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Introduction

The topic of principal interest in this treatise is the optimal solvability of linear
parabolic initial boundary value problems in strong and weak Lp-settings. More
precisely, we fix any positive real number T and set J := [0, T ]. Then we consider
systems of the form

∂tu +Au = f on M × J,

Bu = g on ∂M × J,

u(·, 0) = u0 on M,





(P)

where, in general, M is an oriented Riemannian manifold with (possibly empty)
boundary ∂M , ∂t +A is a Petrowskii parabolic differential operator, B is a sys-
tem of boundary operators satisfying the Lopatinskii-Shapiro conditions, and f ,
g, and u0 are given sections in vector bundles over M × J , ∂M × J , and M ,
respectively.

These problems have already been intensely studied, in the strong setting, by
several authors, most notably by V.A. Solonnikov [62] (see also the book by O.A. La-
dyzhenskaya, V.A. Solonnikov, and N.N. Ural’ceva [45]), by M.S. Agranovich and
M.I. Vishik [1] and G. Grubb and V.A. Solonnikov [33] in the L2-setting, and by
G. Grubb [30]. In the latter two papers even pseudo-differential boundary value
problems are considered. The results of Solonnikov in [62] and of Grubb are optimal
in the strong Lp-setting.

More recently, R. Denk, M. Hieber, and J. Prüss [20], [21] established a max-
imal Lp-Lq-regularity theory for (P) for differential and boundary operators with
operator-valued coefficients using recent Fourier multiplier theorems for operator-
valued symbols. Their results extend an earlier (scalar) maximal Lp-Lq-regularity
result of P. Weidemaier [68], [69]. This author was the first to discover that Triebel-
Lizorkin spaces occur as trace spaces for anisotropic mixed Lp-Lq-Sobolev spaces.
For further optimal regularity results we refer also to D. Guidetti [34], [36].

Thus, since everything concerning optimal solvability in an Lp-setting is known,
why do we come back to the study of these problems? There are two motivations
for this. First, the present work is the initial and basic step of our program to
study linear and quasilinear parabolic problems on non-smooth manifolds, that is,
on manifolds with edges, corners, conical singularities, etc. For our approach to
such problems it is of utmost importance to have complete and precise control
of the dependence of a priori estimates on all data. This information is needed
since in the presence of singularities we are led to study non-compact non-complete
manifolds with non-compact boundaries. This is in stark contrast to practical
all work mentioned above. In fact, except for V.A. Solonnikov’s early work in
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2 INTRODUCTION

the classical Sobolev space setting, in all papers known to the author it is either
assumed that M is compact, or M = Rn, or M̊ , the interior of M , is an open subset
of Rn with a compact boundary.1 In addition, to be able to deal efficiently with
quasilinear problems it is mandatory to study linear problems with low regularity
for the coefficients (A,B).

In principle, it should be possible to go through the various proofs in the lit-
erature and extract the needed information from there. However, this seems to be
more difficult than to start from scratch and derive the optimal a priori estimates
by taking care of the various dependencies. The latter we do in this work. Although
the problem is classical, we believe that there are some points of interest for experts
also.

The second, equally important, motivation comes from the desire to possess an
optimal existence theory for (P) in weak and very weak Lp-settings. This is an open
problem since the pioneering work of J.-L. Lions and E. Magenes [47] who gave a
partial solution in the L2-setting. It is well-known that weak theories are of great
importance in the qualitative theory of (quasilinear) reaction-diffusion systems, in
problems of mathematical physics, the mathematical theory of incompressible fluids
in particular, and in control theory. Thus the second main objective of this treatise
is to provide a completion of the L2-case as well as an extension to the Lp-setting of
the Lions–Magenes theory. This aspect is explained in more detail in the following
section.

Our approach necessitates –– among other things –– a thorough knowledge of
anisotropic function spaces, more precisely, anisotropic Bessel potential and Besov
spaces of distributions. In the classical case, that is for scalar distributions, aniso-
tropic spaces of positive order have been extensively investigated, starting with the
fundamental contributions of S.M. Nikol′skĭı and his school (e.g., [51]). However,
for our purposes anisotropic Bessel potential and Besov spaces of negative order
of Banach space valued distributions, and their duality theory, are of paramount
importance. Furthermore, anisotropic trace and extension theorems on manifolds
with corners are a fundamental tool for the investigation of (P) in weak settings.
Except for a single extension theorem due to P. Grisvard [27] for anisotropic Sobolev
spaces we could not find an in-depth study of these questions. For this reason we
develop in this work the necessary machinery in order to get a firm basis for our
study of parabolic initial boundary value problems in weak settings.

This treatise consists of two parts. Part 1, the part which is presented here, is
concerned with the theory of anisotropic vector-valued Bessel potential and Besov
spaces. It also contains Fourier multiplier estimates for certain classes of symbols
which are basic for establishing maximal regularity results for constant coefficient
boundary value problems to be given in Part 2.

In Part 1 we restrict ourselves to spaces on model domains, namely on the
full space, on closed half-spaces, and on corners. The extension of our results to
manifolds is postponed to Part 2.

1Solonnikov allows uniformly regular unbounded boundaries.
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Although most of the theory of anisotropic spaces of distributions on all of Rd

developed here does not cause surprises, it is hoped that even specialists of this
subject will find something of interest.

Once again I had the great fortune to get help from Pavol Quittner and Gieri
Simonett who read preliminary drafts of this paper. Besides of pointing out nu-
merous lapses and inconsistencies they also contributed valuable hints which led
to significant improvements of earlier versions. Their painstaking, unselfish, and
invaluable work is greatly appreciated.

Some notation and conventions We use standard notation for function spaces. In
particular, D, S, OM , D′, and S ′ are the locally convex topological vector spaces
(LCS for short) of test functions, rapidly decreasing smooth functions, slowly in-
creasing smooth functions, distributions, and tempered distributions, respectively,
and are given their usual topology. Furthermore, BC, BUC, and C0 are the Ba-
nach spaces of bounded and continuous, bounded and uniformly continuous, and
continuous functions vanishing at infinity, respectively. The norm in these spaces
is denoted by ‖·‖∞ if no confusion seems likely, and ‖·‖p stands for the usual norm
in Lp, 1 ≤ p ≤ ∞. In general, these spaces consist of functions defined on suit-
able domains X and have values in a complex Banach space E so that we usually
write F(X,E) if F denotes any one of the preceding spaces. In the important scalar
case E = C we abbreviate F(X,C) to F(X).

The norm in an abstract Banach space is generally denoted by |·|. However,
|·| stands also for the Euclidean norm in Rn (or Cn) and for the usual modulus of
multi-indices. The reader will have no difficulty with the correct interpretation in
a given frame.

As usual, we denote by c, or c(α, β, . . .), constants which may depend on oth-
erwise specified quantities α, β . . . and, generally, have different values in different
formulas, but are always independent of the free variables in a given setting. If M is
a nonempty subset of some vector space, then

q
M = M \{0}. Moreover, .= means:

equal except for equivalent norms.

Given LCSs E and F , we write L(E, F ) for the space of continuous linear
maps from E into F and endow it with the topology of uniform convergence on
bounded sets. Thus it is a Banach space if E and F are Banach spaces. We set
L(E) = L(E, E), and Lis(E, F ) is the subset of all isomorphisms in L(E, F ), the
set of toplinear isomorphisms, and Laut(E) = Lis(E, E). We denote continuous

injection by ↪→ , and E
d

↪→ F means that E is continuously and densely injected
in F . For further (standard) notation we refer to Section 5 of the Introduction in
H. Amann [4].

We make free use of interpolation theory and refer to Section I.2 in [4] for a sum-
mary of the basic definitions, results, and notation. In particular, given s0, s1 ∈ R,
we always set sθ := (1− θ)s0 + θs1 for 0 ≤ θ ≤ 1. Furthermore, [·, ·]θ, (·, ·)θ,q, and
(·, ·)0θ,∞ denote the complex, the real (for 1 ≤ q ≤ ∞), and the continuous interpo-
lation functor of exponent θ ∈ (0, 1), respectively. Thus, if E0 and E1 are Banach

spaces with E1
d

↪→ E0, then (E0, E1)0θ,∞ is the closure of E1 in (E0, E1)θ,∞. Since
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in this situation E1 is always dense in (E0, E1)θ,q for 1 ≤ q < ∞, for the sake of a
unified presentation we put (·, ·)0θ,q := (·, ·)θ,q for 1 ≤ q < ∞.

Finally, the reader is reminded that a retraction from an LCS E onto an LCS F
is a continuous linear map from E onto F possessing a continuous right inverse,
a coretraction.

Parabolic equations

In this introductory section we explain the results for problem (P) which will
be proved in detail and much greater generality in Part 2. To avoid technical
complications we restrict ourselves to second order scalar equations on compact
manifolds and omit all lower order terms.

To be precise: we assume that M is an oriented n-dimensional compact Rie-
mannian C2 manifold. We write

Γ := ∂M, Ω := M̊ = M \Γ
and set2

Q := Ω× J̊ , Σ := Γ× J̊ ,

so that Q = M × J and Σ = Γ× J . We denote by n the outward pointing unit
normal vector field on Γ. Furthermore, grad = gradM and div = divM are the
gradient and the divergence operator on M . We also use n to denote the outward
pointing unit normal vector field on Σ, that is, in this case we simply write n for
(n, 0) without fearing confusion. Thus ∂n is either the normal derivative on Γ or
on Σ, according to the context.

We assume (using obvious identifications)

a ∈ C(1,0)
(
Q, (0,∞)

)
:= C

(
J,C1

(
M, (0,∞)

))

and put
A := − div(a grad ·).

Then we consider the parabolic Dirichlet problem
∂u +Au = f on Q,

u = g on Σ,

u(·, 0) = u0 on Ω,





(0.1)

where ∂ := ∂t, and also the Neumann problem
∂u +Au = f on Q,

a∂nu = g on Σ,

u(·, 0) = u0 on Ω.





(0.2)

For a more precise and concise presentation we denote by γ = γΣ = |Σ the trace
operator for Σ, that is ‘the restriction from Q to Σ’, and by γτ = |t=τ the one from Q
to Ωτ = Ω× {τ} for τ ∈ J , whenever they exist. We also identify Ω0 with Ω. Lastly,
we fix χ ∈ {0, 1} and put

B := χa∂n + (1− χ)γ.

2Readers not comfortable with manifolds may consider, at a first perusal, the case where Ω is
a bounded C2 domain in Rn.
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Then
∂u +Au = f on Q,

Bu = g on Σ,

γ0u = u0 on Ω,





(0.3)

coincides with (0.1) if χ = 0, and it is the Neumann problem (0.2) if χ = 1. Of
course, there are no boundary conditions if Γ = ∅. In this case all explicit or
implicit references to Γ have to be neglected in what follows.

For 1 < p < ∞ and r ∈ {0, 1, 2} we denote by W r
p (X̊) the usual Sobolev spaces

on X̊ for X ∈ {M, Γ}, so that W 0
p (X̊) = Lp(X̊). We identify Lp(X̊) and Lp(X) in

the obvious way. (Note Γ̊ = Γ.) Consequently, W r
p (X) = W r

p (X̊). If r ∈ (0, 2)\{1},
then W r

p (X) = W r
p (X̊) are the Slobodeckii (or fractional order Sobolev) spaces

which can be characterized (locally, for example) by the standard Slobodeckii norm,
or by

W s
p (X) .=

(
Lp(X),W 2

p (X)
)
s/2,p

, 0 < s < 2, s 6= 1.

Let E be a Banach space. Then

W s
p (J,E) = W s

p (J̊ , E), 0 ≤ s ≤ 1,

denotes the standard Sobolev space if s = 0 or 1, respectively Slobodeckii space if
0 < s < 1, of E-valued functions on J with the usual Sobolev–Slobodeckii norm.
Equivalently,

W s
p (J,E) =

(
Lp(J,E),W 1

p (J,E)
)
s,p

, 0 < s < 1.

Now we can define anisotropic Sobolev–Slobodeckii spaces on X × J by

W (s,s/2)
p (X × J) := Lp

(
J,W s

p (X)
) ∩W s/2

p

(
J, Lp(X)

)
, 0 ≤ s ≤ 2,

so that W
(0,0/2)

p (X × J) = Lp(X × J). We also denote by Π := Σ ∪ Ω the parabolic
boundary of Q and set

∂χW (2,1)
p (Π) := W (2−χ−1/p)(1,1/2)

p (Σ)×W 2−2/p
p (Ω).

It follows that

P :=
(
∂ +A, (B, γ0)

) ∈ L(
W (2,1)

p (Q), Lp(Q)× ∂χW (2,1)
p (Π)

)
.

However, P is not surjective, in general. In fact, suppose p > 3/(2− χ). Denote
by γ0Σ the restriction of γ0 to Σ. Hence γ0Σ is the trace operator from Σ onto
Γ = Γ× {0}. It is well-defined; in fact,

γ0Σ ∈ L
(
W (2−χ−1/p)(1,1/2)

p (Σ),W 2−χ−3/p
p (Γ)

)
.

Similarly, let B0 = B(·, 0) be the restriction of B to the initial hypersurface Ω. Then

B0 ∈ L
(
W 2−2/p

p (Ω),W 2−χ−3/p
p (Γ)

)
.

Furthermore,
B0γ0 = γ0ΣB. (0.4)

Thus, if Pu =
(
f, (g, u0)

)
, we see that the compatibility condition

B(·, 0)u0 = g|t=0

has to be satisfied.
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Motivated by this we define a closed linear subspace of ∂χW
(2,1)

p (Π) by

∂cc
χ W (2,1)

p (Π) :=

{
∂χW (2,1)

p (Π), 1 < p ≤ 3/(2− χ),
{

(g, u0) ∈ ∂χW (2,1)
p (Π) ; B0u

0 = γ0Σg
}
, p > 3/(2− χ).

Now we can formulate the following unique solvability result for (0.3) in the
‘strong’ setting.

0.1 Theorem Suppose p 6= 3/(2− χ) if Γ 6= ∅. Then problem (0.3) possesses
a unique solution u ∈ W

(2,1)
p (Q), a strong W

(2,1)
p solution, iff

(
f, (g, u0)

) ∈ Lp(Q)× ∂cc
χ W (2,1)

p (Π).

More precisely,
P ∈ Lis

(
W (2,1)

p (Q), Lp(Q)× ∂cc
χ W (2,1)

p (Π)
)

and it depends analytically on a ∈ C(1,0)
(
Q, (0,∞)

)
.

Note that this is an optimal result, a maximal regularity theorem. It can be
derived, for example, from the more general results of V.A. Solonnikov (who consid-
ers the ‘singular value’ p = 3/(2− χ) also) or of R. Denk, M. Hieber, and J. Prüss,
referred to in the Introduction. If M is smooth, that is a C∞ manifold, then it also
follows from G. Grubb’s results in [30]. A complete proof covering general parabolic
systems on not necessarily compact manifolds will be given in Part 2.

For p > 3/(2− χ) we can, due to (0.4), define the trace operator γ0B from Q
onto the corner manifold Γ = Γ× {0} by

γ0B := (γ0ΣB + B0γ0)/2 ∈ L(
W (2,1)

p (Q),W 2−χ−3/p
p (Γ)

)
.

Then, if (
f, (g, u0)

) ∈ Lp(Q)× ∂cc
χ W (2,1)

p (Π),

u is a strong W
(2,1)

p solution of (0.3) iff

(∂ +A)u = f on Q,

Bu = g on Σ,

γ0u = u0 on Ω,

γ0Bu = h on Γ if p > 3/(2− χ),





(0.5)

where h := B0u
0 = γ0Σg. The reason for writing (0.3) in this form will become clear

below.

Now we address ourselves to the investigation of the weak solvability of (0.3).
For this we need some preparation.

Let N be a compact Riemannian C2 manifold, which may have corners, as is
the case for Q or Σ. Denoting its volume measure by dV = dVN we write

〈u, v〉N :=
∫

N

uv dV, u, v : N → C,

whenever this integral exists. In particular,

〈·, ·〉N : Lp′(N)× Lp(N) → C
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is a separating continuous bilinear form for 1/p + 1/p′ = 1, the Lp(N) duality
pairing, by which we identify, as usual, the dual Lp(N)′ of Lp(N) with Lp′(N).
We write D(N̊) for the space of all test functions on N̊ , that is, of all C2 functions
having compact support in N̊ , endowed with the usual inductive limit topology.
Then D′(N), the space of distributions on N , is the dual of D(N̊). We identify
u ∈ L1(N) with the ‘regular’ distribution

ϕ 7→ 〈u, ϕ〉N , ϕ ∈ D(N̊).

Then, given any Banach space F (N) of functions on N satisfying

D(N̊)
d

↪→ F (N)
d

↪→ L1(N),

it follows F (N)′ ↪→ D′(N), that is, F (N)′ is, via the Lp(N) duality pairing, natu-
rally identified with a space of distributions on N . In particular, we obtain

D(N̊)
d

↪→ F (N)
d

↪→ Lp′(N) =⇒ Lp(N) ↪→ F (N)′
d

↪→ D′(N).

The first injection on the right-hand side is also dense if F (N) is reflexive.
Now suppose N ∈ {X, X × J} and set {s} := s if N = X, and {s} := (s, s/2)

otherwise. Denote by W̊
{s}

p (N) the closure of D(N̊) in W
{s}

p (N). Then

W̊ {s}
p (N) ↪→ W {s}

p (N)
d

↪→ Lp(N), 0 < s ≤ 2. (0.6)

Hence, setting
W−{s}

p (N) :=
(
W̊
{s}

p′ (N)
)′ (0.7)

with respect to the Lp(N) duality pairing 〈·, ·〉N ,

Lp(N)
d

↪→ W−{s}
p (N)

d
↪→ D′(N), 0 < s ≤ 2,

since W
{s}

p (N) is reflexive. Thus W
−{s}

p (N) is a space of distributions on N .

We write W̃
−{s}

p (N) for the dual of W
{s}

p′ (N) with respect to 〈·, ·〉N . Then
(0.6) and reflexivity imply

Lp(N)
d

↪→ W̃−{s}
p (N), 0 < s ≤ 2.

However, W̃
−{s}

p (N) is not a space of distributions on N , in general, since D(N̊) is
not dense in W

{s}
p (N) if s is big enough.

Suppose E is a reflexive Banach space, E′ is its dual, and 〈·, ·〉E : E′ × E → C
the duality pairing. Then

〈v, u〉J,E :=
∫

J

〈
v(t), u(t)

〉
E

dt

defines a continuous bilinear form

〈·, ·〉J,E : Lp′(J,E′)× Lp(J,E) → C
by which we identify Lp(J,E)′ with Lp′(J,E′). From this,

W s
p′

(
J, Lp′(X)

) d
↪→ Lp′

(
J, Lp′(X)

)
,

and reflexivity we infer that

W−s
p

(
J, Lp(X)

)
:=

(
W s

p′
(
J, Lp′(X)

))′
, 0 < s ≤ 1,



8 INTRODUCTION

is well-defined with respect to 〈·, ·〉J,E and

Lp

(
J, Lp(X)

) d
↪→ W−s

p

(
J, Lp(X)

)
, 0 < s ≤ 1.

Using these facts it will be shown that the negative order anisotropic Sobolev–
Slobodeckii space W

−(s/s/2)
p (X × J), defined in (0.7), can also be characterized by

W−(s/s/2)
p (X × J) .= Lp

(
J,W−s

p (X)
)

+ W−s/2
p

(
J, Lp(X)

)
, 0 < s ≤ 2.

Negative order anisotropic Sobolev spaces occur naturally in the study of dis-
tributional solutions of

∂u +Au = f on Q. (0.8)
Indeed, a distributional Lp solution of (0.8) is a function u ∈ Lp(Q) satisfying

〈
(−∂ +A)ϕ, u

〉
Q

= 〈ϕ, f〉Q, ϕ ∈ D(Q).

If u ∈ Lp(Q), then we see

f := ∂u +Au ∈ W−1
p

(
J, Lp(M)

)
+ Lp

(
J,W−2

p (M)
)
.

This suggests that W
−(2,1)

p (Q) might be the largest space for which (0.8) has a
distributional Lp(Q) solution. Indeed, this is true if Γ = ∅. However, in the presence
of a nonempty boundary the situation is more complicated.

To find distributional solutions for problem (0.3) if Γ 6= ∅ we have to use a space
of test functions, Φ(Q), larger than D(Q), since the latter space ‘does not see the
boundary’. The correct choice turns out to be

Φ(Q) :=
{

ϕ ∈ C(2,1)(Q) ; Bϕ = 0, γT ϕ = 0
}
,

where
C(2,1)(Q) := C

(
J,C2(M)

) ∩ C1
(
J,C(M)

)
.

This follows from Green’s formula. Indeed, set

C := −(1− χ)a∂n + χγ.

Then, given u ∈ C(2,1)(Q) and ϕ ∈ Φ(Q),
∫ T

0

∫

M

u(−∂ +A)ϕdVM dt

=
∫ T

0

∫

M

ϕ(∂ +A)u dVM dt +
∫ T

0

∫

Γ

CϕBu dVΓ dt +
∫

M

γ0ϕγ0u dVM ,

that is, using dVQ = dVM ⊗ dt and dVΣ = dVΓ ⊗ dt,
〈
(−∂ +A)ϕ, u

〉
Q

=
〈
ϕ, (∂ +A)u

〉
Q

+ 〈Cϕ,Bu〉Σ + 〈γ0ϕ, γ0u〉M . (0.9)

Thus, if u ∈ W
(2,1)

p (Q) is a solution of (0.3), it follows
〈
(−∂ +A)ϕ, u

〉
Q

= 〈ϕ, f〉Q + 〈Cϕ, g〉Σ + 〈γ0ϕ, u0〉Ω, ϕ ∈ Φ(Q), (0.10)

where
(
f, (g, u0)

)
= Pu.

We denote by Φ(2,1)
p′ (Q) the closure of Φ(Q) in W

(2,1)
p′ (Q). Then

D(Q) ↪→ Φ(2,1)
p′ (Q)

d
↪→ Lp′(Q)
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implies, due to reflexivity,

Lp(Q)
d

↪→ Φ−(2,1)
p (Q) :=

(
Φ(2,1)

p′ (Q)
)′

with respect to 〈·, ·〉Q. However, D(Q) is not dense in Φ(2,1)
p′ (Q). Consequently,

Φ−(2,1)
p (Q) is not a space of distributions on Q.

Put
〈〈ϕ,Pu〉〉 :=

〈
ϕ, (∂ +A)u

〉
Q

+ 〈Cϕ,Bu〉Σ + 〈γ0ϕ, γ0u〉M .

Then, as we shall see,

Φ(2,1)
p′ (Q)×W (2,1)

p (Q) → C, (ϕ, u) 7→ 〈〈ϕ,Pu〉〉 (0.11)

is a separating continuous bilinear form, and (0.9) implies

〈〈ϕ,Pu〉〉 =
〈
(−∂ +A)ϕ, u

〉
Q

, (ϕ, u) ∈ Φ(2,1)
p′ (Q)×W (2,1)

p (Q). (0.12)

Suppose p 6= 3/(2− χ). It is a consequence of Theorem 0.1 that −∂ +A is a
toplinear isomorphism from Φ(2,1)

p′ (Q) onto Lp′(Q). Hence we infer from (0.12) that
(0.11) has a unique continuous bilinear extension

Φ(2,1)
p′ (Q)× Lp(Q) → C, (ϕ, u) 7→ 〈〈ϕ,Pu〉〉,

where
P : Lp(Q) → Φ−(2,1)

p (Q)

is the unique continuous extension of P. This proves essentially the following gen-
eral theorem where we use ∼= to denote toplinear isomorphisms.

0.2 Theorem Suppose p 6= 3/(2− χ) if Γ 6= ∅. Given any F ∈ Φ−(2,1)
p (Q),

there exists a unique u ∈ Lp(Q), an ultra-weak solution of (0.3), satisfying
〈
(−∂ +A)ϕ, u

〉
Q

= 〈F, ϕ〉Q, ϕ ∈ Φ(Q).

Moreover, u is the unique strong W
(2,1)

p solution if F is given by

〈F, ϕ〉Q = 〈ϕ, f〉Q + 〈Cϕ, g〉Σ + 〈γ0ϕ, u0〉M , ϕ ∈ Φ(Q),

with
(
f, (g, u0)

) ∈ Lp(Q)× ∂cc
χ W

(2,1)
p (Π). More precisely: there exist P and iχ such

that the following diagram is commuting:3

W
(2,1)

p (Q) Lp(Q)× ∂cc
χ W

(2,1)
p (Π)

Lp(Q) Φ
−(2,1)
p (Q)

P

P

∼=

∼=

d iχ d

-

-
?

¤¡

?

¤¡

and Pu = F . Furthermore, P depends analytically on a ∈ C(1,0)
(
Q, (0,∞)

)
.

3E
d

↪→
j

F means that j : E → F is injective with dense image.
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It remains to understand the structure of Φ−(2,1)
p (Q) and to represent its ele-

ments by distributions on Q and its parabolic boundary Π, if possible.
For this we set

∂χW−(2,1)
p (Π) := W−(χ+1/p)(1,1/2)

p (Σ)×W−2/p
p (Ω)

and

∂cc
χ W−(2,1)

p (Π) :=

{
∂χW−(2,1)

p (Π), p ≥ 3/(2− χ),

∂χW−(2,1)
p (Π)×W 2−χ−3/p

p (Γ), p < 3/(2− χ).

It will be a consequence of our general extension results for manifolds with corners
that the following isomorphism theorem is true.

0.3 Theorem Suppose p 6= 3/(2− χ) if Γ 6= ∅. Then

Φ−(2,1)
p (Q) ∼= W−(2,1)

p (Q)× ∂cc
χ W−(2,1)

p (Π).

Using this fact we can now represent ultra-weak solutions in terms of distribu-
tions on Q and Π.

0.4 Theorem

(i) Suppose p 6= 3/(2− χ) if Γ 6= ∅. Fix

T ∈ Lis
(
Φ−(2,1)

p (Q),W−(2,1)
p (Q)× ∂cc

χ W−(2,1)
p (Π)

)
(0.13)

and set P−2 := T P. Then

P−2 ∈ Lis
(
Lp(Q),W−(2,1)

p (Q)× ∂cc
χ W−(2,1)

p (Π)
)

and it depends analytically on a ∈ C(1,0)
(
Q, (0,∞)

)
. Furthermore, there exists

jχ such that the diagram

W
(2,1)

p (Q) Lp(Q)× ∂cc
χ W

(2,1)
p (Π)

Lp(Q) W
−(2,1)

p (Q)× ∂cc
χ W

−(2,1)
p (Π)

P

P−2

∼=

∼=

d jχ d

-

-
?

¤¡

?

¤¡
(0.14)

is commuting.
(ii) The dual T ′ of T belongs to

Lis
(
W̊

(2,1)
p′ (Q)× ∂cc

1−χW
(2,1)

p′ (Π), Φ(2,1)
p′ (Q)

)
.

(iii) If p > 3/(2− χ) provided Γ 6= ∅, then problem (0.3) has for each

(f, g, u0) ∈ W−(2,1)
p (Q)×W−(χ+1/p)(1,1/2)

p (Σ)×W−2/p
p (Ω) (0.15)

a unique ultra-weak Lp solution, namely u = P−1
−2 (f, g, u0). It is the unique

u ∈ Lp(Q) satisfying
〈
(−∂ +A)ϕ, u

〉
Q

= 〈f, ξ〉Q + 〈g, η〉Σ + 〈u0, ζ〉Ω
ϕ = T ′(ξ, η, ζ)

}
(0.16)

for all (ξ, η, ζ) ∈ D(Q)×D(Σ)×D(Ω). Furthermore, it solves (∂ +A)u = f
on Q in the distributional sense.
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(iv) Suppose Γ 6= ∅ and p < 3/(2− χ). Then there exists for each

(f, g, u0, h) in

W−(2,1)
p (Q)×W−(χ+1/p)(1,1/2)

p (Σ)×W−2/p
p (Ω)×W 2−χ−3/p

p (Γ)
(0.17)

a unique ultra-weak Lp solution of (0.3), namely u = P−1
−2 (f, g, u0, h). It is the

unique u ∈ Lp(Q) satisfying
〈
(−∂ +A)ϕ, u

〉
Q

= 〈f, ξ〉Q + 〈g, η〉Σ + 〈u0, ζ〉Ω + 〈h, ϑ〉Γ
ϕ = T ′(ξ, η, ζ, ϑ)

}
(0.18)

for all (ξ, η, ζ, ϑ) ∈ D(Q)×D(Σ)×D(Ω)×D(Γ). It solves (∂ +A)u = f on Q
in the sense of distributions.

Proof. (i) follows from Theorems 0.2 and 0.3.
As for (ii): it suffices to observe that

(
∂cc

χ W−(2,1)
p (Π)

)′ = ∂cc
1−χW

(2,1)
p′ (Π)

with respect to the duality pairing 〈·, ·〉Σ + 〈·, ·〉Ω if p > 3/(2− χ), and with respect
to 〈·, ·〉Σ + 〈·, ·〉Ω + 〈·, ·〉Γ otherwise. Assertions (iii) and (iv) are now evident
except for the respective last statement. For this we refer to Part 2. ¤

Clearly, the ‘extended initial boundary value problem’ P−2 depends on the
choice of T . Thus the representation of the ultra-weak Lp solution of (0.3) depends
on T also, as is indicated by (0.16) and (0.18). However, for each choice of T
the ‘generalized’ parabolic boundary value problem P−2 = T P establishes an iso-
morphism between Lp(Q) and W

−(2,1)
p (Q)× ∂cc

χ W
−(2,1)

p (Π). Thus the ultra-weak
solvability properties of problem (0.3) are independent of the particular choice of T .
We fix now –– once and for all –– an isomorphism T . (The proof of Theorem 0.3
will provide us with rather detailed information on the structure of T .)

Suppose either Γ = ∅ or p > 3/(2− χ). Then, given (f, g, u0) satisfying (0.15),
we call u ultra-weak Lp solution of (0.3) iff u ∈ Lp(Q) and (0.16) is satisfied. If
Γ 6= ∅ and p < 3/(2− χ), then, given (f, g, u0, h) satisfying (0.17), u is said to be
an ultra-weak Lp solution of

(∂ +A)u = f on Q,

Bu = g on Σ,

γ0u = u0 on Ω,

γ0Bu = h on Γ,





(0.19)

iff u ∈ Lp(Q) and (0.18) is satisfied. Clearly, (0.3) and (0.19) are formal notation
only.

For the reader’s convenience we restate Theorem 0.4 using this intuitive formu-
lation.
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0.5 Theorem

(i) Suppose either Γ = ∅ or p > 3/(2− χ). Then

(∂ +A)u = f on Q,

Bu = g on Σ,

γ0u = u0 on Ω





(0.20)

has a unique ultra-weak solution u ∈ Lp(Q) iff

(f, g, u0) ∈ W−(2,1)
p (Q)×W−(χ+1/p)(1,1/2)

p (Σ)×W−2/p
p (Ω).

(ii) Suppose Γ 6= ∅ and p < 3/(2− χ). Then

(∂ +A)u = f on Q,

Bu = g on Σ,

γ0u = u0 on Ω,

γ0Bu = h on Γ

has an ultra-weak solution u ∈ Lp(Q) iff (f, g, u0, h) belongs to

W−(2,1)
p (Q)×W−(χ+1/p)(1,1/2)

p (Σ)×W−2/p
p (Ω)×W 2−χ−3/p

p (Γ).

(iii) The mapping (f, g, u0) 7→ u, respectively (f, g, u0, h) 7→ u, is a toplinear iso-
morphism onto Lp(Q) depending analytically on a ∈ C(1,0)

(
Q, (0,∞)

)
.

It should be observed that the regularity assumptions for the data are natural
in comparison with the ones of Theorem 0.1: the order of all spaces containing u,
f , g, and u0 is 2 less than the one of the corresponding spaces of the strong version.

Now, specializing to p = 2, we can compare our results with those of J.-L. Lions
and E. Magenes [47]. As usual, we write Hs for W s

2 .

First we consider the Dirichlet problem. Theorem 0.5 guarantees that

(∂ +A)u = f on Q,

γu = g on Σ,

γ0u = u0 on Ω





(0.21)

possesses a unique ultra-weak solution u ∈ L2(Q) iff

(f, g, u0) ∈ H−(2,1)(Q)×H−(1/2,1/4)(Σ)×H−1(Ω).

In Volume 2 of [47] the authors assume that Ω is a bounded domain in Rn with a
smooth boundary and a ∈ D(Q). They put

D0(Q) :=
{

v ∈ L2(Q) ; (∂ +A)v ∈ L2(Q)
}

equipped with the graph norm of the maximal restriction of ∂ +A ∈ L(D′(Q)
)

to L2(Q). They also introduce a certain space Ξ−(2,1)(Q) satisfying

L2(Q)
d

↪→ Ξ−(2,1)(Q) ↪→
6=

H−(2,1)(Q).
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Then they prove (cf. Remark4 IV.12.3 in [47]) that, given

(f, g, u0) ∈ Ξ−(2,1)(Q)×H−(1/2,1/4)(Σ)×H−1(Ω),

there exists a unique solution u ∈ D0(Q) such that the differential equation on Q
is satisfied in the distributional sense and the boundary conditions in the sense
of continuous extensions of the standard trace operators. Furthermore, the map
(f, g, u0) 7→ u is a toplinear isomorphism onto D0(Q). In addition, u is the strong
H(2,1) solution if the data satisfy the conditions of Theorem 0.5 with p = 2.

Note that J.-L. Lions and E. Magenes provide a maximal regularity theorem
in this case. However, by our results we can solve the Dirichlet problem for a
larger class of distributions f on Q than can be done by the Lions–Magenes theory.
Moreover, in concrete situations the space D0(Q) is not easy to handle.

Next we consider the Neumann problem. Theorem 0.5 guarantees that
(∂ +A)u = f on Q,

a∂nu = g on Σ,

γ0u = u0 on Ω,

γ0Bu = h on Γ





(0.22)

possesses a unique ultra-weak solution u ∈ L2(Ω) iff

(f, g, u0, h) ∈ H−(2,1)(Q)×H−(3/2,3/4)(Σ)×H−1(Ω)×H−1/2(Γ). (0.23)

J.-L. Lions and E. Magenes introduce intermediate spaces

L2(Σ)
d

↪→ H−3/2Ξ−3/4(Σ) ↪→
6=

H−(3/2,3/4)(Σ)

and
L2(Ω)

d
↪→ Ξ−1(Ω) ↪→

6=
H−1(Ω)

and establish the following result (see Theorem IV.12.1 in [47]):
There exists a continuous linear map

Ξ−(2,1)(Q)×H−3/2Ξ−3/4(Σ)× Ξ−1(Ω) → D0(Q), (f, g, u0) 7→ u

such that
(∂ +A)u = f in D′(Q)

and the boundary and initial conditions

a∂nu = g on Σ, γ0u = u0 on Ω

are satisfied in the sense of continuous linear extension. Thus u is a generalized
solution of the Neumann problem

(∂ +A)u = f on Q,

a∂nu = g on Σ,

γ0u = u0 on Ω.

However, as observed in [47], this is not a maximal regularity result : the data
(f, g, u0) belong to a space smaller than the ‘optimal space’ and (f, g, u0) 7→ u is

4Roman numbers indicate chapters.
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not an isomorphism. In fact, not even uniqueness of the generalized solution is
guaranteed.

The fact that in the case of the Neumann problem there may occur a space of
distributions on Γ has already been observed (if p = 2) by C. Baiocchi [15] (also see
Section IV.12.3 in [47]). This author established an isomorphism theorem for the
Neumann problem, however between D0(Q) and

L2(Q)×H−(3/2,3/4)(Σ)×H−1(Ω)×H−1/2(Γ).

This is a much weaker result than (0.22), (0.23).
We repeat that the Lions–Magenes theory as well as C. Baiocchi’s result are

restricted to p = 2, whereas 1 < p < ∞ in our work.
In H. Amann [3] we introduced the concept of very weak Lp solutions for

1 < p < ∞. More precisely, a very weak Lp solution of (0.3) is a function
u ∈ C

(
J, Lp(Ω)

)
satisfying

〈
(−∂ +A)ϕ, u

〉
Q

= 〈ϕ, f〉Q + 〈Cϕ, g〉τ + 〈γ0ϕ, u0〉Ω, ϕ ∈ Φ.

Theorem 11.4 of [3] guarantees that, given σ > 0, problem (0.3) has for each

(f, g, u0) ∈ Cσ
(
J,W−2

p,B (Ω)
)× Cσ

(
J,W−χ−1/p

p (Γ)
)× Lp(Ω), (0.24)

where
W−2

p,B (Ω) :=
{

v ∈ W 2
p′(Ω) ; Bv = 0

}′
,

a unique very weak solution satisfying, in addition,

u ∈ C
(
J, Lp(Ω)

) ∩ C1
(
J,W−2

p,B (Ω)
)
.

Note that W−2
p,B (Ω) is not a space of distributions on Ω. Hence there is some

ambiguity in (0.24): namely, g could be omitted since it can be identified with an
element of W−2

p,B (Ω) (cf. Section 11 in [3]). In fact, in Theorem 10 of H. Amann [6]
it is shown that

W−2
p,B (Ω) ∼= W−2

p (Ω)×W−χ−1/p
p (Γ).

To compare very weak and ultra-weak solutions we recall

W−(χ+1/p)(1,1/2)
p (Σ) = Lp

(
J,W−χ−1/p

p (Γ)
)

+ W−(χ+1/p)/2
p

(
J, Lp(Γ)

)
.

Consequently,
Cσ

(
J,W−χ−1/p

p (Γ)
)

↪→ W−(χ+1/p)(1,1/2)
p (Σ).

This implies that every very weak solution is an ultra-weak one. The main difference
between very weak and ultra-weak solutions is the fact that the latter possess a dis-
tributional time derivative belonging to W−1

p

(
J, Lp(Ω)

)
, whereas such information

is not available for very weak solutions.
The concept of ultra-weak solutions, introduced in the present work, is a vast

generalization of the one of very weak solutions. In addition to allowing for a more
general class of data, ultra-weak solutions lead to maximal regularity results, that
is, isomorphism theorems. It is not possible to derive such a theorem within the
theory of very weak solutions.

The idea of very weak solutions has been adapted to the Navier–Stokes equa-
tions in H. Amann [7] (also see [8], [9]). Subsequently, this work has been extended
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by a number of authors and applied to derive new regularity results (see, for ex-
ample, G.P. Galdi, C.G. Simader, and H. Sohr [26], R. Farwig, G.P. Galdi, and
H. Sohr [24], R. Farwig, H. Kozono, and H. Sohr [25], K. Schumacher [58]). Follow-
ing the lines of H. Amann [7], [8], [9], the theory of ultra-weak solutions can also
be extended to the Navier–Stokes equations. This will be done elsewhere.

One of the most important fields of research in which parabolic equations with
distributional data on the boundary are unalterable is control theory. Starting
with the early work of J.-L. Lions and his school (cf. Chapter VI in [47]), most
of the mathematical control theory for systems governed by partial differential
equations has been developed in the L2 framework (cf., for example, I. Lasiecka
and R. Triggiani [46] for more recent developments). This setting imposes severe
restrictions on the possible choice of controls on the boundary. For instance, it
does not allow the use of point controls on Σ. The situation is very different with
the Lp theory, since for p sufficiently close to 1 we can consider arbitrary Radon
measures as boundary data. In fact, using the theory of very weak solutions, this has
already been shown in H. Amann [6] and, in the nonlinear framework, in H. Amann
and P. Quittner [12]. For further applications of the theory of very weak solutions
to control theory we refer to H. Amann and P. Quittner [13], [14]. Using the theory
of ultra-weak solutions we can improve on those results as is indicated now.

For a separable locally compact space X we denote by M(X) the Banach space
of all bounded complex-valued Radon measures on X. Then M(X) = C0(X)′ with
respect to the identification

〈µ, ϕ〉C0(X) =
∫

X

ϕdµ, (ϕ, µ) ∈ C0(X)×M(X).

Using this characterization and Sobolev embedding theorems for anisotropic spaces
we find

M(Q)×M(Ω) ↪→ W−(2,1)
p (Q)×W−2/p

p (Ω), p < (n + 2)/n,

and

M(Σ)×M(Γ) ↪→ W−(χ+1/p)(1,1/2)
p (Σ)×W 2−χ−3/p

p (Γ), p < (n+2)/(n+1−χ).

The following theorem is an easy consequence of these embeddings and Theo-
rem 0.5.

0.6 Theorem Suppose Γ 6= ∅ and p < (n + 2)/(n + 1− χ). Then, given

(µ, ν, ρ, σ) ∈M(Q)×M(Σ)×M(Ω)×M(Γ),

there exists a unique ultra-weak solution u ∈ Lp(Q) of

(∂ +A)u = µ on Q,

Bu = ν on Σ,

γ0u = ρ on Ω,

γ0Bu = σ on Γ.



16 INTRODUCTION

In other words, there exists a unique u ∈ Lp(Q) satisfying
〈
(−∂ +A)ϕ, u

〉
Q

=
∫

Q

ξ dµ +
∫

Σ

η dν +
∫

Ω

ζ dρ +
∫

Γ

ϑ dσ

ϕ = T ′(ξ, η, ζ, ϑ)

for all (ξ, η, ζ, ϑ) ∈ D(Q)×D(Σ)×D(Ω)×D(Γ). The map (µ, ν, ρ, σ) 7→ u is lin-
ear and continuous and depends analytically on a ∈ C(1,0)

(
Q, (0,∞)

)
.

Note that p < 2 unless χ = 1 and n ≤ 2.
As an extreme case we see, for example, that the Dirichlet problem

(∂t +A)u = 0 on Q,

γu = 0 on Σ,

γ0u = 0 on Ω,

γ0Bu = δx0 on Γ

has a unique ultra-weak Lp solution if p < (n + 2)/(n + 1) and δx0 is the Dirac
measure with support {x0}.

Theorems 0.1 and 0.2 concern the border cases s = 2 and s = 0, respectively,
of the solution space W

s(1,1/2)
p (Q). It is to be expected that, by interpolation, one

can derive maximal regularity theorems for (0.3) in intermediate spaces, that is,
for 0 < s < 2. By and large this is correct. We do not give details here but refer
the reader to Part 2. The difficulty resides in concrete characterizations of the
pertinent interpolation spaces. For this we have to have a thorough understanding
of interpolation properties of anisotropic Besov and Bessel potential spaces in the
presence of boundary conditions, questions which are addressed in Part 1 of this
treatise.



CHAPTER 1

Multiplier estimates

This chapter is of preparatory nature. We discuss the concept of anisotropic
dilations and derive multiplier estimates for parameter-dependent symbols. These
concepts are of basic importance for the whole treatise.

Although we are mostly interested in the case of ‘parabolic weight vectors’ we
consider the general anisotropic case. This can be done without additional com-
plications. In fact, the general setting and consequent use of appropriate notation
clarify many results which would appear mysterious otherwise. In addition, general
anisotropic function spaces are of interest in their own right.

1.1 Anisotropic dilations

A systematic study of anisotropic Banach spaces, more specifically, anisotropic
Bessel potential and Besov spaces, is based on weighted dilations of the underlying
space Rd and corresponding linear representations on suitable spaces of distribu-
tions. In this section we introduce these dilations and fix the setting for the whole
part.

Let G be the multiplicative group (
q
R+, ·) and V an LCS. A linear representation

of G on V is a map
G → L(V ), t 7→ Tt

satisfying
TsTt = Tst, T1 = 1V .

It follows that {Tt ; t ∈ G } is a commutative subgroup of Laut(V ), and

(Tt)−1 = Tt−1 = T1/t

for t ∈ G. The representation is strongly continuous if (t 7→ Ttv) ∈ C(G,V ) holds
for v ∈ V .

Throughout this part

d ∈
q
N and ω = (ω1, . . . , ωd) ∈

q
Nd is a fixed weight vector.

We denote by
ω the least common multiple of {ω1, . . . , ωd}

17
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and set1

|ω| := ω1 + · · ·+ ωd, α · ω := α1ω1 + · · ·+ αdωd

for α = (α1, . . . , αd) ∈ Nd.
We define an action of G on Rd by

t q x = (tω1x1, . . . , tωdxd), t > 0, x ∈ Rd, (1.1.1)

the (anisotropic) dilation with weight ω.
Let E be a Banach space. The (anisotropic) dilation with weight ω is defined

on S(Rd, E) by

σtu(x) := u(t q x), u ∈ S(Rd, E), x ∈ Rd, (1.1.2)

for t > 0. It is extended to S ′(Rd, E) by setting

σtu(ϕ) := t−|ω|u(σ1/tϕ), u ∈ S ′(Rd, E), ϕ ∈ S(Rd). (1.1.3)

The most important examples in our context are the trivial weight vector
(1, 1, . . . , 1) and the 2m-parabolic weight vector (1, . . . , 1, 2m), where m ∈

q
N. In

the first case, (1.1.1) and (1.1.2) are the standard (isotropic) dilations on Rd.

Now we collect the basic properties of σt in a proposition and leave its simple
proof to the reader.

