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A rather complete investigation of anisotropic Bessel pii& Besov, and Holder spaces on cylinders over
(possibly) noncompact Riemannian manifolds with boundamgarried out. The geometry of the underlying
manifold near its ‘ends’ is determined by a singularity fiime which leads naturally to the study of weighted
function spaces. Besides of the derivation of Sobolev-gmpbedding results, sharp trace theorems, point-wise
multiplier properties, and interpolation characteriaai particular emphasize is put on spaces distinguished
by boundary conditions. This work is the fundament for thalgsis of time-dependent partial differential
equations on singular manifolds.

1 Introduction

In [5] we have performed an in-depth study of Sobolev, Bgsstintial, and Besov spaces of functions and tensor
fields on Riemannian manifolds which may have a boundary amdbe noncompact and noncomplete. That as
well as the present research is motivated by — and providebdkis for — the study of elliptic and parabolic
boundary value problems on piece-wise smooth manifolddpomains inR™ with a piece-wise smooth boundary
in particular.

A singular manifold)M is to a large extent determined by a ‘singularity functipré C>° (M, (0, oo)). The
behavior ofp at the ‘singular ends’ of/, that is, near that parts @ff at whichp gets either arbitrarily small or
arbitrarily large, reflects the singular structure\dt

The basic building blocks for a useful theory of functionsgaon singular manifolds are weighted Sobolev
spaces based on the singularity functiprMore precisely, we denote [ eitherR or C. Then, givernk € N,
A € R, andp € (1, 0), the weighted Sobolev spat€f* (M) = W,**(M,K) is the completion oD (M), the
space of smooth functions with compact suppodnin Ly ,.(M) with respect to the norm

k ) ) 1/
ws (3l 9l ) (1.1)
=0

HereV denotes the Levi-Civita covariant derivative aid u|, is the ‘length’ of the covariant tensor field'«
naturally derived from the Riemannian metgiof M. Of course, integration is carried out with respect to the
volume measure of/. It turns out thatI/I/;D’“(M) is well-defined, independently — in the sense of equivalent
norms — of the representation of the singularity structdr&oby means of the specific singularity function.

A very special and simple example of a singular manifold mvgted by a bounded smooth domain whose
boundary possesses a conical point. More precisely, sedpas a bounded domain iR™ whose topolog-
ical boundarybdry(2), contains the origin, andl := bdry(2)\ {0} is a smooth(m — 1)-dimensional sub-
manifold of R™ lying locally on one side of2. Also suppose tha® U T is near0 diffeomorphic to a cone
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{ry; 0<r <1, ye€ B}, whereB is a smooth compact submanifold of the unit spher®&ffh. Then, en-
dowing M := Q U T" with the Euclidean metric, we get a singular manifold withregke conical singularity, as
considered in[35] and [27], for example. In this case theghvtgid norm[(T]1) is equivalent to

1/p
s (Z ||T,)\+|a\aau”1£p(ﬂ)) ’

la|<k

wherer(z) is the Euclidean distance frome M to the origin. Moreover¥*-* (M) coincides with the space
Vz'jfﬂk(ﬂ) employed by S.A. Nazarov and B.A. Plamenevsky [35, p. 318] amthe case = 2, by V.A. Kozlov,
V.G. MaZya, and J. Rossmann (see Section 6.2 af [27], for instance).

In [5] we have exhibited a number of examples of singular riedahé. For more general classes, comprising
notably manifolds with corners and non-smooth cusps, wer tefH. Amann[[6]. It is worthwhile to point out
that our concept of singular manifolds encompasses, ag/gaeticular case, manifolds with bounded geometry
(that is, Riemannian manifolds without boundary possegsaipositive injectivity radius and having all covariant
derivatives of the curvature tensor bounded). In this caseam sep = 1, the function constantly equal g so
thatW,** (1) is independent ok and equal to the standard Sobolev spaGE(M ).

The weighted Sobolev spacBngA(M) and their fractional order relatives, that is, Bessel piiéand Besov
spaces, come up naturally in, and are especially usefuttferstudy of elliptic boundary value problems for
differential and pseudodifferential operators in non-sthaettings. This is known since the seminal work of V.A.
Kondratev [22] and has since been exploited and amplified by numexotl®rs in various levels of generality,
predominantly however in the Hilbertian case- 2 (see[[5] for further bibliographical remarks).

For an efficient study of evolution equations on singular ificdais we have to have a good understanding of
function spaces on space-time cylindéfsx J with J € {R,R*}, whereR™ = [0, 00). Then, in general, the
functions (or distributions) under consideration possésrént regularity properties with respect to the space
and time variables. Thus we are led to study anisotropic Bglepaces and their fractional order relatives.

Anisotropic weighted Sobolev spaces depend on two additiparameters, namelye N* := N\ {0} and
1 € R. More precisely, we denote throughout®y- 0, the vector-valued distributional ‘time’ derivative. Then
givenk € N*,

W kR (M % J) is the linear subspace éfi 1o.(M x .J) consisting of allu satisfying
PN |\Vi9Iy|, € Ly(M x J) for i+ jr < kr, (1.2)
endowed with its natural norm.

It is a Banach space, a Hilbert space if 2.

Spaces of this type, as well as fractional order versiontieprovide the natural domain for dn,-theory
of linear differential operators of the form

Z aij . Viaj,

i+jr<kr

whereaq;; is a time-dependent contravariant tensor field of ofderd - indicates complete contraction. In this
connection the values = 0, =1, andp = r are of particular importance. | = 1, then space and time
derivatives carry the same weight. If alse= 1, then we get isotropic weighted Sobolev spacedbx J.

If © = 0, then the intersection space characterization
W RO (M x ) = Ly, (J, WEN(M)) 0 W (J, LY (M)

is valid, where= means: equal except for equivalent norms. Spaces of thés(tyjph £ = 1) have been used
by S. Coriasco, E. Schrohe, and J. Seiler [9]] [10] for stugyparabolic equations on manifolds with conical
points. In this case is (equivalent to) the distance from the singular pointsisatropic spaces with = 0 are
also important for certain classes of degenerate parabolindary value problems (séé [6]).



The spaceﬁ?[/,,(kr’k)’(A’T)(M x J) constitute, perhaps, the most natural extension of thédsi@y’ spaces

W,»*(M) to the space-time cylindet/ x .J. They have been employed by V.A. Kozldv [23]]26] — in the
Hilbertian settingp = 2 — for the study of general parabolic boundary value problema coneM . (Kozlov,

as well as the authors mentioned below, WWélj_T,;]:) for WF- A1)y The spacat; > (M x J) oc-
curs in the works on second order parabolic equations on miefinite wedges by V.A. SolonnikoV [45] and
A.l. Nazarov [34] (also see V.A. Solonnikov and E.V. Froldé®)], [47]), as well as in the studies of W.M.
Zajaczkowski [52]-[55], A. Kubica and W.M. Zagzkowski [28],[29], and K. Pileckas [B6]=[38] (see the-ref
erences in these papers for earlier work) on Stokes and N&to&es equations. In all these papers, except the
ones of Pileckag is the distance to the singularity set, where ing€akowski’s publicationd/ is obtained from

a smooth subdomain @& by eliminating a line segment. Pileckas considers subdosrafiR"™ with outlets to

infinity and p having possibly polynomial or exponential growth.

In this work we carry out a detailed study of anisotropic SeladBessel potential, Besov, and Holder spaces on
singular manifolds and their interrelations. Besides &f thtroduction, the paper is structured by the following
sections on whose principal content we comment below.

@ Vector Bundles [I3 Point-Wise Multipliers
@ Uniform Regularity [I4 Contractions
4 Singular Manifolds [I5 Embeddings
Local Representations [116 Differential Operators
Isotropic Bessel Potential and Besov Spaces [] 17 ExtensiwhRestrictions
[ The Isotropic Retraction Theorem []18 Trace Theorems
[B Anisotropic Bessel Potential and Besov Spaces[ ] 19 Spacdhs/hishing Traces
The Anisotropic Retraction Theorem [120 Boundary Operators
[Id Renorming of Besov Spaces 121 Interpolation
[1 Holder Spaces in Euclidean Settings [ 22 Bounded Cylinder
12 Weighted Holder Spaces

We have already pointed out inl [5] that it is not sufficient tiady function spaces on singular manifolds since
spaces of tensor fields occur naturally in applicationsrétfeoto pave the way for a study systemsf differen-

tial and pseudodifferential operators it is even necessadgal with tensor fields taking their values in general
vector bundles. This framework is adopted here.

Section§P and 3 are of preparatory character. In the folmsitles of fixing notation and introducing conven-
tions used throughout, we present the background materiaéotor bundles on which this paper is based. We
emphasize, in particular, duality properties and locatespntations which are fundamental for our approach.

Since we are primarily interested in noncompact manifoldsnave to impose suitable regularity conditions
‘at infinity’. This is done in Sectiohl3 where we introduce tHass of ‘fully uniformly regular’ vector bundles.
They constitute the ‘image bundles’ for the tensor fieldstendingular manifolds which we consider here.

After these preparations, singular manifolds are intrediin Sectiofi#. There we also install the geometrical
frame which we use from thereon without further mention.

Although we study spaces of tensor fields taking their vainesiformly regular vector bundles, the vector
bundles generated by these tensor fieldsnatainiformly regular themselves, in general. In fact, theirtmce
and their covariant derivative depend on the mejriaf the underlying singular Riemannian manifold. Since
the singularity behavior of is controlled by the singularity functiop, due to our very definition of a singular
manifold, we have to study carefully the dependence of d&divent parameters omas well. This is done in
Sectiorlb. On its basis we can show in later sections thataheus function spaces are independent of particular
representations; they depend on the underlying geométuictsre only.

Having settled these preparatory problems we can then ¢utimet main subject of this paper, the study of
function spaces (more precisely, spaces of vector-buvalleed tensor fields) on singular manifolds. We begin
in Section§ b andl 7 by recalling and amplifying some resuttsifour previous paper[[5] on isotropic spaces. On
the one hand this allows us to introduce some basic concegtsrathe other hand we can point out the changes
which have to be made to cover the more general setting ofatbxdundle-valued tensor fields.

The actual study of anisotropic weighted function spacegnsein Sectioi 8. First we introduce Sobolev
spaces which can be easily described invariantly. They fibrbuilding blocks for the theory of anisotropic
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weighted Bessel potential and Besov spaces. The lattenaagantly defined by interpolation between Sobolev
spaces and by duality.

This being done, it has to be shown that these spaces coiimciie most simple situation in which/ is
either the Euclidean spad@™ or a closed half-spacH™ thereof with the ‘usual’ anisotropic Bessel potential
and Besov spaces, respectively. In the Euclidean modéhgettthorough investigation has been carried out
in H. Amann [4] by means of Fourier analytic techniques. TWatk is the fundament upon which the present
research is built. The basic result which settles this ifieation and is fundamental for the whole theory as
well as for the study of evolution equations is Theofenh 9rBparticular, it establishes isomorphisms between
the function spaces ol/ x .J and certain countable products of corresponding spacesodelmanifolds. By
these isomorphisms we can transfer the known propertidseofetementary’ spaces dR™ x J andH" x J
to M x J. With this method we establish the most fundamental prageedf anisotropic Bessel potential and
Besov spaces which are already stated in SeLtion 8.

In Sectior ID we take advantage of the fact that the anisiatspaces we consider live in cylinders over
so that the ‘time variable’ plays a distinguished role. Talilews us to introduce some useful semi-explicit
equivalent norms for Besov spaces.

It is well-known that spaces of Holder continuous funciare intimately related to the theory of partial
differential equations on Euclidean spaces. They occuraby, even in thel,-theory, as point-wise multiplier
spaces, in particular as coefficient spaces for differeaparators. Although it is fairly easy to study Holder
continuous functions on subsetsi®f, it is surprisingly difficult to do this on manifolds. Our amach to this
problem is similar to the way in which we defined Bessel paand (L,-based) Besov spaces on manifolds.
Namely, first we introduce spaces of bounded and continyaliféérentiable functions. Then we define Holder
spaces, more generally Besov-Holder spaces, by inteéipolaThis is not straightforward since we can only
interpolate between spaces of bound&dfunctions whose derivatives are uniformly continuouseButhe fact
that we are mainly interested in noncompact manifolds, tiieept of uniform continuity is not a priori clear and
has to be clarified first. Then the next problem is to show ttidtiet spaces introduced in this invariant way can
be described locally by their standard anisotropic coyates onR™ x J andH™ x J. Such representations in
local coordinates are, of course, fundamental for the stdidpncrete equations, for example.

In order to achieve these goals we set up the preliminary@eEl in which we establish the needed properties
of (vector-valued) Holder and Bessel-Holder spaces idlilean settings. In Sectidnl12 we can then settle the
problems alluded to above. It should be mentioned that isgh®o sections we consider time-independent
isotropic as well as time-dependent anisotropic spaces, tbomplementing the somewhat ad hoc results on
Holder spaces il [5].

