N with j < my,,, due to m,w;/ws < kw'/ws =k < k+ 1/p. Hence, setting
F = L,(H),

HI'Y(K) = L,(RT, D(A)) nWJ(RT,F),  0<j<m,,
due to Theorems 3.7.1(ii) and 3.7.2, and Section 4.4. Hence we are in the same
situation as in (4.6.4) and (4.6.5) with R?~! replaced by H~! (and F by E ® F).
Thus steps (3)—(5) of the proof of Theorem 4.6.2 guarantee that, given j € N with
J < mp,

c 7 tj —tA
v = (tr—>(—1) ﬁe v), t>0, veeF,
is a coretraction for

3?@ c ﬁ(H;/V(K),B§87W1(j+1/p))/w/(alK))7
provided wy(j + 1) < s < w1 k.
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(2) Suppose s < wi(j 4+ 1). Since A* = B*1/%2 we infer from (4.10.15) that
AT ¢ Lig(Ber (VP ([d—Y) | pei(o=i=1/p)/@ (d-1)), (4.10.16)

provided wy(o — j —1/p) > wa(—2+1/p). Hence (4.10.14) implies that (4.10.16)
holds for all j € N with j < m,,, provided wyo = s. From this it follows, similarly
as in step (6) of the proof of Theorem 4.6.2, that

¢ € Lis(B= 01/ (9 K), H3/¥ (K))

for j € Nwith j < m, and w1 (m, + 1/p) + wa(—2+1/p) < s < w1(j + 1). Clearly,
7§ is a coretraction for 87, if s > wi(j +1/p).

(3) Steps (1) and (2) guarantee that, given j € N with j < m,,,
7 € L(BY TR 0 K), Hy (K)),

and 7§ is a universal coretraction for 9}, if s > wi(j +1/p). From this we obtain
by interpolation

v§ € L(BY 0TI (91K), By (K)).
Now the proofs of Theorems 4.6.3 and 4.8.1 apply to give the assertion. ]

As a first application of this boundary retraction theorem we prove an analogue
to Theorem 4.7.1.

4.10.4 Theorem
(i) Suppose m € N and wi(m+1/p) < s <wi(m+141/p). Then
FKE) ={ueFKE); & u=0,0<j<m}.
(ii) Ifwr(=14+1/p) < s < wi/p, then
3K E) =3 (K, B).
PRrOOF. (1) Let the assumptions of (i) be satisfied. As in step (1) of the proof

of Theorem 4.7.1 we see that it suffices to show that S(K, E) is dense in the spaces
characterized by vanishing traces. Fix x € N satisfying k := xw’/ws > m + 1. Then

Theorem 4.10.3 guarantees the existence of a coretraction ¢ for (821,...,8ZL1).
Hence steps (2) and (3) of the proof of Theorem 4.7.1 show that each
we CPNB/Y(K,E) with 02 u=0, 0<j<m, (4.10.17)

can be arbitrarily closely approximated by elements of S (K E).

(2) Set X := Lp(Hin_l,E) and Y := B;/w/ (H?"!, E). Then we see by (1) and
steps (4)—(6) of the proof of Theorem 4.7.1 that, given u satisfying (4.10.17) and
e > 0, there exists v € D(RT,Y) satisfying

lu — v| <e/2.

By/¥ (K,E)
Since D(H"!, E) is dense in Y by Lemma 4.1.4 and (4.4.3), it is not difficult to
verify that we can find w € D(K, E) satisfying

v | <e/2.

— w”B;/V(K,E

This proves (i).
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(3) Let the hypotheses of (ii) be satisfied. Then Theorem 4.7.1 guarantees
FXtXxY xZ,E) =3 (Xt xY x Z,E).
Hence the assertion follows by restricting the elements of §* (X TxY x Z,E) fur-
ther to K by means of r3. O

4.11 Traces on closed wedges

After the preceding preparations we are now in a position to prove extension
theorems for data given on the boundary of closed wedges. They are fundamental
for the study of nonhomogeneous parabolic problems.

Throughout this section we retain the assumptions and notation of Section 4.10,
except that we now assume

o K is the standard closed wedge in R

As before, we write K= X+ x Y+t x Z.

The main objective in this section is to prove boundary retraction theorems
for K. First we consider the case where s is small.

4.11.1 Theorem Suppose wi(—1+1/p) < s <w1/p. Then
F(K,E)=3F (Xt x Y x Z E).
PROOF. Theorem 4.7.1 guarantees
FXt XY xZ,E)=3 (Xt xY x Z,E).

Now the assertion follows fI‘OH} the definition of rg, that is, by restricting fur-
t.her from the open half-space X+ x Y x Z by means of r, to the half-open wedge
XTxY*txZ. O

4.11.2 Corollary Suppose

max{wi,ws}(—1+1/p) < s < min{wy,wa}/p. (4.11.1)

Then §°(K, E) = 3* (K, E).

PROOF. This is now implied by part (ii) of Theorem 4.10.4. O

The above results show that the elements of § (K, E) do not possess traces
on JK if (4.11.1) is satisfied. Similarly, if the hypotheses of Theorem 4.11.1 are
fulfilled, then there are no traces on 9, K. However, if s > wy /p, then s,k is well-
defined. Now we investigate this case more closely.

4.11.3 Theorem Suppose wy(my + 1/p) < wa/p and
wi(my +1/p) + wa(=2+1/p) < s <wa/p.
Then there exists a universal map
Bf = B;(b) € L(05,F° (MK, E® F),3*(K,E®F))
satisfying _ 4
BiBi(g) =g¢" if s> wi(m;+1/p)

and depending analytically on b € B. In particular, Bf is a universal coretraction
for By if s > wi(m, + 1/p).
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ProoF. It follows from Theorem 4.11.1 that
FEKEQF) =3 XTxH"  E®F).