1.1.1 Proposition The map t 7→ σt is a strongly continuous linear representa-
tion of (

q
R+, ·) on S(Rd, E) and on S ′(Rd, E). It restricts from S ′(Rd, E) to a rep-

resentation on Lq(Rd, E) for 1 ≤ q ≤ ∞, which is strongly continuous for q < ∞,
and possesses the following properties:
(i) ∂α ◦ σt = tα·ωσt ◦ ∂α, α ∈ Nd;
(ii) ‖σtu‖q = t−|ω|/q ‖u‖q, u ∈ Lq(Rd, E), 1 ≤ q ≤ ∞;
(iii) F ◦ σt = t−|ω|σ1/t ◦ F , t > 0.

1.2 Homogeneity

In the investigation of linear elliptic and parabolic boundary value problems,
Fourier analysis plays a predominant rôle. In this connection one has to study model
problems on Rd and half-spaces thereof which lead to Fourier multiplier operators
being (anisotropically) homogeneous and parameter-dependent. In this section we
introduce spaces of parameter-dependent functions which are homogeneous with
respect to dilations with weight ω and collect some elementary properties. The
systematic use of parameter-dependent homogeneous functions will greatly sim-
plify our calculations and allow the control of the parameter-dependence in various
estimates, which is crucial for our approach.

Throughout this part we also assume2

H is a closed cone in C containing R+ = R++i0.

1The simultaneous use of boldface and standard letters for vectors in Nd is inconsistent, of
course. However, it is justified by the particular rôle of the weight vector and allows us to denote
by ω the least common multiple of the components of ω.
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We put
Z := Rd × H,

denote its general point by ζ = (ξ, η) with ξ = (ξ1, . . . , ξd) ∈ Rd and η ∈ H, and
write

aη := a(·, η) : Rd → E, η ∈ H,

for a : Z → E. We also extend the anisotropic dilation with weight ω to Z by
setting

t q ζ := (t q ξ, tη), t > 0, ζ = (ξ, η) ∈ Z, (1.2.1)

and
σta(ζ) := a(t q ζ) (1.2.2)

for a : Z → E.
Suppose z ∈ C. A map a :

q
Z → E is positively z-homogeneous (with re-

spect to the action (1.2.1)) if

σta = tza, t > 0. (1.2.3)

Let S be a nonempty set. We define an equivalence relation ∼ on (0,∞)S by
setting

f ∼ g for f, g : S → (0,∞) ⇐⇒ (1/κ)f ≤ g ≤ κf for some κ ≥ 1.

In particular,
‖·‖1 ∼ ‖·‖2

means that ‖·‖1 and ‖·‖2 are equivalent norms on a given vector space.

In the following lemma we present some elementary properties of positively
homogeneous maps. They are basic for the computations to follow below.

1.2.1 Lemma Suppose a ∈ C(
q
Z, E) and aη ∈ Ck

(
(Rd)

q
, E

)
for some k ∈ N

and all η ∈
q

H, and a is positively z-homogeneous. Also suppose M ∈ C
( q
Z, (0,∞)

)
is positively 1-homogeneous. Then
(i) σt∂

α
ξ a = tz−α·ω∂α

ξ a, |α| ≤ k, t > 0.

(ii) Set
ζ∗M :=

(
1/M(ζ)

) q ζ, ζ ∈
q
Z.

Then M(ζ∗M) = 1 and

∂α
ξ a(ζ) = Mz−α·ω(ζ)∂α

ξ a(ζ∗M), ζ ∈
q
Z. (1.2.4)

(iii) [M = 1] is compact.

(iv) If N ∈ C
( q
Z, (0,∞)

)
is positively 1-homogeneous, then N ∼ M. Furthermore,

(1/κ)M ≤ N ≤ κM

implies [M = 1] ⊂ [κ−1 ≤ N ≤ κ].

2More generally, H can be a closed cone in CN containing R+ := (R+ + i0)× {0} for some
N ≥ 2. However, such generality is not needed in this work.
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Proof. (i) follows by differentiating (1.2.3) and using Proposition 1.1.1(i).
(ii) Since ζ = M(ζ) q ζ∗M, the positive 1-homogeneity implies M(ζ) = M(ζ)M(ζ∗M).

Hence M(ζ∗M) = 1. Furthermore, by (i),

∂α
ξ a(ζ) = σM(ζ)∂

α
ξ a(ζ∗M) = M(ζ)z−α·ω∂α

ξ a(ζ∗M)

for ζ ∈
q
Z.

(iii) is a consequence of the closedness of H and the continuity of M. Moreover,
setting

κ := ‖M‖∞,[N=1] ∨ ‖N‖∞,[M=1],

assertion (iv) is obvious. ¤

For k ∈ N and z ∈ C we write

Hk
z (Z, E)

for the vector space of all a ∈ C(
q
Z, E) which are positively z-homogeneous and

satisfy
aη ∈ Ck

(
(Rd)

q
, E

)
, η 6= 0,

and
‖a‖M

Hk
z

:= max
|α|≤k

‖∂α
ξ a‖∞,[M=1] < ∞

for some positively 1-homogeneous M ∈ C
( q
Z, (0,∞)

)
.

Clearly, ‖·‖M
Hk

z
is a norm on Hk

z (Z, E), and this space is independent of M in the
sense that another choice of M leads to an equivalent norm. In fact, if N belongs
to C

( q
Z, (0,∞)

)
and is positively 1-homogeneous, then N ∼ M and, consequently,

‖·‖N
Hk

z
∼ ‖·‖M

Hk
z

by Lemma 1.2.1(iv).
It is easily verified that Hk

z (Z, E) is a Banach space (with any one of its
norms ‖·‖M

Hk
z
). Hence

H∞z (Z, E) :=
⋂

k∈N
Hk

z (Z, E)

is a Fréchet space.

1.3 Quasi-norms

Of particular importance are positively 1-homogeneous scalar functions a such
that

aη ∈ C∞(Rd), η ∈
q

H, (1.3.1)

being positive, and satisfying a triangle inequality. We call them quasi-norms.3

More precisely, we denote by
Q := Q(Z)

3Our terminology is different from the one used by other authors, for example by H. Trie-
bel [66], and should not be confused with their concepts. In particular, a quasi-norm (in our sense)
is not isotropically homogeneous, in general.
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the set of all Q ∈ H∞1 (Z) satisfying (1.3.1) and

0 < Q(ζ + ζ̃) ≤ Q(ζ) + Q(ζ̃), ζ, ζ̃ ∈
q
Z. (1.3.2)

Each Q ∈ Q is continuously extended over Z by setting Q(0) := 0.

1.3.1 Remarks and examples (a) Suppose Q ∈ Q and set

dQ(ξ, ξ̃) := Q0(ξ − ξ̃), ξ, ξ̃ ∈ Rd.

Then dQ is a translation-invariant metric on Rd. It follows from Lemma 1.2.1(iv)
that dQ ∼ dM for M ∈ Q.

(b) Put

N(ζ) :=
( d∑

j=1

|ξj |2ω/ωj + |η|2ω
)1/2ω

, ζ ∈ Z.

Then N ∈ Q and it is called natural ω-quasi-norm. Note that dN is the Euclidean
distance on Rd iff ω = 1.

Proof. It is obvious that N is smooth, positive, and positively 1-homogeneous
and (1.3.2) holds. For 1 ≤ j ≤ d,

∂jN(ζ) = (1/ωj) |ξj |2(ω/ωj−1) ξj/N(ζ)2ω−1.

From this and ω/ωj ∈
q
N we infer by induction

|∂α
ξ N(ζ)| ≤ c(k, ω), |α| ≤ k, ζ ∈ [N = 1],

where k ∈
q
N (cf. Lemma 1.4.2 below). Hence ‖N‖N

Hk
1
≤ c(k, ω). ¤

(c) Suppose ω is clustered in the following sense: there are positive integers
`, d1, . . . , d`, ν1, . . . , ν` satisfying

ω = (ν1, . . . , ν1︸ ︷︷ ︸
d1

, ν2, . . . , ν2︸ ︷︷ ︸
d2

, . . . , ν`, . . . , ν`︸ ︷︷ ︸
d`

).

Set
d := (d1, . . . , d`), ν := (ν1, . . . , ν`).

Then (d, ν) is a reduced weight system associated with ω, and

Rd = Rd1 × · · · × Rd`

is the corresponding d-splitting of Rd. We then denote the general point of Rd by
x = (x1, . . . , x`) with xi ∈ Rdi and write ξ = (ξ1, . . . , ξ`) for the dual variable.4 We
also set

ν := ω

so that ν is the least common multiple of ν1, . . . , ν`. Finally, Λ, defined by

Λ(ζ) :=
(∑̀

i=1

|ξi|2ν/νi + |η|2ν
)1/2ν

, ζ ∈ Z,

belongs to Q and is called (d, ν)-quasi-norm.

4The reader is advised to observe carefully the distinction between ξi, the i-th component
of ξ ∈ Rd, and the di-tuple ξi. Here and in similar situations we do not notationally distinguish
between a di-tuple and a vector in Rdi .
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Note that it is not assumed that the νi are pair-wise disjoint. Thus ω is always
clustered by the trivial clustering (or non-reduced weight system)

` = d, d = (1, . . . , 1), ν = (ω1, . . . , ωd).

In this case Λ = N.
(d) Let ω be the 2m-parabolic weight vector for some m ∈

q
N. Then

d := (d− 1, 1), ν := (1, 2m)

form the (canonical) reduced 2m-parabolic weight system. We then write
x = (x′, t) for the general point of the corresponding d-splitting, and ξ = (ξ′, τ) for
the dual variable. Then

Λ(ζ) = (|ξ′|4m + |τ |2 + |η|4m)1/4m, ζ ∈ Z.

If m = 1, then the metric dΛ is equivalent to the usual parabolic metric

(ξ, ξ̃) 7→
√
|ξ′ − ξ̃′|2 + |τ − τ̃ | (1.3.3)

on Rd.
(e) Put E(0) := 0 and let E(ζ) be, for ζ ∈

q
Z, the smallest t > 0 satisfying

|t−1 q ζ|2 = |t−1 q ξ|2 + |t−1η|2 = 1.

Then E belongs to Q and is called Euclidean ω-quasi-norm.

Proof. From s q t q ζ = (st) q ζ we see that E is positively 1-homogeneous. To
prove (1.3.2) we follow J. Johnsen and W. Sickel [41]. We have to show that, given
ζ, ζ ′ ∈

q
Z,

a(ζ, ζ ′) :=
d∑

j=1

|ξj + (ξ′)j |2(
E(ζ) + E(ζ ′)

)2ωj
+

|η + η′|2(
E(ζ) + E(ζ ′)

)2 ≤ 1.

Note that a(t q ζ, t q ζ ′) = a(ζ, ζ ′) for t > 0. Hence we can assume E(ζ) + E(ζ ′) = 1.
Thus E(ζ) ≤ 1 implies

1 =
d∑

j=1

|ξj |2
E(ζ)2ωj

+
|η|2

E(ζ)2
≥ |ζ|2

E(ζ)2

and, consequently,

|ζ + ζ ′| ≤ |ζ|+ |ζ ′| ≤ E(ζ) + E(ζ ′) = 1,

that is, a(ζ, ζ ′) ≤ 1.
By differentiating the identity

1 =
∣∣(1/

E(ζ)
) q ζ∣∣2

and solving for ∂jE(ζ) we obtain

∂jE(ζ) = ξjE(ζ)1−2ωj

( d∑

k=1

ωk

(
ξk)2

/
E(ζ)2ωk

)
+ |η|2/E(ζ)2

)−1

for 1 ≤ j ≤ d. Hence
|∂jE(ζ)| ≤ |ξj | ≤ 1 for E(ζ) = 1.
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From these formulas we see by induction that Eη ∈ C∞(Rd) for η ∈
q

H and

‖∂α
ξ E‖∞,[E=1] ≤ c(k), |α| ≤ k, k ∈ N.

This proves the claim. ¤

1.4 Products and inverses

The present section is essentially an exercise on calculus. Its purpose is to
establish simple sufficient criteria for some functions to belong to Hk

z for suitable
k ∈ N and z ∈ C. For later applications it is important to control the dependence
of norm estimates on all involved quantities.

Throughout the remainder of this part
• ω is clustered;

• (d, ν) is a reduced weight system for it.

In accordance with the d-splitting of Rd we write

α = (α1, . . . , α`) ∈ Nd1 × · · · × Nd` = Nd

and note α · ω = |α1| ν1 + · · ·+ |α`| ν`. We also put

‖·‖Hk
z

:= ‖·‖ΛHk
z
, ζ∗ := ζ∗Λ.

In the following, we denote by

H̄∞z (Z, E)

the closed linear subspace of H∞z (Z, E) consisting of all a therein such that aη be-
longs to C∞(Rd, E) for η 6= 0. Note that Q(Z) ⊂ H̄∞z (Z).

1.4.1 Lemma

(i) Let E1 × E2 → E be a multiplication of Banach spaces.5 Then its point-wise
extension satisfies

Hk
z1

(Z, E1)×Hk
z2

(Z, E2) → Hk
z1+z2

(Z, E)

for k ∈ N̄ and z1, z2 ∈ C. It is a multiplication as well.

(ii) For η ∈
q

H,
(a 7→ aη) ∈ L(H̄∞z (Z, E),OM (Rd, E)

)
.

Proof. (i) Since

σt(ab) = (σta)σtb, (a, b) ∈ Hk
z1

(Z, E1)×Hk
z2

(Z, E2)

the statement follows from Leibniz’ rule.
(ii) By Lemma 1.2.1(ii)

|∂αaη(ξ)| ≤ ΛRe z−α·ω
η (ξ) ‖a‖Hk

z
, ξ ∈ Rd, η ∈

q
H,

for |α| ≤ k and k ∈ N. Now the claim is obvious. ¤

5A multiplication E1 × E2 → E of LCSs is a continuous bilinear map.
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Now we consider invertible elements of Hk
z . For this we first establish a semi-

explicit formula for derivatives of inverses

1.4.2 Lemma Suppose m ∈
q
N, X is open in Rd, and a ∈ Cm

(
X,Laut(E)

)
.

Set
a−1(x) := a(x)−1, x ∈ X.

Then a−1 ∈ Cm
(
X,Laut(E)

)
and, given α ∈ Nd with |α| = m,

∂αa−1 =
m∑

j=1

∑

β∈Bj,α

εβa−1(∂β1a)a−1 · · · (∂βj a)a−1, (1.4.1)

where

Bj,α :=
{

β := {β1, . . . , βj} ; βi ∈ Nd, |βi| > 0,
∑j

i=1 βi = α
}
, εβ ∈ Z.

Proof. Recall that Laut(E) is open in L(E) and

inv : Laut(E) → Laut(E), b 7→ b−1

is smooth with
(
∂ inv(b)

)
c = −b−1cb−1, b ∈ Laut(E), c ∈ L(E). (1.4.2)

(For this and further results on calculus in Banach spaces used below we refer to
H. Amann and J. Escher [11, Chapter VII].) Hence a−1 ∈ Cm

(
X,Laut(E)

)
.

From (1.4.2) and the chain rule we infer

∂ja
−1 = −a−1(∂ja)a−1, 1 ≤ j ≤ d.

Now the claim follows by induction. ¤

1.4.3 Lemma Suppose a ∈ H∞z
(
Z,L(E)

)
with a(ζ∗) ∈ Laut(E) for ζ ∈

q
Z.

Then
a−1 ∈ H∞−z

(
Z,L(E)

)
, ‖a−1‖Hk

−z
≤ c

(‖a‖Hk
z
, ‖a−1‖∞,[Λ=1], k

)

for k ∈ N.

Proof. (1) Setting α = 0 and M = Λ in Lemma 1.2.1(ii) we find that a(ζ)
belongs to Laut(E) for ζ ∈

q
Z. Hence a(ζ)a−1(ζ) = 1E implies

1E = σt(aa−1) = (σta)σta
−1 = tzaσta

−1

and, similarly, 1E = σt(a−1a) = tzσt(a−1)a. Thus tzσta
−1 = a−1, that is, a−1 is

positively (−z)-homogeneous.
(2) Suppose α ∈ Nd satisfies 0 < |α| =: m ≤ k. Let j ∈ {1, . . . , m} and let

{β1, . . . , βj} belong to Bj,α. Then we infer from Lemma 1.2.1(ii) and (1)

(∂βi

ξ a)a−1(ζ) = Λ−βi·ω(ζ)∂βi

ξ a(ζ∗)a−1(ζ∗). (1.4.3)

Consequently, due to β1 + · · ·+ βj = α,

|a−1(∂β1a)a−1 · · · (∂βj a)a−1(ζ)| ≤ cΛ−Re z−α·ω(ζ), ζ ∈
q
Z, (1.4.4)

where
c = c(‖a‖Hk

z
, ‖a−1‖∞,[Λ=1]).

Now the claim follows from Lemma 1.4.2. ¤
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1.5 Resolvent estimates for symbols

In this section we assume

• F is a finite-dimensional Banach space.

We denote for s ∈ R by
Ps

(
Z,L(F )

)

the set of all a ∈ H∞s
(
Z,L(F )

)
which are ‘positive’ in the sense that

σ
(
a(ζ∗)

) ⊂ [Re z > 0], ζ ∈
q
Z.

Note
Q(Z) ⊂ P1(Z). (1.5.1)

Since [Λ = 1] is compact, a is continuous on
q
Z, and the spectrum is upper semi

continuous, there exists κ ≥ 1 such that

σ
(
a(ζ∗)

) ⊂ [Re z ≥ 1/κ], |a(ζ∗)| ≤ κ, ζ ∈
q
Z. (1.5.2)

Given any κ ≥ 1, we write

Ps(κ) := Ps

(
Z,L(F ); κ

)

for the set of all a ∈ Ps

(
Z,L(F )

)
satisfying (1.5.2). Hence

Ps

(
Z,L(F )

)
=

⋃

κ≥1

Ps

(
Z,L(F ); κ

)
.

Set
ϕ(κ) := arccos(1/κ2). (1.5.3)

From σ
(
a(ζ∗)

) ⊂ [|z| ≤ |a(ζ∗)| ] it follows

σ
(
a(ζ∗)

) ⊂ [Re z ≥ 1/κ] ∩ [ |z| ≤ κ] ⊂ Sϕ(κ), ζ ∈
q
Z, (1.5.4)

for a ∈ Ps(κ), where6

Sϕ := [ | arg z| ≤ ϕ] ∪ {0}, 0 ≤ ϕ < π.

Hence a(ζ) = Λs(ζ)a(ζ∗) implies

σ
(
a(ζ)

) ⊂ Sϕ(κ), ζ ∈
q
Z, a ∈ Ps(κ). (1.5.5)

The next lemma establishes a resolvent estimate which is uniform with respect
to a ∈ Ps(κ).

1.5.1 Lemma Suppose κ ≥ 1. Then
∣∣(λ + a(ζ)

)−1∣∣ ≤ c(κ)
Λs(ζ) + |λ| , ζ ∈

q
Z, λ ∈ Sπ−ϕ(2κ),

for all s ∈ R and a ∈ Ps

(
Z,L(F ); κ

)
.

6We denote by arg z ∈ (−π, π] the principle value of z ∈
q
C.
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Proof. By introducing a basis, we can suppose that F = CN so that L(F ) is
identified with CN×N .

(1) Assume b ∈ CN×N is invertible. Let b\ be the algebraic adjoint of b, de-
fined by

b\ = det(b)b−1 (1.5.6)

and given explicitly by

b\ =
[
(−1)j+kBj

k

]> ∈ CN×N , (1.5.7)

where Bj
k is the determinant of the matrix obtained by deleting the jth row and

the kth column of b.
Assume ρ ≥ 1 and σ(b) ⊂ [ |z| ≥ 1/ρ]. Then |det b| ≥ ρ−N and (1.5.6), (1.5.7)

imply
|b−1| ≤ c(N)ρN |b|N−1.

(2) From (1.5.4) we infer

dist
(
σ
(
a(ζ∗)

)
,
[| arg(z)| ≥ ϕ(2κ)

] ∪ {0}
)
≥ κ sin

(
ϕ(2κ)− ϕ(κ)

)
=:

1
ρ(κ)

.

Since
[| arg(z)| ≥ ϕ(2κ)

] ∪ {0} = −Sπ−ϕ(2κ) it follows

σ
(
λ + a(ζ∗)

) ⊂ [|z| ≥ 1/ρ(κ)
]
, λ ∈ Sπ−ϕ(2κ), ζ ∈

q
Z.

If |λ| ≥ 2κ ≥ 2 |a(ζ∗)|, then

∣∣(λ + a(ζ∗)
)−1∣∣ ≤ |λ|−1

∣∣(1 + a(ζ∗)/λ
)−1∣∣ ≤ |λ|−1

1− |λ|−1 |a(ζ∗)| ≤
2
|λ| .

From this and step (1) we deduce
∣∣(λ + a(ζ∗)

)−1∣∣ ≤ c(κ)
1 + |λ| , λ ∈ Sπ−ϕ(2κ), ζ ∈

q
Z,

for a ∈ Ps(κ). Now the assertion follows from
∣∣(λ + a(ζ)

)−1∣∣ = Λ−s(ζ)
∣∣(Λ−s(ζ)λ + a(ζ∗)

)−1∣∣ ≤ c

Λs(ζ) + |λ|
since Λ−s(ζ)Sπ−ϕ(2κ) ⊂ Sπ−ϕ(2κ). ¤

Now we extend this resolvent estimate by including derivatives.

1.5.2 Proposition Suppose κ ≥ 1. Then

max
|α|≤k

|Λα·ω
η (ξ)∂α(λ + aη)−1(ξ)| ≤ c(κ, ‖a‖Hk

s
, k)

Λs(ζ) + |λ|
for ξ ∈ Rd, η ∈

q
H, λ ∈ Sπ−ϕ(2κ), k ∈ N, s ∈ R, and a ∈ Ps

(
Z,L(F ); κ

)
. If

s ≥ 0, then

max
|α|≤k

‖Λα·ω
η ∂α(λ + aη)−1‖∞ ≤ c(κ, ‖a‖Hk

s
, k)

|η|s + |λ| , η ∈
q

H, λ ∈ Sπ−ϕ(2κ),

for k ∈ N and a ∈ Ps

(
Z,L(F ); κ

)
.
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Proof. Let β ∈ Nd satisfy 0 < |β| ≤ k. Then we deduce from Lemma 1.5.1
and (1.2.4)

|∂β
ξ (λ + a)(λ + a)−1| = |(∂β

ξ a)(λ + a)−1|

≤ c(κ)Λs−β·ω ‖a‖Hk
s

Λs + |λ| ≤ c(κ)Λ−β·ω ‖a‖Hk
s

for λ ∈ Sπ−ϕ(2κ) and a ∈ Ps(κ). Now the assertion follows from Lemma 1.4.2 (cf.
step (2) of the proof of Lemma 1.4.3), the last estimate being implied by Λs(ζ) ≥ |η|s
for s ≥ 0. ¤

Suppose a ∈ Ps

(
Z,L(F )

)
for some s ∈ R. Denote by ψ(a) the spectral angle

of a, that is, the minimum of all ψ ∈ [0, π/2) such that σ
(
a(ζ)

) ⊂ Sψ for all ζ ∈
q
Z.

It follows from (1.5.2) and (1.5.5) that ψ(a) is well-defined. Fix any ψ ∈ (
ψ(a), π/2

)

and suppose h : S̊ψ → C is holomorphic. Let Γ be any positively oriented contour
contained in S̊ψ and containing σ

(
a(ζ∗)

)
for all ζ ∈

q
Z in its interior. It follows

also from (1.5.2) (see (1.5.4)) that such a Γ exists. Denote by τΓ the image of Γ
under the dilation (z → τz) : C→ C for τ ∈

q
C. Then Λs(ζ)Γ contains σ

(
a(ζ)

)
in

its interior and is contained in S̊ψ. Hence

h
(
a(ζ)

)
:=

1
2πi

∫

Λs(ζ)Γ

h(λ)
(
λ− a(ζ)

)−1
dλ

is well-defined for ζ ∈
q
Z. It follows from Cauchy’s theorem that h

(
a(ζ)

)
is inde-

pendent of the particular contour Γ and angle ψ. In fact, the well-known Dunford
calculus (cf. [22, Section VII.1]) shows that h

(
a(ζ)

)
depends only on the values of h

on σ
(
a(ζ)

)
.

By means of Proposition 1.5.2 we now establish estimates for derivatives of h(a).
They are of importance in connection with Fourier multipliers as will be apparent
in the following chapters.

1.5.3 Lemma Suppose s ∈ R and κ ≥ 1. Set

Ω2κ := [Re z ≥ 1/2κ] ∩ [ |z| ≤ 2κ] ⊂ Sϕ(2κ).

Then

max
|α|≤k

∣∣Λα·ω(ζ)∂α
ξ h

(
a(ζ)

)| ≤ c(κ, ‖a‖Hk
s
, k) ‖h‖∞,Λs(ζ)Ω2κ

, ζ ∈
q
Z, k ∈ N,

for all a ∈ Ps

(
Z,L(F ); κ

)
and each holomorphic function h on S̊ϕ(3κ).

Proof. Let h : S̊ϕ(3κ) → C be holomorphic. Denote by Γ the positively ori-
ented boundary of Ω2κ. Then

2πih
(
a(ζ)

)
=

∫

Λs(ζ)Γ

h(λ)
(
λ− a(ζ)

)−1
dλ =

∫

−Λs(ζ)Γ

g(µ)
(
µ + a(ζ)

)−1
dµ

for ζ ∈
q
Z, where

g : C\Sπ−ϕ(3κ) → C, µ 7→ h(−µ)

is holomorphic, −Λs(ζ)Γ ⊂ C\Sπ−ϕ(3κ) for ζ ∈
q
Z, and ‖g‖∞,−Λs(ζ)Γ = ‖h‖∞,Λs(ζ)Γ.
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Fix ζ0 ∈
q
Z. There exists a neighborhood U of ζ0 in

q
Z such that σ

(−a(U)
)

is
contained in the interior of −Λs(ζ0)Γ. Thus, by Cauchy’s theorem,

h(a)(ζ) := h
(
a(ζ)

)
=

1
2πi

∫

−Λs(ζ0)Γ

g(µ)
(
µ + a(ζ)

)−1
dµ, ζ ∈ U.

Consequently,

∂α
ξ h(a)(ζ) =

1
2πi

∫

−Λs(ζ0)Γ

g(µ)∂α
ξ

(
µ + a(ζ)

)−1
dµ, ζ ∈ U,

for α ∈ Nd. Since this holds, in particular, for ζ = ζ0 and ζ0 is arbitrary in
q
Z we find

∂α
ξ h(a)(ζ) =

1
2πi

∫

−Λs(ζ)Γ

g(µ)∂α
ξ

(
µ + a(ζ)

)−1
dµ, ζ ∈

q
Z.

Now Proposition 1.5.2 implies

|Λα·ω(ζ)∂α
ξ h(a)(ζ)| ≤ c

∫

−Λs(ζ)Γ

|g(µ)| |dµ|
Λs(ζ) + |µ|

≤ c

∫

−Γ

∣∣g(
Λs(ζ)z

)∣∣ |dz|/|z| ≤ c sup
z∈Γ

∣∣h(
Λs(ζ)z

)∣∣

for |α| ≤ k and ζ ∈
q
Z, where c depends on κ, ‖a‖Hk

s
, and k only. ¤

Now we specialize to particularly important cases, namely power functions and
exponentials. Recall that log z = log |z|+ i arg z and

hz(λ) := λz = ez log λ, λ ∈
q
C,

is the principal value of the logarithm and the power function, respectively. Since
hz is holomorphic,

az := hz(a) :
q
Z → L(F )

is well-defined for a ∈ Ps

(
Z,L(F )

)
. Furthermore,

a0 = 1F , a1 = a, az1+z2 = az1az2 , z1, z2 ∈ C,

by the Dunford calculus. Note (aη)z = (az)η =: az
η for η ∈

q
H.

1.5.4 Proposition Suppose s ≥ 0 and κ ≥ 1. Then

max
|α|≤k

‖Λα·ω
η ∂αaz

η‖∞ ≤ c(κ, ‖a‖Hk
s
, k) (|η|s/2κ)Re z e| Im z|ϕ(2κ)

for a ∈ Ps

(
Z,L(F ), κ

)
, η ∈

q
H, and Re z ≤ 0.

Proof. Since

|hz(λ)| ≤ |λ|Re z e| Im z|ϕ(2κ), λ ∈
q
Sϕ(2κ),

the assertion follows from Lemma 1.5.3. ¤

1.5.5 Remark Suppose a ∈ Ps

(
Z,L(F ); κ

)
for some s ≥ 0 and κ ≥ 1. Fix any

ψ ∈ (
ψ(a), π/2

)
. Then an easy modification of the proof of Lemmas 1.5.1 and 1.5.3

shows that the term e| Im z|ϕ(2κ) in the estimate of Proposition 1.5.4 can be replaced
by e| Im z|ψ. In this case c depends also on ψ(a) and 1

/(
ψ − ψ(a)

)
. ¤



1.6 MULTIPLIER SPACES 29

Next we turn to exponentials. For t ∈ R we denote by gt : C→ C the entire
function λ 7→ e−tλ. Then

e−ta := gt(a) :
q
Z → L(F )

is well-defined for a ∈ Ps

(
Z,L(F )

)
. Furthermore, the Dunford-calculus shows that

{ e−ta(ζ) ; t ∈ R } is a continuous subgroup of L(F ). It is well-known (eg., Sec-
tion 12 in H. Amann [2]) that t 7→ e−ta(ζ) is the unique solution in L(F ) of

u̇ + a(ζ)u = 0 on R, u(0) = 1F ,

for ζ ∈
q
Z.

1.5.6 Proposition Suppose s ≥ 0 and κ ≥ 1. Then

max
|α|≤k

‖Λα·ω
η ∂αe−taη‖∞ ≤ c(κ, ‖a‖Hk

s
, k) e−t |η|s/2κ

for t ≥ 0, η ∈
q

H, k ∈ N, and a ∈ Ps

(
Z,L(F ), κ

)
.

Proof. Due to |e−tλ| = e−t Re λ this is immediate from Lemma 1.5.3. ¤

1.6 Multiplier spaces

We denote by
M(Rd, E) := M(d,ν)(Rd, E)

the set of all a ∈ Cd+`
(
(Rd)

q
, E

)
satisfying

‖a‖M := max
|α|≤d+`

‖Λα·ω
1 ∂αa‖∞ < ∞.

It is a Banach space with the norm ‖·‖M.
In later chapters we shall show that the elements of M(Rd, E) are Fourier

multipliers for various function spaces. This will explain the choice of d + ` for the
order of smoothness. Moreover, the importance of the following simple technical
lemma will then be obvious.

1.6.1 Lemma

(i) Let E1 × E2 → E be a multiplication of Banach spaces. Then its point-wise
extension satisfies

M(Rd, E1)×M(Rd, E2) →M(Rd, E)

and it is a multiplication.

(ii) Assume k ∈ N and a ∈ C(
q
Z, E) satisfies aη ∈ Ck

(
(Rd)

q
, E

)
for η ∈

q
H. Then

‖Λα·ω
1 ∂α(σ|η|aη)‖∞ = ‖Λα·ω

η ∂αaη‖∞
for η ∈

q
H and |α| ≤ k.

(iii) Suppose Re z ≥ 0. Then

(a 7→ σ|η|aη) ∈ L(Hd+`
−z (Z, E),M(Rd, E)

)

and
‖σ|η|aη‖M ≤ |η|−Re z ‖a‖Hd+`

−z
, η ∈

q
H.
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Proof. (i) follows from Leibniz’ rule.
(ii) Note

σ1/|η|Λs
1 = |η|−s Λs

η, s ∈ R. (1.6.1)
Thus, due to Proposition 1.1.1(i),

Λα·ω
1 ∂α(σ|η|aη) = |η|α·ωΛα·ω

1 σ|η|(∂αaη)

= |η|α·ωσ|η|
(
(σ1/|η|Λα·ω

1 )∂αaη

)

= σ|η|(Λα·ω
η ∂αaη).

Now the assertion follows from Proposition 1.1.1(ii).
(iii) By (1.2.4),

|∂αaη(ξ)| ≤ Λ−Re z−α·ω(ζ) ‖a‖Hd+`
−z

≤ |η|−Re z Λ−α·ω(ζ) ‖a‖Hd+`
−z

for a ∈ Hd+`
−z and η ∈

q
H. Thus (ii) implies the statement. ¤



CHAPTER 2

Anisotropic Banach scales

It turns out that many properties of anisotropic Banach spaces can be obtained
by Fourier multiplier theorems, irrespective of the underlying concrete realization.
For this reason we now introduce a class of M-admissible Banach spaces by re-
quiring that they are Banach spaces of tempered distributions on which Fourier
multiplier operators with (scalar) symbols in M(Rd) act continuously.

2.1 Admissible Banach spaces

Let E1 × E2 → E0 be a multiplication of Banach spaces. For m ∈ S ′(Rd, E1)
we put

dom
(
m(D)

)
:=

{
u ∈ S ′(Rd, E2) ; mû ∈ S ′(Rd, E0)

}

and
m(D)u := F−1mFu = F−1(mû),

denoting by F the Fourier transform.1 Then m(D) is a linear map from its domain
in S ′(Rd, E2) into S ′(Rd, E0), a Fourier multiplier operator with symbol m.
Note that

S(Rd, E2) ⊂ OM (Rd, E2) ⊂ dom
(
m(D)

)
.

Furthermore, m ∈ OM (Rd, E1) implies

m(D) ∈ L(S(Rd, E2),S(Rd, E0)
) ∩ L(S ′(Rd, E2),S ′(Rd, E0)

)
. (2.1.1)

Now we fix a Banach space E and set

S = SE := S(Rd, E), S ′ = S ′E := S ′(Rd, E).

We write F, or FE , for F(Rd, E) if the latter is a Banach space of tempered E-valued
distributions on Rd containing S.

We say F is an (M-)admissible Banach space (of distributions), provided

(i) S d
↪→ F

d
↪→ S ′;

(ii) m(D)u ∈ F and

‖m(D)u‖F ≤ c ‖m‖M ‖u‖F

for (m,u) ∈M(Rd)× S.





(2.1.2)

Since S is dense in S ′, condition (i) is equivalent to S d
↪→ F ↪→ S ′.

1See Section III.4.1 in H. Amann [4] and [10] for notation and facts from the theory of
vector-valued distributions of which we make free use.

31
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If F is M-admissible, then there exists a unique extension in L(F) of the linear
map m(D) : S → F, which shows F ⊂ dom

(
m(D)

)
.

The following simple observation is of fundamental importance for what follows.
Here F , F0, F1, and F2 are finite-dimensional Banach spaces.

2.1.1 Proposition Let FE be admissible. Then FE⊗F is also admissible and

M(
Rd,L(F1, F )

) → L(FE⊗F1 , FE⊗F ), m 7→ m(D)

is linear and continuous. Furthermore, the map

M(
Rd,L(F2, F0)

)×M(
Rd,L(F1, F2)

) → L(FE⊗F1 , FE⊗F0), (a, b) 7→ (ab)(D)

is a multiplication. In particular,

M(
Rd,L(F )

) → L(FE⊗F ), m 7→ m(D) (2.1.3)

is a continuous algebra homomorphism.

Proof. (1) Suppose Fi = C for i = 0, 1, 2 so that E ⊗ Fi is canonically iden-
tified with E by identifying e⊗ 1 with e for e ∈ E. Suppose m1,m2 ∈M(Rd) and
u ∈ S. Then2 〈ξ〉km1û and 〈ξ〉km2m1û belong to L∞(Rd, E) for each k ∈ N. Con-
sequently, m1û, m2m1û ∈ O′C := O′C(Rd, E). Hence m1(D)u = F−1(m1û) ∈ OM

and m2F
(
m1(D)u

)
= m2m1û ∈ O′C . This implies

m2(D)m1(D)u = F−1
(
m2F(m1(D)u)

)
= F−1(m2m1û)

= (m2m1)(D)û ∈ OM

for u ∈ S. Since m1, m2 ∈M(Rd) it follows m1(D)u ∈ F and m2(D)
(
m1(D)u

) ∈ F
for u ∈ S. Now we obtain

m2(D)m1(D)u = (m2m1)(D)u, u ∈ F,

by density and continuity. Since it is obvious from (2.1.2) that

M(Rd) → L(F), m 7→ m(D)

is linear and continuous, the assertions follow in this case.
(2) By introducing a basis in Fi we can assume Fi = CNi . Consequently,

L(Fi, Fj) = CNj×Ni and FE⊗Fi is canonically identified with FNi

E , the Ni-fold prod-
uct of FE . Now the statement follows by applying the result of step (1) component-
wise in the obvious way and by taking Lemma 1.6.1(i) into consideration. ¤

2.1.2 Corollary Let FE be admissible and Re z ≥ 0. Then
(
a 7→ (σ|η|aη)(D)

) ∈ L(Hd+`
−z

(
Z,L(F1, F )

)
,L(FE⊗F1 , FE⊗F )

)
(2.1.4)

and
‖(σ|η|aη)(D)‖L(FE⊗F1 ,FE⊗F ) ≤ c |η|−Re z ‖a‖Hd+`

−z
, η ∈

q
H.

Proof. This follows from Lemma 1.6.1(iii) and Proposition 2.1.1. ¤

2Recall 〈ξ〉 = (1 + |ξ|2)1/2.
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The next lemma explains, to some extent, why we consider smooth homoge-
neous functions although derivatives of order at most d + 1 are needed in connec-
tion with Fourier multiplier operators. Recall m−1(ξ) = m(ξ)−1 for ξ ∈ Rd and
m : Rd → Laut(F ).

2.1.3 Lemma Let F be admissible. Suppose

m ∈ OM

(
Rd,Laut(F )

)
and m−1 ∈M(

Rd,L(F )
)
.

Denote by M the FE⊗F -realization of m(D). Then M is closed and densely defined
in FE⊗F , 0 ∈ ρ(M), and M−1 = m−1(D).

Proof. Since m−1 ∈M(
Rd,L(F )

)
implies m−1 ∈ L∞

(
Rd,L(F )

)
it follows

from m ∈ OM

(
Rd,L(F )

)
and Lemma 1.4.2 that m−1 ∈ OM

(
Rd,L(F )

)
. Hence,

by (2.1.1),

m(D) ∈ Laut(SE⊗F ) ∩ Laut(S ′E⊗F ), m(D)−1 = m−1(D). (2.1.5)

From this we see that M is well-defined and closed, and, since

m(D)u ∈ S ⊂ FE⊗F , u ∈ SE⊗F ,

it is densely defined. From (2.1.5) we also infer that M is bijective. Proposition 2.1.1
implies

m−1(D) ∈ L(FE⊗F ).
Now the statement is clear. ¤

The next lemma shows that, starting with one admissible Banach space F, we
can construct a wide variety of admissible spaces related to F. This will be exploited
in Section 2.3 below.

2.1.4 Lemma

(i) Let F be admissible. Suppose F1 satisfies (2.1.2)(i) and a ∈ OM (Rd). If

a(D) ∈ Lis(F, F1),

then F1 is admissible.
(ii) Let (F0, F1) be a densely injected Banach couple such that F0 and F1 are ad-

missible. Suppose 0 < θ < 1 and

(·, ·)θ ∈
{

[·, ·]θ, (·, ·)0θ,q ; 1 ≤ q ≤ ∞}
.

Then Fθ := (F0,F1)θ is admissible.

Proof. (i) Note am ∈ L1,loc(Rd) for m ∈M(Rd). Also

a(D) ∈ Laut(S) ∩ Laut(S ′).
Hence

a(D)m(D)u = (am)(D)u = m(D)a(D)u, u ∈ S,

and, consequently,

m(D)v = a(D)m(D)a(D)−1v, v ∈ S.

By the M-admissibility of F,

‖m(D)v‖F1 ≤ ‖a(D)‖L(F,F1) ‖m(D)‖L(F) ‖a(D)−1v‖F ≤ c ‖v‖F1

for v ∈ S. Hence F1 satisfies (2.1.2)(ii).
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(ii) Since

S d
↪→ F1

d
↪→ Fθ,

condition (2.1.2)(i) holds for Fθ. By interpolation we obtain also the validity of
condition (2.1.2)(ii). ¤

2.1.5 Corollary Suppose m ∈ OM (Rd) and 1/m ∈M(Rd). Let F be admis-

sible and denote by M the F-realization of m(D). Then3 D(M)
d

↪→ F and D(M) is
M-admissible.

Proof. From Lemma 2.1.3 we infer M ∈ Lis
(
D(M), F

)
. Hence we obtain the

claim from step (i) of the preceding proof. ¤

2.2 Parameter-dependence and resolvent estimates

We now introduce parameter-dependent admissible Banach spaces and consider
Fourier multiplier operators in such spaces. In particular, we derive resolvent es-
timates and semigroup representation theorems in such spaces. For the reader’s
convenience we begin by recalling some simple general facts.

Let X and Y be LCSs and suppose ϕ ∈ L(X ,Y). Then the image space ϕX
is the image of X in Y under ϕ endowed with the unique locally convex Hausdorff
topology for which ϕ̂, defined by the commutativity of the diagram

X ϕX ⊂ Y

X/ ker(ϕ)

ϕ̂

ϕ
-

@
@@R ¡

¡¡µ (2.2.1)

is a toplinear isomorphism. Of course, the non labeled arrow represents the canon-
ical projection.

2.2.1 Remarks (a) ϕX is an LCS such that ϕX ↪→ Y and ϕ is a continuous
surjection onto ϕX . If P is a generating family of seminorms for X , then, setting

p̂(y) := inf
{

p(x) ; x ∈ ϕ−1(y)
}
, y ∈ ϕX ,

the family { p̂ ; p ∈ P } generates the topology of ϕX . If X = (X , ‖·‖) is a Banach
space, then ϕX is one also with the ‘quotient norm’

y 7→ ‖y‖ϕX := inf
{ ‖x‖ ; x ∈ ϕ−1(y)

}
.

In particular, if ϕ is injective, then

‖y‖ϕX = ‖ϕ−1y‖X , y ∈ ϕX ,

and ϕ is an isometric isomorphism from X onto ϕX .

Proof. This is a consequence of the closedness of ker(ϕ) and standard prop-
erties of quotient spaces. ¤

3Recall that D(M) is the domain of M endowed with its graph norm.
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(b) Let X0 and Z be LCSs such that X0
i

↪→ X and Y j
↪→ Z. Writing ϕX0

for (ϕ ◦ i)X0 it follows
ϕX0 ↪→ ϕX ↪→ Z.

If i has dense image (resp. the images of ϕ and j are dense), then the first (resp.
second) injection is dense.

Proof. The first assertion is obvious. The second one follows from (2.2.1) and
the continuity of the canonical projection. ¤

(c) If X is a reflexive or a separable Banach space, then ϕX is also reflexive
or separable, respectively.

Proof. Quotients of Banach spaces modulo closed linear subspaces possess
these properties. ¤

For γ ∈ R and η ∈
q

H we put

ργ
t := tγσt, t > 0.

Let aη ∈ C(Z) and u ∈ S ′(Rd, E′) be such that aη(D)u is well-defined in S ′(Rd, E).
Then we infer from Proposition 1.1.1(iii)

ργ
1/|η| ◦ aη(D)u = |η|−γ σ1/|η|F−1(aηû)

= |η|−γ+|ω| F−1σ|η|(aηû) = |η|−γ+|ω| F−1(σ|η|aη)σ|η|Fu

= |η|−γ F−1(σ|η|aη)Fσ1/|η|u = (σ|η|aη)(D)ργ
1/|η|u

(2.2.2)

for all such u ∈ S ′(Rd, E).

Assume F = FE is admissible and F is finite-dimensional. Put G := FE⊗F and,
for η ∈

q
H,

Gγ,η := ργ
|η|G = {u ∈ S ′E⊗F ; ργ

1/|η|u ∈ FE⊗F }
endowed with the norm4

u 7→ ‖u‖Gγ,η := ‖ργ
1/|η|u‖G.

It follows from Remarks 2.2.1 that Gγ,η is a Banach space satisfying

SE⊗F
d

↪→ Gγ,η
d

↪→ S ′E⊗F ,

and ργ
|η| is an isometric isomorphism from G onto Gγ,η with (ργ

|η|)
−1 = ργ

1/|η|.

2.2.2 Lemma Suppose a ∈ C
(
Z,L(F )

)
is such that either

(α) aη ∈ OM

(
Rd,L(F )

)

or
(β) σ|η|aη ∈M

(
Rd,L(F )

)

for η ∈
q

H. In case (α) denote by Dη the domain of the G-realization of (σ|η|aη)(D)
and by Dγ,η the one of the Gγ,η-realization of aη(D), endowed with the graph norm.

4The reason for considering γ-dependent norms will become clear in Section 4.14 below when
we study parameter-dependent Besov spaces.
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If (β) holds, then put Dη := G and Dγ,η := Gγ,η. Then the diagram of continuous
linear maps

d (σ|η|aη)(D)

d aη(D)

G Dη G

Gγ,η Dγ,η Gγ,η

ργ
|η| ∼=ργ

|η| ∼=ργ
|η| ∼=

¾ ¡¢

¾ ¡¢

-

-
? ? ?

is commuting, the vertical arrows representing isometric isomorphisms.