Having introduced all these spaces and established thsic paoperties we proceed now to more refined
features. In Sectidn 13 we show that, similarly as in the ileeln setting, Holder spaces are universal point-wise
multiplier spaces for Bessel potential and Besov spacesledadnL,. For this we establish the rather general
(almost) optimal Theorem 13.5.

In practice point-wise multiplications occur, as a rulaptigh contractions of tensor fields. For this reason
we carry out in Sectioh 14 a detailed study of mapping progeidf contractions of tensor fields, one factor
belonging to a Holder space and the other one to a Besseltiter a Besov space, in particular. It should be
noted that we impose minimal regularity assumptions fomthatiplier space. The larger part of Sectlod 14 is,
however, devoted to the problem of the existence of a cootiauight inverse for a multiplier operator induced
by a complete contraction. The main result of this sectiars tis Theoremh 1419. It is basic for the theory of
boundary value problems.

Sectior Ib contains general Sobolev-type embedding theofer parameter-dependent weighted Bessel po-
tential and Besov spaces. They are natural extensions afaifiesponding classical results in the Euclidean
setting.

Making use of our point-wise multiplier and Sobolev-typetmdding theorems we study in Section 16 map-
ping properties of differential operators in anisotrogases. In view of applications to quasilinear equations we
strive for minimal regularity requirements for the coeftict tensors.

All results established up to this point hold both fbe= R and.J = R*. In contrast, Sectidn 17 is specifically
concerned with anisotropic spaces on the half-life It is shown that in many cases properties of function



spaces ofiR* can be derived from the corresponding results on the whodeRli This can simplify the situation
sinceM x R is a usual manifold (with boundary), wherelsx R* has corners &M # 0.

In Sectio IB we consider the important case whdrkas a nonempty boundary and establish the fundamental
trace theorem for anisotropic weighted Bessel potentidBasov spaces, both on the ‘lateral boundad/ x J
and on the ‘initial boundaryM x {0} if J = R™.

In the next section we characterize spaces of functionsigaxanishing initial traces. Sectibn]20 is devoted
to extending the boundary values. Here we rely, besidesréite theorem, in particular on the ‘right inverse
theorem’ established in Sectibnl14. The results of this@eetre of great importance in the theory of boundary
value problems.

Sectiol 21l describes the behavior of anisotropic weightess& potential, Besov, and Holder spaces under
interpolation. In addition to this, we also derive interg@n theorems for ‘spaces with vanishing boundary
conditions’. These results are needed for a ‘wégkheory’ of parabolic evolution equations.

Our investigation of weighted anisotropic function spaisegreatly simplified by the fact that we consider
full and half-cylinders oveM. In this case we can take advantage of the dilation invaeiafid. In practice,
cylinders of finite height come up naturally and are of coesathle importance. For this reason it is shown, in
the last section, that all embedding, interpolation, tthearems, etc. are equally valid.Jfis replaced by0, T']
for someT € (0, 00).

In order to cover the many possibilities due to the (unavdigdarge set of parameters our spaces depend
upon, and to eliminate repetitive arguments, we use rathret@nsed notation in which we exhibit the locally rel-
evant information only. This requires a great deal of cotregion on the part of the reader. However, everything
simplifies drastically in the important special case of Ra@man manifolds with bounded geometry. In that case
there are no singularities and all spaces are parametepémdlent. Readers interested in this situation only can
simply ignore all mention of the parametevrsu, andd and sefp = 1. Needless to say that even in this ‘simple’
situation the results of this paper are new.

2 Vector Bundles

First we introduce some notation and conventions from fonel analysis. Then we recall some relevant facts
from the theory of vector bundles. It is the main purpose f pineparatory section to create a firm basis for the
following. We emphasize in particular duality propertiesidocal representations, for which we cannot refer to
the literature. Background material on manifolds and velstimdles is found in J. Dieudonrie[12] or J. Jost [21],
for example.

Given locally convex (Hausdorff topological vector) spadeand)’, we denote byC(X’, ) the space of con-
tinuous linear maps from’” into YV, andL(X) := L(X, X). By Lis(X,)) we mean the set of all isomorphisms
in £(X,Y), andLaut(X) := Lis(X, X) is the automorphism group i6(X). If X and) are Banach spaces,
then£(X,)) is endowed with the uniform operator norm. In this situatiin( X, ) is open in£(X,)). We
write (-, -) ,- for the duality pairing betwee&” := £(X,K) and X, that is, (', ) x is the value ofr’ € A" at
e k.

LetH = (H, (- -)) be a Hilbert space. Then tliRiesz isomorphisns the conjugate linear isometric isomor-
phism¢ = ¥y : H — H’ defined by

(z,y) = (y|z),  x,yeH, (2.1)
where(-,-) = (-,-) 5. Then
(@' [y) =@y |97 1), oy e H, (2.2)

defines theadjointinner product on’, andH* := (H’, (-|-)") is the adjoint Hilbert space. Denoting Hy||
and||-||* the inner product norms associated with) and(-|-)", respectively, we obtain froh (2.1) aid (2.2)

(2", 2)| < |2’ |l=l, "€ H', xzeH. (2.3)
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It follows from (Z)-{Z.B) and the fact thatis an isometry thaffz’||* = sup{ | (2, z)]|, ||lz|| <1} forz’ € H'.
Thus||-||" is the norminH’ = £(H, K), the dual norm. In other word&]’ = H* as Banach spaces. For this and
historical reasons we use the ‘star notation’ for the duatspn the finite-dimensional setting and in connection
with vector bundles, whereas the ‘prime notation’ is morgrapriate in functional analytical considerations.

If H, and H, are Hilbert spaces and € L(H;, Hs), then it has to be carefully distinguished between
the duald’ € L(H), Hy), defined by(A'z), x1) g, = (x4, Az1) m,, and the adjoind* € L(H, Hy), given by
(A*IQ |I1)H1 = (I2|A.§C1)H2 forx; € H; andx’Q S Hé

SupposeH; and H are finite-dimensional. Thed(H,, Hz) is a Hilbert space with the Hilbert-Schmidt
inner product- |-) ;¢ defined by(A|B)ys := te(B*A) for A, B € L(H,, Hz), wheretr denotes the trace. The

corresponding norm|,, ¢ is the Hilbert-Schmidt normal — /tc(A*A).

Throughoutthis paper, we use the summation conventionélicés labeling coordinates or bases. This means
that such a repeated index, which appears once as a supeasationce as a subscript, implies summation over
its whole range.

By a manifoldwe always mean a smooth, that 57° manifold with (possibly empty) boundary such that
its underlying topological space is separable and metiezakhus, in the context of manifolds, we work in the
smooth category. A manifold need not be connected, but athected components are of the same dimension.

Let M be anm-dimensional manifold and” = (V,r, M) a K vector bundle of rank. over M. For a
nonempty subsef of A/ we denote bys, or V|g, the restrictiont—1(S) of V to S. If S is a submanifold,
or S = M, thenVs is a vector bundle of rank overS. As usual,V,, := Vy,, is the fibrer!(p) of V overp.
Occasionally, we use the symbolic notatign={J . ,, V;-

By I'(S, V') we mean thé&K® module of all sections oF over S (no smoothness). If is a submanifold, or
S = 0M,thenCk(S,V)isfork € NU {oo} the Fréchet space 6f* sections oves$. ItisaC*(S) := C*(S,K)
module. In the case of a trivial bundld x E = (M x E,pr,, M) for somen-dimensional Banach spade,
a section oves is a map fromS into E, that is,I'(S, M x E) = E°. AccordinglyC*(S, M x E) = C*(S, E)
is the Fréchet space of all* maps fromS into E. As usual,pr; denotes the natural projection onto thth
factor of a Cartesian product (of sets).

Let V = (V, %, M) be a vector bundle over a manifold. A C* map(f,, f) : (M, V) — (M, V), that s,
fo € C*(M, M) andf € C¥(V,V), is aC* bundle morphisnif the diagram

Foo

14 1%
|, b
Jo o

M M

is commuting, andf |V, € L(V}, V) for p e M. It is aconjugate linearbundle morphism iff |V, is a
conjugate linear map. By defining compositions of bundleph@ms in the obvious way one gets, in particular,
the category of smooth, that s>, bundles in which we work. Thuslandle isomorphisrns an isomorphism
in the category of smooth vector bundlesMf = M, thenf is calledbundle morphisnif (id,s, f) is one.

A bundle metricon V' is a smooth sectioh of the tensor produdt’™* @ V* such that:(p) is an inner product
onV, forp € M. Then the continuous map

||, : V=>C(M), v~ +/h(v,v)

is thebundle nornderived fromh.

Supposé/ = (V, h) is ametric vector bundlethat is,V" is endowed with a bundle metric Then?;, is an
n-dimensional Hilbert space with inner produdp). Hencel,* = (V,/, h*(p)), whereh* (p) is the adjoint inner
product onV/, equalsy; as a Banach space. The dual buntie= UPGM V. is endowed with the adjoint
bundle metridx* satisfyingh* | (V* & V*), = h*(p) for p € M, where & is the Whitney sum.



The (bundlg duality pairing (-, -),, is the smooth section of @ V* defined by(-,-), (p) = (-, ), for
p € M. It follows
[, v)v| < [v”

pe |Uln, (W5 0) e (M, V* @ V).

We denote byh, (p) : V, — V,* the Riesz isomorphism fofV},, 2(p)) and byh*(p) its inverse. This defines
the C°°(M)-conjugate linearl{undle Riesz isomorphisth, : V — V* and its inversé* : V* — V, given by
hy |V = hy(p) andh?* |V, = h¥(p), respectively, fop € M. Thus

(hpv, w)y = h(w,v), (v,w) e (M, VaV).
The canonical identification df,;* with 1, implies
V=V, (v,0")y« = 0", v)y, (v,0") e T(M,Va® V™).

We fix ann-dimensional Hilbert spacE = (E, (-|-) ), amodel fiber for/”. We also fix a basige1, . .., e,)
of £ and denote byc!, ..., e") the dual basis. Of course, without loss of generality we d¢@et £ = K.
However, for notational simplicity it is more convenientse coordinate-free settings.

Let U be open inM. A local chart forV overU is a map
kxp: Vo = k(U)X E, vy~ (n(p),tp(p)vp), v eV, pel,

such tha(x, kixg) : (U, Vy) — (k(U),x(U) x E) is a bundle isomorphism, whekgU ) is open in the closed
half-spacél™ := RT x R™~1 of R™ (andR" := {0}). In particular is a local chart for\/.

Suppose:ix ¢ andkix ¢ are local charts of overU andU, respectively. Then theoordinate change
(Fx@)o (ko)™ : WUNU)x E—=RUNU)x E
is given by(z, &) — (ko k™ (2), pur(2)€), where
pui € C=(k(UNT), Laut(E))
is the correspondinigundle transition mapilt follows
PRREPRE = PrRs Pre = 1B, (2.4)
1 being the identity inC(E). We set
o T(p) = (¢ () € Lis(V,, E*), peU.

Thensxe~" : Vi — k(U) x E* is the local chart fol/* overU dualto rx .

In the following, we use standard notation for the pull-bankl push-forward of functions, thatis;f = f ok
andk, f = f o k. Thepush-forward bysx ¢ is the vector space isomorphism

(kx@)e : DU, V) = EFD 0 v (2 o(7 (@) o(67 (2))).
Its inverse is theull-back defined by
(rxg)” s B S TOV), & (0= (00) E(-)))-
It follows that (k). is a vector space isomorphism frafi (U, V) ontoC> (x(U), E), and
(Rx@)e (kK@) "€ = puz (€0 (Ror™)), €€ EFEN%R), (2.5)
Furthermore,

ke (05, 0)y) = <(/~@l><<p7T)*v*, (/{M(p)*v>E, (v 0) e (U, VB V). (2.6)
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In addition,
(kx@) s (fv) = (ke f)(EXQ)s0, fekY, wvel(UV). (2.7)
We define theoordinate framéby, ..., b,) for V overU associated with x ¢ by
b, == (kxp) ey, 1<v<n.
Then
B = (kxp™ T )*e", 1<v<n,

defines thedual coordinate framéor V* overU. In fact, it follows from [2.6) that

<ﬁ#abl/>v :K*(<E#16V>E) :551 1<pv<n

Let (by, ..., b,) be the coordinate frame féf overU associated witfEx 3. Then [2Z5) and{216) imply
H*<ﬂ#agl/>V = <E,u’ (KWP)*(%K@*%>E = <€#a ()OEK/eU>E = ((p%m)ﬁ e C> (’{(U N ﬁ))

Hence we infer fronb, = <B“,EV>Vb# onU N U and [2.7) that

(kX@)sby = (pre)ben,  1<v<n (2.8)

The push-forward of the bundle metids the bundle metri¢xx ).k onx(U) x E defined by
(rx@)eh(&,m) = ke (h((r@)E, (kx0) ), &ne B (2.9)
Sinceh is a smooth section df * ® V* it has a local representation with respect to the dual coatdiframe:
h=hu,p*epY, huw = h(by,b,) € C(U). (2.10)

In the following, we endovK”** with the Hilbert-Schmidt norm by identifying it witl (K*, K") by means of
the standard bases. Then we dall:= [h,,] € C>(U,K"*") representation matriof 4 with respect to the

local coordinate framéb,, ..., b,). Let [h] be the representation matrix bfwith respect to the local coordinate
frame associated withx . It follows from (2.8) that

kix[h] = @] "R [P][prn] ONK(U N T, (2.11)

where [¢z,] is the representation matrix ofz, € C*° (U, L(E)) with respect to(es,...,e,) anda' is the
transposed of the matrix

It should also be noted th&t (2.9) implies
f([v]n) = [(5x )0l (oo v €T, V). (2.12)

Let [2*] be the representation matrix bf with respect to the dual coordinate frame@nDenote by[r#¥] the
inverse offh]. Itis a consequence @b,, h,b,,) v+ = (hyb,, bu)v = h(b,,b,) = hy, that

hbb,u - <bl/a hbb,u>V*ﬂU = hu,uﬂy - h—,ul/ﬂu

Henceh?B” = h'rb,. This impliesh*** = h*(B*, 3) = h(h*B", h* ") = h'PhHoh,, = hiv, thatis,

[h]~! = [h7]. (2.13)

LetV; = (V;, h;) be a metric vector bundle of rank over M, wherei = 1,2. Assumel is open inM and
kX is a local chart foll; overU. Denote by(b3, ..., b}, ) the coordinate frame fd¥; overU associated with
kxp; and by(} ..., 3") its dual frame. Supposec I'(U, Hom(V4, V2)). Then

a=a?b? @B, a?? = (B, ab, v, € KY. (2.14)

vy V2 V1



Hence, given; = u;*b!, € T'(U,V;), it follows from (Z10) that

_ 2 V1, V2
ha(auy, ua) = ay?ho y,m,uy us®.