Fix k € N satisfying sw’ > max{wimy,,w;} and wq(kw'/wa + 1/p) > wa/p. Then
the assertion is a consequence of Theorem 4.10.3. U

Taking relabeling of coordinates into account the boundary trace behavior for K
has thus been clarified if

min{wy,ws}/p < s < max{ws, wa}/p.

Now we turn to the case where s > max{ws,wo}/p. In this case vp,x and va,x are
both well-defined.

If u e S(K, E), then
0y 00 u = (—1)"y k8i0u = 03, 9, u. (4.11.2)

It follows that u has to satisfy compatibility conditions on the (d — 2)-dimensional
face 012K of K if u € §° and s is sufficiently large. This is made precise in the next
proposition where w” := (w3, ..., wq).

4.11.4 Proposition If s > wi(i + 1/p) +wa(j + 1/p), then 8}, 8, is a con-
tinuous linear map from §° into

B]gs—m(i+1/p)—«U2(j+1/p))/w”(312K’ E),
and 0y,,04,, = 0},,0,,, -
PRrOOF. This follows from (4.10.12) and (4.11.2) by density. O
4.11.5 Corollary If 0<i<n, jeN, and
s > wi(m; +1/p) +wa(j +1/p),
then 9}, Biu = B0}, u foru e F*(K,E® F).
In the remainder of this section we assume, in addition to (4.10.13),
o keN;
o By=(d

N’ *°

4.11.3
Ok ). ( )

We set, for s € R,

B]()S*‘*&(J'Jrl/?))/wﬁ (82]K7 E® F)
0

k
0,5 (LK, EQ F) :=

J
Moreover,

BT OK,E® F)=05,F (K, E® F) x 05,5 (0K, E® F)
for s € R. Then
B:=(B1,B:) € L(§*(K,E® F), 055 (0K, E ® F)),

provided s > max{w;(my + 1/p),w2(k + 1/p)}. Corollary 4.11.5 shows that B is
not surjective, in general. In fact, im(B) is contained in

0% (0K, E @ F),
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the closed linear subspace of 95F*(9K, E ® F) consisting of all (g1, g2) satisfying
the compatibility conditions

0,91 = B'gs it s > wi(m; +1/p) +w2(j + 1/p). (4.11.4)

Our next theorem shows that, in fact, im(B) = 05F° (0K, E ® F), provided s sat-
isfies suitable restrictions.

4.11.6 Theorem Suppose
max{wy (m, + 1/p),wa(k+1/p)} < s <wa(k+1+1/p) (4.11.5)
and
s ¢ {wi(mi+1/p) +w2(j+1/p); 0<i<n, 0<j <k} (4.11.6)
Then B is a retraction from
FXK,E®F) onto 05F° (0K, E® F).
It possesses a universal coretraction depending analytically on b € B.

PrOOF. (1) Denote by r; the point-wise restriction from R4~! = X x Z onto
the half-space H¥™! = X+ x Z = 9K (see (4.3.1)). Let

e1 € L(BY“ (0K, E® F),B/* (X x Z,E®F)), teR,

be a universal coretraction for 1. Its existence is guaranteed by (4.4.4). Note
X x Z>29(X xY* x Z). Hence we infer from Theorem 4.6.3 the existence of

k
NC € E(H BI(JS_WQ(]+1/p))/w§(X « Z,E@F),&S(X « YVt x Z,E@F))
=0

being a universal coretraction for (99,...,05) on X x YT x Z.
Lastly, let 7 be the point-wise restriction from X x Y+ x Z onto K. Then
BS:=ron“oe € 5(83238(62}1{,}3 QF),FK E® F))

Given g € 8(3.K, E ® F)¥, the construction of v¢ easily implies B2BSg = g. By
density and continuity this holds then for all g € 95,5°(02K, E ® F'). Consequently,
BS is a universal coretraction for Bs.

(2) Let (g1,92) € 055° (0K, E @ F) be given. Set h := g1 — B1B5g>. Then
hi e Bl MY (R E® F),  0<i<n.
Denote by m be the largest integer j satisfying
w2 (j+1/p) <s—wi(mi +1/p) <w2(j+1+1/p).

It follows from (4.11.5) that m is well-defined and m > —1. By the commutativity
of By and Bz (see Proposition 4.11.4) and compatibility condition (4.11.4),

03, h' = 0),,g1 — B10),, BSgs = 03,94 — Bigh =0
if 0 < j <m. Hence 1K 2 Y™ x Z and Theorem 4.7.1 imply
hi c B}(}s—w1(7nqz+1/l)))/w/(i/+ X Z7 E® F)7 0<i<n.
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By Theorem 4.10.3 there exists a universal map

B € L(05,3° (Y x Z,EQ F),F (X x YT x Z,E® F))
being a coretraction for B; and depending analytically on b € 9. Set

BCg = BSgs + BS (g1 — B1B5ga) (4.11.7)
for g = (g1, 92) € 05§ (0K, E ® F). Then
B e LOFF (0K, E® F),5°(K,E® F))

is universal and depends analytically on b € 8. Furthermore, B89 = g; and
BaB¢g = go since

fi=B5(g1 — BiBSga) = BSh € (Xt x Y+ x Z,E® F)
implies By f = 0. Thus B¢ is a coretraction for 5. O

4.11.7 Example Suppose m,n € N and consider the closed wedge H™ x H™.
Denote the first coordinate of H™ by £ and the one of H" by 7. Let r,s € RT with
r>1/p and s ¢ N+ 1/p be given.