Proof. This follows easily from Proposition 2.1.1, (2.2.2), and the preceding
remarks. ¤

2.2.3 Proposition

(i) Suppose σ|η|aη ∈M
(
Rd,L(F )

)
for η ∈

q
H. Then aη(D) ∈ L(Gγ,η) and

‖aη(D)‖L(Gγ,η) = ‖(σ|η|aη)(D)‖L(G) ≤ c ‖(σ|η|aη)‖M
for η ∈

q
H.

(ii) If Re z ≥ 0, then
(
a 7→ aη(D)

) ∈ L(Hd+`
−z (Z,L(F )),L(Gγ,η)

)

and
‖aη(D)‖L(Gγ,η) ≤ c |η|−Re z ‖a‖Hd+`

−z

for η ∈
q

H.

Proof. Assertion (i) is immediate by Proposition 2.1.1, the preceding lemma,
and the isometry of ργ

|η|.

(ii) is a consequence of (i) and Lemma 1.6.1(iii). ¤

Now we can prove the main results of this section. For this we assume

s ≥ 0 and a ∈ Ps ∩ H̄∞s
(
Z,L(F )

)
.

Then aη ∈ OM

(
Rd,L(F )

)
for η ∈

q
H by Lemma 1.4.1(ii). Hence aη(D) belongs to

L(SE⊗F ) ∩ L(S ′E⊗F ) and, consequently,

Aγ,η, the Gγ,η-realization of aη(D),

is well-defined. For a Banach space X we denote by H−(X) the set of all negative
generators of exponentially decaying analytic semigroups on X.

2.2.4 Theorem Suppose s ≥ 0. Then Sπ−ϕ(2κ) ⊂ ρ(−Aγ,η) and

Aγ,η ∈ H− ∩ BIP(Gγ,η).

More precisely, assume κ ≥ 1. Then

(|η|s + |λ|) ‖(λ + Aγ,η)−1‖L(Gγ,η) + e−|t|ϕ(2κ) ‖(Aγ,η)i t‖L(Gγ,η) ≤ c(κ, ‖a‖Hd+`
s

)

for t, γ ∈ R, η ∈
q

H, λ ∈ Sπ−ϕ(2κ), and a ∈ Ps

(
Z,L(F ); κ

) ∩ H̄∞s
(
Z,L(F )

)
.
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Proof. (1) Denote by Bη the G-realization of σηaη(D). It is a consequence of
Proposition 1.5.2 and Lemmas 1.6.1(ii) and 2.1.3 that λ + Bη is closed and densely
defined in G, has zero in its resolvent set, satisfies (λ + Bη)−1 = (λ + σηaη)−1(D),
and

(|η|s + |λ|) ‖(λ + Bη)−1‖L(G) ≤ c(κ, ‖a‖Hd+`
s

)

for λ ∈ Sπ−ϕ(2κ) and η ∈
q

H. As in part (1) of the proof of Lemma 1.4.3 we find

(λ + σηaη)−1 = ση(λ + aη)−1.

Now Sπ−ϕ(2κ) ⊂ ρ(−Aγ,η) and Aγ,η ∈ H(Gγ,η) as well as the asserted estimates for
(λ + Aγ,η)−1 follow from Lemma 2.2.2.

(2) The second part of the claim follows similarly from Proposition 1.5.4 and
the last part of Proposition 2.1.1. ¤

2.2.5 Remark Assume s ≥ 0, κ ≥ 1, and a ∈ Ps

(
Z,L(F ); κ

) ∩ H̄∞s
(
Z,L(F )

)
.

Let ψ(a) be the spectral angle of a. Then it follows from Remark 1.5.5 that ψ(Aγ,η),
the spectral angle of Aγ,η, is bounded above by ψ(a) for η ∈

q
H and γ ∈ R. ¤

The next theorem shows, in particular, that the semigroup generated by −Aγ,η

is the Fourier multiplier semigroup with symbol e−taη . It also gives an explicit
bound exhibiting the η-dependence.

2.2.6 Theorem Suppose s ≥ 0, γ ∈ R, and κ ≥ 1. Then

‖e−tAγ,η‖L(Gγ,η) ≤ c(κ, ‖a‖Hd+`
s

) e−t |η|s/2κ

and
e−tAγ,η = (e−taη )(D)

for t ≥ 0, η ∈
q

H, and a ∈ Ps

(
Z,L(F ), κ

) ∩ H̄∞s
(
Z,L(F )

)
.

Proof. (1) Proposition 1.5.6 and Lemma 1.6.1(ii) imply

‖σ|η|e−taη‖M ≤ c(κ, ‖a‖Hd+`
s

)e−t |η|s/2κ, t ≥ 0,

for η ∈
q

H.

(2) Fix η ∈
q

H. Denote by by Γ∞ the negatively oriented boundary of Sπ−ϕ(2κ).
Since

σ(−Aγ,η) ⊂ C\Sπ−ϕ(2κ)

by Theorem 2.2.4, semigroup theory implies

e−tAγ,η =
1

2πi

∫

Γ∞
eλt(λ + Aγ,η)−1 dλ =

1
2πi

∫

Γ∞
eλt(λ + aη)−1(D) dλ

=
1

2πi

∫

Γ∞
eλt(λ + aη)−1 dλ(D) = e−taη (D)

for t ≥ 0. Indeed, the next to the last equality follows from the last part of Propo-
sition 2.1.1, and the last one from Cauchy’s theorem. Taking into account (1) and
Proposition 2.2.3(i), the assertions follow. ¤
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2.3 Fractional power scales

Starting with an admissible Banach space F we now introduce the (two-sided)
fractional power scale generated by F and

J := Λ1(D)

in the sense of H. Amann [4, Section V.1]. In addition, we also consider parameter-
dependent versions. As will be shown in the next chapters, our abstract approach
unifies and simplifies the general theory of (parameter-dependent) concrete function
spaces.

We put
S := S(Rd, E), S ′ := S ′(Rd, E).

Since Λz
η ∈ OM for z ∈ C and η ∈

q
H it follows that

Jz
η := Λz

η(D)

is well-defined and satisfies

Jz
η ∈ Laut(S) ∩ Laut(S ′), Jz1+z2

η = Jz1
η Jz2

η (2.3.1)

for z, z1, z2 ∈ C and η 6= 0, where J0
η = idS′ . We set Jz := Jz

1 , Jη := J1
η , so that

J = J1.

Let F := F(Rd, E) be an admissible Banach space. We put

Fs = Fs(Rd, E) := J−sF =
({u ∈ S ′ ; Jsu ∈ F }, ‖·‖Fs

)

where
‖·‖Fs := ‖Js · ‖F

for s ∈ R. For γ ∈ R and η ∈
q

H we also put

Fγ,η = Fγ,η(Rd, E) := ργ
|η|F

and
Fs

γ,η := J−s
η Fγ,η

for s ∈ R and endow these spaces with their natural norm.

2.3.1 Lemma The diagram
ργ
|η|

∼=

ργ−s
|η|

∼=

F

Fs

Fγ,η

Fs
γ,η

J−s
η

∼=J−s ∼=

-

-
? ?

is commuting, and all these isomorphisms are isometric.

Proof. It follows from (1.6.1) and (2.2.2) that

J−s
η = ργ

|η| ◦ (σ|η|Λ−s
|η| )(D) ◦ ργ

1/|η| = ργ−s
|η| ◦ J−s ◦ ργ

1/|η|. (2.3.2)

This shows that the claim is true. ¤
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Henceforth, we use the symbol .=
η

to mean: equal except for equivalent norms,
uniformly with respect to η ∈

q
H, that is, η-uniformly. We also write ∼

η
for

uniformly equivalent norms.

In the following theorem we collect the basic properties of the spaces Fs and
their parameter-dependent versions Fs

γ,η.

2.3.2 Theorem Let F be admissible and suppose γ ∈ R. Then:
(i) Fs

γ,η is a Banach space and

S d
↪→ Fs

γ,η

d
↪→ Ft

γ,η ↪→ S ′, s > t. (2.3.3)

(ii) J t
η is an isometric isomorphism from Fs+t

γ,η onto Fs
γ,η for s, t ∈ R.

(iii) ‖·‖Fs
γ,η

≤ c |η|−t ‖·‖Fs+t
γ,η

, s, t ∈ R, η ∈
q

H.

(iv) Fs is admissible.
(v) Given s0 < s1 and θ ∈ (0, 1),

Fsθ
γ,η

.=
η

[Fs0
γ,η, Fs1

γ,η]θ.

Proof. Let (uj) be a Cauchy sequence in Fs. Then (Jsuj) is a Cauchy
sequence in F. Thus Jsuj → v in F, hence in S ′, for some v ∈ F. By (2.3.1),
uj → u := J−sv in S ′. This shows u ∈ Fs and uj → u in Fs. Thus Fs is a Banach
space. Since Fs

γ,η is isomorphic to Fs it is one too.

From S d
↪→ F

d
↪→ S ′ and Lemma 2.3.1 it follows

S d
↪→ Fγ,η

d
↪→ S ′. (2.3.4)

Corollary 2.1.2 with η = 1 implies J−s ∈ L(F) for s ≥ 0. Hence, by Lemma 2.3.1,

‖J−s
η ‖L(Fγ,η) = |η|−s ‖ργ

|η|J
−sργ

1/|η|‖L(Fγ,η) ≤ |η|−s ‖J−s‖L(F)

and, similarly,
‖J−s‖L(F) ≤ |η|s ‖J−s

η ‖L(Fγ,η).

Consequently,
‖J−s

η ‖L(Fγ,η) = |η|−s ‖J−s‖L(F), η ∈
q

H. (2.3.5)

Suppose t < s. Then

‖u‖Ft
γ,η

= ‖J t
ηu‖Fγ,η ≤ ‖J t−s

η ‖L(Fγ,η) ‖Js
ηu‖Fγ,η ≤ c |η|t−s ‖u‖Fs

γ,η
. (2.3.6)

From this and (2.3.4) we obtain Fs
γ,η ↪→ Ft

γ,η. Thus (i) is proved. (ii) follows from
Lemma 2.3.1 and (iii) from (2.3.6). We shall obtain (iv) from Lemma 2.1.4(ii) once
(v) will be established.

To prove (v) we use (ii), guaranteeing that Js0
η is an isometric isomorphism

from Fs0
γ,η onto Fγ,η and from Fs1

γ,η onto Fs1−s0
γ,η . Hence we can assume s0 = 0.

From Theorem 2.2.4 we infer that the Fγ,η-realization of Jη has bounded imaginary
powers whose norms are bounded independently of η ∈

q
H. Now the assertion follows

from Seeley’s proof [60, Theorem 3]. (Also see H. Triebel [65, Theorem 1.15.3].) ¤
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2.3.3 Remark Suppose s > 0. Then we identify Js
η with the Fγ,η-realization

of Λs
η(D). Hence Js

η is a closed linear operator in Fγ,η with dense domain Fs
γ,η.

Consequently,
Fs

γ,η =
(
dom(Js

η), ‖·‖Fs
γ,η

)
,

where ‖·‖Fs
γ,η

= ‖Js
η · ‖Fγ,η is equivalent to the graph norm of dom(Js

η), due to
the fact that 0 ∈ ρ(Js

η). The bounded inverse of Js
η , also denoted by J−s

η , is
the Fγ,η-realization of Λ−s

η (D) and F−s
γ,η is easily seen to be the completion of

(Fγ,η, ‖J−s
η · ‖Fγ,η

) in S ′. Thus

[ Fs
γ,η ; s ∈ R ] (2.3.7)

is the fractional power scale generated by (Fγ,η, Jη) in the sense of H. Amann
[4, Section V.1]. Theorem 2.3.2(v) and [4, Theorem V.1.5.4] imply that it is the
interpolation extrapolation scale generated by (Fγ,η, Jη) and [·, ·]θ, 0 < θ < 1. ¤

The fact that we use the same symbol, namely Js
η , for Λs

η(D) ∈ L(S ′) and for
its restriction to Fs

γ,η is justified and cannot cause confusion since these operators
coincide on S and the latter space is dense in Fs

γ,η.

2.3.4 Corollary Fix s0 ∈ R and let [ Gs
γ,η ; s ∈ R ] be the fractional power

scale generated by (Fs0
γ,η, Jη). Then Gs

γ,η = Fs+s0
γ,η .

The next lemma will be of repeated use.

2.3.5 Lemma Let F be admissible and γ, s ∈ R. If a ∈ Ps(Z), then

‖·‖Fs
γ,η

∼
η
‖aη(D) · ‖Fγ,η .

Proof. Since, by Lemma 1.4.3, Λ−s and a−1 belong toH∞−s(Z), Lemma 1.4.1(i)
implies Λsa−1,Λ−sa ∈ H∞0 (Z). Thus

Js
η = (Λsa−1)η(D)aη(D)

and
aη(D) = (aΛ−s)η(D)Js

η

imply the assertion, due to Proposition 2.2.3(ii) and Lemma 2.3.1. ¤

2.3.6 Corollary Let Q be a quasi-norm and γ ∈ R. For s ∈ R and η ∈
q

H set

Gs
γ,η :=

({
u ∈ S ′ ; Qs

η(D)u ∈ Fγ,η

}
, ‖·‖Gs

γ,η

)

where
‖·‖Gs

γ,η
:= ‖Qs

η(D) · ‖Fγ,η .

Then Gs
γ,η

.=
η

Fs
γ,η for s ∈ R.

Our next lemma clarifies the mapping properties of derivatives in fractional
power scales.

2.3.7 Lemma Let F be admissible, s, γ ∈ R, and α ∈ Nd. Then

∂α ∈ L(Fs
γ,η,Fs−α·ω

γ,η )

η-uniformly.
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Proof. Set
a(ζ) := ξαΛ−α·ω(ζ), ζ = (ξ, η) ∈

q
Z.

Then a ∈ H∞0 (Z) by Lemmas 1.4.1(i) and 1.4.3, since (ζ 7→ ξα) ∈ Hα·ω(Z). Hence

aη(D) = DαJ−α·ω
η ∈ L(Fγ,η)

η-uniformly by Corollary 2.1.2. Thus Theorem 2.3.2 implies

Dα = (DαJ−α·ω
η )Jα·ω

η ∈ L(Fα·ω
γ,η , Fγ,η)

η-uniformly. Now the assertion follows from Theorem 2.3.2(ii) and the commuta-
tivity of Dα and Js. ¤

We close this section by proving a renorming theorem whose importance will
be clear when we consider concrete realizations of fractional power scales.

2.3.8 Theorem Let F be admissible, γ ∈ R, and m ∈
q
N. Then the following

are equivalent:
(i) u ∈ Fmω

γ,η ;
(ii) ∂αu ∈ Fγ,η, α · ω ≤ mω;

(iii) u, ∂
mω/ωj

j u ∈ Fγ,η, 1 ≤ j ≤ d.
Furthermore,

‖·‖Fmω
γ,η

∼
η

∑

α·ω≤mω

|η|mω−α·ω ‖∂α · ‖Fγ,η ∼η |η|
mω ‖·‖Fγ,η +

d∑

j=1

‖∂mω/ωj

j · ‖Fγ,η .

Proof. (1) From Theorem 2.3.2(iii) and Lemma 2.3.7 we deduce

‖Dα‖L(Fmω
γ,η ,Fγ,η) ≤ c |η|α·ω−mω, η 6= 0.

Consequently,

|η|mω ‖·‖Fγ,η +
d∑

j=1

‖∂mω/ωj

j · ‖Fγ,η ≤
∑

α·ω≤mω

|η|mω−α·ω ‖∂α · ‖Fγ,η ≤ c ‖·‖Fmω
γ,η

for η ∈
q

H.
(2) Put

b(ζ) :=
d∑

j=1

(ξj)2ω/ωj + |η|2ω, ζ ∈
q
Z.

Then b ∈ P2ω(Z). Hence ‖·‖F2ω
γ,η

∼
η
‖bη(D) · ‖Fγ,η by Lemma 2.3.5. Now we infer

from Theorem 2.3.2(ii)

‖·‖Fω
γ,η

= ‖J−ω
η · ‖F2ω

γ,η
∼
η
‖bη(D)J−ω

η · ‖Fγ,η . (2.3.8)

Since
D

2ω/ωj

j J−ω
η = D

ω/ωj

j J−ω
η D

ω/ωj

j

and (ξj)ω/ωj Λ−ω ∈ H∞0 implies

D
ω/ωj

j J−ω
η ∈ L(Fγ,η), ‖Dω/ωj

j J−ω
η ‖L(Fγ,η) ≤ c, η 6= 0,
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we deduce from

bη(D) = |η|2ω +
d∑

j=1

D
2ω/ωj

j

and (2.3.8)

‖u‖Fω
γ,η

≤ c ‖bη(D)J−ω
η u‖Fγ,η

≤ c
(
|η|2ω ‖J−ω

η u‖Fγ,η
+

d∑

j=1

‖D2ω/ωj

j J−ω
η u‖Fγ,η

)

≤ c
(
|η|ω ‖u‖Fγ,η +

d∑

j=1

‖Dω/ωj

j u‖Fγ,η

)

for η ∈
q

H. This implies the claims. ¤
In Part 2, where we shall consider function spaces on manifolds, still another

form of part (iii) of this theorem will be of importance. For this we denote for
k ∈ N

∇ku := { ∂αu ; |α| = k }, ∇ := ∇1,

whenever ∂αu is well-defined. We arrange this m(k)-tuple5 by the lexicographical
ordering. For smooth functions we set

|∇ku| :=
( ∑

|α|=k

|∂αu|2
)1/2

so that |∇ku| is the Euclidean norm of the ‘vector’ ∇ku, and

‖∇ku‖ :=
∥∥ |∇ku|

∥∥,

whenever ‖·‖ is a norm of a Banach space of which |∇ku| is a member.

Using this notation, the following corollary is obvious.

2.3.9 Corollary ‖·‖Fmω
γ,η

∼
η
|η|mω ‖·‖Fγ,η +

∑`
i=1 ‖∇mν/νi

xi · ‖Fη,γ .

5m(k) =
∑
|α|=k 1 =

( d+k−1
k

)
.



CHAPTER 3

Fourier multipliers and function spaces

In this chapter the theory of anisotropic vector-valued Bessel potential and
Besov spaces on Rd is developed. Similarly as in the isotropic scalar case, it is
based on Fourier analysis. Whereas in the case of Besov spaces no restrictions on
the Banach spaces have to be imposed, a powerful theory of vector-valued Bessel
potential spaces requires a limitation of the class of admitted target spaces.

3.1 Marcinkiewicz type multiplier theorems

A Banach space E is a UMD space if the Hilbert transform is bounded
on L2(R, E). Then it is bounded on Lq(R, E) for each q ∈ (1,∞) and E is reflexive.

Every finite-dimensional Banach space is a UMD space. If E is a UMD space,
then Lq(X, µ,E) is a UMD space as well whenever 1 < q < ∞ and (X,µ) is a
σ-finite measure space. Every Banach space isomorphic to a UMD space is such a
space, and if E is a UMD space, then E′ is one as well. Every Hilbert space is a
UMD space, and so is every closed linear subspace of a UMD space. Finite products
of UMD spaces are UMD spaces. If (E0, E1) is an interpolation couple of UMD
spaces, then E[θ] and Eθ,q, 1 < q < ∞, are UMD spaces for 0 < θ < 1. More details
and proofs are found in H. Amann [4, Section III.4] (also see P.Ch. Kunstmann and
L. Weis [44]).

Following G. Pisier [52], a Banach space E is said to have property (α) if
there is a constant c such that for each n ∈

q
N and (eij , αij) ∈ E × C with |αij | ≤ 1,

∫ 1

0

∫ 1

0

∣∣∣
n∑

i,j=1

ri(s)rj(t)αijeij

∣∣∣
E

ds dt ≤ c

∫ 1

0

∫ 1

0

∣∣∣
n∑

i,j=1

ri(s)rj(t)eij

∣∣∣
E

ds dt

where (rj) is the sequence of Rademacher functions,

rj(t) = sign(sin 2jπt).

Every finite-dimensional Banach space has property (α). If E has property (α),
then each closed linear subspace of it, each Banach space isomorphic to E, and
Lq(X, µ, E) have this property as well, where 1 ≤ q < ∞ and (X, µ) is a σ-finite
measure space. If E is a UMD space with property (α), then E′ has property (α) as
well. We refer to P.Ch. Kunstmann and L. Weis [44, Section 4] and the references
therein for more details and proofs.

We denote by
Ma := Ma(Rd)

43
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the set of all m ∈ Cd
(
(Rd)

q)
satisfying

‖m‖Ma := max
α≤(1,1,...,1)

sup
ξ∈(Rd)

q |ξ
α∂αm(ξ)| < ∞

and
Mi := Mi(Rd)

is the set of all m ∈ Cd
(
(Rd)

q)
satisfying

‖m‖Mi := max
α≤(1,1,...,1)

sup
ξ∈(Rd)

q |ξ|
|α| |∂αm(ξ)| < ∞.

Then
Ma = (Ma, ‖·‖Ma) and Mi = (Mi, ‖·‖Mi)

are Banach spaces. (Ma and Mi should remind the reader of Marcinkiewicz and
Mikhlin, respectively.) Note Mi ↪→Ma.

3.1.1 Theorem Suppose 1 < q < ∞ and E is a UMD space. Then(
m 7→ m(D)

) ∈ L(Mi,L(Lq(Rd, E))
)
.

If E has also property (α), then
(
m 7→ m(D)

) ∈ L(Ma,L(Lq(Rd, E))
)
.

This result is due to F. Zimmermann [73]. Different proofs (in more general
settings) have been given by L. Weis and coauthors and by R. Haller, H. Heck, and
A. Noll [37]. F. Zimmermann has also shown that property (α) cannot be omitted
if the vector-valued Marcinkiewicz multiplier theorem is to hold (also see [40]).

Suppose E = C. Then the second assertion is a nonperiodic version of the
Marcinkiewicz multiplier theorem [49] (see S.M. Nikol′skĭı [51] or E.M. Stein [63,
Section IV.6]). The first claim is a variant of Mikhlin’s Fourier multiplier theorem
(e.g., L. Hörmander [39]). Further historical details are given by H. Triebel in
Remark 2.4.4.4 of [65].

The following theorem, an easy corollary to the preceding theorem, is of fun-
damental importance for what follows.

3.1.2 Theorem Suppose 1 < q < ∞. If either

ω = ω(1, 1, . . . , 1) = (ω, ω, . . . , ω) and E is a UMD space

or
E is a UMD space with property (α),

then Lq(Rd, E) is M-admissible.

Proof. Suppose α ≤ (1, 1, . . . , 1). Then

|(ξj)αj | = (|ξj |2ω/ωj )αjωj/2ω ≤ Λ1(ξ)αjωj

for 1 ≤ j ≤ d. Hence |ξα| ≤ Λα·ω
1 (ξ) for ξ ∈ Rd. Consequently ‖·‖Ma ≤ ‖·‖M, that

is M ↪→Ma. If ω = ω(1, . . . , 1), then

|ξ||α| =
( d∑

j=1

|ξj |2
)|α|/2

≤
( d∑

j=1

|ξj |2 +1
)|α|ω/2ω

= Λ|α|ω1 (ξ) = Λα·ω
1 (ξ), ξ ∈ Rd,

so that M ↪→Mi. Now the claim follows from Theorem 3.1.1. ¤
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Unfortunately, it is not true that Theorem 3.1.1 holds for operator-valued sym-
bols. This follows from a result of Ph. Clément and J. Prüss [19], combining
it with characterizations of maximal Lp-regularity for evolution equation due to
N.J. Kalton and G. Lancien [42] (cf. [44] for more details).

Let E and F be Banach spaces. A subset T of L(E,F ) is said to be R-bounded
if

∥∥
n∑

j=1

rjTjxj

∥∥
L2((0,1),F )

≤ c
∥∥

n∑

j=1

rjxj

∥∥
L2((0,1),E)

for n ∈
q
N and (Tj , xj) ∈ T × E. The infimum of all such c is the R-bound of T

and denoted by R(T ). It is obvious that an R-bounded set is bounded and

sup
T∈T

‖T‖L(E,F ) ≤ R(T ).

Using this concept we can formulate an extension of Theorem 3.1.1 for the case of
operator-valued Fourier multipliers.

3.1.3 Theorem Suppose 1 < q < ∞, E and F are UMD spaces, and m be-
longs to Cd

(
(Rd)

q
,L(E, F )

)
. If

M :=
{ |ξ||α| ∂αm(ξ) ; α ≤ (1, . . . , 1), ξ ∈ (Rd)

q}

is R-bounded in L(E, F ), then

m(D) ∈ L(
Lq(Rd, E), Lq(Rd, F )

)

and
‖m(D)‖ ≤ c R(M)

where c depends on E, F , d, and q only.

If, in addition, E and F have property (α), then M can be replaced by
{

ξα∂αm ; α ≤ (1, . . . , 1), ξ ∈ (Rd)
q}

.

In the 1-dimensional case the sufficiency part of the first assertion is due to
L. Weis [70]. Extensions to n dimensions are given by Ž. Štrkalj and L. Weis [64]
and R. Haller, H. Heck, and A. Noll [37]. Other proofs can be found in the memoir
of R. Denk, M. Hieber, and J. Prüss [20] and in the survey of P.Ch. Kunstmann
and L. Weis [44].

The extension of the Marcinkiewicz’ multiplier theorem to operator-valued sym-
bols, that is, the second part of Theorem 3.1.3, is due to R. Haller, H. Heck, and
A. Noll [37]. A different proof appears in [44].

In the paper [19] by Ph. Clément and J. Prüss the R-boundedness condition
is shown to be also necessary for the analogue to the Mikhlin theorem to hold (see
also Section 3.13 in [44]).

There are many sufficient conditions for a family of bounded linear operators
to be R-bounded (see R. Denk, M. Hieber, and J. Prüss [20] and P.Ch. Kunstmann
and L. Weis [44]). We restrict ourselves to cite just one particularly simple and
useful criterion.
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3.1.4 Proposition Let E and F be Banach spaces and K a compact subset
of C. Suppose m is a holomorphic map from a neighborhood of K into L(E,F ).
Then m(K) is R-bounded in L(E, F ).

Proof. This is Proposition 3.10 in [20]. ¤

3.2 Dyadic decompositions and Fourier multipliers

Let Q be a quasi-norm and set

Ω0 = ΩQ
0 := [Q0 < 2], Ωk = ΩQ

k := [2k−1 < Q0 < 2k+1], k ∈
q
N.

Note Ωj ∩ Ωk = ∅ for |j − k| ≥ 2.
Fix ψ ∈ D(Rd) satisfying

ψ(ξ) = 1 for Q0(ξ) ≤ 3/2, supp(ψ) ⊂ Ω0. (3.2.1)

Put
ψ̃(ξ) := ψ(ξ)− ψ(2 q ξ) = ψ(ξ)− σ2ψ(ξ), ξ ∈ Rd,

and
ψ0 := ψ, ψk := σ2−k ψ̃, k ∈

q
N. (3.2.2)

Then ψk is smooth with support in Ωk and
n∑

k=0

ψk = σ2−nψ, n ∈ N. (3.2.3)

Hence (ψk) is a smooth partition of unity on Rd, induced by ψ, subordinate to
the Q-dyadic open covering (Ωk).

Given ϕ ∈ S(Rd) and α ∈ Nd,

‖ϕ∂α(σ2−nψ − 1)‖∞ → 0, n →∞,

where 1(ξ) = 1 for ξ ∈ Rd. Consequently, σ2−nψ → 1 in OM (Rd). Hence we infer
from (3.2.3)

∞∑

k=0

ψk = 1 in OM (Rd). (3.2.4)

Thus, given u ∈ S ′ := S ′E = S ′(Rd, E),
∞∑

k=0

ψkû = û in S ′

and, consequently,
∞∑

k=0

ψk(D)u = u in S ′, (3.2.5)

due to F ∈ L(S ′).
In the following, we denote by

M0(Rd, E)

the set of all m ∈ Cd+`
(
(Rd)

q
, E

)
satisfying

‖m‖M0 := max
|α|≤d+`

‖Λα·ω
0 ∂αm‖∞ < ∞.
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It is a Banach space with norm ‖·‖M0 and

M(Rd, E) ↪→M0(Rd, E).

3.2.1 Proposition Let ψ satisfy (3.2.1) and let (ψk) be the anisotropic parti-
tion of unity on Rd induced by it, subordinate to the Q-dyadic open covering (Ωk).
Suppose

F ∈ {BUC, C0, Lp ; 1 ≤ p < ∞}
and set FE := F(Rd, E). Also assume that E1 × E2 → E0 is a multiplication of
Banach spaces.

If a ∈M(Rd, E1), then

(ψka)(D) ∈ L(FE2 ,FE0)

and
(ψka)(D) ∈ L(

L∞(Rd, E2), BUC(Rd, E0)
)

for k ∈ N with
sup
k≥1

‖(ψka)(D)‖ ≤ c ‖a‖M0

and
‖(ψ0a)(D)‖ ≤ c ‖a‖M,

where c = c(Q, ψ, d) is independent of a.

Proof. (1) By the convolution theorem (see H. Amann [10], for example, for
the vector-valued case)

(ψka)(D)u = F−1(ψka) ∗ u.

Hence the assertion follows from well-known elementary properties of convolutions
(e.g., [5, Theorem 4.1]) provided we show ψka ∈ FL1(Rd, E1) and

‖ψka‖FL1 ≤ c ‖a‖M̃k
, k ∈ N, a ∈M(Rd, E1), (3.2.6)

where M̃k := M for k = 0, and M̃k := M0 if k ∈
q
N.

(2) Assume we have shown

‖Dα(ψka)‖L1(Rd,E1) ≤ c0 ‖a‖M̃k
(3.2.7)

for k ∈ N, α = (α1, . . . , α`) with |αi| = di + 1, and a ∈M(Rd, E1). Then, by the
Riemann–Lebesgue theorem,

xαF−1(ψka) = F−1
(
Dα(ψka)

) ∈ C0(Rd, E1)

and
‖xαF−1(ψka)‖∞ ≤ c1(c0) ‖a‖M̃k

(3.2.8)

for k ∈ N, α = (α1, . . . , α`) with |αi| = di + 1, and a ∈M(Rd, E1). The multino-
mial theorem implies

|xi|di+1 =
(
((x1

i )
2 + · · ·+ (xdi

i )2)di+1
)1/2 ≤ c(di)

∑

|αi|=di+1

|xαi
i |

for k ∈ N and 1 ≤ i ≤ `. Thus

|x1|d1+1 · · · · · |x`|d`+1 ≤ c(d)
∏̀

i=1

∑

|αi|=di+1

|xαi
i |, x ∈ Rd.
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Now we infer from (3.2.8), setting c2 := c1(c0),

|F−1(ψka)(x)| ≤ c2 |x1|−d1−1 · · · · · |x`|−d`−1 ‖a‖M̃k
, x ∈ (Rd)

q
,

for k ∈ N and a ∈M(Rd, E1). From this and the Riemann-Lebesgue theorem
(3.2.6) follows, where c3 = c2c1 with

c1 :=
∫

[ |x|≤1]

dx +
∫

[ |x|≥1]

|x1|−d1−1 · · · · · |x`|−d`−1 dx < ∞.

Hence it remains to prove (3.2.7).
(3) From Leibniz’ rule we deduce

|∂α(ψ0a)| ≤ c(ψ)
∑

β≤α

|∂βa|χΩ0 ≤ c(ψ) max
|β|≤d+`

‖∂βa‖∞ χΩ0 ≤ c(ψ) ‖a‖M χΩ0 ,

hence

‖∂α(ψ0a)‖1 ≤ c(ψ, Q) ‖a‖M, |α| ≤ d + `, a ∈M(Rd, E1).

(4) Suppose k ≥ 1. Note

α q ω − |ω| = |α1| ν1 + · · ·+ |α`| ν` − d1ν1 − · · · − d`ν` = ν1 + · · ·+ ν` ≥ 1

for α = (α1, . . . , α`) with |αi| = di + 1. Thus (3.2.2) and Proposition 1.1.1 imply

‖∂α(ψka)‖1 =
∥∥∂α

(
σ2−k(ψ̃σ2ka)

)∥∥
1

= 2−kα·ω ‖σ2−k∂α(ψ̃σ2ka)‖1
= 2−k(α·ω−|ω|) ‖∂α(ψ̃σ2ka)‖1 ≤ ‖∂α(ψ̃σ2ka)‖1

for α = (α1, . . . , α`) with |αi| = di + 1. Using Leibniz’ rule and Proposition 1.1.1
once more we find

|∂α(ψ̃σ2ka)| ≤ c
∑

β≤α

|∂β(σ2ka)|χΩ1 = c
∑

β≤α

2kβ·ω |σ2k∂βa|χΩ1 .

Lemma 1.2.1(iv) implies κ−1Λ ≤ Q ≤ κΛ for some κ ≥ 1. Hence

Ωk ⊂ [2k−1/κ < Λ0 < 2k+1κ], k ∈
q
N. (3.2.9)

Since 2k q ξ ∈ Ωk for ξ ∈ Ω1 we thus find

2kβ·ω |(σ2k∂βa)(ξ)| ≤ (2κ)β·ωΛβ·ω
0 (2k q ξ) |∂βa(2k q ξ)| ≤ (2κ)β·ω ‖a‖M0

for ξ ∈ Ω1. This implies

|∂α(ψ̃σ2ka)| ≤ c(ψ, Q, d) ‖a‖M0 χΩ1

for α = (α1, . . . , α`) with |αi| = di + 1 and k ∈
q
N. From this and step (3) we ob-

tain (3.2.7). This proves the proposition. ¤

3.2.2 Remark Put ϕk := σ2−k ψ̃ for k ∈ Z. Then (ϕk)k∈Z is a Q-dyadic res-
olution of the identity on (Rd)

q
, subordinate to the open covering (Σk)k∈Z, where

Σk := [2k−1 < Q0 < 2k+1] for k ∈ Z. Then, given a ∈M0(Rd, E1),

(ϕka)(D) ∈ L(FE2 , FE0)

and
(ϕka)(D) ∈ L(

L∞, (Rd, E2), BUC(Rd, E0)
)
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with
sup
k∈Z

‖(ϕka)(D)‖ ≤ c ‖a‖M0 ,

where c = c(ψ,Q, d) is independent of a.

Proof. This is obvious by the above proof. ¤
Proposition 3.2.1 is an extension of Proposition 4.5 of H. Amann [5] to the

anisotropic situation. Besides of being used in the following section it is the basis
for the proof of a general multiplier theorem for operator-valued symbols in Besov
spaces which is given in Section 3.4 below. It is the proof of Proposition 3.2.1 in
which we need d + ` derivatives of the symbol a, whereas the Marcinkiewicz and
Mikhlin multiplier theorems require at most d of them. To have a unified treatment
we use throughout d + ` derivatives in the definition of M(Rd, E).

3.3 Besov spaces

Throughout this and the next three sections

• p, p0, p1, q, q0, q1 ∈ [1,∞] and s, s0, s1, t ∈ R.

As usual,
`q(E) = `q(N, E) := Lq(N, µ; E)

where µ is the counting measure, and

c0(E) := C0(N, E)

is the closed subspace of `∞ of all null sequences in E.
It is convenient to put

• 1
ν

:=
( 1

ν1
, . . . ,

1
ν`

)
∈ R`.

Set Q := Λ and suppose ψ satisfies (3.2.1). Denote by (ψk) the partition of unity
induced by ψ, subordinate to the Λ-dyadic open covering (Ωk). The (anisotropic)
Besov space

Bs/ν
p,q = Bs/ν

p,q (Rd, E)
associated with the (anisotropic) dilation (1.1.2) is the vector subspace of

S ′ = S ′E = S ′(Rd, E)

of all u for which (
2ksψk(D)u

) ∈ `q

(
Lp(Rd, E)

)
,

endowed with its natural norm

‖u‖
B

s/ν
p,q

:=
∥∥(

2ksψk(D)u
)∥∥

`q(Lp)
=

∥∥(
2ks ‖ψk(D)u‖Lp(Rd,E)

)∥∥
`q

. (3.3.1)

We denote by
M
B

s/ν
p,∞ :=

M
B

s/ν
p,∞(Rd, E), p 6= ∞,

the closed linear subspace of B
s/ν
p,∞ consisting of all u satisfying

(
2ksψk(D)u

) ∈ c0

(
Lp(Rd, E)

)
,

and M
B

s/ν
∞,q =

M
B

s/ν
∞,q(Rd, E)
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is the closed linear subspace of B
s/ν
∞,q made up by those u for which

(
2ksψk(D)u

) ∈
{

`q

(
C0(Rd, E)

)
, q < ∞,

c0

(
C0(Rd, E)

)
, q = ∞.

In the isotropic case ω = (1, . . . , 1), where ν = 1, we write, of course, Bs
p,q for B

s/ν
p,q .

Clearly, (3.3.1) depends on the choice of ψ and the particular selection of the
special quasi-norm Λ. The following lemma shows that a different choice of (Q, ψ)
leads to an equivalent norm.

3.3.1 Lemma Let Q be a quasi-norm, let ψQ satisfy (3.2.1), and denote by
(ψQ

k ) the partition of unity induced by ψQ, subordinate to the Q-dyadic open cov-
ering (ΩQ

k ) of Rd. Denote by B
s/ν,Q
p,q the Besov space defined as above, but with

(Λ, ψ) replaced by (Q, ψQ). Then B
s/ν,Q
p,q

.= B
s/ν
p,q .

Proof. Fix κ ≥ 1 such that (3.2.9) is true and choose m ∈ N with κ ≤ 2m.
Then

ΩQ
k ⊂ [2k−m−1 < Λ0 < 2k+m+1] =: Ωk,m, k ∈

q
N, (3.3.2)

and, similarly,
ΩQ

0 ⊂ [Λ0 < 2m+1] =: Ω0,m. (3.3.3)
Set

χk,m :=
m+1∑

i=−m−1

ψk+i, ψj := 0 for j < 0.

Then we see by (3.2.3) that

χk,m |Ωk,m = 1, supp(χk,m) ⊂ Ωk,m+1.

Consequently, by (3.3.2) and (3.3.3),

ψQ
k = ψQ

k χk,m, k ∈ N. (3.3.4)

Choosing a = 1 in Proposition 3.2.1 it thus follows

‖ψQ
k (D)u‖p ≤ c ‖χk,m(D)u‖p ≤ c

m+1∑

i=−m−1

‖ψk+i(D)u‖p

for k ∈ N. This implies
∥∥(

2ksψQ
k (D)u

)∥∥
`q(Lp)

≤ c
∥∥(

2ksψk(D)u
)∥∥

`q(Lp)
,

that is, B
s/ν
p,q ↪→ B

s/ν,Q
p,q . By interchanging the rôles of (Λ, ψ) and (Q, ψQ) we obtain

B
s/ν,Q
p,q ↪→ B

s/ν
p,q . ¤

Anisotropic Besov spaces have been intensively studied — in the scalar case —
by S.M. Nikol′skĭı and O.V. Besov by classical methods (see the monographs of
S.M. Nikol′skĭı [51] and O.V. Besov, V.P. Il′in, and S.M. Nikol′skĭı [17] for addi-
tional references). Fourier-analytic approaches, as the one used here, are due to
H. Triebel [66, Section 10.1], H.-J. Schmeisser and H. Triebel [57], M. Yamazaki
[71], [72] (also see W. Farkas, J. Johnsen, and W. Sickel [23] for further references),
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who used various quasi-norms. In particular, M. Yamazaki based his comprehen-
sive treatment on the Euclidean quasi-norm E, and most later writers followed this
usage.

All the above references deal with the scalar case. Isotropic vector-valued Besov
spaces have been investigated by P. Grisvard [27] and H.-J. Schmeißer [53] under
various restrictions on s and p. The general situation is dealt with in H. Amann [5]
(also see Section 15 in H. Triebel’s book [67] and, for further historic references,
H.-J. Schmeißer and W. Sickel [55]).

In the following, we collect the basic properties of anisotropic vector-valued
Besov spaces and give only brief hints concerning proofs. Many theorems carry
over without alteration from the scalar case to the vector-valued situation. To a
large extent we can follow the isotropic approach in H. Amann [5]. Complete details
will be given in the forthcoming second volume of H. Amann [4].

We set
`s
q(E) := Lq(N, µs;E),

where µs is the weighted counting measure assigning the value 2ks to {k} ⊂ N.
Then the proof of Lemma 5.1 in H. Amann [5] carries over to show that

`s
q(Lp) := `s

q

(
Lp(Rd, E)

) → Bs/ν
p,q , (vk) 7→

∑

k

χk(D)vk, (3.3.5)

with
χk := ψk−1 + ψk + ψk+1, (3.3.6)

is a retraction and u 7→ (
ψk(D)u

)
is a coretraction. Hence B

s/ν
p,q is a Banach

space, since it is isomorphic to a closed linear subspace of the Banach space `s
q(Lp)

(cf. Proposition I.2.3.2 in H. Amann [4]).

The next theorem collects some of the most important embedding results.

3.3.2 Theorem The following embeddings are valid:

S ↪→ Bs/ν
p,q1

↪→ Bs/ν
p,q0

↪→ S ′, q1 ≤ q0, (3.3.7)

and
Bs1/ν

p,q1
↪→ Bs0/ν

p,q0
, s1 > s0. (3.3.8)

Furthermore,

Bs1/ν
p1,q ↪→ Bs0/ν

p0,q , s1 > s0, s1 − |ω|/p1 = s0 − |ω|/p0. (3.3.9)

Proof. (1) Assertions (3.3.7) and (3.3.8) are obtained by obvious modifica-
tions of the proof of Proposition 2.3.2.2 in H. Triebel [66].

(2) Statement (3.3.9) follows from the anisotropic version of the Nikol′skĭı in-
equality: if p1 < p0 and r > 0, then

‖ϕ(D)u‖p0 ≤ cr|ω| (1/p1−1/p0) ‖ϕ(D)u‖p1 , u ∈ S ′, (3.3.10)

for all ϕ ∈ D(Rd) with supp(ϕ) ⊂ [Λ0 ≤ r].
To prove (3.3.10) we first suppose r = 1. Then

ϕ(D)u = (ψϕ)(D)u = ψ(D)ϕ(D)u,
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the convolution theorem, and Young’s inequality imply ϕ(D)u ∈ C0 = C0(Rd, E)
and

‖ϕ(D)u‖∞ ≤ ‖F−1ψ‖p′1 ‖ϕ(D)u‖p1 = c ‖ϕ(D)u‖p1

for u ∈ S ′, since F−1ψ ∈ S(Rd) ↪→ Lp′1(R
d). Hence

‖ϕ(D)u‖p0 ≤ ‖ϕ(D)u‖1−p1/p0∞ ‖ϕ(D)u‖p1/p0
p1

≤ c ‖ϕ(D)u‖p1 .

This proves (3.3.10) in this case.
(3) Now suppose r 6= 1. Then supp(σrϕ) ⊂ [Λ0 ≤ 1]. By Proposition 1.1.1,

(σrϕ)(D)u = F−1
(
(σrϕ)û

)
= σ1/rF−1ϕFσru

and, consequently,

‖(σrϕ)(D)u‖p = r|ω|/p ‖ϕ(D)(σru)‖p.

Thus, by step (2),

r|ω|/p0 ‖ϕ(D)(σru)‖p0 ≤ cr|ω|/p1 ‖ϕ(D)(σru)‖p1

for u ∈ S ′. This implies (3.3.10) since σr ∈ Laut(S ′). ¤

This embedding theorem is in the scalar case due to M. Yamazaki [71, Theo-
rem 3.4], where the proof of Nikol′skĭı’s inequality is based, as usual, on the maximal
function. Also see Proposition 7 in W. Farkas, J. Johnsen, and W. Sickel [23] where
a more general result involving anisotropic Triebel–Lizorkin spaces is given.

Using retraction (3.3.5) it is not difficult to see that S is dense in B
s/ν
p,q for

p ∨ q < ∞, and in
M
B

s/ν
p,q if p ∨ q = ∞. Thus, in order to allow for a unified treatment,

we put
M
B

s/ν
p,q := Bs/ν

p,q , q ∨ p < ∞,

so that, in general,
M
B

s/ν
p,q is the closure of S in Bs/ν

p,q . (3.3.11)

Retraction (3.3.5) and well-known facts from interpolation theory (cf. J. Bergh and
J. Löfström [16, Theorem 5.6.1] and H. Triebel [65, Theorem 1.18.2]) imply

(Bs0/ν
p,q0

, Bs1/ν
p,q1

)θ,q
.= Bsθ/ν

p,q (3.3.12)

and
(Bs0/ν

p,q0
, Bs1/ν

p,q1
)0θ,q

.=
M
B

sθ/ν
p,q (3.3.13)

for s0 6= s1 and 0 < θ < 1. Thus the reiteration theorem for the continuous inter-
polation functor gives

(
M
B

s0/ν
p,q ,

M
B

s1/ν
p,q )0θ,∞

.=
M
B

sθ/ν
p,∞ (3.3.14)

s0 6= s1 and 0 < θ < 1.