For the adjoint section* = a;2'b}, ® 52 € I'(U, Hom(V5, V1)) we find analogously

* _ xUq Vi, U2
hi(ug, a*ug) = gz vy s

Fromho(auy, uz) = hi(u1,a*uz) for all u; in T'(U, V;) we thus gew.?hs .5, = aglhl_,,,l—,;l. Hence it follows

from (2.13)

=W a2 Moy, 1< < (2.15)

The following well-known basic examples of vector bundlesiacluded for later reference and to fix notation.

Examples 2.1 (a)Trivial bundles) Consider the trivial vector bundfe= (V, h) := (M x E, (-|-) ;) with
the usual identification of the inner productBfwith the bundle metrid/ x E. For any local chart of M, the
trivial bundle chart overs is given byrx1g. Thus(kx1g).v = k. for v € I'(dom(k), M x E) = Edom(x),

(b) (Tangent bundles) Let/ = (M, g) be anm-dimensional Riemannian manifold. Throughout this pa-
per we denote by’ M the tangent bundle iK = R and the complexified tangent bundlelif= C. Theny,
respectively its complexification, is a bundle metricBn/ (also denoted by if K = C). Thus

T*M := (TM)* = (T*M, g*)

is the (complexified, ik = C) cotangent bundle af/.
We useK™ as the model fiber fof M and choose fofe, . . ., e,,) the standard basi§f = 6; 1<4,j<m.

Furthermore(-|-) = (-|)x is the Euclidean (Hermitean) inner producti§f and|-| = |-|.. the correspond-
ing norm. We identify(K™)* with K by means of the duality pairing
(n,€) =, Erm =m:&’,  n=me', E=8ey, (2.16)

so thats? = ¢, for 1 <i < m.

Supposes is a local chart forM and setU := dom(k). Denote byT'x : Ty M = (TM)y — (U) x K™
the (complexified, ifK = C) tangent map ok. ThenxxT'x is a local chart fofl’ M over U, the canonical
chartfor T'M overk. Itis completely determined by. For this reasoiixxT'k).v is denoted, as usual, lay.v
for v € T(U,TM). Then the push-forwardx (Tx)~ ") w of a covector fieldw € T'(U,T*M) is the usual
push-forward ofw, denoted by, w also.

Note that the bundle transition map for the coordinate chdRgTx) o (kxTk) ™! equalsd, (ko k1),
whered, denotes the (Fréchet) derivative [@f").

The coordinate frame fdF M on U associated with:, that is, withxx T's, equals(d/dz*, ..., 8/0z™). Its
dual frame igdz?!, . .., dx™). The representation matrix gfwith respect to this frame is tHendamental matrix
[gi;] € C>°(U,K™*™) of M onU.

For abbreviation, we st M := C*°(M,TM) andT *M := C*°(M,T*M). ThenT M, respectively] * M,
is theC* (M) module of all (complexified, ik = C) smooth vector, respectively covector, fields/dn O

LetV; = (V;, h;) be a metric vector bundle ovéf fori = 1,2. Then the duall; ® V5)* of the tensor product
Vi @ Vz is identified withV;* @ V5 by means of the duality pairing, -)y, .1, defined by

<UT ® v3, v1 ®v2>V1®V2 = <’vav1>V1 <’U;vv2>V2a (vavz‘) € F(Ma Vit @Vl) (217)
By h1 ® hs we denote the bundle metric fof ® V4, given by
h1®h2(111 & vg, W1 ®w2) = hl(vl,wl)hg(’l}g,wg), (vi,wi) EF(M,V;EBV;) (218)

We always equip/; ® Va2 with this metric.
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Suppose that is a local chart forM andxx; is a local chart forl] overdom(x). Thenxx(p1 ® ¢2)
denotes the local chart féf ® V5 overdom(x) induced byxxp;, i = 1,2, thatis,

(m><(<p1 ® (pg))*(vl ®vg) = (KX p1):01 ® (KXQ2)4a, (v1,v2) € T(M, V1 & Va). (2.19)

It is obvious how these concepts generalize to tensor pteddienore than two vector bundles ovef.
A connectioron V' is a map

V:TMxC®(M,V)— C®(M,V), (X,v) — Vxv
which isC> (M) linear in the first argument, additive in its second, ands§ias the ‘product rule’
Vx(fv) = (X f)v+ fVxuv, XeTM, veC®(M,V), feC>®M), (2.20)
whereX f := df (X) = (df, X) := (df, X)rn. Equivalently,V is considered as H linear map,
V: C®(M, V)= T"MeC®(M,V),
calledcovariant derivativedefined by
Vo, X @ v rpeyv- = (05, Vxo)y,  0v° € C®(M,V*), veC®(M,V), XeTM, (2.21)

and satisfying the product rule. Here and in similar situadi 7'M is identified with the ‘real’ subbundle of
the complexificatiory’ M + :T'M if K = C. (In other words: We consider ‘real derivatives’ of compiexdued
sections.)

A connection ignetricif it satisfies
Xh(v,w) = h(Vxv,w) + h(v, Vxw), XeTM, v,weC®(M,V). (2.22)
Let V be a metric connection ori. Then we define a connection &ff, again denoted by, by
(Vxv*,v)y == X {(v*,0)y — (v*, Vxv)v (2.23)
forv* € C°(M,V*),v e C°(M,V),andX € T M. Itfollows forv,w € C°(M,V)andX € TM that, due
to (2.22),
Xh(v,w) = X{hyw,v)y = <VX(hbw) > + (hyw, Vxv)y
= <VX(hbw ,v> + h(Vxv,w) = <VX(hbw), v>v + Xh(v,w) — h(v, Vxw)
= <Vx(hbw ,v> + Xh(v,w) <hb(VXw),v>V.
This andh® = (h,)~ ! imply
Voh,=h,oV, h*oV =Voht
Consequently,
Xh*(v*, w*) = Xh(hfw*, hfv*) = h(h*Vxw*, h¥v*) + h(h*w*, h* Vxv*)
= h*(Vxv*,w*) + h*(v*, Vxw")
for v*, w* € C°>°(M, V™). This shows thaV¥ is a metric connection ofi/*, h*).
Let (V;, h;) be a metric vector bundle ovér fori = 1,2. SupposéV; is a metric connection olf. Then

VX(Ul (024 ’Ug) = Vixv1 ® vg + 11 ® Voxvs, v; € COO(M, V;), X eTM, (224)

defines a metric connection = V(V1, Va) onV; ® Vs, the connectiomducedby V; andVs. In the particular
case where eithdr, = V; or V, = Vi* andV, = Vi, we write agairv; for V(Vy, Vi).
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Let V be a connection of’. Suppose:x is a local chart for” over U. The Christoffel symbold,,
1<i<m, 1< pu,v<n,of Vwith respect tosx ¢ are defined by

Voyowiby = T,y (2.25)

Here and in similar situations, it is understood that Latigii¢es run froml to m and Greek ones frohto n. It
follows -
Vo = (ai + r;;w) do' @b,  v=1v"b, € C®(U,V). (2.26)
xZ
Let V; andV; be metric vector bundles ovérd with metric connection¥/; andVs, respectively. For a smooth
sectiona of Hom(V, V»2) we define

(Vi2a)u == Va(au) — aViu, u € C™®(M, V). (2.27)

ThenV;. is a metric connection oHom(V7, V»), the ona@nducedby V; andV,, whereHom(V;, V4) is endowed
with the (fiber-wise defined) Hilbert-Schmidt inner produltttis verified that this definition is consistent with
(2.12) and[(2.24). Hence we also WrREV;, V) for V.

3 Uniform Regularity

Let M be anm-dimensional manifold. We s€ := (—1,1) C R. If xis alocal chart fof\/, then we writd/,, for
the corresponding coordinate paidm(x). A local charts is normalizedif «(U,) = Q™ wheneverl, C M,
the interior of M, whereas:(Uy,) = Q™ NH™ if U, N OM # (. We putQ™ := x(Uy) if x is normalized.

An atlasg for M hasfinite multiplicityif there existsk € N such that any intersection of more thiacoordi-
nate patches is empty. In this case
Nk):={rReR; Us:NU, A0}
has cardinality< & for eachx € &. An atlas isuniformly shrinkabléf it consists of normalized charts and there
existsr € (0,1) such that{ s~ *(rQ™") ; x € &} is a cover ofM.
Given an open subsef of R™ or H™ and a Banach spack overK, we write|- |, ., for the usual norm of

BCk(X, X), the Banach space of alle C*(X, &) such thajo®u|» is uniformly bounded fory € N™ with
|a| < k (see Section11).

By ¢ we denote constants 1 whose numerical value may vary from occurrence to occuggndc is always
independent of the free variables in a given formula, urdessxplicit dependence is indicated.

Let .S be a nonempty set. Q& we introduce an equivalence relatien by settingf ~ g iff there exists: > 1
such thatf/c < g < ¢f. Inequalities between bundle metrics have to be underdtotte sense of quadratic
forms.

An atlasf for M is uniformly regularif
(i) R is uniformly shrinkable and has finite multiplicity.

3.1
() [Fonew <c(k), mFER kEN. G5

In (if) and in similar situations it is understood that onlyx € & with U, N Uz # () are being considered. Two
uniformly regular atlases andf areequivalentf ~ R, if

(i) card{ R € R; Us U, #0} <c, ke R
()  [For e <c(h) neh RER keN.

(3.2)

Let V' be a vector bundle of rank over M with model fiberE'. Supposes is an atlas forM andxx is for
eachx € f alocal chart fol” overU,. Thenfx® := { kixp ; kK € R} is anatlas forV over &. Itis uniformly
regular if

(i) RKis uniformly regular;

3.3
(ii) losallkoo <c(k), rxp,RXpE RXP, keN, (3:3)
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wherep,;; is the bundle transition map corresponding to the coordmhﬁnge{mxgp) o (k)™ Two atlases
Ax® andRx ® for V overf ands, respectively, are equivalemx ¢ ~ Ax D, if

(i) A~ R

o (3.4)
(ii) lonille,co < c(k), Kxp € AXP, Fxp € AxP, ke N.

Supposér is a bundle metric foi/. Let x ® be a uniformly regular atlas fdr over&. Thenh is uniformly
regular overfix @ if

1) (sx@)eh ~ () g, rXp € AXD;

35
() [[(sx@)uhllpoe < c(k), rxp € Axd, ke N. (3:5)

Let [h] = [huw] ., e the representation matrix bfwith respect to the local coordinate frame associated

kX
with k. Then it follows from [2.ID) that
“*([h]nxga) = [whyw] = [(kx@):h]. (3.6)
Hencel(3.b)(i) is equivalent to
I¢1?/c < Kahyu (2)CHCY < |, xeQ”, CeK" kxpeAxD.

If Ax P ~ Ax® andh is uniformly regular over, then we see fronf (2.4) and (2111) thais uniformly regular
overR\.

AssumeV is a connection ofr. Let &x ® be an atlas fol” over&. Forkixp € fx ® we denote by, [kx ]
the Christoffel symbols oV with respect to the coordinate frame forover U, induced byxixy. ThenV is
uniformly regular overiix & if

(i) Ax @ is uniformly regular;
(ii) [| 5 ( L lrxel] )||koo <ck), 1<i<m, 1<puv<n, ixpe€ AxP, ke N.