For i € N with ¢ +1/p < r define p; and o; by
pi _oi r—i—1/p

T S r
Similarly, if j € N satisfies j +1/p < s, let A; and p; be given by

Ak _s—j—1/p

r s s
Finally, suppose
i j 1 1 . .
*+*7é1—7(*+*) for i+1/p<randj+1/p<s. (4.11.8)
r s p\r s
Then the map
U = ((aéu|£:0)i+1/p<rv (8gyu|7]:0)j+1/p<s)
is a retraction from the anisotropic Bessel potential space
H{W(H™ x H") = L, (H", Hy (H™)) N H (H", L,(H™))
onto the closed linear subspace of
I By @™ xm*)x [ B @H™xR"!)
i+1/p<r j+1/p<s
consisting of all (g1, g2) satisfying the compatibility conditions
o i R A 1,1 1
Ongiln=0 = Oegple=o i — 4+ = <1- ;(; + ;)-
Note

Broo(R™! x H") = L, (H", B4 (R™ 1)) N Bg*(H", L,(R™)),

and an analogous representation holds for B,(,’\j i )(Hm x R,
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Proor. Fix vy,15 € N satisfying v = vys, which is possible. Set
w = (Vla"'aylvy27"'ay2)

with 14 occurring m-times and vy n-times. Then the reduced weight system (d, v)
associated with w is given by d = (m,n) and v = (v1,12). Set t := 17 = v9s. Then
(r,s) = t/v. One verifies

(t = va(i+ 1/p) o = (pis 101 01,1 0)
—— ——
m—1 n
and
(t =2+ 1/p) fwimi = Njo e s Nj - 5)-
—— ——
m n—1
Hence
B}()p,-,ai)<Rm—1 % Hn) — B}(}t—ul(i+1/p))/w (al(Hm > Hn))
and

BI())‘jvﬂj)(Hm y Rnfl) _ Bz()tfu2(j+1/17))/w@ (am+1(Hm % Hn))

Let k be the largest integer j satisfying j + 1/p < s. Then i + 1/p < r implies
max{vi(i + 1/p),va(k+1/p)} <wvir=t=1as <va(k+1+41/p)

since s ¢ N+ 1/p. Thus condition (4.11.5) is satisfied (with s replaced by t).
Moreover,

] j 1/1 1
t>u(i+1/p) +va(j+1/p) iff %+%§1_5(,+,).

Now the assertion follows from Theorem 4.11.6. O

If p = 2, then the assertion of this example has been proved in P. Grisvard [28],
where the assumptions (4.11.8) and s ¢ N+ 1/2 have not been imposed (also see
Theorems IV.2.1 and IV.2.3 in J.-L. Lions and E. Magenes [47]). If p € (1,00) and r
and s are integers, Example 4.11.7 coincides with Théoreme 4.2 in P. Grisvard [27]
where, again, conditions (4.11.8) and s ¢ N+ 1/p are not assumed. Needless to
say that our proof is completely different from the ones in those works. P. Gris-
vard’s theorems are the only general extension theorems for anisotropic Sobolev-
type spaces on corners known to the author and taking data on all of JK into
account.

Intermediate results, that is, extension theorems for 0;K and 0;K separately,

2m-parabolic weight vectors, and Sobolev spaces W};k/ Y(K,E) with k € N can be
found in R. Denk, M. Hieber, and J. Priiss [21].

4.12 Vanishing traces on closed wedges

Similarly as in the case of half-spaces and half-open wedges we can characterize
§° (K, E) on closed wedges by vanishing traces.
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4.12.1 Theorem Let K be the closed standard wedge in R%. Suppose k,m € N
and s € R satisfy
wilm+1/p)<s<wi(m+1+1/p), wa(k+1/p)<s<ws(k+1+1/p),
and
s¢ {wili+1/p)+wa(i+1/p); i,j €N}
Then, given §° € {Hy'", By/*},
SS(KVE) = {u € %S(KaE) ; a;‘“u:()a 8‘{)/2,1’[/: 0, 1<m, j< k}

PROOF. (1) Set By := (9% ,...,0m) and By :=(8%,,...,0% ). Then Theo-

"o °
rem 4.11.6 guarantees that
B=(B1,B2): 3K,E)— 055 (0K, E).
is a retraction. Let B¢ be a coretraction for it. Then, replacing v¢ in step (2) of the
s/v

proof of Theorem 4.7.1 by B¢ (and H by K), we see that we can assume §° = B,

(2) The arguments of step (3) of the proof of Theorem 4.7.1, using again B°
instead of ¢, show that

{ueCNBY"(K,E); 0hu=0, 0, u=0i<m, j<k} (4.12.1)
is dense in
{veByY¥(K,E); 0,,v=0, 05, v=0,i<m, j<k}. (4.12.2)
(3) Let G be a Banach space. Choose ¢ € D(RT) satisfying ¢(t) =1 for
0<t<1/2and ¢(t) =0fort> 1. Put ¢.(t) := p(t/e) for t > 0 and £ > 0. Given
v E Ly(XT x Y+ G), set

Yev(z,y) = pe(x)pe(y)v(z,y), aa. (r,y) e XT x YT,
Denote by wy2 the least common multiple of wy and we and set 1/w := (1/w1, 1/ws).
Fix n € N. Theorem 4.4.3(i) and Leibniz’ rule imply

1evllymorars iy gy S Cllymonnro o yr ) (4.12.3)
for € > 1. It is obvious that, given v € L,(XT x Y+, G),
Yo —vin Ly(XT x YT, G) as e — o0. (4.12.4)
From Proposition 3.5.3 and Theorem 4.4.1 we know
BY/®(XT x Yt G) = (L,(XT xYT,G), Br/®(X+ x Y5 ), s

for 0 <r <nwip. Thus (cf. (4.7.9)) we deduce from (4.12.3) and (4.12.4) that,
given r > 0 and v € By/*(X*+ x Y+,G),

Y0 — v in B;/‘;(X"' x Yt G)ase— . (4.12.5)

(4) Set X :=L,(R“2 F) and Y := B;/w” (R=2E). It is a consequence of
Theorems 3.6.1 and 4.4.3(ii) that

BYY(K,E) = L,(XT x YT, Y)NB:/* X). (4.12.6)
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Hence it follows from (4.12.4) and (4.12.5) that, given v € B;/"(K7 E),
YU — v in B;/"(K, E) as ¢ — o0.