Next we study duality properties of anisotropic vector-valued Besov spaces.
Note that the density of S(Rd) in

M
B

s/ν
p,q (Rd) implies

( M
B

s/ν
p,q (Rd)

)′
↪→ S ′(Rd) with

respect to the S ′(Rd)-S(Rd)-duality pairing. An analogous result is true in the
vector-valued case if E is either reflexive or has a separable dual.
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First we note that L. Schwartz’ theory of vector-valued distributions guarantees
the existence of a unique separately (in fact: hypo-)continuous separating bilinear
form

〈·, ·〉 : S ′E′ × SE → C, (u′, u) 7→ 〈u′, u〉,
the S ′-S-duality pairing, such that

〈u′, u〉 =
∫

Rd

〈
u′(x), u(x)

〉
E

dx, (u′, u) ∈ SE′ × SE

(cf. H. Amann [10, Theorem 1.7.5]). We also call it Lq-duality pairing.

3.3.3 Theorem Let either E be reflexive or E′ separable. Then
M
B

s/ν
p,q (Rd, E)′ .= B

−s/ν
p′,q′ (Rd, E′)

with respect to the S ′-S-duality pairing.

Proof. The proof of this result is based on retraction (3.3.5) and known du-
ality properties of vector-valued Lp-spaces. To guarantee Lp(Rd, E)′ .= Lp′(Rd, E′)
we have imposed the above assumptions on E, although it would suffice to suppose
E has the Radon–Nikodym property. Details will be given in Volume II of [4]. ¤

3.3.4 Corollary Let E be reflexive.

(i) If 1 < p, q < ∞, then B
s/ν
p,q is also reflexive and

(
Bs/ν

p,q (Rd, E)
)′ .= B

−s/ν
p′,q′ (Rd, E′).

(ii) If p ∧ q > 1, then B
s/ν
p,q is the bidual of

M
B

s/ν
p,q with respect to the S ′-S-duality

pairing.

It should also be remarked that
( M
B

s/ν
∞,q(Rd, E)

)′ = B
−s/ν
1,q′ (Rd, E′)

is true without any restriction on E.

3.4 Fourier multipliers in Besov spaces

In this section we establish a general Fourier multiplier theorem with operator-
valued symbols, an extension of Theorem 6.2 in [5] to anisotropic Banach spaces.
Using it we can derive several additional interpolation results and prove important
renorming theorems.

First we present an isomorphism theorem which, together with the multiplier
theorem, will allow us to make use of the general results on admissible Banach
scales established in earlier chapters.

3.4.1 Theorem Suppose B ∈ {B,
M
B}. Then

J t ∈ Lis(B(s+t)/ν
p,q ,Bs/ν

p,q ),

uniformly with respect to s, p, and q; and (J t)−1 = J−t.

Proof. This follows by modifying the proof of Theorem 6.1 in H. Amann [5]
in a by now obvious way (defining χk by (3.3.6)). ¤



54 3 FOURIER MULTIPLIERS AND FUNCTION SPACES

It should be observed that the following multiplier theorem does not require
any restriction on the underlying Banach space E. This is in stark contrast to the
Marcinkiewicz multiplier theorems of Section 3.1.

3.4.2 Theorem Suppose B ∈ {B,
M
B} and let E1 × E2 → E0 be a multiplication

of Banach spaces, Then
(
m 7→ m(D)

) ∈ L(M(Rd, E1),L
(Bs/ν

p,q (Rd, E2),Bs/ν
p,q (Rd, E0)

))
.

Proof. Due to Proposition 3.2.1 the proof of Theorem 6.2 in H. Amann [5]
carries literally over to the present anisotropic setting. ¤

It should be noted that Remark 3.2.2 can be used to prove a multiplier theorem
for homogeneous Besov spaces using operator-valued multipliers of Marcinkiewicz
type. We refrain here from giving details.

On the basis of Theorem 3.4.1 we impose the following convention:

We fix any ψ ∈ D(Rd) satisfying (3.2.1) with Q0 = Λ0

and endow B0/ν
p,q with the norm u 7→

∥∥(
ψk(D)u

)∥∥
`q(Lp)

.

If s 6= 0, then Bs/ν
p,q is given the norm u 7→ ‖Jsu‖

B
0/ν
p,q

.

The following theorem will be most important for the rest of this treatise.

3.4.3 Theorem The anisotropic Besov scale [
M
B

s/ν
p,q ; s ∈ R ] is the fractional

power scale generated by (
M
B

0/ν
p,q , J). It consists of M-admissible Banach spaces.

Proof. This follows from (3.3.7), (3.3.11), Theorems 3.4.1 and 3.4.2, and The-
orem 2.3.2(iv). ¤

As an immediate consequence we obtain from Theorem 2.3.2(v)

[
M
B

s0/ν
p,q ,

M
B

s1/ν
p,q ]θ

.=
M
B

sθ/ν
p,q , s0 6= s1, 0 < θ < 1. (3.4.1)

3.5 Anisotropic Sobolev and Hölder spaces

In this section we study anisotropic Besov spaces of positive order and investi-
gate their relation to classical function spaces. For this we suppose1

F ∈ {BUC,C0, Lp ; p 6= ∞}
and put for k ∈ N

Fkν/ν = Fkν/ν(Rd, E) := {u ∈ F ; ∂αu ∈ F, α q ω ≤ kν },
equipped with the norm

u 7→ ‖u‖Fkν/ν :=





(∑
α·ω≤kν‖∂αu‖p

p

)1/p

, F = Lp,

maxα·ω≤kν‖∂αu‖∞ otherwise.

1Here we mean by F = BUC, for example, the symbol BUC and not the Banach space
BUC(Rd, E), etc. This dual use of F should cause no confusion to the attentive reader.
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Thus F0ν/ν = F. Also recall that ν = ω is the least common multiple of ω1, . . . , ωd,
hence of ν1, . . . , ν`. For F = Lp we write W

kν/ν
p := Fkν/ν . If E = C, then W

kν/ν
p

is the classical anisotropic Sobolev space of S.M. Nikol′skĭı [51].

3.5.1 Example Let ω be the 2m-parabolic weight vector. Then, if p 6= ∞,

u ∈ W (2m,1)
p (Rd, E) iff u, ∂tu, ∂α

x u ∈ Lp(Rd, E), |α| ≤ 2m.

Moreover,

u 7→ ‖u‖p + ‖∂tu‖p +
2m∑

k=1

‖∇k
xu‖p

is an equivalent norm for W
(2m,1)

p (Rd, E).

Similarly, u ∈ BUC(2m,1)(Rd, E), respectively u ∈ C
(2m,1)
0 (Rd, E), iff u, ∂tu,

and ∂α
x u with |α| ≤ 2m belong to BUC(Rd, E), respectively C0(Rd, E), and

u 7→ ‖u‖∞ + ‖∂tu‖∞ +
2m∑

k=1

‖∇k
xu‖∞

is an equivalent norm. ¤
The following ‘sandwich theorem’ gives important inclusions between Besov

and classical function spaces.

3.5.2 Theorem If k ∈ N, then

B
kν/ν
p,1

d
↪→ W kν/ν

p

d
↪→ M

B
kν/ν
p,∞ ↪→ Bkν/ν

p,∞ , p 6= ∞, (3.5.1)

and
B

kν/ν
∞,1 ↪→ BUCkν/ν ↪→ Bkν/ν

∞,∞ (3.5.2)
and

M
B

kν/ν
∞,1

d
↪→ C

kν/ν
0

d
↪→ M

B
kν/ν
∞,∞. (3.5.3)

Proof. It follows from u =
∑

k ψk(D)u for u ∈ S ′ that

‖u‖p ≤
∑

k

‖ψk(D)u‖p = ‖u‖
B

0/ν
p,1

.

Consequently,
B

0/ν
p,1 ↪→ Lp. (3.5.4)

If u ∈ B
0/ν
∞,1, then ψk(D)u ∈ L∞. Hence, recalling (3.3.6), it follows from (3.3.4) that

ψk(D)u = ψk(D)χk(D)u ∈ BUC,

setting a = 1 in Proposition 3.2.1. This improves (3.5.4) in the case p = ∞ to

B
0/ν
∞,1 ↪→ BUC.

On the other side, using Proposition 3.2.1 once more,

‖u‖
B

0/ν
p,∞

= sup
k
‖ψk(D)u‖p ≤ c ‖u‖p.

This proves Lp ↪→ B
0/ν
p,∞ and, as above, BUC ↪→ B

0/ν
∞,∞. Thus (3.5.1) and (3.5.2)

are true for k = 0. Moreover, (3.5.3) follows for k = 0 from this and (3.3.11).
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The assertion for k > 0 is now obtained by Theorems 2.3.8 and 3.4.2, observing
that the density of S in F is not essential in the proof of Theorem 2.3.8. ¤

The following proposition shows that anisotropic Besov spaces of positive order
can be obtained by interpolation from classical function spaces.

3.5.3 Proposition Suppose 0 < s < kν and k ∈ N. Then

Bs/ν
p,q

.= (Lp, W
kν/ν

p )s/kν,q, p 6= ∞, (3.5.5)

and
Bs/ν
∞,q

.= (BUC, BUCkν/ν)s/kν,q, (3.5.6)

and
M
B

s/ν
∞,∞

.= (C0, C
kν/ν
0 )0s/kν,∞. (3.5.7)

Proof. This is implied by (3.3.12), (3.3.14), and the preceding theorem. ¤

3.6 Renorming theorems

First we introduce equivalent norms for Besov spaces of positive order. To do
this we need some preparation.

We denote by { τh ; h ∈ Rd } the translation group, defined on S by

(τhu)(x) := u(x + h), x ∈ Rd, u ∈ S,

and extended to S ′ by

(τhu)(ϕ) := u(τ−hϕ), u ∈ S ′, ϕ ∈ S(Rd).

Then the difference operators

4h := τh − 1, 4k+1
h := 4h4k

h, k ∈
q
N,

are well-defined on S ′.
For h = (h1, . . . , h`) ∈ Rd1 × · · · × Rd` we set ȟi := (0, . . . , 0, hi, 0, . . . , 0). If

s > 0, then we put2

[u]s/ν,p,q :=
(∑̀

i=1

∥∥ |hi|−s/νi ‖4[s/νi]+1

ȟi
u‖p

∥∥q

Lq((Rdi )
q
,dhi/|hi|di )

)1/q

(3.6.1)

if q 6= ∞, and

[u]s/ν,p,∞ := max
1≤i≤`

∥∥ |hi|−s/νi ‖4[s/νi]+1

ȟi
u‖p

∥∥
∞. (3.6.2)

Then the following important renorming theorem is valid.

3.6.1 Theorem Suppose s > 0. Then

‖·‖
B

s/ν
p,q

∼ ‖·‖p + [·]s/ν,p,q.

2[ξ] is the greatest integer less than or equal to ξ for ξ ∈ R+.
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Proof. Let e1, . . . , ed be the standard basis of Rd. It is not difficult to see
that { τtej ; t ≥ 0 }, 1 ≤ j ≤ d, is a pair-wise commuting family of strongly contin-
uous contraction semigroups on F ∈ {BUC,Lp ; 1 ≤ p < ∞}. Moreover, Aj , the
infinitesimal generator of { τtej ; t ≥ 0 }, is the F-realization of ∂j ∈ L(S ′). Using
this, Theorem 1 in H.-J. Schmeißer and H. Triebel [56], Proposition 3.5.3, and
Theorem 2.5.1 of H. Triebel [65] we obtain the assertion. ¤

3.6.2 Remark The integer [s/νi] + 1 in (3.6.1) and (3.6.2) has been chosen to
avoid a further parameter dependence. It could be replaced by any ki ∈ N satisfying
ki > s/νi. ¤

For 1 ≤ i ≤ ` we set

R(d,di) := Rd1 × · · · × R̂di × · · · × Rd`

where, as usual and in related situations, the hat over a factor (or component) means
that the corresponding entry is absent. The general point of R(d,di) is denoted by

xı̂ := (x1, . . . , x̂i, . . . , x`), (3.6.3)

and we put
u(xı̂, ·) := u(x1, . . . , xi−1, ·, xi+1, . . . , x`). (3.6.4)

If ` = 1, then d` = d and we set R(d,d) := {0} = R0. Note

F(R0, E) := E for F ∈ {Lp, BUC, C0}.
Suppose u ∈ Lp(Rd, E) with p 6= ∞. Then, by Fubini’s theorem,

u(xı̂, ·) ∈ Lp(Rdi , E) a.a. xı̂ ∈ R(d,di),

and
Uiu :=

(
xı̂ 7→ u(xı̂, ·)

) ∈ Lp

(
R(d,di), Lp(Rdi , E)

)
.

In fact,
Ui : Lp(Rd, E) → Lp

(
R(d,di), Lp(Rdi , E)

)

is an isometric isomorphism. This is not true if p = ∞ (e.g., H. Amann and J. Escher
[11, Theorem X.6.22 and Remark X.6.23]). However, it is not difficult to see that

Ui : C0(Rd, E) → C0

(
R(d,di), C0(Rdi , E)

)
(3.6.5)

is an isometric isomorphism.

To simplify the writing we set

Bs/ν
p = Bs/ν

p (Rd, E) := Bs/ν
p,p

and, if s > 0,
[·]s/ν,p := [·]s/ν,p,p.

The next theorem shows that B
s/ν
p can be characterized as an intersection space

for s > 0 (cf. S.M. Nikol′skĭı [51] for related results in the scalar case).
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3.6.3 Theorem If s > 0, then

Bs/ν
p

.=
⋂̀

i=1

Lp

(
R(d,di), Bs/νi

p (Rdi , E)
)
, p 6= ∞,

and
M
B

s/ν
∞

.=
⋂̀

i=1

C0

(
R(d,di),

M
B

s/νi∞ (Rdi , E)
)
.

Proof. Set ki := [s/νi] + 1. If p 6= ∞, then, by Fubini’s theorem,
∥∥ |hi|−s/νi ‖4ki

ȟi
u‖p

∥∥
Lp((Rdi )

q
,dhi/|hi|di )

=
(∫

R(d,di)

[
u(xı̂, ·)

]p

s/νi,p
dxı̂

)1/p

.
(3.6.6)

This implies
‖·‖p + [u]s/ν,p ∼ max

1≤i≤`
‖·‖

Lp(R(d,di),B
s/νi
p )

so that the first assertion follows.
Similarly,

∥∥ |hi|−s/νi ‖4ki

ȟi
u‖∞

∥∥
L∞((Rdi )

q
)
= sup

xı̂∈R(d,di)

[
u(xı̂, ·)

]
s/νi,∞. (3.6.7)

From this and (3.6.5) we obtain the second assertion. ¤

Let E1, . . . , En be Banach spaces satisfying Ei ↪→ Y for some LCS Y. The
sum space, ΣEi, of E1, . . . , En is defined by

ΣEi :=
n∑

i=1

Ei := { y ∈ Y ; ∃ xi ∈ Ei with y = x1 + · · ·+ xn }

and is equipped with the norm

y 7→ ‖y‖ΣEi := inf
{ n∑

i=1

‖xi‖Ei ; y = x1 + · · ·+ xn

}
.

For the reader’s convenience we include a precise formulation and a proof of the
following duality theorem which seems to be folklore and is often rather vaguely
stated (see, e.g., Theorem 2.7.1 in J. Bergh and J. Löfström [16]).

3.6.4 Proposition Let X be an LCS such that X d
↪→ Ei for 1 ≤ i ≤ n.

(i) E′
i ↪→ X ′, so that ΣE′

i is well-defined and

ΣE′
i = (∩Ei)′

with respect to the duality pairing

〈x′, x〉∩Ei := 〈x′1, x〉E1 + · · ·+ 〈x′n, x〉En , (x′, x) ∈ ΣE′
i × ∩Ei

and any x′i ∈ E′
i with x′1 + · · ·+ x′n = x′.

(ii) If E1, . . . , En are reflexive, then ∩Ei and ΣEi are so too.
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Proof. (1) Set F∞ :=
∏n

i=1 Ei, endowed with the `∞-norm. Denote by M the
closed subspace of all (x1, . . . , xn) satisfying x1 = · · · = xn. Then

f : M → Y, (y, y, . . . , y) 7→ y

is a continuous linear map whose image equals
⋂n

i=1 Ei. Hence f is an isometric
isomorphism from M onto ∩Ei.

(2) Put F1 :=
∏n

i=1 Ei and equip it with the `1-norm. Then

add : F1 → Y, (x1, . . . , xn) 7→
n∑

i=1

xi

is a continuous linear map and ΣEi = add F1. Hence ΣEi is a Banach space by
Remark 2.2.1(a).

(3) Let the hypotheses of (i) be satisfied. Set F ]
1 :=

∏n
i=1 E′

i, endowed with the
`1-norm. Then F ]

1 = (F∞)′ by means of the duality pairing

〈y], y〉F∞ = 〈y]
1, y1〉E1 + · · ·+ 〈y]

n, yn〉En , (y], y) ∈ F ]
1 × F1.

By step (1),

∩Ei
f←−∼= M

i
↪→ F∞

where i(M) = M is closed in F∞. Thus, by duality,

F ]
1

i′−→ M ′ f ′←−∼= (∩Ei)′.

From i(m) = m for m ∈ M and i′(y′)(m) = y′(im) = y′(m) it follows that i′(y′) is
the restriction y′ |M to M for y′ ∈ F ]

1 .
Since i is injective and has closed range,

im(i′) = ker(i)⊥ = M ′, ker(i′) = im(i)⊥ = M⊥.

Hence there exists a unique ψ] for which the diagram

F ]
1 M ′

F ]
1/M⊥

ψ]
∼=

i′ -

@
@@R ¡

¡¡µ

is commuting.

(4) Suppose x′ ∈ (∩Ei

)′ and set m′ = f ′(x′) ∈ M ′. Then

〈x′, x〉∩Ei =
〈
f ′−1(m′), x

〉
∩Ei

=
〈
m′, f−1(x)

〉
M

= 〈y]
1, x〉E1 + · · ·+ 〈y]

n, x〉En

(3.6.8)

for x ∈ ∩Ei and y] = (y]
1, . . . , y

]
n) ∈ F ]

1 with y] |M = m′. Note that E′
i ↪→ X ′ im-

plies
〈e′i, x〉Ei = 〈e′i, x〉X , x ∈ X .
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Hence it follows from X ⊂ ∩Ei and (3.6.8) that

〈x′, x〉∩Ei
= 〈y]

1 + · · ·+ y]
n, x〉X , x ∈ X . (3.6.9)

Thus, if ỹ] ∈ F ]
1 also satisfies ỹ] |M = m′, we find

y]
1 + · · ·+ y]

n = ỹ]
1 + · · ·+ ỹ]

n.

(5) Since f−1 is an isometry from ∩Ei onto M we obtain from

〈x′, x〉∩Ei =
〈
m′, f−1(x)

〉
M

that
‖m′‖M ′ = ‖x′‖(∩Ei)′ .

The Hahn-Banach theorem guarantees the existence of m] ∈ F ]
1 with m] |M = m′

and ‖m]‖F ]
1

= ‖m′‖M ′ . Set y′ := m]
1 + · · ·+ m]

n. Then y′ ∈ ΣE′
i and

‖y′‖ΣE′i ≤ ‖m]‖F ]
1

= ‖x′‖(∩Ei)′ .

Hence we see from (4) that

g : (∩Ei)′ → ΣE′
i, x′ 7→ y′

is a well-defined bounded linear map of norm at most 1.
(6) Suppose y′ ∈ ΣE′

i and y] ∈ F ]
1 satisfy y′ = y]

1 + · · ·+ y]
n. Then

h(y′)(x) := 〈y]
1, x〉E1 + · · ·+ 〈y]

n, x〉En , x ∈ ∩Ei,

defines
h(y′) ∈ (∩Ei)′, ‖h(y′)‖(∩Ei)′ ≤ ‖y]‖F ]

1
.

This being true for every such y], it follows that h maps ΣE′
i onto (∩Ei)′ and has

norm at most 1. Combining this with the result of (5) proves claim (i).
(7) Let E1, . . . , En be reflexive. Then M , being a closed linear subspace of the

reflexive Banach space F∞, is reflexive. Hence its isomorphic image ∩Ei is also
reflexive. Now (i) implies the reflexivity of ΣEi. ¤

In order to apply this proposition we first prove a density theorem which will
repeatedly be useful.

3.6.5 Lemma Suppose m,n ∈
q
N and p 6= ∞. Let F be a Banach space with

S(Rn, E)
d

↪→ F
d

↪→ S ′(Rn, E).

Then D(Rm+n, E) is dense in Lp(Rm, F).

Proof. Let ε > 0 and u ∈ Lp(Rm, F) be given. Since D(Rm, F) is dense in
Lp(Rm, F) there exists v ∈ D(Rm, F) with

‖u− v‖Lp(Rm,F) < ε/2.

Set K := supp(v), denote by CK the measure of the 1-neighborhood of K in Rm,
and fix C1 > 2C

1/p
K . By continuity and compactness we find δ ∈ (0, 1) and y1, . . . , yr

in K such that

‖v(y)− v(yk)‖F < ε/C1, y ∈ Uk := { z ∈ Rm ; |z − yk| < δ },
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and such that {Uk ; 1 ≤ k ≤ r } is an open covering of K. By the density of
D(Rn, E) in S(Rn, E), hence in F, we can assume v(yk) ∈ D(Rn, E). Denote by
{ψk ; 1 ≤ k ≤ r } a smooth partition of unity on K subordinate to this covering.
Then

w :=
∑

ψkv(yk) ∈ D(Rm,F).

Since w − v =
∑

ψk

(
v(yk)− v

)
and 0 ≤ ψk ≤ 1, it follows

‖w(x)− v(x)‖F ≤ (ε/C1)
∑

ψk(x) ≤ ε/C1, x ∈
⋃

Uk,

hence
‖w − v‖Lp(Rm,F) ≤ (ε/C1)C

1/p
K < ε/2.

Due to w ∈ D(Rm+n, E), this proves the claim. ¤

By means of this result and duality we can now give another representation for
some Besov spaces of negative order.

3.6.6 Theorem Let E be reflexive and suppose 1 < p < ∞ and s > 0. Then

B−s/ν
p

.=
∑̀

i=1

Lp

(
R(d,di), B−s/νi

p (Rdi , E)
)
.

Proof. This is a consequence of Duality Theorem 3.3.3, Theorem 3.6.3, and
Proposition 3.6.4. ¤

If p is finite, then there is still another useful representation of B
s/ν
p,q . For this

we set
ω′ := (ω2, . . . , ωd),

provided d ≥ 2, of course.

3.6.7 Theorem Suppose s > 0. Then3

Bs/ν
p

.= Bs/ν1
p

(
R, Lp(Rd−1, E)

) ∩ Lp

(
R, Bs/ω′

p (Rd−1, E)
)
, p 6= ∞,

and
M
B

s/ν
∞

.=
M
B

s/ν1∞
(
R, C0(Rd−1, E)

) ∩ C0

(
R,

M
B

s/ω′
∞ (Rd−1, E)

)
.

If E is reflexive and 1 < p < ∞, then

B−s/ν
p

.= B−s/ν1
p

(
R, Lp(Rd−1, E)

)
+ Lp

(
R, B−s/ω′

p (Rd−1, E)
)
.

Proof. The first assertion is clear by Theorems 3.6.1 and 3.6.3 (by (3.6.6) and
(3.6.7) in particular), and by the density of S(

R,S(Rd−1, E)
)

in S(Rd, E) which is
easily verified (cf. Lemma 1.3.7 in H. Amann [10]). The second claim follows from
Theorem 3.3.3, Proposition 3.6.4, and Lemma 3.6.5. ¤

Clearly, there is nothing which singles the first coordinate out. Thus everything
above remains valid mutatis mutandis if we replace x1 by another coordinate xj .
Such a relabeling of coordinates will be frequently used in what follows, often
without explicit mention, as in the following example.

3It should be observed that for this theorem vector-valued Besov spaces are needed, even in
the scalar case E = C.
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3.6.8 Example Let ω be the 2m-parabolic weight vector. Suppose s > 0.
Then

B(s,s/2m)
p

.= Lp

(
R, Bs

p(Rd−1, E)
) ∩Bs/2m

p

(
R, Lp(Rd−1, E)

)
, p 6= ∞,

and
M
B

(s,s/2m)
∞

.= C0

(
R,

M
Bs
∞(Rd−1, E)

) ∩ M
B

s/2m
∞

(
R, C0(Rd−1, E)

)
.

Furthermore,

B−(s,s/2m)
p

.= Lp

(
R, B−s

p (Rd−1, E)
)

+ B−s/2m
p

(
R, Lp(Rd−1, E)

)
,

provided 1 < p < ∞ and E is reflexive. ¤

3.7 Bessel potential spaces

Throughout this section we suppose

• p, p0, p1 ∈ (1,∞), s, s0, s1, t ∈ R;

• E is a UMD space which has property (α) if ω 6= ω(1, . . . , 1).

Anisotropic Bessel potential spaces are defined by4

Hs/ν
p = Hs/ν

p (Rd, E) := J−sLp. (3.7.1)

In other words, [ Hs/ν
p ; s ∈ R ] is the fractional power scale generated by (Lp, J).

3.7.1 Theorem

(i) H
s/ν
p is an M-admissible reflexive Banach space and

Hs/ν
p (Rd, E)′ = H

−s/ν
p′ (Rd, E′)

with respect to the Lp-duality pairing.

(ii) H
kν/ν
p

.= W
kν/ν

p for k ∈ N.

(iii) B
s/ν
p,1

d
↪→ H

s/ν
p

d
↪→ M

B
s/ν
p,∞.

(iv) For s0 6= s1 and 0 < θ < 1

[Hs0/ν
p ,Hs1/ν

p ]θ
.= Hsθ/ν

p

and
(Hs0/ν

p ,Hs1/ν
p )θ,q

.= Bsθ/ν
p,q , 1 ≤ q ≤ ∞.

Proof. (i) The first assertion follows from Theorems 2.3.2 and 3.1.2. The
proof of the duality assertion is similar to the one for Besov spaces and will also be
given in Volume II of H. Amann [4]. The reflexivity is then a consequence of the
one of E.

(ii) is a consequence of Theorem 2.3.8.

4This definition makes sense for arbitrary Banach spaces, and much of the theory developed
below remains true in such a general situation (cf. H.-J. Schmeißer and W. Sickel [54]). A note-
worthy exception is (ii) of Theorem 3.7.1. Since this property renders the Bessel potential scale
useful in practice, we restrict ourselves throughout to the UMD space case.
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(iii) Theorem 3.5.2 guarantees

B0
p,1

d
↪→ Lp

d
↪→ M

B0
p,∞.

From Theorem 3.4.1 we infer Bs
p,q

.= J−sB0
p,q for 1 ≤ q ≤ ∞. Now the claim is clear.

(iv) This statement follows from (iii), Theorem 2.3.2(v), and (3.3.12). ¤

Our next theorem is an analogue for anisotropic Bessel potential spaces to the
characterizations of anisotropic Besov spaces given in Theorems 3.6.3 and 3.6.6.

3.7.2 Theorem

Hs/ν
p

.=





⋂̀

i=1

Lp

(
R(d,di),Hs/νi

p (Rdi , E)
)
, s > 0,

∑̀

i=1

Lp

(
R(d,di),Hs/νi

p (Rdi , E)
)
, s < 0.

Proof. (1) Fix s > 0. For 1 ≤ i ≤ ` set

ai(ξi) := (1 + |ξi|2ν/νi)s/2ν , ξi ∈ Rdi .

Note ai(ξi) ∼ 〈ξi〉s/νi . Hence

ai(Dxi) ∈ Lis
(
Hs/νi

p (Rdi , E), Lp(Rdi , E)
)
.

Denote by Ai the point-wise extension of ai(Dxi) over Lp

(
R(d,di),H

s/νi
p (Rdi , E)

)
.

Then
Ai ∈ Lis

(
Lp

(
R(d,di),Hs/νi

p (Rdi , E)
)
, Lp(Rd, E)

)
.

(2) Define

a(ξ) := a1(ξ1) + · · ·+ a`(ξ`), ξ = (ξ1, . . . , ξ`) ∈ Rd = Rd1 × · · · × Rd` .

On the basis of Lemmas 1.4.1(i) and 1.4.3 one verifies

a/Λs
1, Λ

s
1/a ∈M(Rd).

Consequently,

‖u‖
H

s/ν
p

= ‖Jsu‖p ≤ c ‖Λs
1/a‖M ‖a(D)u‖p ≤ c

∑̀

i=1

‖ai(Dxi)u‖p

= c
∑̀

i=1

‖Aiu‖p ≤ c
∑̀

i=1

‖u‖
Lp(R(d,di),H

s/νi
p (Rdi ,E))

.

This shows

I :=
⋂̀

i=1

Lp

(
R(d,di),Hs/νi

p (Rdi , E)
)

↪→ Hs/ν
p .

(3) We also find ai/Λs
1 ∈M(Rd) for 1 ≤ i ≤ `. Thus, similarly as in the pre-

ceding step,
‖Aiu‖p ≤ c ‖Jsu‖p = c ‖u‖

H
s/ν
p

.
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Hence
∑̀

i=1

‖Aiu‖p ≤ c ‖u‖
H

s/ν
p

so that H
s/ν
p ↪→ I. This proves the theorem for s > 0.

(4) If s < 0, then the claim follows from what has just been shown, Proposi-
tion 3.6.4, Theorem 3.7.1(i), and Lemma 3.6.5. ¤

There is an analogue to Theorem 3.6.7 for Bessel potential spaces.

3.7.3 Theorem If s > 0, then

Hs/ν
p

.= Lp

(
R,Hs/ω′

p (Rd−1, E)
) ∩Hs/ν1

p

(
R, Lp(Rd−1, E)

)

and
H−s/ν

p
.= Lp

(
R,H−s/ω′

p (Rd−1, E)
)

+ H−s/ν1
p

(
R, Lp(Rd−1, E)

)
.

Proof. Since

‖u(·, x′)‖
H

s/ν1
p (R,E)

=
∥∥〈D1〉s/ν1u(·, x′)∥∥

Lp(R,E)
, x′ ∈ Rd−1,

Fubini’s theorem implies

‖u‖p

Lp(Rd−1,H
s/ν1
p (R,E))

=
∫

Rd−1

∫

R

∣∣〈D1〉s/ν1u(x1, x′)
∣∣p dx1 dx′

=
∫

R

∥∥〈D1〉s/ν1u(x1, ·)
∥∥p

Lp(Rd−1)
dx1

= ‖u‖
H

s/ν1
p (R,Lp(Rd−1,E))

.

Hence Theorem 3.7.2 implies the assertion. ¤

3.7.4 Example Let ω be the 2m-parabolic weight vector. Then

H(s,s/2m)
p (Rd, E) .= Lp

(
R,Hs

p(Rd−1, E)
) ∩Hs/2m

p

(
R, Lp(Rd−1, E)

)

and

H−(s,s/2m)
p (Rd, E) .= Lp

(
R,H−s

p (Rd−1, E)
)

+ H−s/2m
p

(
R, Lp(Rd−1, E)

)

for s > 0. If s = 2mk for some k ∈
q
N, then

u 7→ ‖u‖p + ‖∂k
t u‖p + ‖∇2mk

x′ u‖p

is an equivalent norm for H
(2mk,k)
p (Rd, E).

Proof. This follows from Corollary 2.3.9 and Theorems 3.7.1(ii) and 3.7.3. ¤

As a first application of this Theorem 3.7.2 we prove a Sobolev-type embedding
theorem for anisotropic Bessel potential scales, an analogue to (3.3.9).

3.7.5 Theorem Suppose

s1 − |ω|/p1 = s0 − |ω|/p0, s1 > s0.

Then H
s1/ν
p1 ↪→ H

s0/ν
p0 .
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Proof. (1) Suppose ω is isotropic. Then the assertion has been shown (even
without assuming that E is a UMD space) by H.-J. Schmeißer and W. Sickel [54].

(2) Suppose s0 > 0. Then we obtain the claim from Theorem 3.7.2 and the
isotropic case.

(3) If s0 ≤ 0, fix t > −s0. Then J t ∈ Lis(Hsj+t
pj ,H

sj
pj ) for j = 0, 1. Thus the

statement is a consequence of step (2). ¤

In the scalar case the results of this section are well-known, except perhaps for
the second part of Theorem 3.7.3; see S.M. Nikol′skĭı [51] and P.I. Lizorkin [48],
and the references therein.

3.8 Sobolev–Slobodeckii and Nikol′skĭı scales

In this section
• E is a UMD space which possesses property (α) if ω 6= ω(1, . . . , 1).
• 1 < p < ∞.

As in the scalar case, E-valued isotropic Sobolev–Slobodeckii spaces are defined by

W s
p = W s

p (Rd, E) :=

{
Hs

p , s ∈ Z,

Bs
p, s ∈ R\Z.

(3.8.1)

On this basis we introduce the anisotropic Sobolev–Slobodeckii scale

[ W s/ν
p ; s ∈ R ]

by setting

W s/ν
p = W s/ν

p (Rd, E) :=





⋂̀

i=1

Lp

(
R(d,di),W s/νi

p (Rdi , E)
)
, s > 0,

Lp, s = 0,

∑̀

i=1

Lp

(
R(d,di),W s/νi

p (Rdi , E)
)
, s < 0.

The following theorem is an analogue of (3.8.1)

3.8.1 Theorem For s ∈ R

W s/ν
p

.=

{
Hmν/ν

p , if s = mν with m ∈ Z,

Bs/ν
p , if s/νi /∈ Z, 1 ≤ i ≤ `.

Proof. This follows from (3.8.1) and Theorems 3.6.3 and 3.7.2. ¤

Note that W
s/ν

p is neither an anisotropic Bessel potential nor a Besov space if
s 6= mν and s/νi ∈ Z for at least one i ∈ {1, . . . , `}.

3.8.2 Theorem For s ∈ R
W−s/ν

p
.= W

s/ν
p′ (Rd, E′)′

with respect to the Lp-duality pairing 〈·, ·〉, and W
s/ν

p is reflexive.

Proof. This is an easy consequence of Proposition 3.6.4 and Lemma 3.6.5. ¤
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For s > 0 we set

[u]s,p;i :=
∥∥ |hi|−s ‖4[s]+1

ȟi
u‖p

∥∥
Lp((Rdi )

q
,dhi/|hi|di )

and

[[u]]s,p;i :=

{
[u]s,p;i, s /∈

q
N,

‖∇s
xi

u‖p, s ∈
q
N,

(3.8.2)

where, of course, the index i is omitted if ` = i = 1. Furthermore,

[[·]]s/ν,p := max
1≤i≤`

[[·]]s/νi,p;i (3.8.3)

and
‖·‖s/ν,p := ‖·‖p + [[·]]s/ν,p.

It is now easy to prove a useful renorming theorem for the Sobolev–Slobodeckii
spaces of positive order.

3.8.3 Proposition If s > 0, then ‖·‖
W

s/ν
p

∼ ‖·‖s/ν,p.

Proof. It is an immediate consequence of (3.8.1) and Theorems 3.6.1 and
3.7.1(ii) that ‖·‖p + [[·]]s/νi,p;i is an equivalent norm for Lp(R(d,di),W

s/νi
p ). Now

the claim is clear. ¤
3.8.4 Theorem If s0 6= s1 and 0 < θ < 1, then

(W s0/ν
p ,W s1/ν

p )θ,p
.= Bsθ/ν

p .

Proof. This follows from Theorem 3.8.2, formula (3.3.12), Theorem 3.7.1(iv),
and the reiteration and duality theorems of interpolation theory (cf. I.2.6.1 and
I.2.8.2 in H. Amann [4]). ¤

The next result is an analogue of Theorem 3.6.7 for the Sobolev–Slobodeckii
scale.

3.8.5 Theorem Suppose s > 0. Then

W s/ν
p

.= Lp

(
R,W s/ω′

p (Rd−1, E)
) ∩W s/ω1

p

(
R, Lp(Rd−1, E)

)

and
W−s/ν

p
.= Lp

(
R,W−s/ω′

p (Rd−1, E)
)

+ W−s/ω1
p

(
R, Lp(Rd−1, E)

)
.

Proof. Since Λ is equivalent to the natural ω-quasi-norm it follows

W s/ν
p

.= Lp

(
Rd−1,W s/ω1

p (R, E)
) ∩

⋂̀

j=2

Lp

(
Rd−1,W s/ωj

p (R, E)
)
.

If s/ω1 ∈
q
N, then we deduce from Theorem 3.7.1(ii) and Fubini’s theorem

Lp

(
Rd−1,W s/ω1

p (R, E)
)

= W s/ω1
p

(
R, Lp(Rd−1, E)

)
. (3.8.4)

If s/ω1 ∈ R\N, then (3.8.4) follows from (3.6.6).
By definition,

W s/ω′
p (Rd−1, E) =

⋂̀

j=2

Lp

(
Rd−1,W s/ωj

p (R, E)
)
.
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This proves the statement for W
s/ν

p . The assertion about W
−s/ν

p follows now by
duality. ¤

3.8.6 Example Let ω be the 2m-parabolic weight vector. Then

W (s,s/2m)
p

.= Lp

(
R,W s

p (Rd−1, E)
) ∩W s/2m

p

(
R, Lp(Rd−1, E)

)

and
W−(s,s/2m)

p
.= Lp

(
R, W−s

p (Rd−1, E)
)

+ W−s/2m
p

(
R, Lp(Rd−1, E)

)

for s > 0. Furthermore, if s = 2mk + j + θ for some j, k ∈ N with j ≤ 2m− 1 and
0 ≤ θ < 1, then

u ∈ W (s,s/2m)
p (Rd, E) iff u, ∂k

t u,∇2mk+j
x′ u ∈ Lp(Rd, E)

and, provided (j, θ) 6= (0, 0),

[∂k
t u](j+θ)/2m,p;t :=

(∫

Rd−1

[
∂k

t u(x′, ·)]p

(j+θ)/2m,p
dx′

)1/p

< ∞

and, if θ 6= 0, also

[∇2mk+j
x′ u]θ,p;x′ :=

(∫

R

[∇2mk+j
x′ u(·, t)]p

θ,p
dt

)1/p

< ∞.

In particular, if m = 1 and 0 < θ < 1, then

u ∈ W (θ,θ/2)
p iff u ∈ Lp and [u]θ,p;x′ + [u]θ/2,p;t < ∞

and
u ∈ W (1,1/2)

p iff u ∈ Lp and ‖∇x′u‖p + [u]1/2,p;t < ∞,

and

u ∈ W (1+θ,(1+θ)/2)
p iff u ∈ Lp and ‖∇x′u‖p + [∇x′u]θ,p;x′ + [u](1+θ)/2,p;t < ∞,

where ‖·‖p is the norm in Lp = Lp(Rd, E).

Proof. This follows from the preceding theorem and well-known renorming
results for isotropic Slobodeckii spaces (e.g., Theorem 2.5.1 and Remark 2.5.1.4 in
H. Triebel [65], whose proofs carry over without change to the E-valued case). ¤

Besides the Slobodeckii spaces the Nikol′skĭı spaces form an important subclass
of Besov spaces. As in the scalar case they are defined in the isotropic situation by

Ns
p = Ns

p (Rd, E) :=

{
Hs

p , s ∈ N,

Bs
p,∞, s ∈ R+\N.

In analogy to the definition of the Sobolev–Slobodeckii scale the anisotropic
Nikol′skĭı scale [ Ns/ν

p ; s ≥ 0 ] is defined by5

Ns/ν
p = Ns/ν

p (Rd, E) :=
⋂̀

i=1

Lp(R(d,di), Ns/νi
p (Rdi , E)

)
. (3.8.5)

Defining [[·]]s/ν,p,∞ by replacing p in (3.8.2), (3.8.3) by ∞, it follows from Theo-
rem 3.6.1 and Proposition 3.8.3 that

‖·‖s/ν,p,∞ := ‖·‖p + [[·]]s/ν,p,∞ (3.8.6)

5Note that this scale is defined for s ≥ 0 only and that we do not treat the case p = 1.



68 3 FOURIER MULTIPLIERS AND FUNCTION SPACES

is an equivalent norm for N
s/ν
p . Furthermore, the following analogue to the first

part of Theorem 3.8.5 is valid:

Ns/ν
p

.= Lp

(
R, Ns/ω′

p (Rd−1, E)
) ∩Ns/ω1

p

(
R, Lp(Rd−1, E)

)
. (3.8.7)

We leave it to the reader to write down explicitly the meaning of these facts in the
case of the 2m-parabolic weight vector.

As usual,
M
N

s/ν
p is the closure of S in N

s/ν
p . This defines the anisotropic small

Nikol′skĭı scale whose importance lies in the fact that it is a densely injected
Banach space scale. Scalar isotropic and anisotropic Nikol′skĭı spaces have been
introduced by S.M. Nikol′skĭı in [50] and have been intensively studied by him and
his school; cf., in particular, his book [51].

3.9 Hölder scales

Now we suppose

• E is an arbitrary Banach space.

For k ∈ N we set

Ck
0 = Ck

0 (Rd, E) :=
({u ∈ C0 ; ∂αu ∈ C0, |α| ≤ k }, ‖·‖k,∞

)
.

It follows that Ck
0 is a closed linear subspace of BUCk, hence a Banach space. It is

not difficult to see that

Ck
0 is the closure of S in BUCk.

In analogy to (3.8.1), but restricting ourselves to s ≥ 0, we define an isotropic
Banach scale, the small Hölder scale, by

Cs
0 = Cs

0(Rd, E) :=

{
Cs

0 , s ∈ N,
M
Bs
∞, s ∈ R+\N.

On this basis the anisotropic small Hölder scale is introduced by

C
s/ν
0 = C

s/ν
0 (Rd, E) :=

⋂̀

i=1

C0

(
R(d,di), C

s/νi

0 (Rdi , E)
)

for s > 0, and C
0/ν
0 := C0.

Similarly as in the proof of Proposition 3.8.3, we see

‖·‖
C

s/ν
0

∼ ‖·‖s/ν,∞ := ‖·‖∞ + [[·]]s/ν,∞. (3.9.1)

It also follows from Theorem 3.6.3

C
s/ν
0

.=
M
B

s/ν
∞ , s/νi /∈ N, 1 ≤ i ≤ `. (3.9.2)

From (3.3.13), (3.5.7), and the reiteration theorem for the continuous interpolation
functor we deduce

(Cs0/ν
0 , C

s1/ν
0 )0∞,θ

.=
M
B

sθ/ν
∞ , 0 ≤ s0 < s1, 0 < θ < 1. (3.9.3)

There is also an analogue to the first part of Theorem 3.8.5, namely,

C
s/ν
0

.= C0

(
R, C

s/ω′

0 (Rd−1, E)
) ∩ C

s/ω1
0

(
R, C0(Rd−1, E)

)
(3.9.4)

for s > 0.
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Using (3.9.2) we can now complement our embedding results by the following
anisotropic version of the Sobolev embedding theorem.

3.9.1 Theorem Suppose k ∈ N, 1 ≤ p, q ≤ ∞, and s > t + |ω|/p. Then
M
B

s/ν
p,q

d
↪→ C

t/ν
0 .

If 1 < p < ∞, then

Hs/ν
p

d
↪→ C

t/ν
0 ,

provided E is a UMD space which has property (α) if ω 6= ω(1, . . . , 1).

Proof. This is a consequence of Theorems 3.3.2 and 3.7.5, and of (3.9.2). ¤
In the following example we consider the particularly important case where ω is

the 2m-parabolic weight vector. In this situation we set for 0 < θ < 1

[v]θ,∞;x′ := sup
t∈R

sup
x′,y′∈Rd−1

|v(x′, t)− v(y′, t)|
|x′ − y′|θ

and

[v]θ,∞;t := sup
x′∈Rd−1

sup
s,t∈R

|v(x′, s)− v(x′, t)|
|s− t|θ

where here and in similar situations it is understood that x′ 6= y′ and s 6= t, respec-
tively. We also put

[v]θ,∞;par := sup
(x′,s),(y′,t)

|v(x′, s)− v(y′, t)|
(|x′ − y′|2 + |s− t|)θ/2

.

Thus [·]θ,∞;par is the θ-Hölder seminorm with respect to the parabolic metric (1.3.3)
on R = Rd−1 × R. It is not difficult to verify

[·]θ,∞;par ∼ [·]θ,∞;x′ + [·]θ/2,∞;t. (3.9.5)

3.9.2 Example Let ω be the 2m-parabolic weight vector. Then

C
(s,s/2m)
0 (Rd, E) .= C0

(
R, Cs

0(Rd−1, E)
) ∩ C

s/2
0

(
R, C0(Rd−1, E)

)

for s > 0. If m = 1 and 0 < θ < 1, then

u 7→ ‖u‖∞ + [u]θ,∞;par

is an equivalent norm for C
(θ,θ/2)
0 (Rd, E),

u 7→ ‖u‖∞ + ‖∇x′u‖∞ + [u]1/2,∞;t

is an equivalent norm for C
(1,1/2)
0 (Rd, E), and

u 7→ ‖u‖∞ + ‖∇x′u‖∞ + [∇x′u]θ,∞;x′ + [u](1+θ)/2,∞;t

is an equivalent norm for C
(1+θ,(1+θ)/2)
0 (Rd, E), where ‖·‖∞ is the maximum norm

on Rd.