SupposeV is uniformly regular oveix ® and ix® ~ Ax®. Then it follows from [Z8), [2.26),[(312), and
(3-4) thatV is uniformly regular oveRix ®.

A uniformly regular structurdor M is a maximal family of equivalent uniformly regular atladesit. We
say M is auniformly regular manifold if it is endowed with a uniformly regular structure. In thiase it is
understood that each uniformly regular atlas under conaiie belongs to this uniformly regular structure.

Let M be uniformly regular and” a vector bundle ovei!. A uniformly regular bundle structuréor V' is
a maximal family of equivalent uniformly regular atlases 6. ThenV is auniformly regular vector bundle
over M, if it is equipped with a uniformly regular bundle structuggain it is understood that in this case each
atlas forV belongs to the given uniformly regular bundle structuraindformly regular metric vector bundie a
uniformly regular vector bundle endowed with a uniformlguéar bundle metric. By &ully uniformly regular
vector bundle V' = (V, hy, Vi) over M we mean a uniformly regular vector bundfeover M equipped with a
uniformly regular bundle metriky, and a uniformly regular metric connectidn, .

As earlier, it is the main purpose of the following exampkefix notation and to prepare the setting for further
investigations.

Examples 3.1 (a)(Trivial bundles) LetE = (E, (~|-)E) be ann—dimensional Hilbert space. Suppose
M is a uniformly regular manifold. It is obvious from Exampldlga) that the trivial bundl@/ x E is uniformly
regular overM and(-|-) , is a uniformly regular bundle metric.

We considerE as a manifold of dimension if K = R, and of dimensior2n if K = C (using the standard
identification ofC = R + i R with R?) whose smooth structure is induced by the trivial chartWe identifyT £
canonically withE x E. ThenTv: TM — TE = E x E, the tangential ob € C*>° (M, E), is well-defined.
We set

dx v :=pryoTv(X), XeTM, veC®(ME).
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Then
d: TM x C*(M,E)— C>*(M,E), (X,v)—dxv
is a connection o/ x E, the E-valued differentiabn M.

Let(ey,...,e,) be abasis foE and use the same symbol for the constant frame (e1, ..., e,) of M x E.
Then it follows that
df =df’e,,  f=f"e, € C®(M,E).
Thus, since all Christoffel symbols are identically zetds trivially uniformly regular.

(b) (Subbundles) LeV be a vector bundle of rank over a manifold)/, endowed with a bundle metric
and a metric connectiovi. SupposéV is a subbundle of rank Denote by, : W < V the canonical injection.
Let hyy := +*h be the pull-back metric ofl/. We write P for the the orthogonal projection ont® in V. Then
P € C*>(M,Hom(V,V)) and itis verified that

Vw @ TM x C®(M,W) = C®(M,W), (X,w)+— PVx((w))

is @ metric connection ofiV, hyy ), the one induced by'.

Let £ be a model fiber o/ and(ey, .. ., e,) a basis for it. SupposE is uniformly regular and there exists
an atlasRx ® for V such that kix¢)*(eq, ..., es) is for eachk € R a frame forlV overU,,. Then it is checked
thatW = (W, hyw, V) is a fully uniformly regular vector bundle ovér .

Supposé; = (V;, hy, Vi), i = 1,2, are fully uniformly regular vector bundles ovéf. Set
(h1 @ ha)(v1 @ va, U1 ©Va) := hy(v1,01) + ha(ve, V2), (vi,0;) e (M, V; ® V),

and

(V1@ V) (v1 © v2) 1= Viv1 © Vaug, (v1,v2) € CF(M, V1 & Va).
Then (Vi @ Va, hy @ he, V1 @ Vs) is a fully uniformly regular vector bundle ovéd/. Furthermore}; is for
¢ = 1,2 a fully uniformly regular subbundle df.

(c) (Riemannian manifolds) Let/ = (M, g) be anm-dimensional Riemannian manifold. We denote by
gm = (dz')? + - + (dz™)? the Euclidean metric oR™ and use the same symbol for its complexification as
well as for the restriction thereof to open subset®®fandH™. Then) is auniformly regular Riemannian
manifold, if T'M is uniformly regular and; is a uniformly regular bundle metric ofiA/. It follows from
ExampldZ.1L(b) thad/ is a uniformly regular Riemannian manifold iff

(i) M is uniformly regular
(i) Kxg ~ gm, KE & (3.7)
(iii) lksgllk,co < c(k), K€ R keEN,

for some uniformly regular atlas for M. Of coursex.g := (kxTk).g in conformity with standard usage.

We denote by, the (complexified, itk = C) Levi-Civita connection forM/, that is, forT'M. Its Christoffel
symbols with respect to the coordinate fragd¢ox!, ..., d/0z™) overU, admit the representation

2Uf; = 9" (9i90; + 93961 — 204915, (3.8)

whered; := 9/dx". From this and(317)(ii) and (iii) it follows tha¥,, is uniformly regular if( A, g) is a uniformly
regular Riemannian manifold. In additiow, is metric and}; = I';.
(d) Every compact Riemannian manifold is a uniformly regula®annian manifold.

(e) It has been shown in Example 2.1(c) bf [5] tft" = (R™, g,,,) andH™ = (H™, g,,,) are uniformly
regular Riemannian manifolds.
(f) (Homomorphism bundles) For= 1,2 let (V;, h;) be a uniformly regular metric vector bundle of ramk

over M. We denote by V12, hi2) the homomorphism bundl€; := Hom(V;, V5) endowed with the Hilbert-
Schmidt bundle metrig 2 = (-|-) ;4.
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Assumefix ®; is a uniformly regular atlas fov;, and E; is a model fiber fol; with basis(e?, . . ., e:'“) and
dual basige}, ..., c"). Forkxy; € Ax®; we define a bundle isomorphism

(kykixpi) © (U, Vi2)u,) = (5(Us), 6(Ui) x L(Er, Ea))
by setting(rkx p12)a, := (k(p), ¢12(p)ay) for p € U, anday, € (Vi2),, where
p12(p)ay(z) = pa(p)appy '(z), @ =r(p).
It follows
(Fx@12)4(FXP12)"b = (EXP2)+ (kX p2) (kX 1)« (FXP1)", b€ L(EL, Ea),
if Kxp; belongs to a uniformly regular atlas f&}. From this we deduce that
Rig = { kK12 ; kXp; € AXD,;, 1 =1,2}

is a uniformly regular atlas fdr;» and that any two such atlases are equivalent. H&hees a uniformly regular
vector bundle ovei.

The coordinate frame df;5 overU,, associated with x 15 is given by

{b Pil<py;<mng,i=1,2}, (3.9)
where(bi, ..., bl ) is the coordinate frame df; over U, associated with:xp; and (3}, .., ;") is its dual
frame. By [2.1b) and(3]9) we find

[h12] = [T ha g, |- (3.10)
From this, [2.1D),[(3]15), an@ (3.6) we deduce
(kxp12)shn2(a, a) = Ko Khy by, a2 022 ~ Z“*hwm vaz o~y araj = (a,a)ns

vi,V2

fora € L(E1, E2), as well ag| (kX @12)+h12llk,00 < c(k) fOr Kixp12 € Ex P19 andk € N. Hence(Vig, hi2) is
a uniformly regular metric vector bundle ov&f.

Supposév; is a uniformly regular metric connection di. Then it is a consequence of the consistency of
(2.217) with [2.2%) tha¥/, - is a uniformly regular metric connection 6fs.

(9) (Tensor products) LefV;, h;), ¢ = 1,2, be uniformly regular metric vector bundles over. Then it
follows from (Z17)-{(Z.10) thatV; @ Va, hi @ hs) is a uniformly regular metric vector bundle ovif. If V; is
a uniformly regular metric connection 8¢, then we see froni{Z.24) th&t(V;, V) is a uniformly regular metric
connection o} ® Vs. O

4 Singular Manifolds

Let M = (M, g) be anm-dimensional Riemannian manifold. Suppgse C> (M, (0,00)). Then(p, &) is a
singularity datunfor M if

(i) (M, g/p?) is a uniformly regular Riemannian manifold.

(ii) R is a uniformly regular atlas fak/ which is orientation preserving i¥/ is oriented.
(iii) l6ipllk,co < c(k)pr, k€ R, k€N, wherep, := r.p(0) = p(n_l(O)).
(iv) pr/c < pp) <cps, pelUy, kER

Two singularity datdp, £) and(, &) areequivalent(p, 8) ~ (7, R), if

p~p and R~ A (4.2)
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Note that[(Z4.1)(iv) and(412) imply

1/e < pu/pr < e, K € R, EEE, U. NUz # 0. (4.3)

A singularity structure G(M), for M is a maximal family of equivalent singularity data. g\ngularity
functionfor M is a functionp € C>° (M, (0, 00)) such that there exists an atlaswvith (p, &) € S(M). The set
of all singularity functions is theingularity type T(M ), of M. By asingular manifold we mean a Riemannian
manifold M endowed with a singularity structu®(A/). ThenM is said to besingular of type¥(M). If
p € T(M), then itis convenientto s¢p] := T(M).

Let M be singular of typdp]. ThenM is a uniformly regular Riemannian manifold jif~ 1. If p + 1, then
eitherinf p = 0 or sup p = oo, or both. Hencé// is not compact but has singular ends. It follows fréml(4. &} th
the diameter of the coordinate patches converges eithartoar to infinity near the singular ends in a manner
controlled by the singularity typ&(M).

We refer to[[5] and[B] for examples of singular manifolds athare not uniformly regular Riemannian mani-
folds.

Throughout the rest of this paper we assume

M = (M, g) is anm-dimensional singular manifold
W = (W, hw, D) is a fully uniformly regular vector bundle of rankover M. (4.4)
o,7 €N.

It follows from the preceding section that the uniform regity of W, hy, andD is independent of the particular
choice of the singularity daturfp, £).

Henceforth,I'M andT™* M have to be interpreted as the complexified tangent and cetabgndles, respec-
tively, if K = C. Accordingly,(-, -),,,, 9, andV, are then the complexified duality pairing, Riemannian nogtri
and Levi-Civita connection, respectively.

As usual, T°M = TM®’ @ T*M®T is the (o, 7)-tensor bundle, that is, the vector bundle of i@ivalued
tensors on/ being contravariant of orderand covariant of order. In particularTg M = TM, TYM = T*M,
and7yM = M x K. Then

V=VeW)=TS(M,W):=T°M @ W
is the vector bundle dfi’-valued(o, 7)-tensors on\/.

If W = M x E with ann-dimensional Hilbert spacg, then we writeT'? (M, E) for T2 (M, M x E) and
call its elementdv-valued(o, 7)-tensors. Furthermor&,? (M, K) is naturally identified withl’? A/. For abbre-
viation, we set

T (M, W) := C> (M, TZ(M,W)).
Itis the C>° (M) module of smoothV-valued(o, 7)-tensor fields or\/.

The canonical identification off'? M )* with 77 M leads toT'? (M, W)* = T.7 (M, W*) with respect to the
(bundle) duality pairing

() =y '>T$M ® (-, Yy
We endowV” with the bundle metric
hi= ()] @ hw, (4.5)

where(-|-) 1= g% ® g*®7 is the bundle metric off’? M induced byg (denoted by(-|-), in Section 3 of[[5]).
Finally, we equip” with the metric connection

V = V(V,,D)
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induced by the Levi-Civita connection 8f and connectio of W. In summary, in addition td (41.4),

V= (V,h, V)= (T7(M, W), (:]); ® hw, V(Vy, D))

is a standing assumption. In particul@rjs aK-linear map from7? (M, W) into 7.7, (M, W'). We setV? := id
andV*+! .= Vo V¥ for k € N. NoteVu = Du foru € T (M, W) = C>(M,W).

5 Local Representations

AlthoughW is a fully uniformly regular vector bundle ovér this is not true fol/, due to the fact that involves
the singular Riemannian metric For this reason we have to study carefully the dependenearaius local
representations on the singularity datum. This is donegrptiesent section.

For a subsef of M and a normalized atlag we let s := {x € 8; U, NS # 0 }; henceRy = (. Then,
givens € &,

(5.1)

. R™ if x € 8\ Ko,
") H™ otherwise

considered as amn-dimensional uniformly regular Riemannian manifold witle tEuclidean metric. Furthermore,
Q7 is an open Riemannian submanifoldXf.