Suppose u belongs to (4.12.1). Then ¢.u € D(X+ x Y+, )). From this we infer
that

{ueDXTxYTY); 0h,u=0, 0, u=0i<m, j<k} (4.12.7)
is dense in (4.12.2).
(5) Put
Xe(®,Y) = () + e (y) — pe(@)pe(y),  xev(,y) = Xe (@, y)v(T, ).

Let u belong to (4.12.7). Then (1 — x.)u € D(X*‘ X 1'/+,y) and (1 — x:)u con-
verges in L,(X 1 x YT,)) towards u as e — 0. Hence (4.12.6) shows that (1 — x.)u

converges in B;/V(K, E) towards u, provided we prove, due to u — (1 — xc)u = xeu,
that

Xeu — 0in BY“(XT x YT, X) as e — 0. (4.12.8)

Then it follows that D(X+ x Y+, ) is dense in (4.12.2). This implies easily that
B;/"(K, E) is dense in (4.12.2). Thus the theorem will be proved.

(6) Set n := [s/wi] + 2. Note
A?h,o) (Yeu)(z,y) = @e(y)A?h,O) (905 (z)u(z, y))

Since 0 < ¢.(y) < 1 we deduce from Fubini’s theorem, setting Z := L,(H"!, E),

/ / / Al 0y (eu) (2, y)ll'&dd@

x+ Jy+ hps/wn h
> | Ak(pev) (@))% dh
<[]

where v(z) := u(z, ) and (p0)(z) := p(x)v(z). Now it follows from steps (5)
and (6) of the proof of Theorem 4.7.1 that

[ctt]s jwy p1 — 0 as e — 0,
using the notation of (3.8.2) with d; = ds = 1. Hence
[Vet]s/wy p1 — 0 as e — 0.
By interchanging the roles of w; and wy we also obtain
[Pett]s jug.p,2 + [Vett] s jwy p2 — 0 as e — 0,

where @.u := ¢ (y)u(z,y). From this and Theorems 3.6.1 and 4.4.3 it thus follows
that (4.12.8) is true. O
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4.13 The structure of wedge spaces

In this section we prove isomorphism theorems for Bessel potential and Besov
spaces on closed wedges. They are of particular relevance for the weak theory of
parabolic boundary value problems.

We assume throughout
o K is the closed standard wedge in R?;
o Assumptions (4.10.13) and (4.11.3) are satisfied; (4.13.1)
o 3 e{Hy¥ B}

We continue to use the notation and conventions of the preceding sections. For the
ease of writing and reading we omit the range space £ ® F' in the following so that

§(K) =3 (K,E®F), etc.
‘We set
Boz = 32\31K7 Bio := B \32K7

where B |01 K means, of course, that By is restricted to those distributions which
are defined on 01K and for which By is well-defined.

Let s € R satisfy
wi(mp +1/p) +wa(k +1/p) < s <ws(k+141/p). (4.13.2)

Note that this implies
w1 (mp, +1/p) < wa. (4.13.3)

Set
n k

BT (012K) = H H B;l()sfwl(i+1/P)*w2(j+1/P))/w”(812K’ E®F).
i=0j=0
Since 915K = Z 2 9(Y+ x Z) = 9(0:K) it follows from Theorem 4.8.1 that
Bys is a retraction from 9p,§°(01K) onto 95F°(912K)
possessing a universal coretraction Bf,. Similarly,
Bio is a retraction from 9,5’ (02K) onto 9pF*(012K)
having a universal coretraction Bf, which depends analytically on b € B. Hence
TRy, = 1 — BGaBo2, 7By, :=1— BiyBio
are projections, and Lemma 4.1.5 implies
05, 3°(01K) = 05, 35,,(01K) @ BGp055°(012K) (4.13.4)
and
05, 5°(02K) = 05,85,,(02K) @ Biy055°(012K), (4.13.5)
where
0B, 8B,, (01K) = ker(Boz), etc.
Lastly, we put
1
Big = 5 (80281 + 61082). (4136)

Note Bis € K(SS(K), 8538(812K)).
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4.13.1 Theorem Let assumptions (4.13.1) and (4.13.2) be satisfied. Then
R = (TBysB1, T8y, B2, Bi2)
is a retraction from F*(K) onto
0B, 8By, (01K) X 05,83,,(02K) x 9F°(012K). (4.13.7)
It possesses a universal coretraction depending analytically on b € B.

PROOF. Clearly, R is a continuous linear map from §°(K) into (4.13.7).