Proof. This follows by easy arguments from (3.9.4) and (3.9.5). ¤





CHAPTER 4

Distributions on half-spaces and corners

This last chapter of Part 1 contains an in-depth study of trace and extension
theorems for anisotropic Bessel potential and Besov spaces. Of particular relevance
for the weak theory of parabolic problems are such theorems for spaces on corners.
Most of these results are new and far from being straightforward extensions of
known theorems.

4.1 Restrictions and extensions of smooth functions

We denote by
Hd := R+ × Rd−1

the closed right half-space in Rd and by ∂Hd = {0} × Rd−1 its boundary.1 Given
any open subset X of Hd, a point x ∈ X ∩ ∂Hd, and a map f from X into some
Banach space, by the partial derivative ∂1f(x) at x we mean the right derivative

∂1f(x) = lim
t→0+

(
f(x + te1)− f(x)

)/
t,

of course.
Let F be a Banach space. We write

S(Hd, F )

for the Fréchet space of all smooth rapidly decreasing F -valued functions
on Hd. Its topology is induced by the family of seminorms

u 7→ qk,m(u) := max
|α|≤m

sup
x∈Hd

〈x〉k |∂αu(x)|, k, m ∈ N, (4.1.1)

thus by restricting the usual seminorms of S(Rd, F ) to Hd. It contains D(Hd, F ),
the space of test functions on Hd, as a closed linear subspace, where D(Hd, F ) is
given the usual LF -topology. This space has to be carefully distinguished from

D(H̊d, F )

which is identified with a subspace of D(Rd, F ) by extending u ∈ D(H̊d, F ) by zero
over Hd.

We shall now construct an extension operator from S(Hd, F ) into S(Rd, F ).
For this we employ the following lemma which is taken from R. Hamilton [38].

1We often identify ∂Hd with Rd−1. The reader will easily recognize which representation is
used in a given formula.

71
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4.1.1 Lemma There exists h ∈ C∞(
q
R+,R) satisfying

∫ ∞

0

ts |h(t)| dt < ∞, s ∈ R, (4.1.2)

and

(−1)k

∫ ∞

0

tkh(t) dt = 1, k ∈ Z, (4.1.3)

as well as
h(1/t) = −th(t), t > 0. (4.1.4)

Proof. Denote by
C\R+ → C, z 7→ z1/4

the branch of z1/4 which, for x ∈ R+, satisfies (x + i0)1/4 = x1/4. Then

(x− i0)1/4 = ix1/4, x ≥ 0.

Put

f(z) := (1 + z)−1 exp
(−(1− i)z1/4 − (1 + i)z−1/4

)
, z ∈ C\R+.

Then

f(x + i0) = (1 + x)−1e−(x1/4+x−1/4)
(
cos(x1/4 − x−1/4) + i sin(x1/4 − x−1/4)

)

and
f(x− i0) = f(x + i0), x ∈ R+.

Let Γ be a piece-wise smooth path in C\R+ running from ∞− i0 to ∞+ i0. Then,
by Cauchy’s theorem,∫

Γ

zkf(z) dz = 2i

∫ ∞

0

(1 + x)−1xke−(x1/4+x−1/4) sin(x1/4 − x−1/4) dx (4.1.5)

for k ∈ Z. Since z`f(z) → 0 for each ` ∈ N as |z| → ∞, we can apply the residue
theorem to deduce that∫

Γ

zkf(z) dz = 2πi Res(f,−1) = 2πi(−1)ke−2
√

2,

thanks to (−1)1/4 = (1 + i)
/√

2. Thus, putting

h(t) := π−1e2
√

2(1 + t)−1e−(t1/4+t−1/4) sin(t1/4 − t−1/4)

for t > 0, we see that (4.1.3) is true. The remaining assertions are obvious. ¤

We write x = (y, x′) for the general point of Hd with y ∈ R+. Then, given u in
(L1 + L∞)(Hd, F ), we set

εu(x) :=
∫ ∞

0

h(t)u(−ty, x′) dt, a.a. x ∈ −Hd, (4.1.6)

and

e+u(x) :=

{
u(x), a.a. x ∈ Hd,

εu(x), a.a. x ∈ −H̊d.
(4.1.7)

We do not indicate dimension d in this notation since it will be clear from the
context.
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4.1.2 Lemma Suppose 1 ≤ p ≤ ∞. Then

e+ ∈ L(S(Hd, F ),S(Rd, F )
) ∩ L(

Lp(Hd, F ), Lp(Rd, F )
)
.

Proof. (1) The assertion concerning the Lp-spaces is immediate by (4.1.2)
and

‖v‖p
Lp(Rd,F )

= ‖v‖p
Lp(Hd,F )

+ ‖v‖p
Lp(−Hd,F )

(4.1.8)

for 1 ≤ p < ∞, and

‖v‖L∞(Rd,F ) ≤ ‖v‖L∞(Hd,F ) + ‖v‖L∞(−Hd,F ).

(2) Suppose u ∈ S(Hd, F ). Then, given α ∈ Nd, it follows from (4.1.2) that

∂α(εu)(x) = (−1)α1
∫ ∞

0

tα
1
h(t)∂αu(−ty, x′) dt, x ∈ −Hd. (4.1.9)

Thus εu ∈ C∞(−Hd, F ) and (4.1.3) implies ∂αεu(0, x′) = ∂αu(0, x′) for x′ ∈ Rd and
α ∈ Nd. This proves e+u ∈ C∞(Rd, F ).

From (4.1.2) and (4.1.9) we easily deduce e+ ∈ L(S(Hd, F ),S(Rd, F )
)
. ¤

We denote by

r+ : S(Rd, F ) → S(Hd, F ), u 7→ u |Hd

the point-wise restriction operator for Hd.

4.1.3 Theorem r+ is a retraction from S(Rd, F ) onto S(Hd, F ), and e+ is a
coretraction.

Proof. This follows immediately from Lemma 4.1.2. ¤

This is the well-known extension theorem of R. Seeley [59], who based its proof
on a discrete version of Lemma 4.1.1, extending the classical reflection method
(e.g., Lemma 2.9.1.1 in H. Triebel [65]).

The trivial extension operator for Hd,

e+
0 : (L1 + L∞)(Hd, F ) → (L1 + L∞)(Rd, F ),

is defined by

e+
0 u :=

{
u on Hd,

0 on −H̊d.

We set

S(H̊d, F ) :=
{

u ∈ S(Hd, F ) ; ∂αu |∂Hd = 0, α ∈ Nd
}
.

It is a closed linear subspace of S(Hd, F ), hence a Fréchet space.

4.1.4 Lemma D(H̊d, F ) is dense in S(H̊d, F ).
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Proof. (1) Set τhu(x) := u(x− h) for x, h ∈ Rd. For t ≥ 0 put

ρt := r+ ◦ τte1 ◦ e+
0

where e1 = (1, 0, . . . , 0) ∈ Hd. Since differentiation and translation commute it is
easily verified that { ρt ; t ≥ 0 } is a strongly continuous semigroup on S(H̊d, F ).
Note

supp(ρtu) ⊂ te1 +Hd, u ∈ S(H̊d, F ), t > 0.

(2) Suppose

u ∈ S(H̊d, F ), supp(u) ⊂ te1 +Hd for some t > 0.

Fix ϕ ∈ D(Rd) with ϕ(x) = 1 for |x| ≤ 1 and put ϕr := ϕ(x/r) for r > 0. Then

ur := ϕru ∈ D(H̊d, F ), r > 0.

Since 〈x〉k ≤ 〈x〉k+1/r for |x| ≥ r and since ur − u = (ϕr − 1)u and ∂βϕr vanish for
|x| < r and β ∈ Nd\{0} we obtain from Leibniz’ rule

sup
x∈Hd

〈x〉k |∂α(ur − u)(x)|

≤ c(α, k)
∑

β≤α

r−|β| sup
x∈Hd

|x|≥r

〈x〉k |∂α−βu(x)| ≤ c(k, m)r−1qk+1,m(u)

for |α| ≤ m, k, m ∈ N, and r ≥ 1. Thus ur → u in S(Hd, F ) for r →∞. This and
(1) imply the statement. ¤

It is clear that in the above definitions and theorems we could have replaced Hd

by the left half-space −Hd using obvious modifications. We denote the correspond-
ing extension and restriction operators by e−, e−0 , and r−, respectively.

Following essentially R. Hamilton [38], we set

r+
0 := r+(1− e−r−), r−0 := r−(1− e+r+). (4.1.10)

Then
r±0 ∈ L(S(Rd, F ),S(±H̊d, F )

)
. (4.1.11)

However, a more precise statement is true. For this we first note some simple but
fundamental observations (cf. Proposition I.2.3.2 in H. Amann [4]).

4.1.5 Lemma Let X and Y be LCSs and suppose r : X → Y is a retraction
and e a coretraction. Then

p := er ∈ L(X ) (4.1.12)
is a projection,

X = im(p)⊕ ker(p) = eY ⊕ ker(r),
and

r ∈ Lis(eY,Y). (4.1.13)

Proof. Clearly, p2 = (er)(er) = e(re)r = er = p. Hence

X = im(p)⊕ ker(p) = pX ⊕ (1− p)X .

Moreover, rp = r implies ker(p) ⊂ ker(r). Thus, since p = er gives the converse
inclusion, ker(p) = ker(r). From this we deduce that r is a continuous bijection
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from pX onto Y, and e is a continuous inverse for r |pX . Hence pX = eY and
(4.1.13) is true. ¤

4.1.6 Lemma Let Y and Z be LCSs and suppose r : Y → Z is a retraction.
If X is a dense subset of Y, then r(X ) is dense in Z.

Proof. Choose a coretraction rc for r. Suppose z ∈ Z and U is a neighborhood
of z in Z. Then r−1(U) is a neighborhood of rc(z) in Y. Hence there exists
x ∈ X ∩ r−1(U) due to the density of X in Y. Then r(x) ∈ r(X ) ∩ U . This proves
the claim. ¤

4.1.7 Theorem r±0 is a retraction from S(Rd, F ) onto S(±H̊d, F ), and e±0 is
a coretraction.

Proof. Theorem 4.1.3 and Lemma 4.1.5 imply, with p− = e−r−,

ker(r−) = ker(p−) = im(1− p−).

Clearly, if u ∈ ker(r−), then u(x) = 0 for x ∈ −Hd. Hence

r+
0 = r+(1− p−) ∈ L(S(Rd, F ),S(H̊d, F )

)

and r+
0 e+

0 u = u for u ∈ S(H̊d, F ). This proves the H̊d-claim. The proof for −H̊d is
similar. ¤

4.1.8 Theorem The following direct sum decomposition is valid:

S(Rd, F ) = e+S(Hd, F )⊕ e−0 S(−H̊d, F ).

Proof. Due to Theorem 4.1.3 and Lemma 4.1.5 it is enough to show that,
setting S := S(Rd, F ),

(1− p+)S = e−0 S(−H̊d, F ). (4.1.14)
Since (1− p+)u vanishes on Hd for u ∈ S, its restriction r−(1− p+)u to −Hd be-
longs to S(−H̊d, F ). Hence e−0 r−(1− p+)u = (1− p+)u which proves (4.1.14). ¤

Clearly, there is a similar decomposition if Hd is replaced by −Hd.

e+r+ + e−0 r−0 = 1S
4.1.9 Corollary , r±e∓0 = 0, and r±0 e∓ = 0.

4.1.10 Remark Of course, the extension operators e+, e+
0 and the restriction

operators r+, r+
0 depend on the Banach space F as well which we do not notationally

indicate. This is justified by the following observation: suppose F1 ↪→ F0 and denote
by r+

(j) the retraction from S(Rd, Fj) onto S(Hd, Fj) and by e+
(j) the corresponding

extension. Then the following diagram is commuting:

S(Rd, F1) S(Rd, F0)

S(Hd, F1) S(Hd, F0)

r+
(1) e+

(1) r+
(0) e+

(0)

-¤£

-¤£
?

6

?

6

In this sense r+ and e+ and, consequently, r+
0 and e+

0 are said to be independent
of F , or universal.

Proof. This is obvious by the construction of these operators. ¤
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4.2 Distributions on half-spaces

Let F be a Banach space, X and Y LCSs, and f a continuous linear map
from X into Y. Then, given u ∈ L(Y, F ), the pull-back f∗u = u ◦ f of u with f
belongs to L(X , F ), and

f∗ ∈ L(L(Y, F ),L(X , F )
)
.

In particular,

i : X ↪→ Y =⇒ i∗ : L(Y, F ) → L(X , F ), u 7→ u |X ,

which means that i∗u = u |X is continuous on X for u ∈ L(Y, F ). If X is dense
in Y, then i∗ is injective. Thus

i : X d
↪→ Y =⇒ i∗ : L(Y, F ) ↪→ L(X , F ). (4.2.1)

Also note

f ∈ Lis(X ,Y) =⇒ f∗ ∈ Lis
(L(Y, F ),L(X , F )

)
, (f∗)−1 = (f−1)∗. (4.2.2)

In the special case F = C we have L(X ,C) = X ′. Thus (4.2.1) generalizes

X d
↪→ Y =⇒ Y ′ ↪→ X ′.

Suppose r : X → Y is a retraction and e : Y → X a coretraction, that is, the
diagram

X Y

Y
e id

r -

@
@@I

¡
¡¡µ

is commuting. Then

L(X , F ) L(Y, F )

L(Y, F )

e∗ id

r∗¾

@
@@R

¡
¡¡ª

(4.2.3)

is also commuting. Hence e∗ is a retraction from L(X , F ) onto L(Y, F ), and r∗ is
a coretraction. Moreover, setting p := er,

r∗e∗ = (er)∗ = p∗

shows that p∗, the pull-back of p, equals the projection r∗e∗ associated with (4.2.3).

Recall that D′(H̊d, F ), the space of F -valued distributions on H̊d, is defined by

D′(H̊d, F ) := L(D(H̊d), F
)
.

In analogy, we denote by

D′(Hd, F ) := L(D(Hd), F
)

(4.2.4)
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the space of F -valued distributions on Hd, and by

S ′(Hd, F ) := L(S(Hd), F
)

and S ′(H̊d, F ) := L(S(H̊d), F
)

(4.2.5)

the space of F -valued tempered distributions on Hd, and on H̊d, respectively.
An obvious modification of step (2) of the proof of Lemma 4.1.4 shows

D(Hd, F )
d

↪→ S(Hd, F ).

Using this (with F = C) it follows from (4.2.1)

S ′(Hd, F ) ↪→ D′(Hd, F ).

Similarly, we deduce from Lemma 4.1.4

S ′(H̊d, F ) ↪→ D′(H̊d, F ).

Thus the elements of S ′(Hd, F ) and S ′(H̊d, F ) are indeed distributions on Hd

and H̊d, respectively.

Note that
S(Hd, F )× S(H̊d) → F, (u, ϕ) 7→

∫

Hd

uϕdx (4.2.6)

and
S(H̊d, F )× S(Hd) → F, (u, ϕ) 7→

∫

Hd

uϕdx (4.2.7)

are bilinear continuous maps satisfying∫

Hd

ϕ∂αu dx = (−1)|α|
∫

Hd

u∂αϕdx, α ∈ Nd, (4.2.8)

in either case. Given u ∈ S(Hd, F ), respectively u ∈ S(H̊d, F ), denote the map

ϕ 7→
∫

Hd

uϕdx

in the first case by Tu and in the second one by T̊u. Then

T := (u 7→ Tu) : S(Hd, F ) → S ′(H̊d, F )

and
T̊ := (u 7→ T̊u) : S(H̊d, F ) → S ′(Hd, F )

are continuous linear injections. By means of T we identify S(Hd, F ) with a linear
subspace of S ′(H̊d, F ). In other words,

S(Hd, F ) ↪→ S ′(H̊d, F )

by identifying u ∈ S(Hd, F ) with the F-valued distribution

ϕ 7→ u(ϕ) := Tuϕ =
∫

Hd

uϕdx, ϕ ∈ S(H̊d).

It follows from (4.2.8) that ∂αu is identified with the distributional derivative ∂αTu

of Tu. Similarly,
S(H̊d, F ) ↪→ S ′(Hd, F )

by identifying u with T̊u. These injections correspond to the canonical embedding

S(Rd, F )
d

↪→ S ′(Rd, F )
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which identifies u ∈ S(Rd, F ) with

ϕ 7→
∫

Rd

uϕdx, ϕ ∈ S(Rd).

These canonical embeddings will be used throughout.

4.2.1 Lemma If (u, ϕ) ∈ S(Hd, F )× S(Rd), then e+u(ϕ) = u(r+
0 ϕ).

Proof. The definition of e+u ∈ S(Rd, F ) gives

(e+u)(ϕ) =
∫

Rd

ϕe+u dx =
∫

Hd

ϕudx +
∫

−Hd

ϕεu dx. (4.2.9)

By Fubini’s theorem
∫ 0

−∞
ϕ(y, ·)εu(y, ·) dy =

∫ 0

−∞
ϕ(y, ·)

∫ ∞

0

h(t)u(−ty, ·) dt dy

=
y 7→−y

∫ ∞

0

∫ ∞

0

ϕ(−y, ·)u(ty, ·) dy h(t) dt

=
y 7→z:=ty

∫ ∞

0

∫ ∞

0

ϕ
(
−z

t
, ·

)
u(z, ·) dz h(t)

dt

t

=
t 7→s:=1/t

∫ ∞

0

∫ ∞

0

ϕ(−sz, ·)h
(1

s

) ds

s
u(z, ·) dz

= −
∫ ∞

0

∫ ∞

0

h(s)ϕ(−sz, ·) ds u(z, ·) dz

= −
∫ ∞

0

(εϕ)(z, ·)u(z, ·) dz,

where we used (4.1.4) in the next to the last step. Thus
∫

−Hd

ϕεu dx = −
∫

Hd

(εϕ)u dx. (4.2.10)

Define εu on Hd by replacing x ∈ −Hd in (4.1.6) by x ∈ Hd. Then

e−r−ϕ(y, x′) =

{
ϕ(y, x′), y ≤ 0,

εϕ(y, x′), y ≥ 0.

Hence

r+
0 ϕ(y, x′) = r+(1− e−r−)ϕ(y, x′) = ϕ(y, x′)− εϕ(y, x′) (4.2.11)

for y ≥ 0 and x′ ∈ Rd−1. Now the assertion follows from (4.2.9) and (4.2.10). ¤

After these preparations we can prove the following fundamental retraction
theorem for tempered distributions on Hd.
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4.2.2 Theorem The following diagram is commuting:

S(Hd, F ) S(Rd, F ) S(H̊d, F )

S ′(H̊d, F ) S ′(Rd, F ) S ′(Hd, F )

e+

(r+
0 )∗

r+

(e+
0 )∗

e+
0

(r+)∗

r+
0

(e+)∗

d d d

¾ -

-¾

-¾

¾ -
?

¤¡

?

¤¡

?

¤¡

and (e+
0 )∗ and (e+)∗ are retractions with respective coretractions (r+

0 )∗ and (r+)∗.

Proof. (1) Lemma 4.2.1 guarantees the commutativity of the diagram

S(Hd, F ) S(Rd, F )

S ′(H̊d, F ) S ′(Rd, F )

e+

(r+
0 )∗

-

-
?

¤¡

?

¤¡

Given v ∈ S(Rd, F ) and ψ ∈ S(H̊d),

(r+v)(ψ) =
∫

Hd

vψ dx =
∫

Rd

ve+
0 ψ dx = (e+

0 )∗v(ψ).

This proves the commutativity of

S(Hd, F ) S(Rd, F )

S ′(H̊d, F ) S ′(Rd, F )

r+

(e+
0 )∗

¾

¾
?

¤¡

?

¤¡

Now the assertions for the left half of the diagram of the statement follow from Theo-
rems 4.1.3 and 4.1.7, the fact that S(Rd, F ) is dense in S ′(Rd, F ), and Lemma 4.1.6.

(2) Suppose u ∈ S(H̊d, F ) and ϕ ∈ S(Rd). Then

(e+
0 u)(ϕ) =

∫

Hd

uϕdx =
∫

Hd

ur+ϕdx.

Thus e+
0 u = (r+)∗u for u ∈ S(H̊d, F ) so that

S(H̊d, F ) S(Rd, F )

S ′(Hd, F ) S ′(Rd, F )

e+
0

(r+)∗

-

-
?

¤¡

?

¤¡

is commuting. As in the proof of Lemma 4.2.1 we obtain from (4.2.11)

(r+
0 u)(ϕ) = u(e+ϕ), u ∈ S(Rd, F ), ϕ ∈ S(Hd).
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This shows the commutativity of

S(H̊d, F ) S(Rd, F )

S ′(Hd, F ) S ′(Rd, F )

r+
0

(e+)∗

¾

¾
?

¤¡

?

¤¡

Now the assertions for the right half of the diagram of the claim follow again from
Theorems 4.1.3 and 4.1.7, the density of S(Rd, F ) in S ′(Rd, F ), and Lemma 4.1.6.

(3) The last part of the statement follows from Theorems 4.1.3 and 4.1.7 and
from (4.2.3). ¤

This theorem shows that (r+
0 )∗ and (e+

0 )∗ are the unique continuous extensions
of e+ and r+, respectively. Thus we can use the same symbols for them without
fearing confusion, that is, we set

r+ := (e+
0 )∗, e+ := (r+

0 )∗, r+
0 := (e+)∗, e+

0 := (r+)∗.

Evidently, corresponding results are valid for r−, e−, r−0 , and e−0 .

4.2.3 Corollary The diagram

S(Rd, F ) = e+S(Hd, F )⊕ e−0 S(−H̊d, F )

S ′(Rd, F ) = e+S ′(H̊d, F )⊕ e−0 S ′(−Hd, F )

d d d
?

¤¡

?

¤¡

?

¤¡

is commuting. An analogous statement holds if Hd is replaced by −Hd.

Proof. This is a consequence of Theorem 4.1.8 and the preceding considera-
tion. ¤

The crucial observation formulated in Lemma 4.2.1 and Theorem 4.2.2 are due
(in the scalar case, of course) to R. Hamilton [38].

4.2.4 Theorem

(i) If u ∈ S ′(Rd, F ), then r+u is the restriction of u to H̊d in the sense of distri-
butions, that is,

r+u(ϕ) = u(ϕ), ϕ ∈ D(H̊d).

(ii) Set
S ′Hd(Rd, F ) :=

{
v ∈ S ′(Rd, F ) ; supp(v) ⊂ Hd

}
.

Then
S ′Hd(Rd, F ) = e+

0 S ′(Hd, F ).

Proof. (i) Since r+u ∈ S ′(H̊d, F ) and r+u(ϕ) = u(e+
0 ϕ) for ϕ ∈ S(H̊d), the

assertion follows from the density of D(H̊d) in S(H̊d) and the identification of
ϕ ∈ D(H̊d) with e+

0 ϕ.
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(ii) For u ∈ S ′(Hd, F ) and ϕ ∈ D(Rd) with supp(ϕ) ⊂ −H̊d we obtain

e+
0 u(ϕ) = u(r+ϕ) = 0.

Hence e+
0 S ′(Hd, F ) ⊂ S ′Hd(Rd, F ).

Conversely, suppose v ∈ S ′Hd(Rd, F ). Then, given ψ ∈ S(−H̊d), the density of
D(−H̊d) in S(−H̊d) and ψ = e−0 ψ for ψ ∈ D(−H̊d) imply 0 = v(e−0 ψ) = r−v(ψ).
Thus r−v = 0 and, consequently, e−r−v = 0. Hence

v = (1− e−r−)v ∈ e+
0 S ′(Hd, F ),

since (the analogue of) Corollary 4.2.3 shows

S ′(Rd, F ) = e+
0 S ′(Hd, F )⊕ e−S ′(−H̊d, F ).

From this we infer S ′Hd(Rd, F ) ⊂ e+
0 S ′(Hd, F ). ¤

4.2.5 Corollary r+
0 is an isomorphism from S ′Hd(Rd, F ) onto S ′(Hd, F ).

Proof. This follows from (4.1.13). ¤
By means of this isomorphism S ′(Hd, F ) is often identified with the space of

F -valued tempered distributions on Rd which are supported in Hd.

We introduce bilinear forms

〈·, ·〉H̊d on S ′(H̊d, F ′)× S(H̊d, F )

and
〈·, ·〉Hd on S ′(Hd, F ′)× S(Hd, F )

by
〈u′, u〉H̊d := 〈e+u′, e+

0 u〉
and

〈v′, v〉Hd := 〈e+
0 v′, e+v〉,

respectively.

4.2.6 Theorem These bilinear forms are separately continuous and satisfy

〈u′, u〉H̊d =
∫

Hd

〈
u′(x), u(x)

〉
F

dx, (u′, u) ∈ S(Hd, F ′)× S(H̊d, F ),

and

〈v′, v〉Hd =
∫

Hd

〈
v′(x), v(x)

〉
F

dx, (v′, v) ∈ S(H̊d, F ′)× S(Hd, F ).

Proof. The continuity assertion is immediate from the corresponding property
of 〈·, ·〉 on S ′(Rd, F ′)× S(Rd, F ) and the continuity of e+ and e+

0 .
Suppose u′ ∈ S(Hd, F ′). Then e+u′ ∈ S(Rd, F ′) and, consequently,

〈u′, u〉H̊d = 〈e+u′, e+
0 u〉 =

∫

Rd

〈
e+u′(x), e+

0 u(x)
〉

F
dx

=
∫

Hd

〈
u′(x), u(x)

〉
dx,

since e+
0 u vanishes on −Hd. This proves the assertion for 〈·, ·〉H̊d . The one for

〈·, ·〉Hd follows by an analogous argument. ¤
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4.2.7 Corollary For (w′, w) ∈ S ′(Rd, F ′)× S(Rd, F ),

〈w′, w〉 = 〈r+w′, r+
0 w〉H̊d + 〈r−0 w′, r−w〉−Hd

and
〈w′, w〉 = 〈r+

0 w′, r+w〉Hd + 〈r−w′, r−0 w〉−H̊d .

Proof. Suppose w = ϕ⊗ f with ϕ ∈ S(Rd) and f ∈ F . Then the assertion is
an easy consequence of Corollaries 4.2.3 and 4.1.9. Hence it holds for w belonging
to S(Rd)⊗ F by linear extension. Now we obtain the statement by continuity and
the density of S(Rd)⊗ F in S(Rd, F ) (cf. H.Amann [10, Theorem 1.3.6(v)]). ¤

4.3 Corners

For k ∈ {1, . . . , d} we set

Kd
k := (R+)k × Rd−k

and call it standard closed k-corner in Rd. Note Kd
1 = Hd. The interior of Kd

k,

K̊d
k = (

q
R+)k × Rd−k,

is the standard open k-corner. Any subset of Kd
k of the form I1 × · · · × Ik × Rd−k

with Ij ∈ {R+,
q
R+} and being different fromKd

k and K̊d
k is called standard partially

open k-corner. A 2-corner is also called wedge.
For 1 ≤ j ≤ k the closed j-face of Kd

k is defined to be

∂jKd
k := {x ∈ Kd

k ; xj = 0 }.
It is linearly2 isometrically diffeomorphic to Kd−1

k−1 by means of the natural diffeo-
morphism

∂jKd
k
∼= Kd−1

k−1, x 7→ (x1, . . . , x̂j , . . . , xd) (4.3.1)

by which we often identify ∂jKd
k with Kd−1

k−1 without fearing confusion. Note

∂Kd
k =

k⋃

j=1

∂jKd
k

and
∂ijKd

k := ∂iKd
k ∩ ∂jKd

k = {x ∈ Kd
k ; xi = xj = 0 } ∼= Kd−2

k−2

for i 6= j. Also observe that K is a partially open standard k-corner in Rd iff

K = Kd
k

∖ ⋃

j∈J∗
∂jKd

k, (4.3.2)

where J∗ is a nonempty proper subset of {1, . . . , k}. Set3 J := {1, . . . , k}\J∗. Then

K∗ = Kd
k

∖ ⋃

j∈J

∂jKd
k

2Linearly (isometrically) diffeomorphic means, of course, that the diffeomorphism is the
restriction of an (isometric) automorphism of Rd.

3Our notation implies that face ∂jKd
k belongs to K iff j ∈ J . These faces are the essential

faces of K.
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is the complementary corner of K. We also put

(Kd
k)∗ := K̊d

k, (K̊d
k)∗ := Kd

k.

Clearly, S(Kd
k, F ) is the space of all smooth F -valued rapidly decreasing func-

tions on Kd
k, where ∂ju(x) for x ∈ ∂jKd

k and 1 ≤ j ≤ k is the right derivative of
u : Kd

k → F . It is a Fréchet space with the topology induced by the seminorms
obtained by restricting (4.1.1) to Kd

k.

Let now K be any (closed, open, or partially open) standard k-corner in Rd,
that is, K is given by (4.3.2), where now J∗ is any (possibly empty or not proper)
subset of {1, . . . , k}. Given a Banach space F , we denote by S(K, F ) the closed
linear subspace of S(Kd

k, F ) consisting of all u satisfying

∂m
j u|xj=0 = 0, m ∈ N, j ∈ J∗.

It is a Fréchet space. The space of tempered F -valued distributions on K is
defined by

S ′(K, F ) := L(S(K), F
)
.

It follows from (4.2.6)–(4.2.8) that

S(K, F )× S(K∗) → F, (u, ϕ) 7→
∫

K
uϕdx

is a continuous bilinear map satisfying∫

K
ϕ∂αu dx = (−1)|α|

∫

K
u∂αϕdx, α ∈ Nd. (4.3.3)

Similarly as in Section 4.2 we identify u ∈ S(K, F ) with the F -valued distribution
Tu ∈ S ′(K∗, F ) given by

ϕ 7→ u(ϕ) := Tuϕ :=
∫

K
uϕ dx, ϕ ∈ S(K∗).

This is possible since u 7→ Tu is injective. Thus

S(K, F ) ↪→ S ′(K∗, F ).

For u ∈ S ′(K∗, F ) we define distributional derivatives ∂αu for α ∈ Nd by

∂αu(ϕ) := (−1)|α|u(∂αϕ), ϕ ∈ S(K∗).
By (4.3.3) this definition is meaningful in the sense that it extends the classical
derivative, that is, T∂αu = ∂αTu for u ∈ S(K, F ).

The purpose of the following considerations is to generalize the results of the
preceding sections from half-spaces to corners. For clarity, we first consider the case
of wedges (so that d ≥ 2).

It is convenient to set X = Y := R and Z := Rd−2. Moreover, X± and Y ±

equal R± with R− := −R+. Then

Kd
2 = X+ × Y + × Z, K̊d

2 =
q

X+ ×
q

Y + × Z.

The partially open standard wedges are
q

X+ × Y + × Z and X+ ×
q

Y + × Z. We
also need to consider the three closed wedges X− × Y + × Z, X− × Y − × Z, and
X+ × Y − × Z as well as their open and partially open subcorners. Related to
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these four wedges are the four half-spaces X± × Y × Z and X × Y ± × Z. All these
wedges and half-spaces are obviously linearly diffeomorphic to standard wedges
or Hd.

For abbreviation we write

SX̃×Ỹ := S(X̃ × Ỹ × Z,F ), X̃, Ỹ ∈ {R,R±,
q
R±}.

We also set
(rX , eX) := (r+

X , e+
X), (r0

X , e0
X) := (r+

0,X , e+
0,X),

where r+
X : SX×Y → SX+×Y is the point-wise restriction, and e+

0,X is the trivial
extension S q

X+×Y
→ SX×Y = Rd, etc. Of course, there are analogous retractions

rY : SX×Y → SX×Y + , r0
Y : SX×Y → S

X×
q

Y + ,

and corresponding coretractions eY and e0
Y .

Using Theorems 4.1.3 and 4.1.7 and definitions (4.1.6) and (4.1.7) it is not
difficult to verify that the following diagram of retractions and corresponding core-
tractions is commuting:

S q
X+×

q
Y + S q

X+×Y
S q

X+×Y +

S
X×

q
Y + SX×Y SX×Y +

S
X+×

q
Y + SX+×Y SX+×Y +

r0
Y

r0
Y

r0
Y

e0
Y

e0
Y

e0
Y

rY

rY

rY

eY

eY

eY

r0
X r0

X r0
Xe0

X e0
X e0

X

rX rX rXeX eX eX

¾ -

¾ -

-¾

-¾

-¾

¾ -

6

?

6

?

6

?

?

6

?

6

?

6

(4.3.4)

Then we can apply Theorem 4.2.2 to obtain the following commuting diagram of
retractions:

S ′X+×Y + S ′X+×Y
S ′

X+×
q

Y +

S ′X×Y + S ′X×Y
S ′

X×
q

Y +

S ′ q
X+×Y + S ′ q

X+×Y
S ′ q

X+×
q

Y +

r0
Y

r0
Y

r0
Y

e0
Y

e0
Y

e0
Y

rY

rY

rY

eY

eY

eY

r0
X r0

X r0
Xe0

X e0
X e0

X

rX rX rXeX eX eX

¾ -

¾ -

-¾

-¾

-¾

¾ -

6

?

6

?

6

?

?

6

?

6

?

6

(4.3.5)

Moreover, given any space of the first diagram, it is densely injected in that space
of the second diagram which sits at the same position. For example, looking at the

left lower corners, S
X+×

q
Y +

d
↪→ S ′ q

X+×Y +
.
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For 1 ≤ i ≤ d we denote by

ri : S ′(Rd, F ) → S ′(Ri−1 × R+ × Rd−1, F )

the point-wise restriction, and by ei its coretraction, constructed in Sections 4.1
and 4.2 (modulo a relabeling of coordinates). Similarly,

e0
i : S ′(Ri−1 ×

q
R+ × Rd−1, F ) → S ′(Rd, F )

is the trivial extension, and r0
i is the corresponding coretraction.

Let K be any standard k-corner in Rd. Using notation (4.3.2) set4

rK :=
∏

j∈J

rj

∏

j∗∈J∗
r0
j∗ , eK :=

∏

j∈J

ej

∏

j∗∈J∗
e0
j∗ . (4.3.6)

Then the preceding considerations extend easily to imply the validity of the follow-
ing generalization of Theorem 4.2.2.

4.3.1 Theorem The diagram

S(Rd, F ) S(K, F )

S ′(Rd, F ) S ′(K∗, F )

rK

rK

eK

eK

d d

¾ -

-¾
?

¤¡

?

¤¡

is commuting, rK is a retraction and eK is a coretraction for it.

Similarly as in the case of half-spaces, we introduce a bilinear form

〈·, ·〉K : S ′(K, F ′)× S(K, F ) → C

by
〈u′, u〉K := 〈eK∗u′, eKu〉. (4.3.7)

Then we obtain a generalization of Theorem 4.2.6:

4.3.2 Theorem The bilinear form 〈·, ·〉K is separately continuous and deter-
mined by its values on S(K∗, F ′)× S(K, F ) which are given by

〈u′, u〉K =
∫

K

〈
u′(x), u(x)

〉
F

dx, (u′, u) ∈ S(K∗, F ′)× S(K, F ). (4.3.8)

Proof. The first two statements are clear. Write

eK = ε1 ◦ · · · ◦ εk, eK∗ = ε∗1 ◦ · · · ◦ ε∗k

with εi, ε
∗
i ∈ {ei, e

0
i } and note that for each i either εi or ε∗i is the trivial extension.

Thus formula (4.3.8) is a consequence of Fubini’s theorem. ¤

4In any product of maps or spaces we always use –– unless explicitly indicated otherwise ––
the natural ordering such that the object with the lowest index stands on the left.
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4.4 Function spaces on corners

Throughout this section we suppose5

• E is a UMD space which possesses property (α) if ω 6= ω(1, . . . , 1);
• 1 < p < ∞, 1 ≤ q ≤ ∞;

• 1 ≤ k ≤ d and K is a standard k-corner in Rd.

Suppose F(Rd, E) is a Banach space satisfying

S(Rd, E)
d

↪→ F(Rd, E)
d

↪→ S ′(Rd, E). (4.4.1)

It follows from Theorem 4.3.1 and Remarks 2.2.1 that

F(K, E) := rKF(Rd, E) (4.4.2)

is a well-defined Banach space satisfying

S(K, E)
d

↪→ F(K, E)
d

↪→ S ′(K, E). (4.4.3)

Choosing for F the symbol
M
B

s/ν
p,q we so obtain the anisotropic Besov scales
[ M
B

s/ν
p,q (K, E) ; s ∈ R ]

,

for F = H
s/ν
p the anisotropic Bessel potential scales

[
Hs/ν

p (K, E) ; s ∈ R ]
,

for F :=
M
N

s/ν
p the anisotropic small Nikol′skĭı scales

[ M
N

s/ν
p (K, E) ; s ∈ R+

]
,

and for F = C
s/ν
0 the anisotropic small Hölder scale[

Cs
0(K, E) ; s ∈ R+

]

on K.
Similarly as in the case of Rn, the anisotropic Sobolev–Slobodeckii scale[

W s/ν
p (K, E) ; s ∈ R ]

on K is defined by

W s/ν
p (K, E) :=

{
Hs/ν

p (K, E), s ∈ Z,

Bs/ν
p (K, E), s ∈ R\Z.

In general, the diagram

F(Rd, E) F(K, E)

F(K, E)

eK id

rK -

¡
¡¡µ

@
@@I (4.4.4)

5For simplicity of presentation and since it will suffice for our purposes we consider only
UMD spaces and p ∈ (1,∞) although some of the following results could be shown for an arbitrary
Banach space E and p ∈ [1,∞].
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is commuting. Thus rK is a universal retraction, and eK a universal coretraction
for it, in the sense that, given a Banach space G(Rd, E) satisfying

F(Rd, E)
d

↪→ G(Rd, E)
d

↪→ S ′(Rd, E),

the diagram

F(Rd, E) F(K, E)

G(Rd, E) G(K, E)

rK

rK

eK

eK

d d

¾ -

-¾
?

¤¡

?

¤¡
(4.4.5)

is commuting. Furthermore, rK is also independent, in an obvious sense, of the pa-
rameters p, q, and s subject to indicated restrictions. This parameter-independence
is also meant when we use the qualifier ‘universal’.

We now collect some important consequences of (4.4.4) of which we shall make
frequent use in the following, often without explicitly referring to the theorems
below.

4.4.1 Theorem The Besov, Bessel potential, small Nikol ′skĭı, small Hölder,
and Sobolev–Slobodeckii scales on K possess the same embedding and interpolation
properties as the corresponding scales on Rd.

Proof. This follows from Remarks 2.2.1, Proposition I.2.3.2 in H.Amann [4],
and from (4.4.4). ¤

Lemma 2.3.7 shows that differentiation behaves naturally with respect to the
order of the Banach scales on Rd. The same is true for the K-case.

4.4.2 Theorem Suppose α ∈ Nd. Then ∂α is a continuous linear map from
M
B

s/ν
p,q (K, E) into

M
B

(s−α·ω)/ν
p,q (K, E)

and from
Hs/ν

p (K, E) into H(s−α·ω)/ν
p (K, E).

If k ∈ N and kν ≥ α · ω, then ∂α is also a continuous linear map from C
kν/ν
0 (K, E)

into C
(kν−α·ω)/ν
0 (K, E).

Proof. (1) Suppose K = Hd. Given u ∈ H
s/ν
p (Hd, E) and ϕ ∈ D(H̊d),

∂α(e+u)(ϕ) = (−1)|α|(e+u)(∂αϕ) = (−1)|α|u(∂αϕ) = ∂αu(ϕ).

From this, Lemma 2.3.7, Theorem 4.2.4(i), and (4.4.3) we infer that ∂αu belongs
to H

(s−α·ω)/ν
p (Hd, E). Thus the diagram

H
s/ν
p (Hd, E) H

s/ν
p (Rd, E)

H
(s−α·ω)/ν
p (Hd, E) H

(s−α·ω)/ν
p (Rd, E)

e+

r+

∂α ∂α

-

¾
? ?

(4.4.6)
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is commuting. This proves the assertion in this case for the Bessel potential scale.
The proof for the other cases is identical.

(2) Assume K = H̊d. If u ∈ H
s/ν
p (H̊d, E), then e+

0 u ∈ H
s/ν

p,Hd(Rd, E) by The-
orem 4.2.4(ii), using obvious notation. It is clear that then ∂α(e+

0 u) belongs to
H

(s−α·ω)/ν

p,Hd (Rd, E). From this we see that we obtain a commuting diagram by re-

placing Hd, e+, and r+ in (4.4.6) by H̊d, e+
0 , and r+

0 , respectively. This way we
deduce the assertions for K = H̊d.

(3) Using (1) and (2) the assertions for the general case follow now by an
obvious argument from the definition of eK and rK. ¤

Our next theorem shows that Sobolev–Slobodeckii and small Hölder scales of
positive order on K can be characterized intrinsically. For this we define

‖·‖s/ν,p,K

etc. by restricting integration (respectively the essential supremum) in (3.8.3) to K.
For example, suppose s > 0 and d1 ≤ k. Then

[u]ps/ν1,p,K =
∫

(
q
R+)d1

|h|−ps/ν1 ‖4[s/ν1]+1
(h,0) u‖p

Lp(K,E) dh/|h|d1 .

4.4.3 Theorem

(i) Suppose s ≥ 0. Then ‖·‖s/ν,p,K is an equivalent norm for W
s/ν

p (K, E), and
‖·‖s/ν,∞,K is one for Cs

0(K, E).
Thus if k ∈ N and α · ω ≤ kν, then

u ∈ W kν/ν
p (K, E) iff ∂αu ∈ Lp(K, E),

and
u ∈ C

kν/ν
0 (K, E) iff ∂αu ∈ C0(K, E).

(ii) Suppose s > 0. Then

u ∈ Bs/ν
p (K, E) iff u ∈ Lp(K, E) and [u]s/ν,p,K < ∞,

and u ∈ C
s/ν
0 (K, E) iff u belongs to the closure of S(K, E) in

{
u ∈ BUC(K, E) ; [u]s/ν,∞,K < ∞}

.

Proof. (1) Trivially,

‖rKv‖p,K = ‖v‖p,K ≤ ‖v‖p, v ∈ S(Rd, E).

Thus, given u ∈ Lp(K, E), it follows ‖u‖p,K ≤ ‖u‖rKLp by definition of the quotient
norm of rKLp. On the other hand, Lemma 4.1.2 and the definition of e+

0 and eK
imply

‖eKu‖p ≤ c ‖u‖p,K, u ∈ S(K, E).

From this we infer ‖·‖rKLp ≤ c ‖·‖p,K. This proves rKLp(Rd, E) .= Lp(K, E). Simi-
larly, rKC0(Rd, E) .= C0(K, E). Thus (i) is true if s = 0.

(2) Assume s = kν for some k ∈ N. Then (i) follows from (1) and the fact,
obtained from (4.4.6), that ∂α commutes with rK and eK.
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(3) Suppose s > 0. Given u : R+ → E and t > 0, set ψtu(y) := u(ty) for y ≥ 0.
Then one verifies 4k

τ ◦ ψt = ψt ◦ 4k
tτ for τ, t ≥ 0 and k ∈ N.

Set X := Lp(Rd−1, E). Then, by substitution of variables and (4.1.2),
∥∥∥τ−s

∥∥4[s]+1
τ εu

∥∥
Lp(−R+,X)

∥∥∥
p

Lp(
q
R+,dτ/τ)

=
∫ ∞

0

τ−sp

∫ 0

−∞

∥∥∥
∫ ∞

0

h(t)4[s]+1
τ

(
ψtu(−y)

)
dt

∥∥∥
p

X
dy

dτ

τ

=
∫ ∞

0

τ−sp

∫ 0

−∞

∥∥∥
∫ ∞

0

h(t)
(4[s]+1

tτ u
)
(−ty) dt

∥∥∥
p

X
dy

dτ

τ

≤
∫ ∞

0

r−sp

∫ ∞

0

∥∥∥
∫ ∞

0

ts−1/p |h(t)|
∣∣4[s]+1

r u(z)
∣∣ dt

∥∥∥
p

X
dz

dr

r

≤ c
∥∥∥r−s

∥∥4[s]+1
r u

∥∥
Lp(R+,X)

∥∥∥
p

Lp(
q
R+,dr/r)

= c [u]p
s,p,Hd;1

.

This and (4.1.8) imply

[e+u]ps,p;1 = [u]p
s,p,Hd;1

+
∥∥∥τ−s

∥∥4[s]+1
τ εu

∥∥
Lp(−R+,X)

∥∥∥
p

Lp(
q
R+,dτ/τ)

≤ c [u]p
s,p,Hd;1

.

Analogously, [e+u]s,∞;1 ≤ c [u]s,∞,Hd;1. From this and the definition of the (quo-
tient) norm for B

s/ν
p (Hd, E) it follows

‖u‖
B

s/ν
p (Hd,E)

≤ c(‖u‖p,Hd + [u]s/ν,p,Hd), u ∈ S(Hd, E).

Similarly,
‖u‖

C
s/ν
0 (Hd,E)

≤ c ‖u‖s/ν,∞,Hd , u ∈ S(Hd, E).

Since the converse estimates are obvious, (ii) is true for s 6= kν, provided K = Hd.
It is easy to see that it also holds for K = H̊d. Now the extension to an arbitrary
standard corner K is obvious and left to the reader. ¤

Lastly, there is a duality theorem on K which is the analogue of Theorems 3.3.3
and 3.7.1(i).