Let F' be a finite-dimensional Hilbert space. Then, using stanidizntifications,
T7(@Qy,F) = (K™ @ (K™))* & F,

Of course, we identifyf K™ )* with K™ by means of{(2.16), but continue to denote it(@™)* for clarity. We
endowT’? (Q™, F') with the inner product

C1)ze ey = C1)im @ C1) oy ® (1) pe (5.2)
Forv € N* we set], := {1,...,m}” and denote its general point §%) = (i1,...,4,). The standard basis
(é1,...,¢n) of K™, thatis,¢; = 6%, and its dual basi&", . .., &™) induce thestandard basis

{éay®&9; (i) €lo, (j) €1, }
of T2Q™, whereé(;) = é;, ® -+ ® ¢;, ande) =& @ .- @ &, Then
a e T2(Qr, F) = L((K™)")* @ (K™, F)
has the representation matr[ia(g?)] € Fm7xm” \We endowF™ ™" with the inner product

i) 7) L i i)
(10 e = > (@60),
(i)€Js, (5)€l-

which coincides with the Hilbert-Schmidt inner productif= K. For abbreviation, we set
E=EZ=EJ(F):=F"">"" () =(])pgp (5.3)
It follows from (5.2) thata — [aE;))] defines an isometric isomorphism by which
we identify (77(Q)", F), (-| ) o (@m r)) With (B, (-] ) ).

We assume ] ) ]
e (p,R)is asingularity datum foi/;
e Ax®d is a uniformly regular atlas fdi” over &; (5.4)

e F =(F,(-]")p) is amodel fiber fol’ with basis(ey, . .., en).
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Suppose:xp € Ax® andx = (x!,...,2™). Then
kgl Vg, = Q' X B, v (5(0), 97 (0)vp),  vp € Vo pE U,
thelocal chart forV overU, induced by x ¢, is defined by
o7 (P)vp = (L) Xy @ - @ (L) Xy @ (o)~ anp @ @ (Tpk) ™ arp @ p(p)wy

forv, =X ® - X ®a1,® - @ ar, ®w, € TZ(M, W), with X} € T,M, «;, € Ty M, andw, be-
longing toW,.

Set

i;:i@)...@ i dz) = doh @ - @ dadT (i)el (j) € I,.

Oz dx™ Oxic’ ’ 7 T
Furthermore, letby, ..., b,) be the coordinate frame fo¥ overU, associated with:x o and (52, ..., 3") its
dual frame. Then 5

{5R5®dﬂ”®bw()eJm()eLw1<u<n} (5.5)

is the coordinate frame fdr overU,, associated withx ¢7. Hencev € T'(Uy, V) has the local representation

_ (w0 )
V=) a(i)@dgc ® b,

and
eIv(z) = [ ( (z))e,] € Frixmt — g x e Q.

Assumerx g € AxP. Then(kx@?) o (m«pf) V= (kor™ !, (¢7)ui), Where
(eD)url) ()" = ADBD (pur)eeD”,  €€B, (5.6)

with Al) = AZ ... Al andB{}) = BJ! - B]7, and

for1 <i,7,5,7 <nandy = % o s~ !(z). Hence[[31),[(3]3), and assumptibn14.4) imply that
Ax P = { kxp? ; kxp € AxD }
is a uniformly regular atlas for over 8. From [3.2) and{3]4) we also infer that
Axd ~ Axd = Ax P ~ ﬁx&)i.

The local charkx¢? is completely determined by . For this reason, and to simplify notation, we denote
the push-forward and pull-back lyx 02 simply by (kx¢). and(kxp)*, respectively. This is consistent with
the use ofk, for the push-forward of vector fields byx ¢ (see Examplg211(b)).

We set

QEZ)(( ) = Gisky " Gik, 9 g

with (7), (k) running throughl,, and(3), (¢) throughl.; . Then [4.5) and{2.13) imply

ety

4 i), k
h(u,v) = g(hiul” Eé))“hw(bl,,b) u, v € T(Uy, V).

Hence, setting.,, := (kxp).u etc., we get from{2]9)

(kX @) h(tg, vg) = mgéz )((k;m 8)) Y Rsv g )) Kxhw,, - (5.8)
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Lemma 3.1 of[[5] guarantees

Kig ~ Pogm, K"~ pr’gm,  KE R, (5.9)

and
ol 21 keg™ koo < c(k), keR, kel (5.10)

From [2.12), the uniform regularity dfy;, over ix ®, (5.8), and[(519) we deduce

fo([uln) = [(£% 0wt oy ~ P77 [(EX @) st B2, kXp € Ax®, we(M,V). (5.11)

Suppose: € 7.7 (M, V) has the local representation
(9).v
)

U= ®da:()®bl,.

Oz

Then it follows from [2.2D), [(2.21),[(2.23)[[{Z]24), aiidq3), denoting byD;, the Christoffel symbols oD,
that

(i),v
vy = 2 8
3:ck Ox
& # )
+ ZU(J) Fk’LS Oz Girrrlyio) ® dxV ®d$ ®b
(5.12)
1),V 8
_ ugj)lr,...,jt,...,jf) I‘kea ® dzlbein) @ dok @ b,
t=1

; d
gj)“D,wa ® dz¥ @ dz* @ b,

with ¢ being at positiors in (i1,...,¢,...,i,) and positiortin (ji,...,4,...,jr).

We endow the trivial bundl€)}* x E¢ with the Euclidean connection, denoted 8y and being naturally
identified with the Fréchet derivative. Thus, giver C>=(Q™, E?),

dveCc=(Qr LYR™E?)),  LeN¥,

where L(R™; E7) is the space of-linear maps fronR™ into E7. If v = [vg))] D QT — FTXmT | then,
settingd() := Ok, o - - 0 O, for (k) € J, with 9; = 9/,

T4

v = [Dyl)] + Q= T (5.13)
Hence, using the latter interpretation,
of € L'(C™(Qr, ED),C™(Qr BZ,y),  LEN, (5.14)

whered? :=
We define the push-forward

(k%) Ve C2(QT, ET) = CF(Q, E7 )

of V¢ by kixp by
(kK@) V= (rp)s 0 VE 0 (i)
for £ € N. Then(kx ),V is a metric connection ofl’? (Q7", F), (kx).h) and

(X @) V! = (x5 9)a V) o (sx). V', LEN.
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Supposer € N* andu € C"(M, V). Setv:= (kx¢).u € C"(Q™, EZ). Then we infer from[(5.12) by
induction, and from{5.13) and (5]14) that there exist

agECOO( L L(EZ,, g+r))7 0<t<r—1,
such that )
(kx) Vv = 0L + Z agdbv. (5.15)
(=0

More precisely, the entries of the matrix representatiom,cdre polynomials in the derivatives of order at most
r — ¢ — 1 of the Christoffel symbols oV, andD. Hence assumptiofi (4.4) implies

lae|koo <clk), 0<L<r—1, kxpeE /XD, (5.16)
due to[3:8), [[519), and(5.110). By solving systém (b.15)fet ¢ < r ‘from the bottom’ we find
r—1
Ovv = (kXp) Vv + Zﬁg(l-ﬁxcp)*vzv, (5.17)
=0
wherea, € C>=(Qm, L(E?,,, E2,,)) satisfy
lae||k,0o < c(k), 0<l<r—1, kxpec AxDP. (5.18)

From [5.15)-{(5.18) we infer that, givenc N*,

Z‘(HK@)*vi(([{D{@)*U)’E:+i ~ Z ’82‘((&%90)*11)‘]5: (5.19)
i=0

la|<r

for kixp € Ax® andu € C"(M, V).

6 Isotropic Bessel Potential and Besov Spaces

Weighted (isotropic) function spaces on singular mangdidve been studied in detail {n [5], where, however,
only scalar-valued tensor fields are considered. In thisthadext section we recall the basic definitions and
notation on which we shall build in the anisotropic case, @stribe the needed extensions to the case of vector-
bundle-valued tensor fields.

We denote byD := D(V) := D(M, V), respectivelyD := D(V) := D(M, V), the LF-space of smooth sec-
tions of VV which are compactly supported i/, respectivelyd. ThenD’ = D'(V) := D(V'),,. is the dual
of D(V’) endowed with thev*-topology, the space dfistribution sections o/, wherebyV’ = T7 (M, W').
As usual, we identify € L1,1OC(M, V') with the distribution sectiorﬁu — (u, v)M) € D', where

(u,v)pr == / (u,v)y dVy, = D(M, V), wve L1710C(1\04,V),
M

anddVj, is the volume measure éf. Hence

DD Lyoe(M, V) Lisoe(M, V) = T,

. d . .
where — means ‘continuous’ and— ‘continuous and dense’ embedding.
In addition to [[4.%) we suppose throughout

peET(M), 1<p<oo, AeR. (6.1)
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Assumek € N. Theweighted Sobolev space
”rk.A Hrk,)\ — IVk’)\ .
P = P (V) - ''p (V7 p)

of W-valued(o, 7)-tensor fields or is the completion oD in Ly 1, (V') with respect to the norm

- AT—0+1 7 P 1/p
wes g = (3 o Vrulu|f])
=0

It is independent of the particular choice ofn the sense that/»*(V; p') = W,**(V; p) for p’ € [p], where
= means ‘equal except for equivalent norms’.

For simplicity, we do not indicate the dependence of thesmapand of related ones to be introduced below,
on (o, 7). This has to be kept in mind.

Note that

VV;;O)\ = L;‘ = L;\(V) = ({ u e Lp,loc 5 Hu| pix < OO }7 ”'Hp:)\)v

where|[- ||, == |- lly ;.»- Also observeV,* <, Wi for k> ¢

Given0 < ¢ < 1, we write[-, -], for the complex, and-, -), ., 1 < ¢ < oo, for the real interpolation functor
of exponent (see [2, Section 1.2] for definitions and a summary of the bésits of interpolation theory of
which we make free use). Then, givere N,
[vak,k7m/;)k+l,)\]57k7 E<s< k+1,

H:A = HSANV) o=
P P ( ) { vak,)\7 s = k7

and
(WA WE) oy k<5 <k+1,

Bs* = B3NV =
P P (ka.)’ WZ,HQ"A)l/z,pv —

In favor of a unified treatment, throughout the rest of thisgra

Fe{H B}, =5V

We denote bys: the closure o in §3* for s > 0 and set

/

5NV =GNV s>,
with respect to the duality pairing induced by -) ,,. We also set
BZO),)\ — (V[/p—l,)\’v{/pl,)\)l/zpl

This defines thaveighted Bessel potential space sca[eH;A ; s € R] and theweighted Besov space scale
[Bs?*; s eR].
It follows (see the next section) th@gA is for s € R a reflexive Banach space, and

d d d
Dot = oD,  —co<t<s<ox
Denoting, foranys € R, by§1f,=A the closure oD in 52,

%;’A = S;"A, s<1/p.
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Thus, by reflexivity,

/

FAV) = (5,770, seR,
with respecttd-, -),,.

If p ~ 1, then all these spaces are independemcﬂ‘urthermore&;";A reduces to the non-weighted (standard)
Bessel potential spadé,; (V') and Besov spacB;(V'), respectively. Assume, in additioh) = X € {R™, H™}
with g = g,n, V =X x E,andD = dr. ThenH; (X, E) is the classical£-valued) Bessel potential space and
B, (X, E) the standard{-valued) Besov spacB; ,(X, E). In the scalar case these spaces are well investigated

(cf. H. Triebel [50], for example). Thus notirg (X, E) ~ (§;)¢ with d = dim(E), we can make free use of
their properties which we shall do without further referenc

7 The Isotropic Retraction Theorem

Let E, be a locally convex space for eaahin a countable index set. Thdf := [[, E, is endowed with the
product topology. Now suppose that ed€h is a Banach space. Then we denotelfet ¢ < co by /,(E) the
linear subspace dF consisting of allc = (x,,) such that

1
- (Za”xa”qa) /q7 1 S q < o0,
||-’B|\eq(E) =
Supa”Ia”Eaa q = o9,

is finite. Then?,(E) is a Banach space with noanHéq(E), and
lp(E) — {4(E), 1<p<gq<oo. (7.1)

We also set.(E) := @, E., where @ denotes the locally convex direct sum. Th@s E, consists of
all finitely supported sequences I equipped with the finest locally convex topology for whichiajections
Ez — @, E, are continuous. It follows

co(B) = ((E), 1<q<00, co(B)DS(,(E), q<c. (7.2)

Furthermoregy(E) is the closure oé.(E) in (o (E).

If each E,, is reflexive, ther?,,(E) is reflexive as well, and,(E)" = ¢,/ (E") with respect to the duality
pairing(-,-) :== > (-, ), Of course E' := [], E.,, and(-, -),, is the E,-duality pairing.

Let assumption{5]4) be satisfied. l@calization system subordinate ®is a family{ (s X)) 5 K E ﬁ}
such that

(i)  m €D(U.,[0,1]) and{x. ; x € &} is a partition of unity on\/

K

subordinate to the coveringl, ; ~ € 81}; (7.3)
(ii) X = K*x With x € D(Q™,[0,1]) andx | supp(k.m,) = 1 for x € &; .
(iii) sl koo + |FaXnllkoo < c(k), k€ R, keN.