It follows from (4.13.4) and (4.13.5) that each g = (g1,92) € 95F°(JK) has a
unique representation

g1 =v+ Bih1, g2 =w+ Biyhe (4.13.8)
with
V=TBug1, W =mg,g2, (h1,h2) = (Bo2g1, Biog2) € 05T (912K)?.
Consequently, g € 0g5°F°(9K) iff hy = he. Thus, given
(v,w, h) € OB, 85,,(01K) x 0,F5,,(02K) x 05F*(012K),

define g by (4.13.8) with h; := hg := h. Then we find, by inserting g into (4.11.7)
and rearranging terms,

B9 = R{v + Riw + Rish =: R¢(v,w, h), (4.13.9)
where ) )
{ = Bi, 5 = BS — BB 55 (4.13.10)
and )
o 1= BsBY, + Bi(Bg, — B1B5B5,)- (4.13.11)

Hence R° is a continuous linear map from (4.13.7) into §°(K). It depends ana-
lytically on b € 8 and one verifies that it satisfies RR¢(v, w, h) = (v, w,h). This
proves the theorem. O

4.13.2 Corollary Set mp :=1— BB € L(3*(K)). Then (75, R) is a toplinear
isomorphism from F*(K) onto

S5 (K) x 08,85,,(01K) x 08,83,,(02K) x 05F*(012K).
It depends analytically on b € B.
ProoF. This is now a consequence of Lemma 4.1.5. (]

Finally, we prove now an isomorphism theorem for §g, (K). For this we im-
pose an additional assumption, using the concepts and notation introduced in Sec-
tion 4.8:

e m € N satisfies m > m, and

wi(m+1/p) +wa(k+1/p) <s <wi(m+1+1/p)+w2/p; (4.13.12)
° gl s complementary to By to order m on 01 K.
Note that this assumption implies
wok < wi. (4.13.13)

In particular, k = 0 if w; < ws.
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4.13.3 Theorem Let assumptions (4.13.1) and (4.13.12) be satisfied and sup-

pose s < wa(k +1+1/p). Set B:= (By,Bs). Then there exists a toplinear isomor-
phism from §g (K) onto

§(K) x 95,8 (01K)°) x 05,5 ((9:K)") x 05F*(012K) (4.13.14)
depending analytically on the coefficients of Bi.
PROOF. Define
¢ € Lis(95,3° (1K) x 95,8° (01K), 9¢,3°(01K))

and

Cr = (B1,B1) € L(F*(K), e, F°(0:1K))
in analogy to Remarks 4.8.3(b) and (c) so that

861815(81K) _ HBz()sfwl(i+1/P))/w/ (81K)

i=0

Also set C := (C1,B2). Theorem 4.13.1 guarantees that R := (7p,,C1, 7¢,,B2,C12)
is a retraction from §°(K) onto

0c,85,, (01K) X 05,82, (02K) x 9cF*(012K).
It follows from assumption (4.13.12) that
walk+1/p) <s—wi(i+1/p) <wa(k+1+1/p), 0<i<m.
Hence, since ;K = YT x Z = H¢ !, we deduce from Theorem 4.7.1
90,8, (01K) = 8¢, §° ((01K)°). (4.13.15)
Similarly, since (4.13.12) implies
wim+1/p) <s—wa(j+1/p) <wi(m+1+1/p), 0<j<k,
we infer from (4.8.8)
08, T¢,,(0:K) = 95,5° ((02K)°). (4.13.16)
Since By, gh and By are retractions from §*(K) onto 95, §° (01 K), 8@1 F°(01K), and
0B, §°(0:K), respectively, it is not difficult to see that
C1(85,(K)) =095 5° (1K), Ci2(Fp, (K)) = 053°(012K).
From this, (4.13.15), and (4.13.16) it follows that there exists a retraction R from
535, (K) onto
85135((81]@0) x 03,3° ((02K)") x 053° (912K).
Due to Theorem 4.12.1
§(K) = 5(K) = 2, 5,5, () = (35,)5(K).

Observing (4.13.9) the assertion follows now from Lemma 4.1.5, since the analytic
dependence on the coefficients of B; is clear by our previous considerations. O
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Taking (4.13.10) and (4.13.11) into account it is not difficult to give a rather
explicit description of this isomorphism. We leave the details to the interested
reader.

The importance of Theorem 4.13.3 lies, similarly as that of Theorem 4.8.4, in
the fact that it allows to represent the elements of §j, (K) by distributions on K,
01K, &K, and 015K. This will become clear in Part 2.

Of course, it is also of interest to classify the structure of Fg, (K) if the restric-
tions for s given in assumptions (4.13.12) are not satisfied. We refrain from doing
it in the present generality. However, the following examples contain a complete
analysis in the important and simple case of Dirichlet and Neumann boundary
conditions for second order problems.

4.13.4 Examples We fix n € N and consider the closed wedge W := H" x RT
in R"™! with generic point (z,t). Note ;W = R"~! x RT and 9,1 W = H", using
standard identifications. For abbreviation, we also set

Y= Yo, W = lar=0, Y0 = Vo, W = |t=0, M i=mny.
Furthermore, we assume w = (1,...,1,2), the 2-parabolic weight vector.

(a) (Dirichlet boundary conditions) First we consider the Dirichlet operator
on "W; thus B = (v, 70).

() (Retractions) (i) Suppose
2/p<s<2+2/p,  s#3/p.
Then (v,70) is a retraction from H;(,S’S/Q) (W) onto
B /PWI2) (9)W) x By7*/P(H") if s < 3/p,

and, if s> 3/p, onto the closed linear subspace thereof consisting of all (g, w)
satisfying the compatibility condition

gli=0 = wlz1=0. (4.13.17)
It possesses a universal coretraction. In particular, (v, o) is a retraction from
HD (W) onto BP~H/P(L1/2) (9, W) x BZ2/7(H")

if p < 3/2, and onto the closed linear subspace thereof determined by the compati-
bility condition (4.13.17) if p > 3/2.
(ii) Let 1/p < s < 2/p. Then

HE*/D(W) = H®*/) (H" x RY). (4.13.18)
If s > 1/p, then + is a retraction onto Bz(,sfl/p)(l’l/z)((’)lW).
(ifi) If =14 1/p < s < 1/p, then HS**/? (W) = HS™*/? (W).