4.4.4 Theorem Suppose 1 < q < ∞. Then B
s/ν
p,q (K, E) and H

s/ν
p (K, E) are

reflexive. Moreover,
Bs/ν

p,q (K, E)′ .= B
−s/ν
p′,q′ (K∗, E′) (4.4.7)

and
Hs/ν

p (K, E)′ .= H
−s/ν
p′ (K∗, E′). (4.4.8)

Proof. (1) Since, by Lemma 4.1.5, B
s/ν
p,q (K, E) is isomorphic to the closed

linear subspace eKB
s/ν
p,q (K, E) of B

s/ν
p,q (Rd, E) and the latter space is reflexive,

B
s/ν
p,q (K, E) is also reflexive.

(2) Set pK := eKrK. Then (4.4.4) and Lemma 4.1.5 imply

Bs
p,q(Rd, E) = eKBs/ν

p,q (K, E)⊕ (1− pK)Bs/ν
p,q (Rd, E) (4.4.9)
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and

B
−s/ν
p′,q′ (Rd, E′) = eK∗B

−s/ν
p′,q′ (K∗, E′)⊕ (1− pK∗)B

s/ν
p′,q′(R

d, E′). (4.4.10)

Suppose f = eK∗g and u = (1− pK)v with g ∈ B
−s/ν
p′,q′ (K∗, E′) and v ∈ B

s/ν
p,q (Rd, E).

We claim
〈f, u〉 = 0. (4.4.11)

Since S(Rd)⊗ E is dense in S(Rd, E), hence in B
s/ν
p,q (Rd, E), it suffices to prove the

claim for u = ϕ⊗ ξ with ϕ ∈ S(Rd) and ξ ∈ E. In this case

〈f, u〉 =
〈〈eK∗g, (1− eKrK)ϕ〉, ξ〉

E
.

Now it follows from Theorem 4.2.2 and definitions (4.3.6) that
〈
eK∗g, (1− eKrK)ϕ

〉
=

〈
g, rK(1− eKrK)ϕ

〉
= 0.

This proves (4.4.11).
(3) From (4.4.9)–(4.4.11) we deduce

〈w′, w〉 = 〈pK∗w′, pKw〉+
〈
(1− pK∗)w′, (1− pK)w

〉

= 〈u′, u〉K +
〈
(1− pK∗)w′, (1− pK)w

〉

for (w′, w) ∈ B
−s/ν
p′,q′ (Rd, E′)×B

s/ν
p,q (Rd, E) and (u′, u) := (rK∗w′, rKw). Hence, as

rK and rK∗ are isomorphisms on the first summand of (4.4.9) and of (4.4.10),
respectively, we see that

〈·, ·〉K : B
−s/ν
p′,q′ (K∗, E′)×Bs/ν

p,q (K, E) → C

is a separating continuous bilinear form. This implies

B
−s/ν
p′,q′ (K∗, E′) ↪→ Bs/ν

p,q (K, E)′ (4.4.12)

with respect to 〈·, ·〉K.

(4) Suppose f ∈ B
s/ν
p,q (K, E)′. Then g := frK ∈ B

s/ν
p,q (Rd, E)′. Hence Corol-

lary 3.3.4 implies g ∈ B
−s/ν
p′,q′ (Rd, E′). Thus rK∗g ∈ B

−s/ν
p′,q′ (K∗, E′). By the argu-

ments of step (2) we find

〈rK∗g, u〉K = 〈g, eKu〉 = f(u), u ∈ Bs/ν
p,q (K, E).

Combining this with (4.4.12) we obtain assertion (4.4.7).
(5) The proof for the Bessel potential spaces is literally the same, except that

we have to use Theorem 3.7.1(i) instead of Corollary 3.3.4. ¤

4.4.5 Remark The notation introduced above and used throughout most of
this treatise is extremely convenient for handling function spaces on corners. How-
ever, it should be observed that in the particular case of half-spaces it is different
from standard usage. This stems from the fact that we build our theory on the closed
half-space Hn whereas it is common practice to consider the open half-space, usually
denoted by Rn

+. For example, ‘our’ Sobolev–Slobodeckii space W s
p (Hn) corresponds

to the ‘usual’ W s
p (Rn

+), whereas W s
p (H̊n) is usually written as W̊ s

p (Rn
+), etc. ¤
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4.5 Traces on half-spaces

Throughout this section
• E is a UMD space which has property (α) if ω 6= ω(1, . . . , 1);
• 1 < p < ∞, 1 ≤ q ≤ ∞;
• d ≥ 2.

(4.5.1)

Recall that ω′ = (ω2, . . . , ωd) and that Lemmas 3.3.1 and 2.3.5 imply

Bs/ν
p,q (Rd, E) .= Bs/ω

p,q (Rd, E), Hs/ν
p (Rd, E) .= Hs/ω

p (Rd, E).

The following proposition is the basis for defining a universal trace operator for
all Besov and Bessel potential spaces of sufficiently high order.

4.5.1 Proposition Suppose s > ω1/p. Then

Bs/ν
p,q (Rd, E) ↪→ BUC

(
R, Lp(Rd−1, E)

)
(4.5.2)

and
Hs/ν

p (Rd, E) ↪→ BUC
(
R, Lp(Rd−1, E)

)
. (4.5.3)

Proof. (1) In the scalar case (4.5.2) is a special case of the more general
Proposition 1 in W. Farkas, J. Johnsen, and W. Sickel [23]. It is easily verified that
their proof carries over to the vector-valued situation.6

(2) Since H
s/ν
p (Rd, E) ↪→ B

s/ν
p,∞(Rd, E) by Theorem 3.7.1(iii), the assertion fol-

lows from (4.5.2). ¤

Note that

γ : C
(
R,S ′(Rd−1, E)

) → S ′(Rd−1, E), u 7→ u(0)

is a well-defined linear map, the trace operator (with respect to x1 = 0). Given
any Banach space F(Rd, E) satisfying (with obvious identifications)

S(Rd, E) ↪→ F(Rd, E) ↪→ C
(
R,S ′(Rd−1, E)

)
,

the restriction of γ to F(Rd, E) is again denoted by γ and called trace operator
on F(Rd, E). The image space γF(Rd, E) is the trace space of F(Rd, E). Thus

γF(Rd, E) ↪→ S ′(Rd−1, E),

that is, each element in the trace space is a temperate distribution on Rd−1.
In the cases of interest for us we have more information. Namely, by Proposi-

tion 4.5.1,
γ : Bs/ν

p,q (Rd, E) → Lp(Rd−1, E)
is well-defined for s > ω1/p. Similarly, if s > ω1/p, then

γ : Hs/ν
p (Rd, E) → Lp(Rd−1, E).

Thus, if s > ω1/p,
γBs/ν

p,q (Rd, E) ↪→ Lp(Rd−1, E)

6By Lemma 1.2.1 all quasi-norms are equivalent. Thus, instead of basing our considerations
on Λ, we can equally well use the Euclidean ω-quasi-norm E, as these authors do.
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and
γHs/ν

p (Rd, E) ↪→ Lp(Rd−1, E).
In fact, in these cases the trace spaces can be explicitly characterized by anisotropic
Besov spaces.

4.5.2 Theorem Suppose s > ω1/p. Then

γ
M
B

s/ν
p,q (Rd, E) .=

M
B

(s−ω1/p)/ω′
p,q (Rd−1, E) (4.5.4)

and
γHs/ν

p (Rd, E) .= B(s−ω1/p)/ω′
p (Rd−1, E). (4.5.5)

Moreover, γ is a retraction possessing a universal coretraction.

Proof. (1) In the Besov space case the assertion follows by literally transcrib-
ing the proof of the corresponding part of Theorem 3 of W. Farkas, J. Johnsen, and
W. Sickel [23].

(2) To prove (4.5.5) we need the vector-valued anisotropic Triebel–Lizorkin
spaces F

s/ν
p,q (Rd, E) which are defined as in the scalar case (see [23] and, for the

vector-valued isotropic case, Section 15 in H. Triebel [67] or H.-J. Schmeißer and
W. Sickel [54]). It is not difficult to verify, writing for abbreviation B

s/ν
p,q for

B
s/ν
p,q (Rd, E) etc.,

B
m/ν
p,1 ↪→ F

m/ν
p,1 ↪→ Wm/ν

p ↪→ Fm/ν
p,∞ ↪→ Bm/ν

p,∞ , m ∈ νN.

Using J t ∈ Lis(F (s+t)/ν
p,q , F

s/ν
p,q ) for s, t ∈ R and (3.7.1) it thus follows

F
s/ν
p,1 ↪→ Hs/ν

p ↪→ F s/ν
p,∞, s ∈ R. (4.5.6)

Next one verifies that the proof of Proposition 8 in [23] carries over to the vector-
valued situation to give

γ
(
F

s/ν
p,1 (Rd, E)

)
= γ

(
F s/ν

p,∞(Rd, E)
)

(also see Proposition 10 in [54]). Hence the assertion is obtained from (4.5.6)
provided we show that γ is a retraction from

F s/ν
p,q (Rd, E) onto B(s−ω1/p)/ω′

p (Rd−1, E)

for q ∈ {1,∞}. This is done by modifying appropriately the proof of Theorem 2.7.2
in H. Triebel [66]. ¤

4.5.3 Remark In the scalar case it is well-known that

F s
p,2(Rd) .= Hs

p(Rd), 1 < p < ∞. (4.5.7)

However, this is not true, in general, in the vector-valued situation. In fact, the
vector-valued analogue of (4.5.7) holds iff E is a Hilbert space (cf. Remark 7 in
H.-J. Schmeißer and W. Sickel [54]). ¤

The trace operator for Hd is defined by

γ∂Hd := γ ◦ e+.

The following theorem is almost evident. To simplify the notation we write H
instead of Hd.
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4.5.4 Theorem Suppose s > ω1/p. Then γ∂H is a retraction from
M
B

s/ν
p,q (H, E) onto

M
B

(s−ω1/p)/ω′
p,q (∂H, E)

and from
Hs/ν

p (H, E) onto B(s−ω1/p)/ω′
p (∂H, E).

It possesses a universal coretraction.

Proof. We consider the H-case. The proof for Besov spaces is identical.

First note that γ∂H maps Fs := Hs
p(H, E) continuously into

∂Fs := B(s−ω1/p)/ω′
p (∂H, E).

Let γc be a universal coretraction for γ. Then

γc
∂H := r+ ◦ γc ∈ L(∂Fs, Fs).

Suppose v ∈ S(∂H, E). Then γc
∂Hv ∈ Ft for all t > 0. Thus γc

∂Hv is smooth by the
Sobolev embedding theorem 3.9.1. Hence, given x′ ∈ Rd−1,

γ∂Hγc
∂Hv(x′) = (r+γcv)(0, x′) = γcv(0, x′) = γγcv(x′) = v(x′).

This proves γ∂Hγc
∂Hv = v for v ∈ S(∂H, E). Thus, by density and continuity, γc

∂H is
a right inverse for γ∂H. ¤

4.6 Higher order traces on half-spaces

Unless explicitly stated otherwise, throughout the rest of this part it is assumed
• E is a UMD space which has property (α) if ω 6= ω(1, . . . , 1);
• 1 < p < ∞, 1 ≤ q ≤ ∞.

We write H := Hd and denote by n the outer (unit) normal on ∂H, that is,
n := (−1, 0, . . . , 0). Then, given j ∈ N,

∂j
n := (−1)jγ∂H ◦ ∂j

1

is the the j-th order normal derivative on ∂H. Note ∂0
n = γ∂H.

Generalizing the Trace Theorem 4.5.4 we shall now show that ∂j
n is a retrac-

tion onto appropriate boundary spaces. The proof will be based on a well-known
characterization of real interpolation spaces by analytic semigroups due to H. Ko-
matsu [43]. For the reader’s convenience we formulate this theorem here since it
will also be used later.

Henceforth,

L∗q := Lq(
q
R+, dt/t)

for abbreviation. Recall that H−(X) is the set of all negative infinitesimal gen-
erators of exponentially decaying strongly continuous analytic semigroups on the
Banach space X.
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4.6.1 Proposition Let X be a Banach space and A ∈ H−(X). Then, given
0 < θ < 1 and m ∈

q
N,

x 7→ ∥∥ ‖tm(1−θ)Ame−tAx‖X

∥∥
L∗q

is an equivalent norm for
(
X, D(Am)

)
θ,q

.

Proof. See, for example, Theorem 1.14.5 in H. Triebel [65] for a proof. ¤
For completeness we include the case j = 0 in the following theorem, although

it is already covered by Theorem 4.5.4. Note, however, that our construction of a
universal coretraction is independent of the latter theorem.

4.6.2 Theorem Suppose j ∈ N and s > ω1(j + 1/p). Then ∂j
n is a retraction

from
M
B

s/ν
p,q (H, E) onto

M
B

(s−ω1(j+1/p))/ω′
p,q (∂H, E) (4.6.1)

and from
Hs/ν

p (H, E) onto B(s−ω1(j+1/p))/ω′
p (∂H, E). (4.6.2)

There exists a universal coretraction γc
j for it. Furthermore, γc

j is for every s ∈ R
a continuous linear map from the space on the right side of (4.6.1), respectively
(4.6.2), into the one on the left side.7

Proof. (1) It follows from Lemma 2.3.7 and Theorem 4.5.4 that ∂j
n maps the

first space of (4.6.1), resp. (4.6.2), continuously into the second one.

(2) First suppose s = ω1(j + m) for some m ∈
q
N. Then, by Theorems 3.7.1(ii),

3.7.3, and Section 4.4,

Hs/ν
p (H, E) .= Lp

(
R+,Hs/ω′(Rd−1, E)

) ∩W j+m
p

(
R+, Lp(Rd−1, E)

)
. (4.6.3)

Denote by ω′ the least common multiple of ω2, . . . , ωd and set

K(ξ′, η) :=
(
|η|2ω′ +

∑d
j=2|ξj |2ω′/ωj

)1/2ω′

, ξ′ ∈ Rd−1, η ∈ H.

Then F := Lp(Rd−1, E) is admissible and
[
H

t/ω′
p (Rd−1, E) ; t ∈ R ]

is the frac-
tional power scale generated by

(
F, K1(D′)

)
.

Put A := Kω1
1 (D′). Theorem 2.2.4 implies

A ∈ H−(F ), D(Ak) .= Hkω1/ω′
p (Rd−1, E), k ∈ N. (4.6.4)

In particular, by (4.6.3)

Hs/ν
p (Rn, E) .= Lp

(
R+, D(Aj+m)

) ∩W j+m
p (R+, F ). (4.6.5)

(3) Set

γc
jv :=

(
t 7→ (−1)j tj

j!
e−tAv

)
, t ≥ 0, v ∈ F. (4.6.6)

Then

∂kγc
j =

k∑

i=0

(−1)j+k−i
(k

i

) tj−i

(j − i)!
Ak−ie−tA, 0 ≤ k ≤ j.

7Observe that this means that any two realizations of γc
j on different function spaces coincide

on all common elements. Henceforth, we express this by calling such a map again universal.
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Consequently,

(−1)k∂kγc
jv(0) =

{ 0, 0 ≤ k ≤ j − 1,

v, k = j.
(4.6.7)

Furthermore,

∂j+1γc
j =

j−1∑

i=0

(−1)i
(j

i

) tj−i−1

(j − i− 1)!
Aj−ie−tA −A∂jγc

j .

Hence, by induction,

∂j+mγc
j =

j∑

i=0

cit
iAi+me−tA, (4.6.8)

where ci = ci(j,m). Thus

∥∥ ‖∂j+mγc
jv(t)‖F

∥∥
Lp(R+)

≤ c

j∑

i=0

∥∥ ‖ti+1/pAi+me−tAv‖F

∥∥
L∗p

. (4.6.9)

Fix i ∈ {1, . . . , j} and set θ := (m− 1/p)/(i + m) so that i + 1/p = (i + m)(1− θ).
Then Proposition 4.6.1 implies

∥∥ ‖ti+1/pAi+me−tAv‖F

∥∥
L∗p
≤ ‖v‖(F,D(Ai+m))θ,p

. (4.6.10)

From (4.6.4) and Theorem 3.7.1(iv) we infer

(F, D(Ai+m))θ,p
.=

(
F, H(i+m)ω1/ω′

p (Rd−1, E)
)
θ,p

.= Bω1(m−1/p)/ω′
p (Rd−1, E).

For abbreviation, we set

Hσ/ν
p := Hσ/ν

p (H, E), ∂Hσ/ν
p := B(σ−ω1(j+1/p))/ω′

p (∂H, E)

for σ ∈ R. Then (4.6.9) implies

‖∂j+mγc
jv‖Lp ≤ c ‖v‖

∂H
s/ν
p

. (4.6.11)

(4) By the definition of γc
j∥∥ ‖γc

jv‖D(Aj+m)

∥∥
Lp(R+)

≤ c
∥∥ ‖Aj+mγc

jv‖F

∥∥
Lp(R+)

≤ c
∥∥ ‖tj+1/pAj+me−tAv‖F

∥∥
L∗p

.
(4.6.12)

Hence it follows from (4.6.10), as in step (3),

‖γc
jv‖Lp(R+,D(Aj+m)) ≤ c ‖v‖

∂H
s/ν
p

. (4.6.13)

Since F is a UMD space, Theorem 2.3.8, Proposition 3.8.3, and Theorem 4.4.3
imply

‖·‖Lp(R+,F ) + ‖∂j+m
1 · ‖Lp(R+,F )

is an equivalent norm for W j+m
p (R+, F ). Hence we infer from (4.6.5) and estimates

(4.6.11) and (4.6.13)
γc

j ∈ L(∂Hs/ν
p , Hs/ν

p ).

Now (4.6.7) implies that γc
j is a coretraction for ∂j

n.



96 4 DISTRIBUTIONS ON HALF-SPACES AND CORNERS

(5) Suppose ω1(j + 1) < s < ω1(j + m) for some m ∈ N. Then, by step (4),

γc
j ∈ L(∂Hω1(j+1)/ν

p ,Hω1(j+1)/ν
p ) ∩ L(∂Hω1(j+m)/ν

p ,Hω1(j+m)/ν
p ).

Thus by complex interpolation, using (3.4.1) and Theorems 3.7.1(iv) and 4.4.1, it
follows that γc

j is a coretraction for ∂j
n ∈ L(Hs/ν

p , ∂H
s/ν
p ).

(6) Assume s < ω1(j + 1) and set ρ := ω1(j + 1)− s. Then

A−ρ/ω1 = K−ρ
1 (D′) ∈ L(∂Hs/ν

p , ∂Hω1(j+1)/ν
p )

by Lemma 2.3.1. Since e−tA commutes with the powers of A it follows that there
exists a unique extension of γc

j over ∂H
s/ν
p , again denoted by the same symbol,

such that the diagram

γc
j

γc
j

∂H
ω1(j+1)/ν
p

∂H
s/ν
p

H
ω1(j+1)/ν
p

H
s/ν
p

Aρ/ω1A−ρ/ω1

-

-

6

?

is commuting. Note that the map represented by the right vertical arrow is well-
defined on smooth functions as a map acting with respect to the variable x′ only.
Hence by density and continuity it is well-defined on all of H

ω1(j+1)/ν
p . It is clear

that γc
j is a coretraction for ∂j

n if s > ω1(j + 1/p). This proves (4.6.2).

(7) Statement (4.6.1) follows now by interpolation, due to (3.3.13) and The-
orems 3.7.1(iv) and 4.4.1. The universality of γc

j is obvious and the last claim is
obtained by observing that there is no restriction from below on s in step (6). ¤

4.6.3 Theorem Let ji ∈ N satisfy j1 < · · · < jk. Then there exists a universal
map γc from

k∏

i=1

M
B

(s−ω1(ji+1/p))/ω′
p,q (∂H, E) into

M
B

s/ν
p,q (H, E) (4.6.14)

and from
k∏

i=1

B(s−ω1(ji+1/p))/ω′
p (∂H, E) into Hs/ν

p (H, E) (4.6.15)

for s ∈ R such that

∂ji
n γc(g1, . . . , gk) = gi if s > ω1(ji + 1/p).

In particular, γc is a universal coretraction for (∂j1
n , . . . , ∂jk

n ) if s > ω1(jk + 1/p).

Proof. It is clear that (∂j1
n , . . . , ∂jk

n ) is a continuous linear map from the second
space of (4.6.14), respectively (4.6.15), into the first one, provided s > ω1(jk + 1/p).

Denote by γc
j the universal map constructed in the preceding proof such that

it is a coretraction for ∂j
n if s > ω1(j + 1/p). Note that (4.6.7) implies ∂j

nγc
k = 0 if

j < k and s > ω1(j + 1/p). Suppose (g1, . . . , gk) belongs to the product space in
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(4.6.14), respectively (4.6.15). Set u1 := γc
j1

g1. If 2 ≤ i ≤ k and u1, . . . , ui−1 are
already defined, then put

ui := ui−1 +

{
γc

ji
(gi − ∂ji

n ui−1), if s > ω1(ji + 1/p),

γc
ji

gi otherwise.

This induction argument defines uk in
M
B

s/ν
p,q (H, E), respectively in H

s/ν
p (H, E), and

∂ji
n uk = gi if s > ω1(ji + 1/p). Thus, setting γc(g1, . . . , gk) := uk, one verifies by

induction that γc has the stated continuity properties. ¤

4.7 Vanishing traces

Our next theorem gives an important characterization of anisotropic Besov and
Bessel potential spaces on H̊ in terms of the corresponding spaces on H and higher
order trace operators.

4.7.1 Theorem

(i) Suppose k ∈ N and ω1(k + 1/p) < s < ω1(k + 1 + 1/p). Then
M
B

s/ν
p,q (H̊, E) =

{
u ∈ M

B
s/ν
p,q (H, E) ; ∂j

nu = 0, 0 ≤ j ≤ k
}

(4.7.1)

and

Hs/ν
p (H̊, E) =

{
u ∈ Hs/ν

p (H, E) ; ∂j
nu = 0, 0 ≤ j ≤ k

}
. (4.7.2)

(ii) If ω1(−1 + 1/p) < s < ω1/p, then

Bs/ν
p,q (H̊, E) = Bs/ν

p,q (H, E), q 6= ∞,

and
Hs/ν

p (H̊, E) = Hs/ν
p (H, E).

(iii) Suppose 0 ≤ s < ω1/p. Then
M
B

s/ν
p,∞(H̊, E) =

M
B

s/ν
p,∞(H, E).

Proof. (1) Let the hypotheses of (i) be satisfied. Theorem 4.6.3 implies
that the second space in (4.7.1), respectively (4.7.2), is a closed linear subspace
of

M
B

s/ν
p,q (H, E), respectively H

s/ν
p (H, E), and it is obvious that

M
B

s/ν
p,q (H̊, E), respec-

tively H
s/ν
p (H̊, E), is contained in it. Thus it suffices to show that S(H̊, E) is dense

in the space characterized by vanishing traces.
(2) Fix any t satisfying s < t < ω1(k + 1 + 1/p). Then, by8 Theorem 3.3.2,

Bt/ν
p (H, E)

d
↪→ M

B
s/ν
p,q (H, E).

Furthermore, using also Theorem 3.7.1(iii),

Bt/ν
p (H, E)

d
↪→ Hs/ν

p (H, E).

8For simplicity, we refer here and in similar situations only to embedding and interpolation
theorems, etc., on Rd. This is justified by the results of Section 4.4.
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Suppose u ∈ H
s/ν
p (H, E) satisfies ∂j

nu = 0 for 0 ≤ j ≤ k. Let ε > 0 be given. Then
there exists v ∈ B

t/ν
p (H, E) satisfying

‖u− v‖
H

s/ν
p (H,E)

< ε.

Hence the norm of ∂j
nv = −∂j

n(u− v) is estimated in B
(s−ω1(j+1/p))/ω′
p (∂H, E)

by cε for 0 ≤ j ≤ k. Let γc be a coretraction for (∂0
n, . . . , ∂k

n), guaranteed by
Theorem 4.6.3. Set

w := v − γc(∂0
nv, . . . , ∂k

nv). (4.7.3)

Then w belongs to B
t/ν
p (H, E), satisfies ∂j

nw = 0 for 0 ≤ j ≤ k, and

‖u− w‖
H

s/ν
p (H,E)

≤ cε.

This shows that {
u ∈ Bt/ν

p (H, E) ; ∂j
nu = 0, 0 ≤ j ≤ k

}
(4.7.4)

is dense in the second space in (4.7.2).
Similarly, we see that (4.7.4) is dense in the second space of (4.7.1). Thus it

suffices to prove the assertion for

Bs/ν
p (H̊, E), ω1(k + 1) ≤ s < ω1(k + 1 + 1/p). (4.7.5)

(3) Let s be as in (4.7.5). Suppose

u ∈ {
v ∈ Bs/ν

p (H, E) ; ∂j
nv = 0, 0 ≤ j ≤ k

}
.

Since S(H, E) is dense in B
s/ν
p (H, E), given ε > 0 we find v ∈ S(H, E) with

‖u− v‖
B

s/ν
p (H,E)

< ε.

Define w by (4.7.3). Since v ∈ B
t/ν
p (H, E) for each t > 0, Theorem 4.6.3 and the

Sobolev embedding Theorem 3.9.1 imply

w ∈ C∞0 (H, E) :=
⋂
t>0

Ct
0(H, E), ∂j

1w(0, x′) = 0, 0 ≤ j ≤ k.

Thus we can assume

u ∈ C∞0 ∩Bs/ν
p (H, E), ∂j

1u(0, x′) = 0, 0 ≤ j ≤ k. (4.7.6)

(4) Let F be a Banach space. Choose ϕ ∈ D(R+) satisfying ϕ(t) = 1 for
0 ≤ t ≤ 1/2 and ϕ(t) = 0 for t ≥ 1. Put ϕε(t) := ϕ(t/ε) for t ≥ 0 and ε > 0. For
v ∈ Lp(H, F ) put (ϕεv)(x) := ϕε(t)u(t, x′) for a.a. x = (t, x′) ∈ H. Suppose m ∈ N.
Proposition 1.1.1(i) and (ii) and Leibniz’ rule imply

‖ϕεv‖m,p ≤ c ‖v‖m,p, ε ≥ 1, v ∈ Wm
p (H, F ). (4.7.7)

It is obvious that, given v ∈ Lp(H, F ),

ϕεv → v in Lp(H, F ) as ε →∞. (4.7.8)

It follows from Proposition 3.5.3 and Theorem 4.4.1 that

Br
p(H, F ) .=

(
Lp(H, F ),Wm

p (H, F )
)
r/m,p

, 0 < r < m.

Thus
‖·‖Br

p
≤ c ‖·‖1−r/m

p ‖·‖r/m
m,p . (4.7.9)
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Hence we deduce from (4.7.7) and (4.7.8) that, for r > 0 and v ∈ Br
p(H, F ),

ϕεv → v in Br
p(H, F ) as ε →∞. (4.7.10)

Let X := Lp(Rd−1, E) and Y := B
s/ω′
p (Rd−1, E). Then Theorems 3.6.7 and 4.4.3

imply
Bs/ν

p (H, E) .= Lp(R+, Y ) ∩Bs/ω1
p (R+, X). (4.7.11)

Suppose u satisfies (4.7.6) and set u = u(·, x′) from now on. Then ϕεu ∈ D(R+, Y ).
This shows that we can assume

u ∈ D(R+, Y ), ∂ju(0) = 0, j = 0, . . . , k. (4.7.12)

Then (1− ϕε)u ∈ D(
q
R+, Y ) and it is obvious that (1− ϕε)u → u in Lp(R+, Y )

as ε → 0. Set m := k + 2. Thus we see from (4.7.11) and Theorem 3.6.1 that it
remains to show, due to u− (1− ϕε)u = ϕεu and Remark 3.6.2,

[ϕεu]ps/ω1,p =
∫ ∞

0

∫ ∞

0

‖4m
h (ϕεu)(y)‖p

X

hps/ω1
dy

dh

h
→ 0 (4.7.13)

as ε → 0.
(5) By induction one verifies

4m
h (ϕεu)(y) =

m∑

j=0

(m

j

)
4j

hϕε(y)4m−j
h u(y + jh). (4.7.14)

Fix j ∈ {1, . . . , m}. Note 4hϕε(y) = 0 if y ≥ ε. Thus, by a change of variables,
∫ ∞

0

∫ ∞

0

‖4j
hϕε(y)4m−j

h u(y + jh)‖p
X

hps/ω1
dy

dh

h

= ε1−ps/ω1

∫ 1

0

∫ 1

0

|4j
tϕ(z)|p

tp(s/ω1−m+j)

‖4m−j
εt u(ε(z + tj))‖p

X

tp(m−j)
dz

dt

t
.

(4.7.15)

By the mean value theorem we deduce, setting x := z + tj,

‖4m−j
εt u(εx))‖X

≤ (εt)m−j

∫ 1

0

· · ·
∫ 1

0

∥∥∂m−ju
(
ε(x + (τ1 + · · ·+ τm−j)t)

)∥∥
X

dτ1 · · · dτm−j .

From ∂iu(0) = 0 for 0 ≤ i ≤ k and the fact that u has compact support it follows

∂m−ju(εx) = (εx)j−1vj(εx), x ∈ R+,

for some vj ∈ D(R+, Y ). Hence

‖4m−j
εt u(εz))‖X ≤ cjε

m−1tm−j(1 + tj).

Similarly,
|4j

tϕ(y)| ≤ cjt
j , 0 ≤ y ≤ 1, 0 < t ≤ 1.

Thus we find that the first double integral in (4.7.15) is estimated from above by

cε1+p(m−1−s/ω1)

∫ 1

0

tp(m−s/ω1)−1 dt.

Since m− s/ω1 = k + 2− s/ω1 > 1− 1/p this integral exists. Hence the first inte-
gral in (4.7.15) is from estimated above by cεσ, where σ := 1 + p(k + 1− s/ω1) > 0.
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(6) Fix δ > 0 such that u(y) = 0 for y ≥ δ. Since ϕε(y) = 0 for y ≥ ε it follows
∫ ∞

0

∫ ∞

0

ϕε(y) ‖4m
h u(x)‖p

X

hps/ω1
dy

dh

h
≤ c

∫ δ

0

∫ ε

0

‖4m
h u(y)‖p

X

hps/ω1
dy

dh

h

≤ cε

∫ δ

0

hp(m−s/ω1)−1 dh ≤ cε.

From this and step (5) we infer, due to (4.7.14), that (4.7.13) is true. This proves
assertion (i).

(7) Suppose 0 ≤ s < ω1/p. It is clear that
M
B

s/ν
p,q (H̊, E) is a linear subspace

of
M
B

s/ν
p,q (H, E). Similarly, H

s/ν
p (H̊, E) ⊂ H

s/ν
p (H, E). Thus, as above, it remains to

show that D(H̊, E) is dense in
M
B

s/ν
p,q (H, E), where 0 < s < ω1/p. But this follows

from steps (5) and (6) setting there m = 1. This proves (iii) and assertion (ii) for
s ≥ 0.

(8) The missing part of statement (ii) is now obtained by duality, due to The-
orem 4.4.4. ¤

Observe D(H̊, E)
d

↪→ S(H̊, E) and (4.4.3) imply that
M
B

s/ν
p,q (H̊, E), respectively

H
s/ν
p (H̊, E), is the completion of D(H̊, E) in B

s/ν
p,q (H, E), respectively H

s/ν
p (H, E).

Hence, e.g. Theorem 2.9.3 in H. Triebel [65], Theorem 4.7.1 is well-known in the
(scalar) isotropic case. Note, however, that even in this case our proof differs
substantially from the one given in Triebel’s book.

4.7.2 Corollary If s < ω1/p, then D(H̊, E) is dense in
M
B

s/ν
p,q (H, E) and in

H
s/ν
p (H, E).

Proof. Setting Fs(X) :=
M
B

s/ν
p,q (X, E), resp. Fs(X) := H

s/ν
p (X, E), where X

equals either H or H̊, the claim follows from

Ft(H̊) = Ft(H)
d

↪→ Fs(H)

for t > 0 with s < t < ω1/p. ¤

Note that −n = (1, 0, . . . , 0) is the outer unit normal of −H, thus the inner
unit normal of H. Suppose j ∈ N and s > ω1(j + 1/p). Then

∂j
−n := γ∂H ◦ ∂j

1 ∈ L
( M
B

s/ν
p,q (−H, E),

M
B

(s−ω1(j+1/p))/ω′
p,q (∂H, E)

)

is the j-th outer normal derivative for −H on ∂(−H) = ∂H and

∂j
−n ∈ L

( M
B

s/ν
p,q (H, E),

M
B

(s−ω1(j+1/p))/ω′
p,q (∂H, E)

)

is the j-th inner normal derivative for H on ∂H. For u ∈ M
B

s/ν
p,q (H, E) it follows

∂j
nu = (−1)j∂j

−nu. (4.7.16)

Similar results are valid for u ∈ H
s/ν
p (H, E).

The following patching theorem shows that there is a converse result. It is an
easy consequence of Theorems 4.6.3 and 4.7.1.



4.8 NORMAL BOUNDARY OPERATORS ON HALF-SPACES 101

4.7.3 Theorem Suppose either s < ω1/p or

ω1(k + 1/p) < s < ω1(k + 1 + 1/p) (4.7.17)

for some k ∈ N. Let

u± ∈ M
B

s/ν
p,q (±H, E), resp. u± ∈ Hs/ν

p (±H, E),

and suppose
∂j

nu+ = (−1)j∂j
−nu−, 0 ≤ j ≤ k, (4.7.18)

if (4.7.17) is true. Set

u :=

{
u+ on H,

u− on −H.

Then u belongs to
M
B

s/ν
p,q (Rd, E), respectively H

s/ν
p (Rd, E).

Proof. (1) Let (4.7.17) be satisfied. Set Fs(X) :=
M
B

s/ν
p,q (X, E), respectively

Fs(X) := H
s/ν
p (X, E) for X ∈ {Rd,±H}. Let v := u+ − r+e−u−. Then v ∈ Fs(H).

Hence (4.7.16) and (4.7.18) imply

∂j
nv = ∂j

nu+ − ∂j
ne−u− = ∂j

nu+ − (−1)j∂j
−nu− = 0.

Thus v ∈ Fs(H̊) by Theorem 4.7.1. Therefore w := e−u− + e+
0 v ∈ Fs(Rd) with

r−w = u− and r+w = r+e−u− + r+e+
0 v = u+. Consequently, u = w ∈ Fs(Rd).

(2) Suppose s < ω1/p. Then D(±H̊, E) is dense in Fs(±H) by Corollary 4.7.2.
It is obvious that the claim is true for u± ∈ D(±H̊, E). Hence the assertion holds
in this case as well. ¤

4.8 Normal boundary operators on half-spaces

In this section we assume in addition
• F is a finite-dimensional Banach space and

F0, . . . , Fn are nontrivial linear subspaces thereof;
• 0 ≤ m0 < m1 < · · · < mn are integers,

(4.8.1)

where ‘nontrivial’ means 6= {0}. Then F := (F0, . . . , Fn) is said to be a sequence
of range spaces and ~m := (m0, . . . ,mn) an order sequence of length n + 1.

We set

B = B(F) :=
{

b = (b0, . . . , bn) ∈ L(
F,

∏n
i=0Fi

)
; bi is surjective

}
. (4.8.2)

It is easily verified, by introducing a basis in F and identifying it with CN , for
example, that

B is open in L(
F,

∏n
i=0Fi

)
. (4.8.3)

Given a finite-dimensional Banach space G, we identify a ∈ L(F, G) with

1⊗ a : E ⊗ F → E ⊗G, e⊗ f 7→ e⊗ af

so that a ∈ L(E ⊗ F, E ⊗G).



102 4 DISTRIBUTIONS ON HALF-SPACES AND CORNERS

Keeping this identification in mind we define, for b ∈ B, a normal boundary
operator B of order mn for the half-space H = Hd by

B = B(b) := (B0, . . . ,Bn), Bi := bi∂
mi
n ,

where ‘normal’ refers to the fact that the bi are surjective.
We assume

Fs ∈ {
Hs/ν

p ,
M
B

s/ν
p,q

}

and often write Fs(H) for Fs(H, E ⊗ F ). We also define

∂BFs(∂H) = ∂BFs(∂H, E ⊗ F ) :=
n∏

i=0

M
B

(s−ω1(mi+1/p))/ω′
p,q (∂H, E ⊗ Fi)

for s ∈ R, where it is understood that q = p if Fs = H
s/ν
p . Note ∂BFs(∂H, E ⊗ F )

is independent of b ∈ B. It depends only on the order sequence ~m and on F.
Moreover, given s > ω1(mn + 1/p),

B → L(
Fs(H), ∂BFs(∂H)

)
, b 7→ B(b)

is a well-defined analytic map. In fact, it is the restriction to B of a continuous
linear map.

The following theorem is an easy generalization of Theorem 4.6.3. It is of great
importance in the weak theory of elliptic and parabolic boundary value problems
developed in Part 2.

4.8.1 Theorem Suppose b ∈ B. There exists a universal map Bc = Bc(b) from
n∏

i=0

B(s−ω1(mi+1/p))/ω′
p (∂H, E ⊗ Fi) into Hs/ν

p (H, E ⊗ F )

and from
n∏

i=0

M
B

(s−ω1(mi+1/p))/ω′
p,q (∂H, E ⊗ Fi) into

M
B

s/ν
p,q (H, E ⊗ F )

for s ∈ R, satisfying

BiBc(g0, . . . , gn) = gi if s > ω1(mi + 1/p). (4.8.4)

In particular, Bc is a universal coretraction for B if s > ω1(mn + 1/p). The map
b 7→ Bc(b) is analytic on B, uniformly with respect to s ∈ R.

Proof. Suppose b ∈ B. Since bi : F → Fi is surjective, we can find a right
inverse bc

i : Fi → F for it. Set

Gs(∂H) :=
n∏

i=0

M
B

(s−ω1(mi+1/p))/ω′
p,q (∂H, E ⊗ F ), s ∈ R. (4.8.5)

Theorem 4.6.3 guarantees9 the existence of a universal R ∈ L(
Gs(∂H),Fs(H)

)
sat-

isfying
∂mi

n R(h0, . . . , hn) = hi, s > ω1(mi + 1/p).

9Recall E ⊗ F ∼= EN with N := dim(F ), and EN ∼= L2(X, µ, E) with X := {1, . . . , N} and
µ the counting measure. Thus E ⊗ F is a UMD space which has property (α) if E has it.
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Then
g = (g0, . . . , gn) 7→ Bcg := R(bc

0g
0, . . . , bc

ngn)

defines a universal Bc ∈ L(
∂BFs(∂H), Fs(H)

)
for s ∈ R such that

BiBcg = bi∂
mi
n R(bc

0g
0, . . . , bc

ngn) = bib
c
ig

i = gi, s > ω1(mi + 1/p).

Hence Bc is a universal coretraction for B if s > ω1(mn + 1/p).
It is not difficult to verify that we can choose the right inverse bc

i such that the
map B → L(Fi, F ), b 7→ bc

i is analytic. Now the last assertion is obvious. ¤

We define

Fs
B = Fs

B(H) :=
{

u ∈ Fs(H) ; Biu = 0, s > ω1(mi + 1/p)
}

(4.8.6)

for s 6= ω1(mj + 1/p) and 0 ≤ j ≤ n. In other words, Fs
B is the kernel of B|Fs,

where B|Fs contains only those parts of B which are well-defined. In particular,
Fs
B = Fs if s < ω1(m0 + 1/p). Note that Fs

B is not defined if s is one of the singular
values ω1(mj + 1/p), 0 ≤ j ≤ n.

4.8.2 Corollary Suppose s > ω1(mn + 1/p) and b ∈ B. Fix a coretraction Bc

for B. Then
Fs(H) = Fs

B(H)⊕ Bc∂BFs(∂H).

Proof. Lemma 4.1.5. ¤

Suppose m ∈ N with m ≥ mn and

• either mn < m or Fi 6= F for at least one i ∈ {0, . . . , n}. (4.8.7)

Let F̃ =
(
F̃0, . . . , F̃ñ

)
and ~̃m = (m̃0, . . . , m̃ñ) be a sequence of range spaces and an

order sequence of length ñ, respectively. Then
(
F̃, ~̃m

)
is complementary to (F, ~m)

to order m, provided:
(i) {m0, . . . , mn} ∪ {m̃0, . . . , m̃ñ} = {0, . . . ,m};
(ii) If mi /∈ {m̃0, . . . , m̃ñ}, then Fi = F ;

(iii) If m̃k /∈ {m0, . . . ,mn}, then F̃k = F ;

(iv) If mi = m̃k for some k ∈ {0, . . . , ñ}, then F = Fi ⊕ F̃k.
In the ‘scalar case’ where dim(F ) = 1 (then we identify E ⊗ F ∼= E ⊗ C with E,

of course) these conditions reduce to (i), that is,

{m̃0, . . . , m̃ñ} = {0, . . . , m}\{m0, . . . , mn}.
Let

(
F̃, ~̃m

)
be complementary to (F, ~m) to order m. Denote by πik the projection

of F onto Fi parallel to F̃k if (iv) is satisfied. Suppose b ∈ B(F) and b̃ ∈ B
(
F̃

)
. Then

B̃ = B̃(
b̃
)

=
(B̃0, . . . , B̃ñ

)
, B̃j = b̃j∂

m̃j
n

is complementary to B to order m, provided

biπik ⊕ bk(1− πik) ∈ Laut(F )

if mi = m̃k with (i, k) ∈ {0, . . . , n} × {0, . . . , ñ}.



104 4 DISTRIBUTIONS ON HALF-SPACES AND CORNERS

Note that (4.8.7) implies B̃ 6= 0, and B̃ is a normal boundary operator. Fur-
thermore,

(B, B̃) ∈ L(
Fs(H), ∂BFs(∂H)× ∂B̃Fs(∂H)

)
, s > ω1(m + 1/p).

4.8.3 Remarks (a) Let m ≥ mn satisfy (4.8.7). Then there exists a bound-
ary operator B̃ complementary to B to order m.

Proof. (1) Let G be a proper linear subspace of F and suppose b ∈ L(F, G)
is surjective. Choose an ordered basis {g1, . . . , gM} of G and extend it to an or-
dered basis {f1, . . . , fN} of F . Denote by [bα

β ] ∈ CM×N the corresponding matrix
representation of b. Since b is surjective the M rows of [bα

β ] are linearly inde-
pendent. Hence there exists an ordered subset {h1, . . . , hM} of {f1, . . . , fN} such
that the (M ×M)-submatrix of [bα

β ] containing only the corresponding columns is
nonsingular. Denote by χ the projection onto the subspace H of F spanned by
{h1, . . . , hM}, parallel to the subspace H̃ spanned by the remaining elements of
{f1, . . . , fN}. Then F = H ⊕ H̃ and

c :=

[
bχ b(1− χ)
0 1− χ

]
∈ Lis(H ⊕ H̃, G⊕ H̃).

Hence bχ⊕ (1− χ) ∈ Laut(F ).
(2) Write

{m̃0, . . . , m̃ñ} := {0, . . . , m}\{mi ; Fi = F }.
If m̃k /∈ {mi ; 0 ≤ i ≤ n } set F̃k := F and b̃k := 1F . Otherwise we see from step (1)
that there exist a complement F̃k of Fi in F and a surjective b̃k ∈ L

(
F, F̃k

)
such

that biπik ⊕ b̃k(1− πik) is an automorphism of F . This defines a normal boundary
operator B̃ complementary to B to order m. ¤

(b) For s ∈ R set

∂CFs(∂H) :=
m∏

j=0

M
B

(s−ω1(j+1/p))/ω′
p,q (∂H, E ⊗ F ).

Given
(g, g̃) ∈ ∂BFs(∂H)× ∂B̃Fs(∂H),

define
ϕj(g, g̃) ∈ M

B
(s−ω1(j+1/p))/ω′
p,q (∂H, E ⊗ F ), 0 ≤ j ≤ m,

by

ϕj(g, g̃) :=





gi, if j = mi /∈ {m̃0, . . . , m̃ñ}, 0 ≤ i ≤ n,

g̃ k, if j = m̃k /∈ {m0, . . . ,mn}, 0 ≤ k ≤ ñ,

gi ⊕ g̃ k, if j = mi = m̃k, (i, k) ∈ {0, . . . , n} × {0, . . . , ñ}.
Set ϕ(g, g̃) :=

(
ϕ0(g, g̃), . . . , ϕm(g, g̃)

)
. Then

ϕ ∈ Lis
(
∂BFs(∂H)× ∂B̃Fs(∂H), ∂CFs(∂H)

)
.
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Proof. It is obvious that ϕ is a continuous linear map. Given f ∈ ∂CFs(∂H),
set gi := πikf and g̃ k := (1− πik)f if mi = m̃k. It is now clear how to define gi

and g̃ k for the remaining values of i and k so that f 7→ (g, g̃) is a continuous inverse
of ϕ. ¤

(c) Let B̃ be complementary to B to order m. Define cj ∈ Laut(F ) for
0 ≤ j ≤ m by

cj :=





bj , if j = mi /∈ {m̃0, . . . , m̃ñ},
b̃k, if j = m̃k /∈ {m0, . . . , mn},
biπik ⊕ b̃k(1− πik), if j = mi = m̃k.