Lemma 3.2 of[[5] guarantees the existence of such a localizaystem.
In addition to [5.%) we assume

{ (mx,xx) ; K € R} is alocalization system subordinatesto
For abbreviation, we put for € R
Wy, = VVPS(X,{,E), o = S;(XK,E), K € R,
whereE = E7(F'). HenceW,, =[], W, is well-defined, as ig;,. We set

D, := D(X., E), D, :=D(X.,E),
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as well as ) i D
D =D, E) = @Dm D=DX,E):= @DK.

It should be noted that, due {o(b.1), W3, §., D, andD there occur at most two distinct function spaces.
Givenkxp € Ax®, we putforl < ¢ < oo

902,;{’“’ = p2+m/q([€b<(p)*(7rﬁu)7 AS C(V)7

and

= P T (kxp) Y, v € O(Xy, B).

Here and in similar situations it is understood that a plytidefined and compactly supported section of a
vector bundle is extended over the whole base manifold bytiiyéng it with the zero section outside its original
domain. In addition,

pqu = (gp u) € [[C(Xs, E),  uweC(V),

and

7,[12‘1; = Zd);‘ﬁv,{, v=(v,) € HC(XK,E).

A retractionfrom a locally convex spac& onto a locally convex spagg is a mapR € L(X,)) possessing
arightinverseR® € £(), X), a coretraction.

If no confusion seems likely, we use the same symbol for aioatis linear map and its restriction to a linear
subspace of its domain, respectively for a unique contiedimear extension of it. Furthermore, in a diagram
arrows always represent continuous linear maps.

The following theorem shows tha,t; is a retraction fromD ontoD, and thav,o}, is a coretraction. Moreover,
wﬁ has a unique continuous linear extension to a retraction f4,) onto%f;k, andcp?, extends uniquely to a
coretraction. This holds for any choice o€ R andp € (1, 00). Thusy, is auniversalretraction from,, (%)
ontogf;A in the sense that it is completely determined by its resbrcto D. The same holds D and&f;A are
replaced b)@ and§;ﬁ, respectively.

Theorem 7.1 Suppose € R. Then the diagrams

D C d Z,)\ ﬁ C d 35,

p
\sfé saf/ \sf? so?/
d _ d 3

D— L(3;

id ) id id D 0,(3) id
Aﬁ p 77/1;\‘ Aﬁ p wﬁ\‘
D C 157)\ ﬁ C S ;,)\

are commuting, where > 0 in the second case.

Proof. (1) SupposéV = M x K so thatV =T7(M,W)=T?M. Also suppose: € N. Then Theo-
rem 6.1 of [5] guarantees that

A is a retraction fronD ontoD and from¢,(W*) ontoW**, andy? is a coretraction. 7.4
p p p p SOP

Furthermore, set )
G = 0 NG Ps U = PR T (7.5)
and
<,5;‘u = (cﬁ;ﬁu), 1/0)21; = ZJ}A’NW, weD, wveD.
K
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Then it follows from Theorem 11.1 of [5] thaj}g is a retraction from fromD onto D and fromép(ﬁ/;f)
ontoW**, and;?, is a coretraction.
From step (2) of the proof of the latter theorem we know

P VEg~ 1, |p. "R

This implies that we can replagg .. andJ)pﬁ in [5, Theorem 11.1] by, .. andy,, ., respectively. Consequently,

koo F 107 (VERg) koo < c(k), ke R, keN. (7.6)

X is a retraction fronD ontoD and from¢, (W) onto W%, ande? is a coretraction. 7.7
p p p p st

(2) Let nowW = (W, hyy, D) be an arbitrary fully uniformly regular vector bundle over. Then [5.ID) is
the analogue of Lemma 3.1(iv) dfl[5]. Furthermofe, (5.11plies the analogue of [5, part (v) of Lemma 3.1].
If W = M x K, then the proofs of (714) an@ (T.7) are solely based on Lemrmaf3[5]. Hence, due to the
preceding observations, they apply without change to theigd case as well. Thus(¥.4) ald{7.7) holt¥ifis
an arbitrary fully uniformly regular vector bundle ovéf.

(3) The assertions of the theorem are now deduced froth (AdH&AT) by interpolation and duality as [ [5].

O
Let X andY be Banach spaceg,: X — Y aretraction, andk“ : Y — X a coretraction. Then
lylly = [RR Y[y < [IR[[|IRYllx <R[ IR lylly, yeY.
Hence
Illy ~ IR [ x. (7.8)
From this and Theorem 7.1 it follows that
u = [lepulle,ss) (7.9)

isanorm fo@;’k. Furthermore, another choice 8k ® and the localization system leads to an equivalent norm.
Fork € 8 andk € 91(x) we define a linear map

Sa i E5% = E% 0 (k@) (RXP)* (xv). (7.10)

The following lemma will be repeatedly useful.
Lemma 7.2 Suppose € Rt withs > 0if § = B. Then

Srw € L35 5,), ISkel e, FeN(w), rek

j20
Proof. Note that, by[{2]5) and our convention(@m ¢).,
Sznv = (97)7n((xv) 0 (k0 B TH)).

Hence it follows from[(Z1),[(3]3),[(5.6)[(3.7)._(¥.3), athek product rule and Leibniz’ formula that the asser-
tion is true if s € N and§ = H, sinceH,; , = W, for s € N. Now we obtain the statement for genesdly
interpolation. O

It follows from Theoreni 711 and the preceding consideratiia

all results proved if5] for the Banach space scal{eslf;k ;s €R]

7.11
of scalar-valuedo, 7)-tensor fields are likewise true fé¥ -valued(c, 7)-tensor fields, (7.11)

using obvious adaptions. Thus, in particular, the propertl)if&f;A listed in Sectiof 6 are valid. Henceforth, we
use [Z.I1) without further ado and simply refer(to [5].
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8 Anisotropic Bessel Potential and Besov Spaces

Given subsets( andY of a Hausdorff topological space, we write € Y if X is compact and contained in the
interior of Y.

Let I be an interval with nonempty interior afida locally convex space. Suppo@és a family of seminorms
for X generating its topology. Theti*° (I, X) is a locally convex space with respect to the topology indume
the family of seminorms

u»—>supq(8ku(t)), keN, Kel, gqeQ.
te K

This topology is independent of the particular choic&of

For K € I we denote byDx (I, X) the linear subspace 61> (I, X') consisting of those functions which are
supported inK. We provideD (1, X') with the topology induced bg'>° (I, X'). ThenD(I, X'), the vector space
of smooth compactly supporteti-valued functions, is endowed with the inductive topologthwespect to the
spaceDg (I, X) with K € I. If K € K’ € I, thenDg. (I, X) induces onDg (I, X) its original topology.
Note, however, that in generdl(7, X) is not an LF-space sinc®x (I, X') may not be a Fréchet space. Given
a locally convex spac®, a linear magl’ : D(I,X) — ) is continuous iff its restriction to every subspace
Dx (I, X) is continuous (e.g., Section 6 of H.H. Schaefer [40]).

From now on it is assumed, in addition fo (4.4) and](6.1), that

reN* peR, Je{RR"}

We set
o 1/7:=(1,1/r)eR? &G:=(\p),
so thats/i" = (s, s/r) for s € R.

Suppose: € N. Theanisotropic weighted Sobolev spacef time-dependentl-valued(o, 7)-tensor fields
onM,
W& = Wkr/T9( 1, V), is the linear subspace &f,(.J, W)

consisting of all satisfyingd™u € L,(.J, L,***), endowed with the norm (8.1)

1/p
Hqur/F,p;o? = (HUHQP(J,WPM,A) + Haku”[‘p(,]yL;“‘“)) .

ThusWy/ ™ = L,(J, L}).
Theorem 8.1

0] Wf” ™% is a reflexive Banach space.

i ~ — P k i ||P 1/p ;
(i) ||u||kr/?,p;(ﬁ = (HUHLP(J,WPW'*) +2 =0 ”aJUHLP(J.,W;"*”“““)) is an equivalent norm.

(i) D(J, D) L W™,

Proof. It follows from Theoreni 913 below thzltt/,,’"/m7 is isomorphic to a closed linear subspace of a
reflexive Banach space, hence it is complete and reflexiveof®for parts (ii) and (iii) are given in the next

section. O
Observe "
L. .. P
Il /mpa = (/ o M v, || dt) (8.2)
JiJrjrSkr
and

m/;)kT/’F,(A,O) - Lp(J, vakr,)\) N VV;)]C(J’ L}))\)
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Note that Theoreiin 8. 1(ii) and(8.2) show that definition)(&dincides, except for equivalent norms, with {1.2).
Also note that the reflexivity oLg implies

/

WImE = L,(J,Ly) = (Lyy (LA (V')))

with respect to the duality pairing defined by

(1, V) ar s = /]<u(t),v(t)>M dt.

L ['?']0 IfS:Ha
()0 = (), =8B

For s > 0 we define ‘fractional order’ spaces by

Given0 < 0 < 1, we set

/7@ /7@ (vakr/i‘,i)’ M/;;(k+1)r/777@)(s—kr)/rv kr <s < (k + 1)7",
A VA ST I AN 83)
(VVPT T,UJ’I/I/p( +2)r/ 7w)1/21 s = (k—|— 1)7°
We denote by
§o/™9 = §5/™9(J, V) the closure oD(J, D) in §5/™%. (8.4)
Then negative order spaces are introduced by duality,shat i
5, = MUV = (G s >0, (8.5)
with respect to the duality pairing induced by -) ,, . ;. We also set(p) := 1/2p and
HY™® = L 1), BYS = (H 08 079, (86)

This defines theveighted anisotropic Bessel potential space scaﬂéfﬁ/ @ ; s € R] and theweighted aniso-
tropic Besov space scaleB;y/ ™ ; s € R].
The proof of the following theorem, which describes the rirgkations between these two scales and gives

first interpolation results, is given in the next section. neleforth,&y := (1 — )& + 6&; for &,& € R and
0<h<1.

Theorem 8.2
Q) H}l)cr/?,&i - %kr/a@' keN.
(i) ByY™ = HY™ seR.
(iiiy (Bso/™ B3/, = B/ 0< sy <51, 0<0 < 1.
W) [, 55 ™ = §5 ™, 0 < sp < 51, 0< 0 < 1.

Next we prove, among other things, an elementary embedteayém for anisotropic weighted Bessel po-
tential and Besov spaces.

Theorem 8.3

(i) Suppose-co < sp < s < $1 < oo. Then
d s /i@ 4 ps/ie 4 rrso/d
D(J, D) — H,/" — B/ e H0M, (8.7)

(i) Assume < 1/pif OM # 0, ands < r(1 + 1/p) if M = @ and.J = R*. Thengy/ ™ = /™.
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Proofof (i) fors # 0. Using reiteration theorems, well-known density properténd relations between the
real and complex interpolation functor (e.@!, [2, formul2.6.2)] and Theorein 8.1(iii)), we see that{8.7) is true
if S0 2 0.

SinceD(.J, D) is dense inH,' ™ = L,(J, L)) it follows
fo/m8 G pars & freo/ra dp p ), s >0
P P p P\ Hp)s 0=

Hence the definition of the negative order spaces implies(&a) holds ifs; < 0, where the density of these
embeddings follows by reflexivity. This implies assertionif{ s # 0. The proofs for the case= 0 and for
assertion (ii) are given in the next section. O

Corollary 8.4 Suppose € R.
0] Sf/rw is a reflexive Banach space.

(i) If s >0, then§y/™ = (5,7 “(J, V")) with respect ta[-, -} /.. ;-

Fo d F o
(iii) &il/r’“ — f,“/r"“’ if 51> s0.

Proof. Assume > 0. Then assertion (i) follows from the reflexivity kar/’?’@ for k € N and the duality
properties of the real and complex interpolation functblsnce@f)/F’“j(J, V"), being a closed linear subspace of
a reflexive Banach space, is reflexive. TI&,ESS/ "% is reflexive since it is the dual of a reflexive Banach space.
We have already seen thH;?/F’“j is reflexive. The reflexivity 01792”’03 follows by interpolation as well. This
proves (i) for every € R.

Assertion (ii) is a consequence of (i) and {8.5). Claim {gi)mmediate by[(817). O

If M is uniformly regular, that is¥(M) = [1], then&f/m is independent afi. These non-weighted spaces
are denoted byg3/”, of course. IfW = M x K, then we writegy/ ™ (M x .J) for §3/7%(J, V). Since
VY = T{ M is in this case the trivial vector bundlé x K, whose sections are tfigvalued functions o/, this
notation is consistent with usual identificationiof (.J, L, (M )) with L) (M x J) via the identification of.(t)
with u(-, t).

9 The Anisotropic Retraction Theorem
Let{ E, ; a € A} be a countable family of Banach spaces. Welsgt/, E) := [[  L,(J, E,). Fubini’'s theo-
rem implies
Ep(Lp(J, E)) = L,,(J, Ep(E)), (9.1)
using obvious identifications. We also $&, F')y := [ [, (F«, Fa)e for 0 < § < 1if each(E,, F,,) is an inter-
polation couple.
We presuppose as standing hypothesis

(p, R) is a singularity datum fof/.
Ax® is a uniformly regular atlas fdi” over .