Proor. (i) follows from Theorem 4.11.6.

(ii) Theorem 4.11.1, applied to the last coordinate, implies (4.13.18). The
second assertion is a consequence of Theorem 4.11.3.

(iii) follows from Corollary 4.11.2. O
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(B) (Isomorphisms) (i) Suppose
4-3/p<s<3—1/p. (4.13.19)
Then H I()i’,j/ 2)(V\\,’)’ is toplinearly isomorphic to
H;(S,S/Q)(W) % BZ()Zfsfl/p)(l,l/Z)(alW) % 312)7572/;7(Hn) % Bgfsfii/p(Rnfl).
In particular, if p < 3/2, then
2,1 ~ Tr— - _ n _ e
HSD (W) = Hy D (W) x B, 1/p1/20 (9, W) x B, 2/P(H") x B2~%/?(R"),
(i) Assume
2-1/p<s<d-—3/p (4.13.20)
Then

H;f,’i/Q)(W)’ ~ Hp—(s,s/2)(w) « B;}2—s—1/p)(171/2) (O W) x Bf}—s—?/p(Hn).
Thus, if p > 3/2,
HFD (WY = H, @D (W) x B, W21/ (9, W) x B, */P(H").

(iii) If —1/p < s <2 — 1/p, then H*/? (W = H, ¥/ (w).

PROOF. (i) Set B, := 8,,. Then B is complementary to By =~y to order m = 1.
Condition (4.13.19) is equivalent to 1 + 3/p’ < s < 2+ 1/p’. Hence Theorem 4.13.3

implies that H ]5,57’,?/ 2)(W') is toplinearly isomorphic to
5,5/2) /v s—1—1/p’)(1,1/2 s—2/p" /orm s—1-3/p" /pyn—
HE P (W) x BGTTYPIE ((90w)0) < BT (M) < By (R,

Due to Theorems 3.3.3, 3.7.1(i), and 4.4.4 the assertion now follows by duality.

(ii) Assumption (4.13.20) means 1 + 1/p’ < s <1+ 3/p’. Hence it follows from
Theorem 4.12.1 that

s,s/2 s,5/2 $,5/2) /vy
(H ™) g (W) = He (W) = HY ™2 (W), (4.13.21)

Theorem 4.11.6 implies that B = (9,,70) is a retraction from HI(),S’S/Q)(W) onto

BYTIVROAD (g« B (M),
Since s — 1 —1/p’ < 2/p’ we deduce from Theorem 4.7.1 that
B(fflfl/p')(l’l/z)((’)lW) _ B}(j72+1/p)(1,1/2)((81W>0).

P
Similarly, since s — 2/p’ <1+ 1/p’, it follows

s=2/p" iy . pS—2+2/p
B, (H™) = B, (H™).
Thus, see Lemma 4.1.5,

s,5/2 s,5/2 c s—2+1 1,1/2 cpS—2+2 T
H ™2 (W) = H 2 (W) @ (9n)° By P02 (94 (W)°) 45 By 27 (H).
From this and (4.13.21) we infer

H;f”j/g)(W) ~ HZ()§73/2)(W) % BI()§—2+1/p)(1,1/2) (al(W)O) « B;/—2+2/P(Iﬁ[n).
Finally, we obtain the assertion once more by duality.

(iii) This follows from («)(iii) and duality. O
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(b) (Neumann boundary conditions) Now we consider the Neumann bound-
ary operator 9, on W, that is; B = (On,Y0)-

() (Retractions) Suppose
1+1/p<s<3-1/p, s#1+3/p.
Then B is a retraction from H,gS’S/Q) (W) onto
B2 (9,W) x BSTHP(H™) if s < 1+ 3/p,

and, if s > 1+ 3/p, onto the closed linear subspace thereof consisting of all (g, w)
satisfying the compatibility condition

Glimo = Onwlyi_o. (4.13.22)
It possesses a universal coretraction.
In particular, if p < 3, then (9,70) is a retraction from H,§2’1)(W) onto
Bz()l_l/p)(l’l/Q)(81W) > Bz_Q/p(H")
and, if p > 3, onto the closed linear subspace thereof determined by (4.13.22).
Proor. Theorem 4.11.6. O
(B) (Isomorphisms) (i) Suppose
3-3/p<s<3-1/p, s#2-1/p. (4.13.23)
Then H 1(7’8,751/1 ) (W)’ is toplinearly isomorphic to
H;(s,s/2)(W) > B;)lfsfl/p)(l,l/2)(8lw) > B]2)7572/p(Hn) ~ Bgfsf?)/p(Rnfl)’
where H'75/? (W) .= H*/® (W) if s < 1+1/p' =2 —1/p. Thus, if p < 3, then
HZ (WY = Hy CD (W) x By (+1/P012) (9, w)
x By¥P(H") x BL=3/P(R"71).
(i) If 2 - 2/p < s < 3 — 3/p, then
H}(ﬂs:;iﬁ(w)/ ) H;(S’S/2)(W) > B]()lfs—l/P)(l,l/Z)(alw) > B}Q)*S*Q/p(Hn).
In particular, if p > 3, then
H;szali (W) = H;(2’1)(W) % B;(1+1/p)(1’1/2)(61w) % BP‘Q/P(H").
(iii) Let 1 —1/p < s <2 —2/p. Then
HD (WY o Hy 65/ (W) x B, (FU/PA1/2) (9, w),
PrOOF. (i) Condition (4.13.23) says 3/p' < s <2+ 1/p’ and s #1+1/p’.