Set
Φ

(B, B̃)
= C = (C0, . . . , Cm), Cj := cj∂

j
n.

Then the diagram

Fs(H) ∂BFs(∂H)× ∂B̃Fs(∂H)

∂CFs(∂H)

C
∼=

ϕ

(B, B̃)
-

@
@@R

©©©©©¼

is commuting if s > ω1(m + 1/p). In particular,
(B, B̃)

u = 0 ⇐⇒ ∂j
nu = 0, 0 ≤ j ≤ m (4.8.8)

if s > ω1(m + 1/p).

Proof. Obvious. ¤
In many important situations a boundary operator complementary to B is given

rather naturally as, for instance, in Example 4.8.6 below.

4.8.4 Theorem Let (4.8.7) be satisfied and let B̃ be complementary to B to
order m.

There exists a universal

B̃c
B ∈ L

(
∂B̃Fs(∂H),Fs

B(H)
)

such that it is a coretraction for B̃B := B̃ |Fs
B(H) if s > ω1(m + 1/p). If

ω1(m + 1/p) < s < ω1(m + 1 + 1/p), (4.8.9)

then
(
1− B̃c

BB̃B, B̃c
B
)

is a toplinear isomorphism from

Fs
B(H) onto Fs(H̊)× ∂B̃Fs(∂H).

Proof. Set C := Φ
(B, B̃)

. Let Cc be a universal continuous linear map from
∂CFs(∂H) into Fs(H) such that it is a coretraction for C if s > ω1(m + 1/p). The
existence of Cc follows from Theorem 4.8.1.

Put
B̃c
B := Cc ◦ ϕ(0, ·) ∈ L(

∂B̃Fs(∂H), Fs(H)
)
.

Then B̃c
B is universal.
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If s > ω1(m + 1/p), then it follows from Remark 4.8.3(c) that
(B, B̃)B̃c

B g̃ = ϕ−1 ◦ C ◦ Cc ◦ ϕ(0, g̃) = (0, g̃), g̃ ∈ ∂B̃Fs(∂H).

Thus the image of B̃c
B is contained in Fs

B and B̃BB̃c
B g̃ = g̃ for g̃ ∈ ∂B̃Fs(∂H). Hence

B̃c
B is a universal coretraction for B̃B if s > ω1(m + 1/p).

Note (Fs
B)B̃(H) = Fs

(B,B̃ )
(H). Thus, by (4.8.8) and Theorem 4.7.1, (Fs

B)B̃(H)

equals Fs(H̊) if (4.8.9) is satisfied. Now Lemma 4.1.5 implies the assertion. ¤

The importance of this theorem lies in the fact that it allows to represent the
dual of Fs

B(H) in terms of distributions on H and on ∂H. This fact, basic for the
weak theory of parabolic equations, is made precise in the following theorem.

4.8.5 Theorem Let (4.8.7) be satisfied and let B̃ be a normal boundary oper-
ator on ∂H complementary to B to order m. Suppose

ω1(m + 1/p′) < s < ω1(m + 1 + 1/p′).

Choose a universal coretraction B̃c
B for B̃B. Then

(
1− B̃c

BB̃B, B̃B
)′ is a toplinear

isomorphism from H
s/ν
p′,B(H, E ⊗ F )′ onto

H−s/ν
p (H, E ⊗ F )×

ñ∏

i=0

B−(s−ω1(m̃i+1/p′))/ω′
p (∂H, E ⊗ F̃i)

and from B
s/ν
p′,B(H, E ⊗ F )′ onto

B−s/ν
p (H, E ⊗ F )×

ñ∏

i=0

B−(s−ω1(m̃i+1/p′))/ω′
p (∂H, E ⊗ F̃i).

Proof. This follows from the preceding theorem, and Theorems 3.3.3, 3.7.1(i),
and 4.4.4. ¤

We illustrate this theorem by first order normal boundary operators which are
of particular relevance for the weak theory of reaction-diffusion systems.

4.8.6 Examples (Reaction-diffusion boundary operators)
Let χ ∈ L(F ) be a projection and set F0 := (1− χ)F and F1 := χF . Suppose
a ∈ L(F ) satisfies

χaχ ∈ Laut(F1), (1− χ)a(1− χ) ∈ Laut(F0). (4.8.10)

Set
B := χa∂n + (1− χ)γ∂H.

Since F = F0 ⊕ F1
∼= F0 × F1 we write, accordingly,

B = (B0,B1) :=
(
(1− χ)γ∂H, χa∂n

)
.

Then, given g = (g0, g1) ∈ F0 × F1,

Bu = g iff B0u = g0 and B1u = g1.

Note that B0 is a (zero order) Dirichlet and B1 a (first order) Neumann boundary
operator. It is obvious from (4.8.10) that B is a normal boundary operator on ∂H.
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(a) It is clear that B̃ := (1− χ)a∂n + χγ∂H is complementary to B to order 1.
Thus, if

ω1(1 + 1/p) < s < ω1(2 + 1/p),

then H
s/ν
p′,B(H, E ⊗ F )′ is toplinearly isomorphic to

H−s/ν
p (H, E⊗F )×B−(s−ω1/p′)/ω′

p (∂H, E⊗F1)×B−(s−ω1(1+1/p′))/ω′
p (∂H, E⊗F0).

In particular,

H
s/ν
p′,γ∂H(H, E ⊗ F )′ ∼= H−s/ν

p (H, E ⊗ F )×B−(s−ω1(2−1/p))/ω′
p (∂H, E ⊗ F )

and

H
s/ν
p′,∂n

(H, E ⊗ F )′ ∼= H−s/ν
p (H, E ⊗ F )×B−(s−ω1(1−1/p))/ω′

p (∂H, E ⊗ F ).

(b) Suppose χ /∈ {0, 1}. Then B̃0 := χγ∂H is complementary to B0 to order 0.
Thus, if

ω1/p < s < ω1(1 + 1/p),
then

H
s/ν
p′,B0(H, E ⊗ F )′ ∼= H−s/ν

p (H, E ⊗ F )×B−(s−ω1(1−1/p))/ω′
p (∂H, E ⊗ F1).

(c) Obviously, analogous results hold for B
s/ν
p (H, E ⊗ F ). ¤

4.9 Interpolation with boundary conditions

The following ‘interpolation theorem with boundary conditions’ plays a funda-
mental role in the weak theory of elliptic and parabolic boundary value problems.

We use the assumptions and notation of the preceding section. To simplify the
writing we omit (H, E ⊗ F ) in the notation of function spaces so that

Hs/ν
p = Hs/ν

p (H, E ⊗ F ) etc.

4.9.1 Theorem Suppose s0, s1 ∈ R and θ ∈ (0, 1) satisfy

ω1(−1 + 1/p) < s0 < ω1/p, ω1(m1 + 1/p) < s1, s0 < s1, (4.9.1)

with s0 ≥ 0 if q = ∞, and

sθ, s1 6= ω1(mi + 1/p), 0 ≤ i ≤ n. (4.9.2)

Then
[Hs0/ν

p ,H
s1/ν
p,B ]θ

.= H
sθ/ν
p,B , [

M
B

s0/ν
p,q ,

M
B

s1/ν
p,q,B]θ

.=
M
B

sθ/ν
p,q,B,

and
(Hs0/ν

p ,H
s1/ν
p,B )0θ,q

.= (
M
B

s0/ν
p,q ,

M
B

s1/ν
p,q,B)0θ,q

.=
M
B

sθ/ν
p,q,B.

Before we prove this theorem we recall some facts from interpolation theory.
Denote by S the strip [0 ≤ Re z ≤ 1] in the complex plane and by Sϑ the com-

plex line [Re z = ϑ] for 0 ≤ ϑ ≤ 1.
Let E0 and E1 be Banach spaces with E1 ↪→ E0. Write F(E0, E1) for the

Banach space of all bounded continuous f : S → E0 satisfying f |Sj ∈ C0(Sj , Ej)
for j = 0, 1 and being holomorphic in S̊, endowed with the norm

f 7→ ‖f‖F(E0,E1) := max
j=0,1

sup
z∈Sj

|f(z)|Ej .
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Then [E0, E1]θ is for 0 < θ < 1 the image space of the evaluation map

F(E0, E1) → E0, f 7→ f(θ)

(see A.P. Calderón [18]; also cf. J. Bergh and J. Löfström [16] or H. Triebel [65]).
Suppose f ∈ F(E0, E1) and 0 < ϑ < 1. Then, cf. Remark 2.2.1(a),

‖f(ϑ + it)‖[E0,E1]ϑ ≤ c ‖f‖F(E0,E1), t ∈ R. (4.9.3)

Indeed, given t ∈ R, set gt(z) := f(z + it) for z ∈ S. Then gt ∈ F(E0, E1) and
gt(ϑ) = f(ϑ + it).

For t ∈ R set

J(t, e) := max{‖e‖0, t ‖e‖1}, e ∈ E1.

Then the J-method of real interpolation theory guarantees e ∈ (E0, E1)θ,q iff there
exists f ∈ C

(
(0,∞), E1

)
satisfying

∥∥t−θJ
(
t, f(t)

)∥∥
L∗q

< ∞, e =
∫ ∞

0

f(t) dt/t, (4.9.4)

the integral converging in E0 (e.g., Chapter 3 in [16] or Section I.6 in [65]).

Proof of Theorem 4.9.1. (1) Note that Fs1
B ↪→ Fs1 implies

(Fs0 , Fs1
B )θ ↪→ (Fs0 ,Fs1)θ,

where (·, ·)θ equals either [·, ·]θ or (·, ·)0θ,q.

(2) From (1) and Theorems 3.7.1(iv) and 4.4.1 we obtain

[Hs0/ν
p ,H

s1/ν
p,B ]θ ↪→ Hsθ/ν

p .

Similarly, by invoking (3.4.1),

[
M
B

s0/ν
p,q ,

M
B

s1/ν
p,q,B]θ ↪→ M

B
sθ/ν
p,q .

(3) Denote by (Ej , Ej,B) either the pair (Hsj/ν
p ,H

sj/ν
p,B ) or (

M
B

sj/ν
p,q ,

M
B

sj/ν
p,q,B). Sup-

pose u ∈ [E0, E1,B]θ. Then there exists a function f in F(E0, E1,B) with f(θ) = u.
Suppose mi satisfies ω1(mi + 1/p) < sθ. It follows from (4.9.3) and step (1)

that the restriction of f to [θ ≤ Re z ≤ 1] is a bounded continuous map into Fsθ

being holomorphic on [θ ≤ Re z < 1]. Thus h := Bif is a bounded continuous map
from [θ ≤ Re z ≤ 1] into

M
B

(sθ−ω1(mi+1/p))/ω′
p,q (∂H, E ⊗ Fi) which is holomorphic on

[θ ≤ Re z < 1] and vanishes on S1. Thus u ∈ Fsθ

B by the Three Lines Theorem (cf.
Theorem VI.10.3 in [22]). This proves

[Hs0/ν
p ,H

s1/ν
p,B ]θ ↪→ H

sθ/ν
p,B (4.9.5)

and
[

M
B

s0/ν
p,q ,

M
B

s1/ν
p,q,B]θ ↪→ M

B
sθ/ν
p,q,B. (4.9.6)

(4) Suppose
s1 > ω1(mn + 1/p). (4.9.7)
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Denote by m the largest integer i satisfying ω1(i + 1/p) < s1. Let bc
i : Fi → F be

a right inverse for bi. Then πi := bc
ibi is the projection of F onto Fi parallel to

Gi := ker(bi), and F = Fi ⊕Gi (cf. Lemma 4.1.5). Thus

Biu = bi∂
mi
n u = 0 ⇐⇒ πi∂

mi
n u = 0. (4.9.8)

Consider the normal boundary operator C = (C0, . . . , Cm) with Cj = ∂j
n. Set

∂Cj Fs :=
M
B

(s−ω1(j+1/p))/ω′
p,q (∂H, E ⊗ F ), ∂CFs :=

m∏

j=0

∂Cj Fs.

Then
Cj ∈ L(Fs, ∂Cj Fs) if s > ω1(j + 1/p), (4.9.9)

and Theorem 4.8.1 guarantees the existence of a universal Cc ∈ L(∂CFs, Fs) for
s ∈ R, satisfying

CjCc(g0, . . . , gm) = gj if s > ω1(j + 1/p). (4.9.10)

From (3.4.1) we infer
[∂CFs0 , ∂CFs1 ]θ

.= ∂CFsθ . (4.9.11)

(5) Suppose u ∈ Fsθ

B . Choose hj ∈ F(∂CiFs0 , ∂CiFs1) as follows:

hj(θ) =





∂j
nu, if sθ > ω1(j + 1/p), j /∈ {m0, . . . ,mn},

(1− πi)∂mi
n u, if sθ > ω1(j + 1/p), j = mi, 0 ≤ i ≤ n,

0 otherwise.
(4.9.12)

Due to (4.9.9) and (4.9.11) this is possible. Then (4.9.8) and (4.9.9) imply

f := Cc(h0, . . . , hm) ∈ F(Fs0 , Fs1
B ). (4.9.13)

Thus
v := f(θ) ∈ [Fs0 , Fs1

B ]θ. (4.9.14)
Moreover, by step (1), u− v belongs to Fsθ and satisfies

Cj(u− v) = Cju− CjCc
(
h0(θ), . . . , hm(θ)

)
= 0, sθ > ω1(j + 1/p),

due to (4.9.10) and (4.9.14). Hence Theorem 4.7.1 and sθ > s0 > ω1(−1 + 1/p),
with s0 ≥ 0 if Fs =

M
B

s/ν
p,∞, show that u− v ∈ Fsθ (H̊, E ⊗ F ).

From Theorem 4.4.1 we infer

Fsθ (H̊, E ⊗ F ) .=
[
Fs0(H̊, E ⊗ F ), Fs1(H̊, E ⊗ F )

]
θ
.

Since (4.9.1) and Theorem 4.7.1 imply Fs0(H̊, E ⊗ F ) = Fs0 and since Fs1(H̊, E ⊗ F )
is contained in Fs1

B it thus follows Fsθ (H̊, E ⊗ F ) ⊂ [Fs0 , Fs1
B ]θ. Consequently, u− v

belongs to [Fs0 ,Fs1
B ]θ which, together with (4.9.14), implies u ∈ [Fs0 ,Fs1

B ]θ. Hence
the inclusions converse to (4.9.5) and (4.9.6) are valid. This proves the assertions
for the complex interpolation functor, provided (4.9.7) is satisfied.

(6) Now suppose s1 < ω1(mn + 1/p). Fix any t bigger than ω1(mn + 1/p) and
set η := (s1 − s0)/(t− s0). Then Fs1

B
.= [Fs0 , Ft

B]η by what has just been shown.
Hence by the reiteration theorem

[Fs0 , Fs1
B ]θ

.=
[
Fs0 , [Fs0 , Ft

B]η
]
θ

.= [Fs0 , Ft
B]ηθ

.= Fsθ

B ,
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the last equality following again from the results of step (5). This proves the
assertions for the complex interpolation functor.

(7) Suppose ω1(mn + 1/p) < t0 < t1. Assume

u ∈ (Ft0
B , Ft1

B )0θ,q ↪→ (Ft0 ,Ft1)0θ,q =
M
B

tθ/ν
p,q .

Choose f such that (4.9.4) is satisfied with e = u and (E0, E1) = (Ft0
B ,Ft1

B ). For
0 < ε < 1 it is obvious that

B
∫ 1/ε

ε

f(t) dt/t =
∫ 1/ε

ε

Bf(t) dt/t = 0

since the integrals exist in Ft0 . This implies Bu = 0, that is, u ∈ M
B

tθ/ν
p,q,B.

(8) Conversely, suppose

u ∈ M
B

tθ/ν
p,q

.= (Ft0 ,Ft1)0θ,q.

By Theorem 4.8.1, B is a retraction from Fs onto ∂BFs for s > ω1(mn + 1/p)
possessing a universal coretraction Bc. Thus P := 1− BcB is a projection from
(Ft0 , Ft1)0θ,q onto (Ft0

B , Ft1
B )0θ,q (cf. Lemma 4.1.5 and Propositions I.2.3.2 and I.2.3.3

in [4]). As above,

Pu =
∫ ∞

0

Pf(t) dt/t =
∫ ∞

0

f(t) dt/t = u

since Pf(t) = f(t) ∈ Ft1
B for t > 0. Thus u ∈ (Ft0

B , Ft1
B )0θ,q. Combining this with the

result of step (7) we obtain

(Ft0
B ,Ft1

B )0θ,q
.=

M
B

tθ/ν
p,q,B. (4.9.15)

(9) Choose ε > 0 such that

sθ±ε ∈
(
ω1(mi + 1/p), ω1(mi+1 + 1/p)

)

if sθ belongs to this interval, where mn+1 := ∞. Then, by the validity of the
theorem for the complex interpolation functor, [Fs0 ,Fs1

B ]θ±ε
.= Fsθ±ε

B . Thus the
reiteration theorem implies

(Fs0 , Fs1
B )0θ,q

.=
(
[Fs0 , Fs1

B ]θ−ε, [Fs0 , Fs1
B ]θ+ε

)0

1/2,q

.= (Fsθ−ε

B , F
sθ+ε

B )0θ,q
.=

M
B

sθ/ν
p,q,B

where the last equality follows by applying the result of the preceding step (with
mn replaced by mi), provided sθ > ω1(m1 + 1/p). If

ω1(−1 + 1/p) < s < ω1(m1 + 1/p),

then Fs
B = Fs by Theorem 4.7.1 and the definition of Fs

B. Thus (4.9.15) holds in
this case also. This proves the theorem. ¤

4.9.2 Corollary

(i) Suppose ω1(−1 + 1/p) < s0 < s1 with s0, s1, sθ /∈ ω1(mi + 1/p) for 0 ≤ i ≤ n.
Then

[Hs0/ν
p,B ,H

s1/ν
p,B ]θ

.= H
sθ/ν
p,B , [

M
B

s0/ν
p,q,B,

M
B

s1/ν
p,q,B]θ

.=
M
B

sθ/ν
p,q,B
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and
(Hs0/ν

p,B ,H
s1/ν
p,B )0θ,q

.= (
M
B

s0/ν
p,q,B,

M
B

s1/ν
p,q,B)0θ,q

.=
M
B

sθ/ν
p,q,B.

(ii) Suppose s, θs 6= ω1(mi + 1/p) for 0 ≤ i ≤ n. Then

(Lp,
M
B

s/ν
p,q,B)0θ,r

.=
M
B

θs/ν
p,r,B, 1 ≤ r ≤ ∞.

Proof. (i) follows easily by reiteration from Theorem 4.9.1.
(ii) Fix s1 > s with s1 > ω1(mn + 1/p). Then, choosing s0 := 0, it follows

from (i)
M
B

s/ν
p,q,B

.= (Lp, H
s1/ν
p,B )0s/s1,q

Hence, by Theorem 4.9.1,

(Lp,H
s1/ν
p,B )s/s1,1

.= B
s/ν
p,1,B ↪→ M

B
s/ν
p,q,B ↪→ M

B
s/ν
p,∞,B = (Lp,H

s1/ν
p,B )0s/s1,∞,

and the reiteration theorem implies

(Lp,
M
B

s/ν
p,q,B)0θ,r

.= (Lp,H
s1/ν
p,B )0θs/s1,r

.=
M
B

θs/ν
p,r,B,

that is, the claim. ¤

The interpolation result for the complex interpolation functor and Bessel poten-
tial spaces is due, in the isotropic scalar case (that is, for E = C), to R. Seeley [61]
and, for p = 2, to P. Grisvard [29]. In the latter paper P. Grisvard characterized
the real interpolation spaces between Lp and the Sobolev–Slobodeckii spaces W s

p,B.
The extensions of those results to include general (isotropic scalar) Besov spaces
is due to D. Guidetti [35]. None of these authors imposed condition (4.9.2). If
sθ = mi + 1/p for some i, then the interpolation space of exponent θ is not a closed
subspace of Fsθ but carries a strictly stronger topology which can be described by
a non-local norm. For simplicity, we do not consider singular values in this work.

Our proof for the complex interpolation functor follows essentially R. Seeley.
The simple and elegant method to deduce the statement for the real interpolation
method from the result for the complex one is due to D. Guidetti.

We conclude this section by considering two special instances which are of
particular importance in the weak theory of elliptic and parabolic equations.

4.9.3 Examples (isotropic spaces) We suppose ω = (1, . . . , 1), that is, we
consider isotropic spaces. We also assume m ∈

q
N\{m0, . . . , mn}.

(a) (Sobolev–Slobodeckii scales) For 0 < θ < 1 we set

(·, ·)θ :=

{
[·, ·]θ, if θm ∈ N,

(·, ·)θ,p otherwise.

Then
(Lp,W

m
p,B)s/m

.= W s
p,B

for 0 < s < m with s /∈ {m0, . . . ,mn}.
Proof. This follows from (3.8.1) and Theorems 4.4.3 and 4.9.1. ¤
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(b) (small Nikol′skĭı scales) For s ∈ (0,∞)\N and m ∈ N with m > s,

(Lp, W
m

p,B)0s/m,∞
.=

M
Ns

p,B.

Furthermore,
(

M
Ns0

p,B,
M
Ns1

p,B)0θ,∞
.= [

M
Ns0

p,B,
M
Ns1

p,B]θ
.=

M
Nsθ

p,B
for 0 < s0 < s1 and 0 < θ < 1 with s0, s1, sθ /∈ N.

Proof. Obvious by Corollary 4.9.2 and the definition of the small Nikol′skĭı
scales. ¤

4.9.4 Examples (2m-parabolic weight vector) Let ω = (1, . . . , 1, 2m) for
some m ∈

q
N and write Hd = Hr × R. Suppose mn < 2m and

s ∈ (0, 2m)\{mi + 1/p ; i = 0, . . . , n }.
(a) (Sobolev–Slobodeckii scales) If s /∈ N, then(

Lp(Hr × R), Lp

(
R,W 2m

p,B (Hr)
) ∩W 1

p

(
R, Lp(Hr)

))
s/2m,p

.=
(
Lp(Hr × R),W (2m,1)

p,B (Hr × R)
)
s/2m,p

.= W
(s,s/2m)

p,B (Hr × R) .= W
s/2m

p,B
(
R, Lp(Hr)

) ∩ Lp

(
R,W s

p (Hr)
)
.

Otherwise [
Lp(Hr × R), Lp

(
R,W 2m

p,B (Hr)
) ∩W 1

p

(
R, Lp(Hr)

)]
s/2m

.= Hs/2m
p

(
R, Lp(Hr)

) ∩ Lp

(
R,W s

p,B(Hr)
)
.

Proof. Suppose s /∈ N. From Theorem 4.9.1 we know

(Lp,W
(2m,1)

p,B )θ,p
.= (Lp,H

(2m,1)
p,B )θ,p

.= B
(2mθ,θ)
p,B ,

provided 2mθ 6= mi + 1/p for 0 ≤ i ≤ n. Since θ = s/2m /∈ Z we find, by Theorems
3.8.1, 3.8.5, and 4.4.3, B

(2mθ,θ)
p,B

.= W
(2mθ,θ)

p,B . Together with Example 3.8.6 this
implies the first assertion.

If s = 2mθ ∈ N, then, by Theorem 4.9.1,

[Lp,W
(2m,1)

p,B ]θ
.= [Lp,H

(2m,1)
p,B ]θ

.= H
(2mθ,θ)
p,B .

Similarly as above, but invoking Theorem 3.7.3,

H
(2mθ,θ)
p,B

.= Hθ
p

(
R, Lp(Hr)

) ∩ Lp

(
R,H2mθ

p,B (Hr)
)
.

Since H2mθ
p,B (Hr) .= W s

p,B(Hr) the second claim is also valid. ¤

(b) (small Nikol′skĭı scales) If s /∈ N, then
(
Lp(Hr × R),W 1

p

(
R, Lp(Hr)

) ∩ Lp

(
R,W 2m

p,B (Hr)
))0

s/2m,∞
.=

(
Lp(Hr × R), W (2m,1)

p,B (Hr × R)
)0

s/2m,∞
.=

M
N

(s,s/2m)
p,B (Hr × R)

)

.=
M
N

s/2m
p

(
R, Lp(Hr)

) ∩ Lp

(
R,

M
Ns

p,B(Hr)
)
.

Proof. This follows by arguments similar to the ones in (a). ¤
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4.10 Traces on half-open wedges

In this and the following two sections we prove analogues of the boundary
retraction Theorem 4.8.1 and some of its consequences for wedges. First we consider
the case of partially open wedges to prepare ourselves for the proofs of the next
section. For this we need some background material which we discuss first.

Given Banach spaces X1
d

↪→ X0, we put

H−(X1, X0) := H−(X0) ∩ L(X1, X0).

Thus H−(X1, X0) consists of all negative generators A of exponentially decaying
analytic semigroups on X0 satisfying D(A) .= X1 (cf. H. Amann [4, Lemma I.1.1.2]).
We also set H = Hd.

The proof of the next lemma is postponed to Part 2.

4.10.1 Lemma Fix k ∈ (ω/ω1)N and set

B := (∂0
n, . . . , ∂k−1

n ), C := (∂n, . . . , ∂k
n), (4.10.1)

and
A := Λ2kω1

1 (D) ∈ L(S ′(Rd, E)
)
. (4.10.2)

For D ∈ {B, C} denote by AD the restriction of A to H
2kν/ν
p,D (H, E). Then

AD ∈ H−
(
H

2kω1/ν
p,D (H, E), Lp(H, E)

) ∩ BIP(
Lp(H, E)

)
.

Observe that k = κω/ω1 for some κ ∈ N and ω = ν imply 2κν = 2kω1. Hence

Λ2kω1
1 (D) =

(
1 +

∑̀

i=1

(−∆xi)
ν/νi

)κ

which, due to ν/νi ∈
q
N, shows that AD is well-defined.

In the following proposition and in similar situations we do not notationally dis-
tinguish between a linear operator and its various uniquely determined restrictions
and extensions in a given scale of Banach spaces.

4.10.2 Proposition Suppose k ∈ (ω/ω1)
q
N. There exists

A ∈ H−
(
Hω1/ν

p (H̊, E), Lp(H, E)
)

satisfying
Ar ∈ Lis

(
H(r+s)ω1/ν

p (H̊, E),Hsω1/ν
p (H̊, E)

)
(4.10.3)

and
Ar ∈ Lis

( M
B

(r+s)ω1/ν
p,q (H̊, E),

M
B

sω1/ν
p,q (H̊, E)

)
(4.10.4)

for r, s ∈ R with

−2 + 1/p < min{s, r + s} ≤ max{s, r + s} < k + 1/p. (4.10.5)

Moreover,
Aρ ∈ H−

(
Hρω1/ν

p (H̊, E), Lp(H, E)
)

(4.10.6)

for 0 ≤ ρ < k + 1/p.
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Proof. (1) Define B by (4.10.1) and A by (4.10.2). Then, by Lemma 4.10.1,

AB ∈ H−
(
H

2kω1/ν
p,B (H, E), Lp(H, E)

) ∩ BIP(
Lp(H, E)

)
. (4.10.7)

It follows from Theorems 4.9.1 and 4.7.1
[
Lp(H, E),H2kω1/ν

p,B (H, E)
]
s/2k

.= Hsω1/ν
p (H̊, E) (4.10.8)

for 0 < s < k + 1/p with s 6= j + 1/p, 0 ≤ j ≤ k − 1. From this and Theorems
3.7.1(iv) and 4.4.1 we deduce by reiteration that (4.10.8) holds in fact for all
s ∈ (0, k + 1/p).

Set A := (AB)1/2k. Then (4.10.7), R. Seeley’s theorem [60], and (4.10.8) imply

D(As) .=
[
Lp(H, E),H2kω1/ν

p,B (H, E)
]
s/2k

.= Hsω1/ν
p (H̊, E) (4.10.9)

for 0 < s < k + 1/p. From this, (4.10.7), and Corollary III.4.6.11 in H. Amann [4]
we infer (4.10.6).

(2) Denote by
[
(Eα, Aα) ; α ≥ −1

]
the interpolation extrapolation scale of or-

der 1 generated by
(
Lp(H, E), A

)
and [·, ·]θ, 0 < θ < 1, in the sense of Section V.1.5

of [4]. It follows from (4.10.9) and Theorem V.1.5.4 in [4]

Eα
.= Hαω1/ν

p (H̊, E), 0 ≤ α < k + 1/p.

The latter theorem also implies (4.10.3) for 0 ≤ r, s, r + s < k + 1/p.
(3) Define C as in (4.10.1) and set

A] := Λ2kω1
1 (D) ∈ L(S ′(H, E′)

)
.

Denote by A]
C the restriction of A] to H

2kω1/ν
p′,C (H, E′). Then

A]
C ∈ H−

(
H

2kω1/ν
p′,C (H, E′), Lp′(H, E′)

) ∩ BIP(
Lp′(H, E′)

)

by Lemma 4.10.1. From Theorem 4.9.1 and an additional reiteration we find,
similarly as in step (1),

H
sω1/ν
p′,C (H, E′) .= H

sω1/ν
p′ (H, E′), 0 ≤ s < 1 + 1/p′.

Put A] := (A]
C)

1/2k. Let
[
(E]

α, A]
α) ; α ≥ −1

]
be the interpolation extrapolation

scale of order 1 generated by
(
Lp′(H, E′), A]

)
. Then, as in step (2),

E]
α

.= H
αω1/ν
p′,C (H, E′), 0 ≤ α ≤ 2k, α /∈

q
N+ 1/p,

and
(A])r ∈ Lis

(
H

(r+s)ω1/ν
p′ (H, E′),Hsω1/ν

p′ (H, E′)
)

(4.10.10)

for r, s ∈ R with 0 ≤ r, r + s ≤ 1 + 1/p′. By Theorem 4.4.4
(
H

sω1/ν
p′ (H, E′)

)′ .= H−sω1/ν
p (H̊, E), s ∈ R. (4.10.11)

It is an easy consequence of (4.10.6), (4.10.11), and Theorem V.1.5.12 in [4] that
A] = A′ in the sense of unbounded linear operators with respect to the Lp(H, E)-
duality pairing. Hence A−α = (A]

α)′ for α ≥ 0 by Theorem V.1.5.12 in [4] and
reflexivity. Since

E−α
.=

(
H

αω1/ν
p′ (H, E′)

)′ .= H−αω1/ν
p (H̊, E), 0 < α < 1 + 1/p′,
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we thus obtain the truth of claim (4.10.3) for all r and s satisfying (4.10.5) from
Theorem V.1.5.4 in H. Amann [4] by taking into consideration Ar = (AB)r/2k and
(A])r = (A]

C)
r/2k.

(4) Assertion (4.10.4) follows now from (4.10.3) by interpolation due to Theo-
rems 3.7.1(iv) and 4.4.1. ¤

Suppose K is a standard wedge in Rd. We denote by γρ the trace operator for
the variable xρ (defined in the obvious way). Then

γ∂ρK := r∂ρK ◦ γρ ◦ eK

is the trace operator for the face ∂ρK. Let10

Fs ∈ {
Hs/ν

p , Bs/ν
p

}
, s ∈ R.

Then γ∂ρK is well-defined on Fs for s > ωρ/p.

We write nρ = −(δ1
ρ, . . . , δd

ρ) for the outer normal on the ρ-face ∂ρK of K. Then,
given m ∈ N,

∂m
nρ

:= (−1)mγ∂ρK∂m
ρ

is the m-th order normal derivative on ∂ρK, and

∂m
nρ
∈ L(

Fs(K, E), B(s−ωρ(m+1/p))/ωρ̂
p (∂ρK, E)

)
(4.10.12)

for s > ωρ(m + 1/p), where11

ω1̂ = ω′ = (ω2, . . . , ωd), ω2̂ = (ω1, ω3, . . . , ωd).

Observe that, using the notation of (3.6.3) and (3.6.4),

∂m
nρ

u(xρ̂) = (−1)m∂m
ρ u(xρ̂, 0), u ∈ S(K, E), x ∈ ∂K.

Now we assume that K is a half-open (that is, partially open) wedge. Thus,
without loss of generality,

K = R+ × H̊d−1

and, consequently, ∂1K ∼= H̊d−1 is the only essential face of K.
We also assume, as in Section 4.8,

• F is a finite-dimensional Banach space and
F0, . . . , Fn are nontrivial linear subspaces thereof;

• 0 ≤ m0 < m1 < · · · < mn are integers.
(4.10.13)

Again

B = B(F) :=
{

b = (b0, . . . , bn) ∈ L(
F,

∏n
i=0Fi

)
; bi is surjective

}
.

Given b ∈ B, we define a normal boundary operator for the face ∂1K by

B1 = B1(b) := (B0
1, . . . ,Bn

1 ), Bi
1 := bi∂

mi
n1

.

10For simplicity, we restrict ourselves from now on to the most important case p = q, although
some of the following results can also be shown if p 6= q.

11Here and below, we formulate all results for the case d > 2 and leave it to the reader to
carry out the obvious modifications if d = 2. Recall F(R0, F ) = F .



116 4 DISTRIBUTIONS ON HALF-SPACES AND CORNERS

We set

∂B1F
s(∂1K, E ⊗ F ) :=

n∏

i=0

B(s−ω1(mi+1/p))/ω′
p (∂1K, E ⊗ Fi).

Note that this space is independent of b ∈ B. It depends only on the weight vector ~m
and on F.

The following theorem is an analogue of Theorem 4.8.1 for half-open wedges.
Here we denote by ω′ the least common multiple of {ω2, . . . , ωd}.

4.10.3 Theorem Fix any κ ∈
q
N satisfying κω′ ≥ max{ω1mn, ω1}. Assume

ω1(mn + 1/p) + ω2(−2 + 1/p) < s < ω1(k + 1/p), (4.10.14)

where k := κω′/ω2. Let b ∈ B. Then there exists a universal map

Bc
1 = Bc

1(b) ∈ L
(
∂B1F

s(∂1K, E ⊗ F ), Fs(K, E ⊗ F )
)

satisfying
Bi

1Bc
1(g

0, . . . , gn) = gi if s > ω1(mi + 1/p).
In particular, Bc

1 is a universal coretraction for B1 if s > ω1(mn + 1/p). The map
b 7→ Bc

1(b) is analytic on B, uniformly with respect to s in the indicated range.

Proof. For notational simplicity we omit E ⊗ F in this proof.
(1) By Proposition 4.10.2 we can choose

B ∈ H−
(
Hω2/ω′

p (H̊d−1), Lp(Hd−1)
)

satisfying
Br ∈ Lis

(
H(s+r)ω2/ω′

p (H̊d−1),Hsω2/ω′
p (H̊d−1)

)

and
Br ∈ Lis

(
B(s+r)ω2/ω′

p (H̊d−1), Bsω2/ω′
p (H̊d−1)

)
(4.10.15)

for
−2 + 1/p < min{s, r + s} ≤ max{s, r + s} < k + 1/p.

Set A := Bω1/ω2 . Since ω1/ω2 ≤ κω′/ω2 = k it follows from (4.10.6) and (4.10.3)
that

A ∈ H−
(
Hω1/ω′

p (H̊d−1), Lp(Hd−1)
)
, D(Aj) .= Hjω1/ω′

p (H̊d−1)
for j ∈ N with j ≤ mn, due to mnω1/ω2 ≤ κω′/ω2 = k < k + 1/p. Hence, setting
F := Lp(Hd−1),

Hjω1/ν
p (K) .= Lp

(
R+, D(Aj)

) ∩W j
p (R+, F ), 0 ≤ j ≤ mn,

due to Theorems 3.7.1(ii) and 3.7.2, and Section 4.4. Hence we are in the same
situation as in (4.6.4) and (4.6.5) with Rd−1 replaced by H̊d−1 (and E by E ⊗ F ).
Thus steps (3)–(5) of the proof of Theorem 4.6.2 guarantee that, given j ∈ N with
j ≤ mn,

γc
jv :=

(
t 7→ (−1)j tj

j!
e−tAv

)
, t ≥ 0, v ∈ F,

is a coretraction for

∂j
n1
∈ L(

Hs/ν
p (K), B(s−ω1(j+1/p))/ω′

p (∂1K)
)
,

provided ω1(j + 1) ≤ s ≤ ω1k.
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(2) Suppose s < ω1(j + 1). Since At = Btω1/ω2 we infer from (4.10.15) that

Aj+1−σ ∈ Lis
(
Bω1(1−1/p)/ω′

p (H̊d−1), Bω1(σ−j−1/p))/ω′
p (H̊d−1)

)
, (4.10.16)

provided ω1(σ − j − 1/p) > ω2(−2 + 1/p). Hence (4.10.14) implies that (4.10.16)
holds for all j ∈ N with j ≤ mn, provided ω1σ = s. From this it follows, similarly
as in step (6) of the proof of Theorem 4.6.2, that

γc
j ∈ Lis

(
B(s−ω1(1−1/p))/ω′

p (∂1K),Hs/ν
p (K)

)

for j ∈ N with j ≤ mn and ω1(mn + 1/p) + ω2(−2 + 1/p) < s < ω1(j + 1). Clearly,
γc

j is a coretraction for ∂j
n1

if s > ω1(j + 1/p).
(3) Steps (1) and (2) guarantee that, given j ∈ N with j ≤ mn,

γc
j ∈ L

(
B(s−ω1(j+1/p))/ω′

p (∂1K),Hs/ν
p (K)

)
,

and γc
j is a universal coretraction for ∂j

n1
if s > ω1(j + 1/p). From this we obtain

by interpolation

γc
j ∈ L

(
B(s−ω1(j+1/p))/ω′

p (∂1K), Bs/ν
p (K)

)
.

Now the proofs of Theorems 4.6.3 and 4.8.1 apply to give the assertion. ¤

As a first application of this boundary retraction theorem we prove an analogue
to Theorem 4.7.1.

4.10.4 Theorem

(i) Suppose m ∈ N and ω1(m + 1/p) < s < ω1(m + 1 + 1/p). Then

Fs(K̊, E) =
{

u ∈ Fs(K, E) ; ∂j
n1

u = 0, 0 ≤ j ≤ m
}
.

(ii) If ω1(−1 + 1/p) < s < ω1/p, then

Fs(K̊, E) = Fs(K, E).

Proof. (1) Let the assumptions of (i) be satisfied. As in step (1) of the proof
of Theorem 4.7.1 we see that it suffices to show that S(K̊, E) is dense in the spaces
characterized by vanishing traces. Fix κ ∈ N satisfying k := κω′/ω2 > m + 1. Then
Theorem 4.10.3 guarantees the existence of a coretraction γc for (∂0

n1
, . . . , ∂m

n1
).

Hence steps (2) and (3) of the proof of Theorem 4.7.1 show that each

u ∈ C∞0 ∩Bs/ν
p (K, E) with ∂j

n1
u = 0, 0 ≤ j ≤ m, (4.10.17)

can be arbitrarily closely approximated by elements of S(K̊, E).

(2) Set X := Lp(H̊d−1, E) and Y := B
s/ω′
p (H̊d−1, E). Then we see by (1) and

steps (4)–(6) of the proof of Theorem 4.7.1 that, given u satisfying (4.10.17) and
ε > 0, there exists v ∈ D(

q
R+, Y ) satisfying

‖u− v‖
B

s/ν
p (K,E)

< ε/2.

Since D(H̊d−1, E) is dense in Y by Lemma 4.1.4 and (4.4.3), it is not difficult to
verify that we can find w ∈ D(K̊, E) satisfying

‖v − w‖
B

s/ν
p (K,E)

< ε/2.

This proves (i).
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(3) Let the hypotheses of (ii) be satisfied. Then Theorem 4.7.1 guarantees

Fs(
q

X+ × Y × Z, E) = Fs(X+ × Y × Z, E).

Hence the assertion follows by restricting the elements of Fs(
q

X+ × Y × Z,E) fur-
ther to K by means of r0

2. ¤

4.11 Traces on closed wedges

After the preceding preparations we are now in a position to prove extension
theorems for data given on the boundary of closed wedges. They are fundamental
for the study of nonhomogeneous parabolic problems.

Throughout this section we retain the assumptions and notation of Section 4.10,
except that we now assume

• K is the standard closed wedge in Rd.

As before, we write K = X+ × Y + × Z.
The main objective in this section is to prove boundary retraction theorems

for K. First we consider the case where s is small.

4.11.1 Theorem Suppose ω1(−1 + 1/p) < s < ω1/p. Then

Fs(K, E) = Fs(
q

X+ × Y + × Z, E).

Proof. Theorem 4.7.1 guarantees

Fs(X+ × Y × Z, E) = Fs(
q

X+ × Y × Z, E).

Now the assertion follows from the definition of rK, that is, by restricting fur-
ther from the open half-space

q
X+ × Y × Z by means of r2 to the half-open wedgeq

X+ × Y + × Z. ¤
4.11.2 Corollary Suppose

max{ω1, ω2}(−1 + 1/p) < s < min{ω1, ω2}/p. (4.11.1)

Then Fs(K, E) = Fs(K̊, E).

Proof. This is now implied by part (ii) of Theorem 4.10.4. ¤
The above results show that the elements of Fs(K, E) do not possess traces

on ∂K if (4.11.1) is satisfied. Similarly, if the hypotheses of Theorem 4.11.1 are
fulfilled, then there are no traces on ∂1K. However, if s > ω1/p, then γ∂1K is well-
defined. Now we investigate this case more closely.

4.11.3 Theorem Suppose ω1(mn + 1/p) < ω2/p and

ω1(mn + 1/p) + ω2(−2 + 1/p) < s < ω2/p.

Then there exists a universal map

Bc
1 = Bc

1(b) ∈ L
(
∂B1F

s(∂1K, E ⊗ F ), Fs(K, E ⊗ F )
)

satisfying
Bi

1Bc
1(g) = gi if s > ω1(mi + 1/p)

and depending analytically on b ∈ B. In particular, Bc
1 is a universal coretraction

for B1 if s > ω1(mn + 1/p).
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Proof. It follows from Theorem 4.11.1 that

Fs(K, E ⊗ F ) = Fs(X+ × H̊d−1, E ⊗ F ).

Fix κ ∈ N satisfying κω′ ≥ max{ω1mn, ω1} and ω1(κω′/ω2 + 1/p) ≥ ω2/p. Then
the assertion is a consequence of Theorem 4.10.3. ¤

Taking relabeling of coordinates into account the boundary trace behavior for K
has thus been clarified if

min{ω1, ω2}/p < s < max{ω1, ω2}/p.

Now we turn to the case where s > max{ω1, ω2}/p. In this case γ∂1K and γ∂2K are
both well-defined.

If u ∈ S(K, E), then

∂i
n1

∂j
n2

u = (−1)i+jγ∂12K∂i
1∂

j
2u = ∂j

n2
∂i

n1
u. (4.11.2)

It follows that u has to satisfy compatibility conditions on the (d− 2)-dimensional
face ∂12K of K if u ∈ Fs and s is sufficiently large. This is made precise in the next
proposition where ω′′ := (ω3, . . . , ωd).

4.11.4 Proposition If s > ω1(i + 1/p) + ω2(j + 1/p), then ∂i
n1

∂j
n2

is a con-
tinuous linear map from Fs into

B(s−ω1(i+1/p)−ω2(j+1/p))/ω′′
p (∂12K, E),

and ∂i
n1

∂j
n2

= ∂j
n2

∂i
n1

.

Proof. This follows from (4.10.12) and (4.11.2) by density. ¤

4.11.5 Corollary If 0 ≤ i ≤ n, j ∈ N, and

s > ω1(mi + 1/p) + ω2(j + 1/p),

then ∂j
n2
Bi

1u = Bi
1∂

j
n2

u for u ∈ Fs(K, E ⊗ F ).

In the remainder of this section we assume, in addition to (4.10.13),

• k ∈ N;

• B2 = (∂0
n2

, . . . , .∂k
n2

).
(4.11.3)

We set, for s ∈ R,

∂B2F
s(∂2K, E ⊗ F ) :=

k∏

j=0

B
(s−ω2(j+1/p))/ω2̂
p (∂2K, E ⊗ F ).

Moreover,

∂BFs(∂K, E ⊗ F ) = ∂B1F
s(∂1K, E ⊗ F )× ∂B2F

s(∂2K, E ⊗ F )

for s ∈ R. Then

B := (B1,B2) ∈ L
(
Fs(K, E ⊗ F ), ∂BFs(∂K, E ⊗ F )

)
,

provided s > max
{
ω1(mn + 1/p), ω2(k + 1/p)

}
. Corollary 4.11.5 shows that B is

not surjective, in general. In fact, im(B) is contained in

∂cc
B Fs(∂K, E ⊗ F ),
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the closed linear subspace of ∂BFs(∂K, E ⊗ F ) consisting of all (g1, g2) satisfying
the compatibility conditions

∂j
n2

gi
1 = Bigj

2 if s > ω1(mi + 1/p) + ω2(j + 1/p). (4.11.4)

Our next theorem shows that, in fact, im(B) = ∂cc
B Fs(∂K, E ⊗ F ), provided s sat-

isfies suitable restrictions.