F = (F,(-]") ) is a model fiber fol" with basis(e1, . .., e,).
{(mx,xx); & € &} is alocalization system subordinatefto

On the basis 0f(7]9) we can provide localized versions ofthens-[|,., /. and||- H,:T/pr.

w
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Theorem 9.1 Supposé € N. Set

— A Atkp gk 1/p
|||’|||kr/?,p;(ﬁ L (”(ppu”gp (ka7)) + H‘P #(8 )”p L (JL )))

and
k

1/p
~ o A
(T iyt IO e o)

Then|||'|||kr/?,p;(ﬁ ~ H'”kr/?,p;(ﬁ and|||'|||;r/F,p;@ ~ ||'H;7‘/F,p;07'
Proof. This follows from[(Z.B) and (3.1). O

It is worthwhile to note

~ «@ iL+m « 0 1/p
el s = Z |2 e oz o). (r e )

|| 4+gr<kr
Together with Theorenis 8.1(ii) ahd ®.1 this gives a rathetieix and practically useful local characterization of
anisotropic Sobolev spaces.
For abbreviation, we set
e Y, =X,xJ, kKeEA

HenceYD{K = SZK x .J is the interior ofY, inR™*! = R™ x R. We also put
=P D(Y.,E), DY,E):=PDY,E)

and
Wh/T = WEIN(Y, B), §T=38)"(Y.,E), se€R, keN.

More precisely, the ‘local’ spacd%kﬁ/ " and&s/ " are special instances oF,"/ ™ and&s/ ™ respectively,
namely withM = (X, gmm), p=1, W =X, x F,andD = dp.

It is of fundamental importance that these spaces coincitle thve anisotropic Sobolev, Bessel potential,
and Besov spaces studied by means of Fourier analyticahitpeds in detail in H. Amann_[4], therein de-
noted byW,*/* (Y., E), Hy'*(Y.,E), andBy'* (Y,, E), respectively, where := r andv := (1,7). For
abbreviation, we sel,/” .= W/ (Y,., E) and33/¥ = /¥ (Y., E). Furthermore, we writdV,"x/" for
Ly(J, W) n WF(J, Ly ) endowed with the norr- llor /.-

Lemma 9.2
() If k €N, thenW,'e/™ = wk/v = Wk /" for . € &
(i) If s € R, thenFy/ = §3/¥ for k € &

Proof. (1) If J = R* andx € Ry, thenY, is isomorphic to the closez-cornerR* x RT x R™~1 (in
the sense of Section 4.3 6 [4]) by a permutation isomorphBtherwiseY . equals either the half-spae”+!
(except for a possible permutation)Ri*+!,

(2) If Y., = R™T1, then (i) follows from Theorem 2.3.8 dfi[4] and the definitiohi¥},,; M/ i the first para-
graph of [4, Section 3.5]. i, # R™*!, then we obtain claim (i) by invoking[4, Theorem 4.4.3(i)].

(3) Supposér,, = R™*!, Then statement (ii) follows froni [4, Theorem 3.7.1]. D&t £ R™*+! ands # 0
if § = B. Then we get this claim by employing, in addition] [4, Thense4.4.1 and 4.4.4]. It,, # R™*1,
§ = B, ands = 0, then we have to usgl[4, Theorem 4.7.1(ii) and Corollary 2Jlifh addition. O
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s/T

Due to this lemma we can apply the results[of [4] to the locatsss, ... This will be done in the following
usually without referring to Lemnia9.2.

Let X' be a locally convex space and< ¢ < oo. Forx € £ we consider the linear mapy . X7 = x’
defined by

Or u(t) = pt/tu(plt), ueX’, tel. (9.2)
Note
Ok 0O k=0) =id (9.3)
and
oL (C(J.X)) C C(J, X). (9.4)
Moreover,
ook, =pkrek o0,  keN, (9.5)
and, if X' is a Banach space,
108 cullL, 2y = lullz,(sx)- (9.6)
We put
(pi,{u =04, 0 <p2‘7,€u, tpgu = (tpi,{u), u € C(J, C(V)), (9.7)
and
e = O o) v, WFv = Y8 v, v =(vs) € PC(Y, B). (9.8)

After these preparations we can prove the following anadagurheoreni 7]1. Not only will it play a funda-
mental role in this paper but also be decisive for the studyapébolic equations on singular manifolds.

Theorem 9.3 Suppose € R. Then the diagrams

d L . . d .

D(J.D) ¢ /79 D, D) ¢ 2
\fg p o5 o J 5

id D(Y, E) = £,(3/7) id id DY, B) —— 4,57 id
e " s v

d e T d )

D(J,D) ¢ 5/7@ D(J,D) © 57

are commuting, where > 0 in the second case.

Proof. (1) Itis not difficult to see thad(J, D,.) = D(Y,, E) by means of the identification(t) = u(-,t)
for t € J (see Corollary 1 in Section 40 of F. Treves][49], for examp&nsequently,

D(Y,E) = @ D(J, Dy).

Similarly, D(J, D,.) = D(Y,, E), and thus
D(Y,E) = P D(J, D).

Using this, [9:%), and(9]5), obvious modifications of theqfrof Theorem 5.1 in[[5] show that the assertions
encoded in the respective left triangles of the diagram&raee

(2) Supposé < N. From [9.6) we get

H‘P‘;,KUHLP(J,W;Q) = H‘PQ,NUHLP(J,W;Q)-
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Hence, usind(9]1)
lopulle, (r, (s wiry) = |\<P2U||Lp(,1,ep(wy))-

From this and Theorem 4.1 we deduce

|\<P§U|\EP(LP(J,W5T)) <c ||u||Lp(J)Wp’”’>‘)7

that is, )
05 € L(Lp(J, W), £, (Ly(J, W)

By means of[(9)5) and (9.6) we obtain
1092wl sy = IR # @0, 0<i<k
Consequently, invoking (9.1) and Theoreml 7.1 once more,
||ak¢§u”ép(Lp(J,Lp)) <c Haku”[‘p(,]ng“‘“)-

This, together with[{319), implies
<P§ c E(%kr/ﬁﬁvép(wll)cr/r)).

(3) Note that
A

Spp ¥Ypg = aEnSEIm

where
gy = (Pn/PE)H_m/p(Fé*ﬂ'n)SEn(E*ﬂ'E)-

LemmdZ.2, estimaté (4.3), arid ([7.3)(iii) imply
azre € BC*(X,), lazellboo <c(k), KeN(k), weK keN.
Hence we infer fron(9.12) and Lemial7.2
Pptpi € LV Wr)s epatpzll < e(k)

for k € M(x), x € &, andk € N. By this and[(9.6) we find
H‘Ppn an”L JWE,) = ||902,K%\,EUHLP(J.,W;N) < CHUHLP(J.,W;E)

for k € M(x), x € &, andk € N. Similarly, using[9.b),

(A +k
lep i (@ WTzoDl m, o = lepi b @ 0N, (0,0 < 0Ly, 2

fork € M(k), K € R, andk € N.
Observe

A (» A @ -
SDpyf-”ﬂ/)pv_ Z Pp,r¥p RV

ReN(k)
From [9.IB)-{{9.15) and the finite multiplicity &f we infer
H%\(?/ff’v)||zp(Lp(J,w§r)) < cllvlle, iz, (1w

al |d ¢ () v L
Atk S)k g )
H’ T (¢pv))"€P(LP(J,Lp)) < C” HéP(LP(J p))

Hence Theorem 9.1 implies
||7v/};d'ka:r/r,pw ~ C”'UHé k:’r‘/'r')

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)
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that is, . B .
U € L(L, (W), Wik/m), (9.17)

It follows from 1)) = id thaty$o? = id. Thus we see froni(9.11) ard (9117) that the diagram

Wkr/'r gn} id kr/f’&}
\ / (9.18)
e Wkr/'r
is commuting.
(4) It is a consequence of Lemma®l.2(i) and [4, Theorems @&8ad 4.4.1] thatD(J,D,,) = D(Y,, E) is
dense ka’”/T This implies
Y E % @Wkr/r o Wkr/r)
Hence, by[(ZR),

D(Y, E) < £,(WH/7). (9.19)
Thus we deduce from step (1) ahd (9.18) that

D(J, D) C W/
\fﬁ ] soV
/ 5 w\

D(J, D) C kr/r &

is a commuting diagram. From this and [4, Lemma 4.1.6] weinbta
D(J, D) <5 WH/™2, (9.20)

(5) Supposé: € N andkr < s < (k+1)r. If s < (k+ 1)r, setd := (s — kr)/r and/ := k + 1. Otherwise,
0 :=1/2 and( := k + 2. Then we infer from[(9.18) an@(8.3) by interpolation tlzjgftis a retraction from

(LW /7), b, (W) (9.21)

0

ontog;/"“. By Theorem 1.18.1 in H. Triebel [50][{321) equég(W /™, W'/7),), except for equivalent
norms.

It follows from Lemmd 9.2 and |4, Theorem 3.7.1(iv), form83.12), and Theorems 3.5.2 and 4.4.1] that
(W™ Wi/ ™) = §5/F. This shows that the right triangle of the first diagram is omuting if s > 0. Fur-
thermore, the density properties of the interpolation fan¢, -),, (9.19), and[(9.20) imply that the ‘horizontal
embeddings’ of the first diagram of the assertion are dense-if). This proves the first assertion fer> 0.

(6) Itis a consequence of what has just been shown and stépeflithe second part of the statement is true.

(7) Let X be a reflexive Banach space. Then

(v, OF

P,k

u>LP(J,X) = <®;’f;vvu>Lp(J.,X)a u e LP(JaX)7 v e LP’(‘L XI) = (LP(JaX))/

We definepy andiﬁ by replacingp) . andy;) . in (@.7) and[[9.B) by, andwp .., defined in[(Z.B), respectively.
From this we infer (cf. the proof of Theorem 5.1 il [5])

<1Z;Qva u>1\'f><J = (’U, ‘ngu)a v E ’D(ﬁv E)a AS D(Ja D)v (922)
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and
(¢, v, u) = (05U ks,  vEDW,D), ueDY,E) (9.23)

Moreover, [85) implies fos > 0
0(F, ) = (6 (B (Y, EY)))

It follows from (Z.8) that% and@f possess the same mapping properties;aandy, respectively. Hence we
deduce from[(9.22) and(9.23) that, given- 0,

H‘PZJU’H@p(g;S/F) <c HUHS:;S/F@a u € D(']v D)a

and
||1/;‘Zju|\ggs/m <ec HuHép(g;s/F), u € DY, E). (9.24)

We infer from [9:2D), Theorem 8.3(i), and reflexivity tiat./, D) is dense ir%;s/rw. Hence

op € L(3, /72 0,(F,°7). (9.25)
Since, as above)(J, D,;) = D(Y,, E) is dense ir%’;,iﬁ we see, by the arguments used to prove (9.19),
D(Y, B) <5 6,(5,7). (9.26)
Thus [9.24) implies
vy € L(6,(F,7).8,779). (9.27)

From [9.25)-{(9.27) and step (1) it now follows that the fitatement is true if < 0.

(8) Suppose = 0. If § = H, then assertion (i) is contained [0 (9.18) (foe= 0). If § = B, then we deduce
from Lemmd9.P(ii) and[4, Theorems 3.7.1, 4.4.1, 4.7.1&id Corollary 4.11.2] that

(Hy 2 ®/7 HSDIT) = BYT, € R
Thus, as in step (5),

(KP(HP_S(Z))/F)7ép(Hz(p)/F))1/27p - gp(Bg/F)

Since we have already shown thaf is a retraction front,,(H=**/™) onto H,**/" it follows from defini-
tion (8.8) that it is a retraction frori]y(Bg/F) ontoBg/F’w. This proves the theorem. O

Now we can supply the proofs left out in Sectldn 8. First nbi& assertion (iii) of Theorefn 8.1 has been

shown in [9.2D).
Proof of part (ii) of Theorerh 8l1It is a consequence of Lemra®.2(i) that

(W) = 6, (W7,

Hence, due td (718) and (9]18),

ey - IIZP(W;,\/F) ~ Ml 7,
Using [9.9) and[(9.10) one verifies
”spp : ng(ﬁ/fpkr/F) ~ |||'|||kr/77,p;u7'

Now the assertion follows from TheorémB.1. O
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Proof of TheoreiBl2(1) Lemma[3R and]4, Theorems 3.7.1 and 4.4.3()] impl§’y/” = w,*r/™ for
k € Randk € N. Hence

ZP(HZT/F) = EP(WST/F)a k €N,
and assertion (i) is a consequence of Thedrein 9.3.

(2) In order to prove (i) it suffices, due to Theorem|9.3 anthied 9.2, to shoWIj/"(Ym E) = BS/F(YN, E).
By the results of Section 4.4 df|[4] we can assuihie= R™ 1.