First suppose s > 1+ 1/p’. Then gl := is complementary to B; = 9, to
order 1. Hence Theorem 4.13.3 implies that H ;,Sy’gi 2) (W) is toplinearly isomorphic to

$,8/2) /vy s—1/p")(1,1/2
H}()I /)(W) X B;, /p")( /)((81W)0)

o o (4.13.24)
x B, (H") x B, (R™H).
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Now suppose 3/p’ < s <1+ 1/p. Put v19 := v|H" and ~p2 := 70|01 W. Then
we deduce from Corollary 4.13.2 that Héf’s/ 2) (W) is toplinearly isomorphic to
5,5/2 s—1/p")(1,1/2 s—2/p' /mrn s—3/p /mpyn—
HS P (W) = BSUPOYR 90w) s BT (M) < B (R,

Theorems 4.7.1 and 4.12.1 guarantee that this space also equals (4.13.24). Thus
the assertion is obtained by duality.

(ii) Since 2/p’ < s < 3/p’ it follows from Theorem 4.11.6 that ~ is a retraction
from H[()',g’s/z) (W) onto

B}gf—l/p’)(lal/?)(alw) % B;—2/p’ (H™).

Due to s —1/p’ < 2/p’ and s —2/p’ < 1/p’ we infer from Theorem 4.7.1 that this
space equals

s—1+1/p)(1,1/2 5—2+42/p i
BI()/ +1/p)(1,1/ )((81W)0> % Bp/ + /P(Hz).
Arguments which are familiar by now conclude the proof.

(iii) This follows, similarly as above, by invoking Theorem 4.11.3. U
() It is clear that analogous assertions hold if we replace H everywhere by B. O

The reader is invited to draw the connection between the above isomorphism
theorems for H}S,Qy’vl)(W)’ and H;,Qali (W) and Theorem 0.5 in the introductory sec-
tion on parabolic equations. For this Remark 4.4.5 has to be kept in mind. Of
course, this will explained in detail in Part 2.

4.14 Parameter-dependent function spaces

For technical reasons, which will become clear in Part 2, it is useful to have
parameter-dependent versions of Bessel potential and Besov spaces at our disposal.
Thus we return to the general setting of Section 2.3 where parameter-dependent
fractional power scales | Smi SE R ] have been introduced. By specifying § and ~
we arrive at the desired concrete scales. Recall 1 < p < 0.

Parameter-dependent anisotropic Bessel potential spaces are naturally

defined by
Hyv = HylY(RYE) == J,°L,,  s€R, neH.

»n in
Thus the parameter-dependent anisotropic Bessel potential scale
[HY 5 s €R]

isforn € H the fractional power scale generated by (L,, Jp). It is a particularization
of (2.3.7) with v = 0.

A
To define parameter-dependent anisotropic Besov spaces, B{;,/ﬂfn(Rd, F),
for ¢,7 € [1,00], s € R, and an arbitrary Banach space F', we recall p; = t7o; for

t >0 and v € R. Hence (p])~! = pl_/l. Then, given n € H,

B0 _ B d Py el
BY,., = BY,., (R, F) = p/// 159,

q,mm

and

Byl%, = Bil¥y (R F) == J,°BY

q,mn
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for s € R. These spaces are equipped with the image space norm

|/QJ5

we el e = logfil/ Tyullzg,

(cf. Remark 2.2.1(a)). Thus, setting v := |w|/¢ and using the notation of Sec-
tion 2.3,

A S/V o - _ o A 0

Bairm = gi,n =J, By By = pr;”Bq,’r'
In other words: the parameter-dependent anisotropic Besov space scale

A
(Bl ; s €R]
qrn,J ) for n € H.
These definitions are justified by the following theorem which shows that the

basic properties for the standard, that is parameter-free, Bessel potential and Besov

spaces hold for the parameter-dependent versions also, uniformly with respect to
n e H.

is the fractional power scale generated by (B

4.14.1 Theorem
(i) Ifue HYY, then

e = 11 ol geres P
(ii) Foru € égfr",

lull g = p|s~lwl/a ol gsres n e H.
(iii) H;;/nu(Rd,E)' = H_,;S/"(Rd,E’), n€H, and, if F is reflexive,

By, (R FY = B (RLF), £,

q,m3m q’,r'sm

with respect to the L,(RY, E), resp. Ly(R%, F), duality pairing.
(iv) For sg,s1 € R with so # s1 and 0 <0 < 1,

Bitday = (3, Hi )3

p;n’

PRrOOF. (1) Assertions (i) and (ii) follow easily from Proposition 1.1.1(ii) and
(2.3.2).

(2) For u € S(R, F) and v € S(RY, F’) one verifies

— —lwl/d', —lwl/a :
/Rd@,u}Fdz—/Rd <p1/w U, 01 ) >Fda:, n € H.
Now (iii) is implied by (i), (ii), and the duality results for the parameter-free spaces.

(3) Put Fy :=[n|~* s/,, , that is, F} is the image space of the multiplication
operator u — \77| 5 u. Then glven sop<spand 0 <6 <1,

K,(t,u) ==
= [n|** Ki(ln

C o= ) 5
o U = ug + U, uJEFn }

)
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for t >0 and u € F;*. Thus, setting F** := F}, the K-method of interpolation
theory implies

—0 E —0
Hu”(F,fO,F,fl)gﬂ = ||t Kﬁ(t’u)HLq(H.{Jr,dt/t) = |77|90 ||T Kl(T7 u)HLq(H.QJr,dT/T)

= [0l lull(poo pory, .-

Consequently, by Theorem 3.7.1(iv) we infer
_ _ 0 sy B

(Inl==0 Hzo ™ n|== Hy /)y = lnl= Byly' (4.14.1)
From (i) we see that pl_/ll‘;’]\/p is an isometric isomorphism from H;;/n" onto |n|~* H;/V.
Thus, by interpolating and using (4.14.1), it follows that

ol GG s — Il Biif
is an isomorphism as well, 7-uniformly. Now (iv) follows from (ii). O

Theorem 2.3.8 shows explicitly the n-dependence of the norm of the parameter-
dependent anisotropic Sobolev spaces

v/v d _ v/v d
woe/v(RY, E) = H/Y(RY E),  meN.