4.11.6 Theorem Suppose

max
{
ω1(mn + 1/p), ω2(k + 1/p)

}
< s < ω2(k + 1 + 1/p) (4.11.5)

and

s /∈ {
ω1(mi + 1/p) + ω2(j + 1/p) ; 0 ≤ i ≤ n, 0 ≤ j ≤ k

}
. (4.11.6)

Then B is a retraction from

Fs(K, E ⊗ F ) onto ∂cc
B Fs(∂K, E ⊗ F ).

It possesses a universal coretraction depending analytically on b ∈ B.

Proof. (1) Denote by r1 the point-wise restriction from Rd−1 = X × Z onto
the half-space Hd−1 = X+ × Z ∼= ∂2K (see (4.3.1)). Let

e1 ∈ L
(
Bt/ω′

p (∂2K, E ⊗ F ), Bt/ω′
p (X × Z,E ⊗ F )

)
, t ∈ R,

be a universal coretraction for r1. Its existence is guaranteed by (4.4.4). Note
X × Z ∼= ∂(X × Y + × Z). Hence we infer from Theorem 4.6.3 the existence of

γc ∈ L
( k∏

j=0

B
(s−ω2(j+1/p))/ω2̂
p (X × Z,E ⊗ F ),Fs(X × Y + × Z, E ⊗ F )

)

being a universal coretraction for (∂0
2 , . . . , ∂k

2 ) on X × Y + × Z.
Lastly, let r be the point-wise restriction from X × Y + × Z onto K. Then

Bc
2 := r ◦ γc ◦ e1 ∈ L

(
∂B2F

s(∂2K, E ⊗ F ),Fs(K, E ⊗ F )
)
.

Given g ∈ S(∂2K, E ⊗ F )k, the construction of γc easily implies B2Bc
2g = g. By

density and continuity this holds then for all g ∈ ∂B2F
s(∂2K, E ⊗ F ). Consequently,

Bc
2 is a universal coretraction for B2.

(2) Let (g1, g2) ∈ ∂cc
B Fs(∂K, E ⊗ F ) be given. Set h := g1 − B1Bc

2g2. Then

hi ∈ B(s−ω1(mi+1/p))/ω′
p (∂1K, E ⊗ Fi), 0 ≤ i ≤ n.

Denote by m be the largest integer j satisfying

ω2(j + 1/p) < s− ω1(mi + 1/p) < ω2(j + 1 + 1/p).

It follows from (4.11.5) that m is well-defined and m ≥ −1. By the commutativity
of B1 and B2 (see Proposition 4.11.4) and compatibility condition (4.11.4),

∂j
n2

hi = ∂j
n2

gi
1 − Bi

1∂
j
n2
Bc

2g2 = ∂j
n2

gi
1 − Bi

1g
j
2 = 0

if 0 ≤ j ≤ m. Hence ∂1K ∼= Y + × Z and Theorem 4.7.1 imply

hi ∈ B(s−ω1(mi+1/p))/ω′
p (

q
Y + × Z, E ⊗ F ), 0 ≤ i ≤ n.
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By Theorem 4.10.3 there exists a universal map

B̊c
1 ∈ L

(
∂B1F

s(
q

Y + × Z, E ⊗ F ), Fs(X+ ×
q

Y + × Z, E ⊗ F )
)

being a coretraction for B1 and depending analytically on b ∈ B. Set

Bcg := Bc
2g2 + B̊c

1(g1 − B1Bc
2g2) (4.11.7)

for g = (g1, g2) ∈ ∂cc
B Fs(∂K, E ⊗ F ). Then

Bc ∈ L(
∂cc
B Fs(∂K, E ⊗ F ), Fs(K, E ⊗ F )

)

is universal and depends analytically on b ∈ B. Furthermore, B1Bcg = g1 and
B2Bcg = g2 since

f := B̊c
1(g1 − B1Bc

2g2) = B̊c
1h ∈ Fs(X+ ×

q
Y + × Z,E ⊗ F )

implies B2f = 0. Thus Bc is a coretraction for B. ¤

4.11.7 Example Suppose m, n ∈
q
N and consider the closed wedge Hm ×Hn.

Denote the first coordinate of Hm by ξ and the one of Hn by η. Let r, s ∈
q
R+ with

r > 1/p and s /∈ N+ 1/p be given.
For i ∈ N with i + 1/p < r define ρi and σi by

ρi

r
=

σi

s
=

r − i− 1/p

r
.

Similarly, if j ∈ N satisfies j + 1/p < s, let λj and µj be given by

λj

r
=

µj

s
=

s− j − 1/p

s
.

Finally, suppose

i

r
+

j

s
6= 1− 1

p

(1
r

+
1
s

)
for i + 1/p < r and j + 1/p < s. (4.11.8)

Then the map
u 7→ (

(∂i
ξu|ξ=0)i+1/p<r, (∂j

ηu|η=0)j+1/p<s

)

is a retraction from the anisotropic Bessel potential space

H(r,s)
p (Hm ×Hn) = Lp

(
Hn,Hr

p(Hm)
) ∩Hs

p

(
Hn, Lp(Hm)

)

onto the closed linear subspace of
∏

i+1/p<r

B(ρi,σi)
p (Rm−1 ×Hn)×

∏

j+1/p<s

B(λj ,µj)
p (Hm × Rn−1)

consisting of all (g1, g2) satisfying the compatibility conditions

∂j
ηgi

1|η=0 = ∂i
ξg

j
2|ξ=0 if

i

r
+

j

s
< 1− 1

p

(1
r

+
1
s

)
.

Note

B(ρi,σi)
p (Rm−1 ×Hn) = Lp

(
Hn, Bρi

p (Rm−1)
) ∩Bσi

p (Hn, Lp(Rm−1)
)
,

and an analogous representation holds for B
(λj ,µj)
p (Hm × Rn−1).
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Proof. Fix ν1, ν2 ∈
q
N satisfying ν1r = ν2s, which is possible. Set

ω = (ν1, . . . , ν1, ν2, . . . , ν2)

with ν1 occurring m-times and ν2 n-times. Then the reduced weight system (d, ν)
associated with ω is given by d = (m,n) and ν = (ν1, ν2). Set t := ν1r = ν2s. Then
(r, s) = t/ν. One verifies

(
t− ν1(i + 1/p)

)/
ω′ = (ρi, . . . , ρi︸ ︷︷ ︸

m−1

, σi, . . . , σi︸ ︷︷ ︸
n

)

and (
t− ν2(j + 1/p)

)/
ω

m̂+1
= (λj , . . . , λj︸ ︷︷ ︸

m

, µj , . . . , µj︸ ︷︷ ︸
n−1

).

Hence

B(ρi,σi)
p (Rm−1 ×Hn) = B(t−ν1(i+1/p))/ω′

p

(
∂1(Hm ×Hn)

)

and

B(λj ,µj)
p (Hm × Rn−1) = B

(t−ν2(j+1/p))/ω
m̂+1

p

(
∂m+1(Hm ×Hn)

)
.

Let k be the largest integer j satisfying j + 1/p < s. Then i + 1/p < r implies

max
{
ν1(i + 1/p), ν2(k + 1/p)

}
< ν1r = t = ν2s < ν2(k + 1 + 1/p)

since s /∈ N+ 1/p. Thus condition (4.11.5) is satisfied (with s replaced by t).
Moreover,

t ≥ ν1(i + 1/p) + ν2(j + 1/p) iff
i

r
+

j

s
≤ 1− 1

p

(1
r

+
1
s

)
.

Now the assertion follows from Theorem 4.11.6. ¤

If p = 2, then the assertion of this example has been proved in P. Grisvard [28],
where the assumptions (4.11.8) and s /∈ N+ 1/2 have not been imposed (also see
Theorems IV.2.1 and IV.2.3 in J.-L. Lions and E. Magenes [47]). If p ∈ (1,∞) and r
and s are integers, Example 4.11.7 coincides with Théorème 4.2 in P. Grisvard [27]
where, again, conditions (4.11.8) and s /∈ N+ 1/p are not assumed. Needless to
say that our proof is completely different from the ones in those works. P. Gris-
vard’s theorems are the only general extension theorems for anisotropic Sobolev-
type spaces on corners known to the author and taking data on all of ∂K into
account.

Intermediate results, that is, extension theorems for ∂1K and ∂2K separately,
2m-parabolic weight vectors, and Sobolev spaces W

k/ν
p (K, E) with k ∈

q
N can be

found in R. Denk, M. Hieber, and J. Prüss [21].

4.12 Vanishing traces on closed wedges

Similarly as in the case of half-spaces and half-open wedges we can characterize
Fs(K̊, E) on closed wedges by vanishing traces.
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4.12.1 Theorem Let K be the closed standard wedge in Rd. Suppose k,m ∈ N
and s ∈ R satisfy

ω1(m + 1/p) < s < ω1(m + 1 + 1/p), ω2(k + 1/p) < s < ω2(k + 1 + 1/p),

and
s /∈ {

ω1(i + 1/p) + ω2(j + 1/p) ; i, j ∈ N}
.

Then, given Fs ∈ {Hs/ν
p , B

s/ν
p },

Fs(K̊, E) =
{

u ∈ Fs(K, E) ; ∂i
n1

u = 0, ∂j
n2

u = 0, i ≤ m, j ≤ k
}
.

Proof. (1) Set B1 := (∂0
n1

, . . . , ∂m
n1

) and B2 := (∂0
n2

, . . . , ∂k
n2

). Then Theo-
rem 4.11.6 guarantees that

B = (B1,B2) : Fs(K, E) → ∂cc
B Fs(∂K, E).

is a retraction. Let Bc be a coretraction for it. Then, replacing γc in step (2) of the
proof of Theorem 4.7.1 by Bc (and H by K), we see that we can assume Fs = B

s/ν
p .

(2) The arguments of step (3) of the proof of Theorem 4.7.1, using again Bc

instead of γc, show that
{

u ∈ C∞0 ∩Bs/ν
p (K, E) ; ∂i

n1
u = 0, ∂j

n2
u = 0, i ≤ m, j ≤ k

}
(4.12.1)

is dense in
{

v ∈ Bs/ν
p (K, E) ; ∂i

n1
v = 0, ∂j

n2
v = 0, i ≤ m, j ≤ k

}
. (4.12.2)

(3) Let G be a Banach space. Choose ϕ ∈ D(R+) satisfying ϕ(t) = 1 for
0 ≤ t ≤ 1/2 and ϕ(t) = 0 for t ≥ 1. Put ϕε(t) := ϕ(t/ε) for t ≥ 0 and ε > 0. Given
v ∈ Lp(X+ × Y +, G), set

ψεv(x, y) := ϕε(x)ϕε(y)v(x, y), a.a. (x, y) ∈ X+ × Y +.

Denote by ω12 the least common multiple of ω1 and ω2 and set 1/ω̃ := (1/ω1, 1/ω2).
Fix n ∈

q
N. Theorem 4.4.3(i) and Leibniz’ rule imply

‖ψεv‖W
nω12/ω̃

p (X+×Y +,G)
≤ c ‖v‖

W
nω12/ω̃

p (X+×Y +,G)
(4.12.3)

for ε ≥ 1. It is obvious that, given v ∈ Lp(X+ × Y +, G),

ψεv → v in Lp(X+ × Y +, G) as ε →∞. (4.12.4)

From Proposition 3.5.3 and Theorem 4.4.1 we know

Br/ω̃
p (X+ × Y +, G) .=

(
Lp(X+ × Y +, G), Bnω12/ω̃

p (X+ × Y +, G)
)
r/nω12

for 0 < r < nω12. Thus (cf. (4.7.9)) we deduce from (4.12.3) and (4.12.4) that,
given r > 0 and v ∈ B

r/ω̃
p (X+ × Y +, G),

ψεv → v in Br/ω̃
p (X+ × Y +, G) as ε →∞. (4.12.5)

(4) Set X := Lp(Rd−2, E) and Y := B
s/ω′′
p (Rd−2, E). It is a consequence of

Theorems 3.6.1 and 4.4.3(ii) that

Bs/ν
p (K, E) .= Lp(X+ × Y +,Y) ∩Bs/ω̃

p ,X ). (4.12.6)
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Hence it follows from (4.12.4) and (4.12.5) that, given v ∈ B
s/ν
p (K, E),

ψεv → v in Bs/ν
p (K, E) as ε →∞.

Suppose u belongs to (4.12.1). Then ψεu ∈ D(X+ × Y +,Y). From this we infer
that

{
u ∈ D(X+ × Y +,Y) ; ∂i

n1
u = 0, ∂j

n2
u = 0, i ≤ m, j ≤ k

}
(4.12.7)

is dense in (4.12.2).

(5) Put

χε(x, y) := ϕε(x) + ϕε(y)− ϕε(x)ϕε(y), χεv(x, y) := χε(x, y)v(x, y).

Let u belong to (4.12.7). Then (1− χε)u ∈ D(
q

X+ ×
q

Y +,Y) and (1− χε)u con-
verges in Lp(X+ × Y +,Y) towards u as ε → 0. Hence (4.12.6) shows that (1− χε)u
converges in B

s/ν
p (K, E) towards u, provided we prove, due to u− (1− χε)u = χεu,

that

χεu → 0 in Bs/ω̃
p (X+ × Y +,X ) as ε → 0. (4.12.8)

Then it follows that D(
q

X+ ×
q

Y +,Y) is dense in (4.12.2). This implies easily that
B

s/ν
p (K̊, E) is dense in (4.12.2). Thus the theorem will be proved.

(6) Set n := [s/ω1] + 2. Note

4n
(h,0)(ψεu)(x, y) = ϕε(y)4n

(h,0)

(
ϕε(x)u(x, y)

)
.

Since 0 ≤ ϕε(y) ≤ 1 we deduce from Fubini’s theorem, setting Z := Lp(Hd−1, E),

∫ ∞

0

∫

X+

∫

Y +

‖4n
(h,0)(ψεu)(x, y)‖p

X
hps/ω1

dx dy
dh

h

≤
∫ ∞

0

∫ ∞

0

‖4n
h(ϕεv)(x)‖p

Z
hps/ω1

dx
dh

h
,

where v(x) := u(x, ·) and (ϕεv)(x) := ϕε(x)v(x). Now it follows from steps (5)
and (6) of the proof of Theorem 4.7.1 that

[ϕεu]s/ω1,p,1 → 0 as ε → 0,

using the notation of (3.8.2) with d1 = d2 = 1. Hence

[ψεu]s/ω1,p,1 → 0 as ε → 0.

By interchanging the rôles of ω1 and ω2 we also obtain

[ϕ̃εu]s/ω2,p,2 + [ψεu]s/ω2,p,2 → 0 as ε → 0,

where ϕ̃εu := ϕε(y)u(x, y). From this and Theorems 3.6.1 and 4.4.3 it thus follows
that (4.12.8) is true. ¤
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4.13 The structure of wedge spaces

In this section we prove isomorphism theorems for Bessel potential and Besov
spaces on closed wedges. They are of particular relevance for the weak theory of
parabolic boundary value problems.

We assume throughout

• K is the closed standard wedge in Rd;

• Assumptions (4.10.13) and (4.11.3) are satisfied;

• Fs ∈ {Hs/ν
p , Bs/ν

p }.
(4.13.1)

We continue to use the notation and conventions of the preceding sections. For the
ease of writing and reading we omit the range space E ⊗ F in the following so that

Fs(K) = Fs(K, E ⊗ F ), etc.

We set
B02 := B2 |∂1K, B10 := B1 |∂2K,

where B2 |∂1K means, of course, that B2 is restricted to those distributions which
are defined on ∂1K and for which B2 is well-defined.

Let s ∈ R satisfy

ω1(mn + 1/p) + ω2(k + 1/p) < s < ω2(k + 1 + 1/p). (4.13.2)

Note that this implies
ω1(mn + 1/p) < ω2. (4.13.3)

Set

∂BFs(∂12K) :=
n∏

i=0

k∏

j=0

B(s−ω1(i+1/p)−ω2(j+1/p))/ω′′
p (∂12K, E ⊗ Fi).

Since ∂12K = Z ∼= ∂(Y + × Z) ∼= ∂(∂1K) it follows from Theorem 4.8.1 that

B02 is a retraction from ∂B1F
s(∂1K) onto ∂BFs(∂12K)

possessing a universal coretraction Bc
02. Similarly,

B10 is a retraction from ∂B2F
s(∂2K) onto ∂BFs(∂12K)

having a universal coretraction Bc
10 which depends analytically on b ∈ B. Hence

πB02 := 1− Bc
02B02, πB10 := 1− Bc

10B10

are projections, and Lemma 4.1.5 implies

∂B1F
s(∂1K) = ∂B1F

s
B02

(∂1K)⊕ Bc
02∂BFs(∂12K) (4.13.4)

and
∂B2F

s(∂2K) = ∂B2F
s
B10

(∂2K)⊕ Bc
10∂BFs(∂12K), (4.13.5)

where
∂B1F

s
B02

(∂1K) = ker(B02), etc.
Lastly, we put

B12 :=
1
2

(B02B1 + B10B2). (4.13.6)

Note B12 ∈ L
(
Fs(K), ∂BFs(∂12K)

)
.
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4.13.1 Theorem Let assumptions (4.13.1) and (4.13.2) be satisfied. Then

R := (πB02B1, πB10B2,B12)

is a retraction from Fs(K) onto

∂B1F
s
B02

(∂1K)× ∂B2F
s
B10

(∂2K)× ∂BFs(∂12K). (4.13.7)

It possesses a universal coretraction depending analytically on b ∈ B.

Proof. Clearly, R is a continuous linear map from Fs(K) into (4.13.7).
It follows from (4.13.4) and (4.13.5) that each g = (g1, g2) ∈ ∂BFs(∂K) has a

unique representation

g1 = v + Bc
02h1, g2 = w + Bc

10h2 (4.13.8)

with

v = πB02g1, w = πB10g2, (h1, h2) = (B02g1,B10g2) ∈ ∂BFs(∂12K)2.

Consequently, g ∈ ∂cc
B Fs(∂K) iff h1 = h2. Thus, given

(v, w, h) ∈ ∂B1F
s
B02

(∂1K)× ∂B2F
s
B10

(∂2K)× ∂BFs(∂12K),

define g by (4.13.8) with h1 := h2 := h. Then we find, by inserting g into (4.11.7)
and rearranging terms,

Bcg = Rc
1v +Rc

2w +Rc
12h =: Rc(v, w, h), (4.13.9)

where
Rc

1 := B̊c
1, Rc

2 := Bc
2 − B̊c

1B1Bc
2 (4.13.10)

and
Rc

12 := Bc
2Bc

10 + B̊c
1(Bc

02 − B1Bc
2Bc

10). (4.13.11)
Hence Rc is a continuous linear map from (4.13.7) into Fs(K). It depends ana-
lytically on b ∈ B and one verifies that it satisfies RRc(v, w, h) = (v, w, h). This
proves the theorem. ¤

4.13.2 Corollary Set πB := 1− BcB ∈ L(
Fs(K)

)
. Then (πB,R) is a toplinear

isomorphism from Fs(K) onto

Fs
B(K)× ∂B1F

s
B02

(∂1K)× ∂B2F
s
B10

(∂2K)× ∂BFs(∂12K).

It depends analytically on b ∈ B.

Proof. This is now a consequence of Lemma 4.1.5. ¤

Finally, we prove now an isomorphism theorem for Fs
B1

(K). For this we im-
pose an additional assumption, using the concepts and notation introduced in Sec-
tion 4.8:

• m ∈ N satisfies m ≥ mn and

ω1(m + 1/p) + ω2(k + 1/p) < s < ω1(m + 1 + 1/p) + ω2/p;

• B̃1 is complementary to B1 to order m on ∂1K.

(4.13.12)

Note that this assumption implies

ω2k < ω1. (4.13.13)

In particular, k = 0 if ω1 ≤ ω2.
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4.13.3 Theorem Let assumptions (4.13.1) and (4.13.12) be satisfied and sup-
pose s < ω2(k + 1 + 1/p). Set B̃ := (B̃1,B2). Then there exists a toplinear isomor-
phism from Fs

B1
(K) onto

Fs(K̊)× ∂B̃1
Fs

(
(∂1K)0

)× ∂B2F
s
(
(∂2K)0

)× ∂B̃Fs(∂12K) (4.13.14)

depending analytically on the coefficients of B̃1.

Proof. Define

ϕ ∈ Lis
(
∂B1F

s(∂1K)× ∂B̃1
Fs(∂1K), ∂C1F

s(∂1K)
)

and
C1 = ϕ

(B1, B̃1

) ∈ L(
Fs(K), ∂C1F

s(∂1K)
)

in analogy to Remarks 4.8.3(b) and (c) so that

∂C1F
s(∂1K) =

m∏

i=0

B(s−ω1(i+1/p))/ω′
p (∂1K).

Also set C := (C1,B2). Theorem 4.13.1 guarantees that R := (πB02C1, πC10B2, C12)
is a retraction from Fs(K) onto

∂C1F
s
B02

(∂1K)× ∂B2F
s
C10(∂2K)× ∂CFs(∂12K).

It follows from assumption (4.13.12) that

ω2(k + 1/p) < s− ω1(i + 1/p) < ω2(k + 1 + 1/p), 0 ≤ i ≤ m.

Hence, since ∂1K = Y + × Z ∼= Hd−1, we deduce from Theorem 4.7.1

∂C1F
s
B02

(∂1K) = ∂C1F
s
(
(∂1K)0

)
. (4.13.15)

Similarly, since (4.13.12) implies

ω1(m + 1/p) < s− ω2(j + 1/p) < ω1(m + 1 + 1/p), 0 ≤ j ≤ k,

we infer from (4.8.8)
∂B2F

s
C10(∂2K) = ∂B2F

s
(
(∂2K)0

)
. (4.13.16)

Since B1, B̃1, and B2 are retractions from Fs(K) onto ∂B1F
s(∂1K), ∂B̃1

Fs(∂1K), and
∂B2F

s(∂2K), respectively, it is not difficult to see that

C1

(
Fs
B1

(K)
) ∼= ∂B̃1

Fs(∂1K), C12

(
Fs
B1

(K)
) ∼= ∂B̃Fs(∂12K).

From this, (4.13.15), and (4.13.16) it follows that there exists a retraction R̃ from
Fs
B1

(K) onto

∂B̃1
Fs

(
(∂1K)0

)× ∂B2F
s
(
(∂2K)0

)× ∂B̃Fs(∂12K).

Due to Theorem 4.12.1

Fs(K̊) = Fs
C(K) = Fs

(B1,B̃1,B2)
(K) = (Fs

B1
)B̃(K).

Observing (4.13.9) the assertion follows now from Lemma 4.1.5, since the analytic
dependence on the coefficients of B̃1 is clear by our previous considerations. ¤
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Taking (4.13.10) and (4.13.11) into account it is not difficult to give a rather
explicit description of this isomorphism. We leave the details to the interested
reader.

The importance of Theorem 4.13.3 lies, similarly as that of Theorem 4.8.4, in
the fact that it allows to represent the elements of Fs

B1
(K)′ by distributions on K,

∂1K, ∂2K, and ∂12K. This will become clear in Part 2.
Of course, it is also of interest to classify the structure of Fs

B1
(K) if the restric-

tions for s given in assumptions (4.13.12) are not satisfied. We refrain from doing
it in the present generality. However, the following examples contain a complete
analysis in the important and simple case of Dirichlet and Neumann boundary
conditions for second order problems.

4.13.4 Examples We fix n ∈
q
N and consider the closed wedge W := Hn × R+

in Rn+1 with generic point (x, t). Note ∂1W = Rn−1 × R+ and ∂n+1W = Hn, using
standard identifications. For abbreviation, we also set

γ := γ∂1W = |x1=0, γ0 := γ∂n+1W = |t=0, n := n1.

Furthermore, we assume ω = (1, . . . , 1, 2), the 2-parabolic weight vector.
(a) (Dirichlet boundary conditions) First we consider the Dirichlet operator

on ∂1W; thus B = (γ, γ0).
(α) (Retractions) (i) Suppose

2/p < s < 2 + 2/p, s 6= 3/p.

Then (γ, γ0) is a retraction from H
(s,s/2)
p (W) onto

B(s−1/p)(1,1/2)
p (∂1W)×Bs−2/p

p (Hn) if s < 3/p,

and, if s > 3/p, onto the closed linear subspace thereof consisting of all (g, w)
satisfying the compatibility condition

g|t=0 = w|x1=0. (4.13.17)

It possesses a universal coretraction. In particular, (γ, γ0) is a retraction from

H(2,1)
p (W) onto B(2−1/p)(1,1/2)

p (∂1W)×B2−2/p
p (Hn)

if p < 3/2, and onto the closed linear subspace thereof determined by the compati-
bility condition (4.13.17) if p > 3/2.

(ii) Let 1/p ≤ s < 2/p. Then

H(s,s/2)
p (W) = H(s,s/2)

p (Hn ×
q
R+). (4.13.18)

If s > 1/p, then γ is a retraction onto B
(s−1/p)(1,1/2)
p (∂1W).

(iii) If −1 + 1/p < s < 1/p, then H
(s,s/2)
p (W) = H

(s,s/2)
p (W̊).

Proof. (i) follows from Theorem 4.11.6.
(ii) Theorem 4.11.1, applied to the last coordinate, implies (4.13.18). The

second assertion is a consequence of Theorem 4.11.3.
(iii) follows from Corollary 4.11.2. ¤
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(β) (Isomorphisms) (i) Suppose

4− 3/p < s < 3− 1/p. (4.13.19)

Then H
(s,s/2)
p′,γ (W)′ is toplinearly isomorphic to

H−(s,s/2)
p (W)×B(2−s−1/p)(1,1/2)

p (∂1W)×B2−s−2/p
p (Hn)×B4−s−3/p

p (Rn−1).

In particular, if p < 3/2, then

H
(2,1)
p′,γ (W)′ ∼= H−(2,1)

p (W)×B−(1/p,1/2p)
p (∂1W)×B−2/p

p (Hn)×B2−3/p
p (Rn−1).

(ii) Assume
2− 1/p < s < 4− 3/p. (4.13.20)

Then

H
(s,s/2)
p′,γ (W)′ ∼= H−(s,s/2)

p (W)×B(2−s−1/p)(1,1/2)
p (∂1W)×B2−s−2/p

p (Hn).

Thus, if p > 3/2,

H
(2,1)
p′,γ (W)′ ∼= H−(2,1)

p (W)×B−(1/p,1/2p)
p (∂1W)×B−2/p

p (Hn).

(iii) If −1/p < s < 2− 1/p, then H
(s,s/2)
p′,γ (W)′ ∼= H

−(s,s/2)
p (W).

Proof. (i) Set B̃1 := ∂n. Then B̃1 is complementary to B1 = γ to order m = 1.
Condition (4.13.19) is equivalent to 1 + 3/p′ < s < 2 + 1/p′. Hence Theorem 4.13.3
implies that H

(s,s/2)
p′,γ (W) is toplinearly isomorphic to

H
(s,s/2)
p′ (W̊)×B

(s−1−1/p′)(1,1/2)
p′

(
(∂1W)0

)×B
s−2/p′

p′ (H̊n)×B
s−1−3/p′

p′ (Rn−1).

Due to Theorems 3.3.3, 3.7.1(i), and 4.4.4 the assertion now follows by duality.
(ii) Assumption (4.13.20) means 1 + 1/p′ < s < 1 + 3/p′. Hence it follows from

Theorem 4.12.1 that(
H

(s,s/2)
p′,B1

)
B̃(W) = H

(s,s/2)
p′,(γ,∂n,γ0)

(W) = H
(s,s/2)
p′ (W̊). (4.13.21)

Theorem 4.11.6 implies that B̃ = (∂n, γ0) is a retraction from H
(s,s/2)
p′ (W) onto

B
(s−1−1/p′)(1,1/2)
p′ (∂1W)×B

s−2/p′

p′ (Hn).

Since s− 1− 1/p′ < 2/p′ we deduce from Theorem 4.7.1 that

B
(s−1−1/p′)(1,1/2)
p′ (∂1W) = B

(s−2+1/p)(1,1/2)
p′

(
(∂1W)0

)
.

Similarly, since s− 2/p′ < 1 + 1/p′, it follows

B
s−2/p′

p′ (Hn) = B
s−2+2/p
p′ (H̊n).

Thus, see Lemma 4.1.5,

H
(s,s/2)
p′ (W) = H

(s,s/2)

p′,B̃ (W)⊕ (∂n)cB
(s−2+1/p)(1,1/2)
p′

(
∂1(W)0

)× γc
0B

s−2+2/p
p′ (H̊n).

From this and (4.13.21) we infer

H
(s,s/2)
p′,γ (W) ∼= H

(s,s/2)
p′ (W̊)×B

(s−2+1/p)(1,1/2)
p′

(
∂1(W)0

)×B
s−2+2/p
p′ (H̊n).

Finally, we obtain the assertion once more by duality.
(iii) This follows from (α)(iii) and duality. ¤
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(b) (Neumann boundary conditions) Now we consider the Neumann bound-
ary operator ∂n on ∂1W, that is, B = (∂n, γ0).

(α) (Retractions) Suppose

1 + 1/p < s < 3− 1/p, s 6= 1 + 3/p.

Then B is a retraction from H
(s,s/2)
p (W) onto

B(s−1−1/p)(1,1/2)
p (∂1W)×Bs−2/p

p (Hn) if s < 1 + 3/p,

and, if s > 1 + 3/p, onto the closed linear subspace thereof consisting of all (g, w)
satisfying the compatibility condition

g|t=0 = ∂nw|x1=0. (4.13.22)

It possesses a universal coretraction.

In particular, if p < 3, then (∂n, γ0) is a retraction from H
(2,1)
p (W) onto

B(1−1/p)(1,1/2)
p (∂1W)×B2−2/p

p (Hn)

and, if p > 3, onto the closed linear subspace thereof determined by (4.13.22).

Proof. Theorem 4.11.6. ¤

(β) (Isomorphisms) (i) Suppose

3− 3/p < s < 3− 1/p, s 6= 2− 1/p. (4.13.23)

Then H
(s,s/2)
p′,∂n

(W)′ is toplinearly isomorphic to

H−(s,s/2)
p (W)×B(1−s−1/p)(1,1/2)

p (∂1W)×B2−s−2/p
p (Hn)×B3−s−3/p

p (Rn−1),

where H
(s,s/2)
p′,∂n

(W) := H
(s,s/2)
p′ (Wn) if s < 1 + 1/p′ = 2− 1/p. Thus, if p < 3, then

H
(2,1)
p′,∂n

(W)′ ∼= H−(2,1)
p (W)×B−(1+1/p)(1,1/2)

p (∂1W)

×B−2/p
p (Hn)×B1−3/p

p (Rn−1).

(ii) If 2− 2/p < s < 3− 3/p, then

H
(s,s/2)
p′,∂n

(W)′ ∼= H−(s,s/2)
p (W)×B(1−s−1/p)(1,1/2)

p (∂1W)×B2−s−2/p
p (Hn).

In particular, if p > 3, then

H
(2,1)
p′,∂n

(W)′ ∼= H−(2,1)
p (W)×B−(1+1/p)(1,1/2)

p (∂1W)×B−2/p
p (Hn).

(iii) Let 1− 1/p < s < 2− 2/p. Then

H
(s,s/2)
p′,∂n

(W)′ ∼= H−(s,s/2)
p (W)×B−(1+1/p)(1,1/2)

p (∂1W).

Proof. (i) Condition (4.13.23) says 3/p′ < s < 2 + 1/p′ and s 6= 1 + 1/p′.

First suppose s > 1 + 1/p′. Then B̃1 := γ is complementary to B1 = ∂n to
order 1. Hence Theorem 4.13.3 implies that H

(s,s/2)
p′,∂n

(W) is toplinearly isomorphic to

H
(s,s/2)
p′ (W̊)×B

(s−1/p′)(1,1/2)
p′

(
(∂1W)0

)

×B
s−2/p′

p′ (H̊n)×B
s−3/p′

p′ (Rn−1).
(4.13.24)
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Now suppose 3/p′ < s < 1 + 1/p′. Put γ10 := γ |Hn and γ02 := γ0 |∂1W. Then
we deduce from Corollary 4.13.2 that H

(s,s/2)
p′ (W) is toplinearly isomorphic to

H
(s,s/2)
p′,B (W)×B

(s−1/p′)(1,1/2)
p′,γ02

(∂1W)×B
s−2/p′

p′,γ10
(Hn)×B

s−3/p′

p′ (Rn−1).

Theorems 4.7.1 and 4.12.1 guarantee that this space also equals (4.13.24). Thus
the assertion is obtained by duality.

(ii) Since 2/p′ < s < 3/p′ it follows from Theorem 4.11.6 that γ is a retraction
from H

(s,s/2)
p′ (W) onto

B
(s−1/p′)(1,1/2)
p′ (∂1W)×Bs−2/p′

p (Hn).

Due to s− 1/p′ < 2/p′ and s− 2/p′ < 1/p′ we infer from Theorem 4.7.1 that this
space equals

B
(s−1+1/p)(1,1/2)
p′

(
(∂1W)0

)×B
s−2+2/p
p′ (H̊n).

Arguments which are familiar by now conclude the proof.
(iii) This follows, similarly as above, by invoking Theorem 4.11.3. ¤

(c) It is clear that analogous assertions hold if we replace H everywhere by B. ¤

The reader is invited to draw the connection between the above isomorphism
theorems for H

(2,1)
p′,γ (W)′ and H

(2,1)
p′,∂n

(W)′ and Theorem 0.5 in the introductory sec-
tion on parabolic equations. For this Remark 4.4.5 has to be kept in mind. Of
course, this will explained in detail in Part 2.

4.14 Parameter-dependent function spaces

For technical reasons, which will become clear in Part 2, it is useful to have
parameter-dependent versions of Bessel potential and Besov spaces at our disposal.
Thus we return to the general setting of Section 2.3 where parameter-dependent
fractional power scales [ Fs

γ,η ; s ∈ R ] have been introduced. By specifying F and γ
we arrive at the desired concrete scales. Recall 1 < p < ∞.

Parameter-dependent anisotropic Bessel potential spaces are naturally
defined by

Hs/ν
p;η = Hs/ν

p;η (Rd, E) := J−s
η Lp, s ∈ R, η ∈

q
H.

Thus the parameter-dependent anisotropic Bessel potential scale

[ Hs/ν
p;η ; s ∈ R ]

is for η ∈
q

H the fractional power scale generated by (Lp, Jη). It is a particularization
of (2.3.7) with γ = 0.

To define parameter-dependent anisotropic Besov spaces,
M
B

s/ν
q,r;η(Rd, F ),

for q, r ∈ [1,∞], s ∈ R, and an arbitrary Banach space F , we recall ργ
t = tγσt for

t > 0 and γ ∈ R. Hence (ργ
t )−1 = ρ−γ

1/t. Then, given η ∈
q

H,
M
B0

q,r;η =
M
B0

q,r;η(Rd, F ) := ρ
|ω|/q
|η|

M
B0

q,r

and
M
B

s/ν
q,r;η =

M
B

s/ν
q,r;η(Rd, F ) := J−s

η

M
B0

q,r;η
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for s ∈ R. These spaces are equipped with the image space norm

u 7→ ‖u‖
B

s/ν
q,r;η

:= ‖ρ−|ω|/q
1/|η| Js

ηu‖B0
q,r

(cf. Remark 2.2.1(a)). Thus, setting γ := |ω|/q and using the notation of Sec-
tion 2.3,

M
B

s/ν
q,r;η = Fs

γ,η = J−s
η Fγ,η, Fγ,η = ργ

|η|
M
B0

q,r.

In other words: the parameter-dependent anisotropic Besov space scale

[
M
B

s/ν
q,r;η ; s ∈ R ]

is the fractional power scale generated by (
M
B0

q,r;η, Jη) for η ∈
q

H.
These definitions are justified by the following theorem which shows that the

basic properties for the standard, that is parameter-free, Bessel potential and Besov
spaces hold for the parameter-dependent versions also, uniformly with respect to
η ∈

q
H.

4.14.1 Theorem

(i) If u ∈ H
s/ν
p , then

‖u‖
H

s/ν
p;η

= |η|s−|ω|/p ‖σ1/|η|u‖H
s/ν
p

, η ∈
q

H.

(ii) For u ∈ M
B

s/ν
q,r ,

‖u‖
B

s/ν
q,r;η

= |η|s−|ω|/q ‖σ1/|η|u‖B
s/ν
q,r

, η ∈
q

H.

(iii) H
s/ν
p;η (Rd, E)′ = H

−s/ν
p′;η (Rd, E′), η ∈

q
H, and, if F is reflexive,

Bs/ν
q,r;η(Rd, F )′ .=

η
B
−s/ν
q′,r′;η(Rd, F ′), r 6= ∞,

with respect to the Lp(Rd, E), resp. Lq(Rd, F ), duality pairing.
(iv) For s0, s1 ∈ R with s0 6= s1 and 0 < θ < 1,

M
B

sθ/ν
p,q;η

.=
η

(Hs0
p;η, Hs1

p;η)0θ,q.

Proof. (1) Assertions (i) and (ii) follow easily from Proposition 1.1.1(ii) and
(2.3.2).

(2) For u ∈ S(Rd, F ) and v ∈ S(Rd, F ′) one verifies
∫

Rd

〈v, u〉F dx =
∫

Rd

〈
ρ
−|ω|/q′

1/|η| v, ρ
−|ω|/q
1/|η| u

〉
F

dx, η ∈
q

H.

Now (iii) is implied by (i), (ii), and the duality results for the parameter-free spaces.

(3) Put F s
η := |η|−s H

s/ν
p , that is, F s

η is the image space of the multiplication
operator u 7→ |η|−s u. Then, given s0 < s1 and 0 < θ < 1,

Kη(t, u) := inf
{ ‖u0‖F

s0
η

+ t ‖u1‖F
s1
η

; u = u0 + u1, uj ∈ F sj
η

}

= |η|s0 K1(|η|s1−s0 t, u)
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for t > 0 and u ∈ F s1
η . Thus, setting F s := F s

1 , the K-method of interpolation
theory implies

‖u‖(F s0
η ,F

s1
η )θ,q

= ‖t−θKη(t, u)‖
Lq(

q
R+,dt/t)

= |η|sθ ‖τ−θK1(τ, u)‖
Lq(

q
R+,dτ/τ)

= |η|sθ ‖u‖(F s0 ,F s1 )θ,q
.

Consequently, by Theorem 3.7.1(iv) we infer
(|η|−s0 Hs0/ν

p , |η|−s1 Hs1/ν
p

)0

θ,q
= |η|−sθ

M
B

s/ν
p,q . (4.14.1)

From (i) we see that ρ
−|ω|/p
1/|η| is an isometric isomorphism from H

s/ν
p;η onto |η|−s H

s/ν
p .

Thus, by interpolating and using (4.14.1), it follows that

ρ
−|ω|/p
1/|η| : (Hs0/ν

p;η ,Hs1/ν
p;η )0θ,q → |η|−sθ

M
B

sθ/ν
p,q

is an isomorphism as well, η-uniformly. Now (iv) follows from (ii). ¤

Theorem 2.3.8 shows explicitly the η-dependence of the norm of the parameter-
dependent anisotropic Sobolev spaces

Wmν/ν
p;η (Rd, E) = Hmν/ν

p;η (Rd, E), m ∈ N.

The following proposition shows that an analogous result holds for parameter-
dependent anisotropic Slobodeckii spaces of positive order. For this we remind the
reader of the definition of the seminorm [·]s/ν,q,r in (3.6.1) and (3.6.2).

4.14.2 Proposition If s > 0, then

‖·‖
B

s/ν
q,r;η

∼
η
|η|s ‖·‖Lq + [·]s/ν,q,r.

Proof. For u ∈ S(Rd, F ), y ∈ Rd, and t > 0 one verifies 4k
yσt = σt4k

t qy for
k ∈ N. Hence, by Proposition 1.1.1(ii),

‖4kν/νi

ȟi
σtu‖q = t−|ω|/q ‖4kν/νi

t qȟi
u‖q.

Suppose r 6= ∞. Then
∥∥ |hi|−s/νi ‖4kν/νi

ȟi
σtu‖q

∥∥
Lr((Rdi )

q
,dhi/|hi|di )

= ts−|ω|/q
(∫

Rdi

|t q hi|−sr/νi ‖4kν/νi

t qȟi
u‖r

q

d(t q hi)
|t q hi|di

)1/r

due to t q ȟi = tνi ȟi. Hence, by changing variables,

[σtu]s/ν,q,r = ts−|ω|/q[u]s/ν,q,r (4.14.2)

if r 6= ∞. It is easily verified that (4.14.2) holds also if r = ∞. Setting t = 1/|η| it
follows

|η|s−|ω|/q[σ1/|η|u]s/ν,q,r = [u]s/ν,q,r, η ∈
q

H.

Since by Proposition 1.1.1(ii)

|η|s−|ω|/q ‖σ1/|η|u‖q = |η|s ‖u‖q, η ∈
q

H,

we obtain the assertion from Theorems 3.6.1 and 4.14.1(ii). ¤

Now we turn to the half-space H = Hd and standard corners.
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4.14.3 Theorem All extension and restriction results from and to corners de-
rived in the preceding sections hold η-uniformly for parameter-dependent anisotropic
Bessel potential and Besov spaces.

Proof. This is an easy consequence of Theorem 4.14.1 and the proofs for the
parameter-free case. ¤

4.14.4 Theorem The parameter-dependent anisotropic Bessel potential and
Besov spaces possess the same interpolation properties, uniformly with respect to
η ∈

q
H, as their parameter-free counterparts.

Proof. In the full space case, that is for spaces on Rd, this follows from
Theorems 2.3.2(v) and 4.14.1(iv), and by reiteration. For spaces on corners it is
then a consequence of Theorems 4.4.1 and 4.14.3. ¤

If u ∈ S(H, F ), then

γ∂Hσtu(x′) = γ∂H
(
u(t q x)

)
= u(0, t q x′) = σtγ∂Hu(x′), x′ ∈ ∂H,

that is, γ∂Hσt = σtγ∂H. Thus, since |ω| = ω1 + |ω′|, Theorem 4.14.1(ii) and the
trace Theorem 4.5.4 imply

‖γ∂Hu‖
B

(s−ω1/q)/ω′
q,r;η (∂H,F )

= |η|s−ω1/q−|ω′|/q ‖σ1/|η|γ∂Hu‖
B

(s−ω1/q)/ω′
q,r (∂H,F )

= |η|s−|ω|/q ‖γ∂Hσ1/|η|u‖B
(s−ω1/q)/ω′
q,r (∂H,F )

≤ c |η|s−|ω|/q ‖σ1/|η|u‖B
s/ν
q,r (H,F )

= c ‖u‖
B

s/ν
q,r;η(H,F )

.

Thus, if s > ω1/q,

γ∂H ∈ L
( M
B

s/ν
q,r;η(H, F ),

M
B

(s−ω1/q)/ω′
q,r;η (∂H, F )

)
, η-uniformly.

Similarly,

γ∂H ∈ L
(
Hs/ν

p;η (H, E), B(s−ω1/p)/ω′
p;η (∂H, E)

)
, η-uniformly,

for s > ω1/p. This extends immediately to the higher order trace maps ∂j
n. In fact,

the following important theorem is true.

4.14.5 Theorem All retraction and coretraction results of the preceding sec-
tions hold η-uniformly for parameter-dependent anisotropic Bessel potential and
Besov spaces.

Proof. (1) The η-uniform continuity of the various trace operators follows
easily from the preceding considerations and Theorem 4.14.3.

(2) All coretraction results for the half-space of the foregoing sections are based
on the coretractions γc

j for ∂j
n constructed in the proof of Theorem 4.6.2. Thus we

have to show that γc
j is continuous from the parameter-dependent spaces on ∂H to

the corresponding parameter-dependent domains of ∂j
n, uniformly with respect to

η ∈
q

H. As in the above considerations for γ∂H, this will follow from (4.6.6)–(4.6.13),
provided we show

σ|η|Ake−tA = Ake−tAσ|η|, η ∈
q

H, k ∈ N, t ≥ 0. (4.14.3)
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However, this follows from (2.2.2) and the representation formula for

e−tA = (e−ta)(D)

of Theorem 2.2.6, where a := Kω1
1 .

(3) Similar remarks apply to the case of retraction and coretraction theorems
on wedges. This implies the assertion. ¤

Parameter-dependent function spaces occur naturally in resolvent construc-
tions for elliptic and parabolic boundary value problems and in singular perturba-
tion problems. It seems that parameter-dependent norms have first been used in
connection with resolvent estimates by M.S. Agranovich and M.I. Vishik [1] in an
L2-setting.

Parameter-dependent isotropic and anisotropic L2-Sobolev spaces of fractional
order, Hs and H(s,t), have been extensively used by G. Grubb in numerous articles
on a parameter-dependent Boutet de Monvel theory for pseudo-differential bound-
ary value problems. This work and a functional calculus for such problems is well
documented in her book [31]. In G. Grubb and N.J. Kokholm [32] the parameter-
dependent calculus is extended to isotropic Bessel potential and Besov spaces in
the Lp-setting for 1 < p < ∞.

In all those papers the authors use, instead of |η|, the parameter 〈η〉 so that
1/〈η〉 does not blow up as η → 0. This is, however, irrelevant for the above results.
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