The following proposition shows that an analogous result holds for parameter-
dependent anisotropic Slobodeckii spaces of positive order. For this we remind the
reader of the definition of the seminorm [-]5/, 4, in (3.6.1) and (3.6.2).

4.14.2 Proposition If s > 0, then

B, ',7 ‘77|8 ||||Lq + [']S/V,q,r'
PrOOF. For u € S(RY, F), y € R, and t > 0 one verifies A’y“ot = atAf_y for
k € N. Hence, by Proposition 1.1.1(ii),
k i — k %
AT apully = eV Al

Suppose r # co. Then

—s/v; kv/v;
[ 1hil = Ay, ol HLT((]Rdi)‘,dhiﬂhi\di)
_ e v d(t«hi)\1/r
_ 48 |w|/q( b sr/v; AkV/Vz r 7 )
e[ e sl G
due to t « h; = t"ih;. Hence, by changing variables,
(015w g = 1V 0 (4.14.2)

if r # oo. It is easily verified that (4.14.2) holds also if r = co. Setting ¢ = 1/|n]| it
follows

il gl gr = [Wsppgr, 1 EH.
Since by Proposition 1.1.1(ii)
>~ Vo ypully = Il lullg, — m e,
we obtain the assertion from Theorems 3.6.1 and 4.14.1(ii). O

Now we turn to the half-space H = H¢ and standard corners.
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4.14.3 Theorem All extension and restriction results from and to corners de-
rived in the preceding sections hold n-uniformly for parameter-dependent anisotropic
Bessel potential and Besov spaces.

PRrROOF. This is an easy consequence of Theorem 4.14.1 and the proofs for the
parameter-free case. O

4.14.4 Theorem The parameter-dependent anisotropic Bessel potential and
Besov spaces possess the same interpolation properties, uniformly with respect to
n € H, as their parameter-free counterparts.

PrOOF. In the full space case, that is for spaces on R¢, this follows from
Theorems 2.3.2(v) and 4.14.1(iv), and by reiteration. For spaces on corners it is
then a consequence of Theorems 4.4.1 and 4.14.3. O

If ue S(H, F), then

Yomoru(z') = vom (u(t - ) = u(0,t+ ") = oyyomu(z’), ' € OH,

that is, yomor = o¢yem. Thus, since |w| = wy + |w’|, Theorem 4.14.1(ii) and the
trace Theorem 4.5.4 imply

_ |n|s—w1/q—\w'|/q |

||76HU||BL§§;:1 19/ (9m, F) |01/\n\’YaHU||B$;w1 19/ (5H, F)

= |77|s—|w\/q ||78H0'1/\77\uHBéf;W1/4)/w’(3H7F)
S c |77|Si|w‘/q ||O.1/‘W‘””B§(:(H,F) =c ||u‘|B;/TVn(H7F)
Thus, if s > wq /g,
YoH € ['(é;/:n (Hv F)7 ég?;;l/Q)/w/(aH, F)>, ﬁ‘uniforml}’-
Similarly,
Yom € E(H;;/WV(H, E), Béf;”l/p)/“’/(aH, E)), n-uniformly,

for s > wy /p. This extends immediately to the higher order trace maps 7. In fact,
the following important theorem is true.

4.14.5 Theorem All retraction and coretraction results of the preceding sec-
tions hold n-uniformly for parameter-dependent anisotropic Bessel potential and
Besov spaces.

PrOOF. (1) The n-uniform continuity of the various trace operators follows
easily from the preceding considerations and Theorem 4.14.3.

(2) All coretraction results for the half-space of the foregoing sections are based
on the coretractions 5 for 9}, constructed in the proof of Theorem 4.6.2. Thus we
have to show that 75 is continuous from the parameter-dependent spaces on 9H to
the corresponding parameter-dependent domains of 87, uniformly with respect to
n € H. As in the above considerations for v, this will follow from (4.6.6)—(4.6.13),
provided we show

g Al = AFe Mg peH, keN, ¢>0. (4.14.3)
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However, this follows from (2.2.2) and the representation formula for
et = () (D)
of Theorem 2.2.6, where a := K{*.

(3) Similar remarks apply to the case of retraction and coretraction theorems
on wedges. This implies the assertion. O

Parameter-dependent function spaces occur naturally in resolvent construc-
tions for elliptic and parabolic boundary value problems and in singular perturba-
tion problems. It seems that parameter-dependent norms have first been used in
connection with resolvent estimates by M.S. Agranovich and M.I. Vishik [1] in an
Ly-setting.

Parameter-dependent isotropic and anisotropic Lo-Sobolev spaces of fractional
order, H* and H*"  have been extensively used by G. Grubb in numerous articles
on a parameter-dependent Boutet de Monvel theory for pseudo-differential bound-
ary value problems. This work and a functional calculus for such problems is well
documented in her book [31]. In G. Grubb and N.J. Kokholm [32] the parameter-
dependent calculus is extended to isotropic Bessel potential and Besov spaces in
the L,-setting for 1 < p < oo.

In all those papers the authors use, instead of |n|, the parameter (n) so that
1/({n) does not blow up as 7 — 0. This is, however, irrelevant for the above results.
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