Suppose > 0 and writeH; := Hj;(R™, E), etc. Then([4, Theorem 3.7.2] asserts
HYY = L,(R,HS) N Hy" (R, Ly).
From Theorem 3.6.7 of [4] we get
B3 = Ly(R, B) N BY" (R, Ly).

By Theorem 2.12 in[[50] we know thatl; = B5. Remark 7 and Proposition 2(1) in H.-J. Schmeif3er and
W. Sickel [42] guarantedls’" (R, L) = B3/" (R, L). This provesH;’* = BS/¥ for s > 0. The case < 0
follows by duality.

From Lemmd43912(ii) and ]4, (3.4.1) and Theorem 3.7.1] we[ggt /", 353"/, ), = §5/7. Thus, by what
we already know,

/7 . —s 7 s 7 . —s ld s 7 . o/7
BYT = [yt W BT = (s O s @)/, = o

1/2
This settles the case= 0 also.

(3)By [4, (3.3. 12) (3.4.1), and Theorems 3.7.1(iv) andY.&e know that assertions (iii) and (iv) hold for

the local spacesp «- Thus we get (iii) and (iv) in the general case by the argusefistep (5) of the proof of
Theoreni 9.B. O

Proofof Theoreri813(i) fos = 0. Since [8.¥) has already been establishedsferR\ {0} it remains to
show that

s1/7@ A p0/FG A prse /7@
H3/TE < BYTE < [/
if —14+1/p<sp<0<s; <1/p. By[4, Theorems 3.7.1(iii), 4.4.1, 4.7.1(ii), and Corojyi&.11.2]
Hsl/u i> BO/V i> Hso/u
PR PR V2L
From this and Lemmia9.2 we deduce
‘ (HSI/T) l (BO/T) C,(H2/T),
Now the claim follows from Theorem 9.3. O

Proof of Theoreri83(ii) If / = R anddM = 0, then the claim is obvious biZ(8.4)p(J, D) = D(.J, D),

and (i). Otherwise, we get frorhl[4, Theorem 4.7.1 and CorpHall.2], due to the stated restrictions fothat

Z/f = f,/f Here we also used the fact that

DU, D) S YT L E T t>0, wef

Hence@(@f/ﬂ = Ep(sf,/’?) and the claim follows from (the right triangles of the diagsaof) Theorerh 9]3. O
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10 Renorming of Besov Spaces
Let X’ be a Banach space afde {R™, H™}. Foru : X — X andh € H™\{0} we put

Apu=u(-+h) —u, A= ApAfu, keN, Alu:=u.

Givenk < s < k+ 1 with s > 0,

[us,psx 1= (/X(|AZ;:|1:|;D;X)7” |}(Li|f:n)1/10,

where||-[|, x = ||l x,x)- We setfors > 0

1/
1% e = (e + 12 2) "

Supposé < s < k + 1 with £ € Nands > 0. Then

1/p
eo = (3 logully)

lal<k

[[ul
is the norm of the-valued Sobolev spad& (X, X') and

1/p
(Il e+ 3 1080 ) ' k<5 <k,
|| =k

Hqu*p,X = 1/p
(Hung_lm + Y [agu]{p;x) , s =k e NX.

la|=k—1

Then, givens > 0,
B;(Xa X) = ({ u € LP(Xa X) ; [u]s,p;X < 00 }a |||

is a Banach space, a&tvalued Besov space

-0 ez ~ 115520 (10.1)

:,p;X)

andD(X, X) SN B;(X,X). These facts can be derived by modifying the correspondielffkmown scalar-
valued results (e.g., H.-J. Schmeiferi[41] or H. Amann [3]).

Now we choos& = J. Note that

Ny o®f, =000, 1<g<oo
Hencel[(9.B) implies
[@g,nu]s,p;?( = i [u]s pix- (10.2)
Suppose > 0. Then
* — 1/p
HuHs/F,p;(ﬁ T (”u”;B;,/\ + [U]Z/T)p;L;\+SM/T) (103)

and, ifkr < s < (k+ 1)rwith k € N,
, 1/p
HU’HS/'F,;D;J) = (HU‘H;B;,)\ + Z Haju”;vvp(kfj)nkJruj + [aku]?s—kr)/r,p;L;Jrsu/T) . (104‘)
J<k

Besides of these norms we introduce localized versionseof thy

S T 1/
aten/ry)P ) r (10.5)

|||“|||s/ﬁp;@ = (H%UH;%(B;) + [y s/r,pilp(Lp)
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and, ifkr < s < (k+ 1)r,

%k k o >\
lellps o= (el e,y + 210703l
gsk (10.6)
[8k Asp/r ] )l/p
(s—kr) /rpilp(Ly) )
Theorem 10.1 Suppose > 0. Then(I0.3)-(10.6)are equivalent norms foBS/T “

Proof. (1) It follows from[9.5) that

epullpie,Bs) = £t pie, (B3)- (10.7)
Using [10.2) we get
(05 ctlsfrpiy . = [P "W rpiLy (10.8)
Thus, by Fubini’s theorem,
[SOQ(:U]S/T-,P?E:D(L;D) = [SO;\J’_SH/TU]S/T-,T’?E;D(LP)'
From this and[{10]7) we obtain
* @ 1/
|||u|||s/rjp;55 = (”‘P ||pgp(13s) + [op U]i/r,p;gp(Lp)) " (10.9)

Similarly, invoking [9.5) as well,

1/p
P P
pilp(B3) +;k Haj ” pit, (WSE=DT) + [6 ‘Pp ](S kr)/r,pily (Lp))
i<

el s = (llpiud
if kr <s<(k+1)r.
(2) Lemmd9.PR and]4, Theorems 3.6.3 and 4.4.3] imply
BT =L,(J.B;,)NB/"(J, Ly,), k€S

Hence
|| : HBz/j ~ H ’ ”p;B}Swi + [']s/r,p;Lp’,iu
duetoB; , < L, .. From this,[(Z0.9), and Fubini's theorem we deduce

|||'|||:/'F,p;(ﬁ ~ H‘P: : ng(B-;/F)'

Thus [Z.8) and Theoreim 9.3 guarantee that {10.5) is a norrﬁj@rw. Similarly, using[[10.11), we see th&i (10.6)
is a norm forB/ ™.

(3) We seta := A\ + su/r and := a+ 7 — 0. Then we deduce froni (4.1)(iv)(5]11],(7.6), ahd [5, Lem-
ma 3.1(iii)]

s dg
« at+m k p
5 ntl? mir :/ // (o2t /P | AET (kxp)a(meu) | )T AV, dt R
0 J JX
0o d
- //m«wmm?wmwmﬁgﬁm

= [ [ ] @ niat iy avyar

for u € D(J, D). We insertl = -2 in the inner integral, sum over € &, and interchange the order of
summation. Then

op ULt itz ~ D Z/ // (P |58 uln)” dV tglf%/r

F REN(R)



35

Using [Z.3)(iii) and the finite multiplicity off we see that the last term can be bounded above by

FL s

/ / / |Ak+1u|h) §1+ps/r =¢ [u]g/ﬂp;Lg"

(D5 uls/rpe, (L, < clu ulyjppipitonrs W€ D(,D). (10.10)

Hence, recalling(1018),

(4) Itis a consequence of Theoréml7.1 thate £(B;*,¢,(B;)). This implies, due td{I017),

|‘<P§U| pilp(B3) = ||<p;u| pilp(B3) <c Hqu;B;vM u € D(Jv D) (10'11)
Thus we obtain fron{{Z019)[(10.10), ahd (10.11)
Ml pi < cllullyjmpa:  uw€D(D). (10.12)

We denote bﬁ;/w the completion o>(.J, D) in L, (J, L;) with respect to the norrj- I5/ipa Then [10.IR)
and step (2) imply
Byl oy pyina,

(5) Observing)$ . = x5, and0 < x,. < 1, the finite multiplicity of & implies
A’”l 2\ /P /v
< (S ) (S
< C(Z |A’g+1¢g’)ﬁv,{|f;) r
forv € D(Y, E). Hence, reasoning as in step (3),

- ° d&
@& ,,1P 5p§ k+1 P
[7/}1) v]s/ryp;[‘;\ﬂu/r < C/O /J/Mp - |AE 1/) v“| dVy dt o §1+1)S/7‘
> k+1 P 5
<[ [] A ),
= CZ[W”U“]ZS)/T,Z);LP,N < CZ[U”]i/T7P;Lp,~
E : P
S C ||’UHHB;/T(J7LP,~)

AE vl = [ 30 AE U
K

forv e D(Y, E).
(6) Theorenh 7)1 and(4.9) guarantee tM ¢, (B2) is an equivalent norm faB:: A, This implies

||¢p°3”|\p;3;;vk < CH‘P;\"/J;?UHP;ZP(B;% vE D(Yv E). (10'13)
From [9.16) we infer by interpolation, using the argumerfitstep (5) of the proof of Theorem 9.3, that
lervEvlle, Ly (1B3) < cllvlle, iz, 182 v e DY, E).

Hence [(10.18) and[(d.1) imply
ng””p;B;)‘ <c ”v”p;@p(B;)a (S D(Y, E)
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By combining this with the result of step (5) we find, emplayi{®.1) once more,
108002 s < clloll, gomy  © € D(Y,E).
Thus, by Theorein 913,
ull/mps = ||1/J§(<P§U)||:/ap;@ <c ”90;?“”@(3;/?) =c |||U|||z/ap;@v u € D(J,D),
the last estimate being a consequenc€ of {10.9). Sinceepy(2}, [10.b) is a norm foBE/F’@, we get

s <clul

*
s/7p;d =

HUH B3/ u € D(J,D).

This impliesB;/ ™ gz/F’@. From this and step (4) it follows thdf(10.3) is a norm &
(7) The proof of the fact thaf (10.4) is a norm fBﬁ/F’Q is similar. O

Corollary 10.2 If s > 0, thenBy/ ™™ = L,(J, B3*) 0 By/" (J, L)).

11 Holder Spaces in Euclidean Settings

In [5] it has been shown that isotropic weighted Holder gsaare important point-wise multiplier spaces for
weighted isotropic Bessel potential and Besov spaces. ¢tideeI3 we shall show that similar results hold in
the anisotropic case. For this reason we introduce and stonidptropic weighted Holder spaces and establish
the fundamental retraction theorem which allows for lodedracterizations. In order to achieve this we have to
have a good understanding of Holder spaces of Banach-sjpdweed functions ofR™ andH™. In this section
we derive those properties of such spaces which are needastypweighted Holder spaces 6.

Let X be a Banach space. Suppdse {R”,H™} andX € {X, X x J}. ThenB = B(X, X) is the Banach
space of all bounded’-valued functions oX' endowed with the supremum norfv|| , = [|-[|y -

Throughout this sectiork;, kg, k1 € N. Then
BC* = BC*(X,X) := ({ue CHX,X); 03u e B(X,X), |a| <k}, [|]l.00)

where

el 0 = max |07 oo,

lex|

is a Banach space. As ususlC' = BC". We write||-||, .., for |||, .. if it seems to be necessary to indicate
the image space. Similar conventions apply to the other s@amd seminorms introduced below.

Note that
BUC* = {u € BC*; 92uis uniformly continuous fofa| < k }

is a closed linear subspace BE*. The mean value theorem implies the first embedding of
BC*! < BUC* — BC*. (11.1)

Hence
BC™ =, BC* =N, BUC*. (11.2)

It is a Fréchet space with the natural projective topolddyws

BC™ s BUC*, k e N.

In fact, this embedding is dense. For this we recall thatdifier onR< is a family { w,, ; > 0} of nonnegative
compactly supported smooth functions BA such thatw, (z) = n~%w; (z/n) for x € R? and [ w; dz = 1.
Then, denoting by, * u convolution,

wy *u € BC®RY, X),  ue BCRYX), (11.3)
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and
lim w,, * u = uin BUC*(R?, X),  u € BUC*R?, X), (11.4)

n—0

(cf. [7, Theorem X.7.11], for example, whose proof carrie=ally over toX'-valued spaces). From this we get

BC= % puck (11.5)

if X = R™ andJ = R. In the other cases it follows by an additional extensionrastriction argument based on
the extension map (4.1.7) ofi[4] (also cf. Section 4.3 therei

FromnowonX =X. Fork <s<k+1, 0<0 <oo,andu: X — X we put

A ulloosx
[u](s;,oo = hes(g.l(:;)m %7 [']s,oo = []zooo
Furthermore,
500 = llo T [Js0r  8>0.

Note thath € (0, 00)™\ (0,9)™ impliesd < |h|o < || < /m|h|s. Hence

oo < [loc #4670 |-, 0<8<1, 0<8<co. (11.6)
If 0 <6y <0 <1,then
[19g.c0 < VmOPL]) . 0<8< oo (11.7)
Consequently,
[ope < Vi [ge + 41 loo < V[ g oo T 41Nl
This implies

15000 < €M) -5, 0 <o <O<1. (11.8)

Suppose: € BC* and denote by) the Fréchet derivative. Then, by the mean value theorem,

1 1
Aﬁu@gzi/ ~~/1[ﬁu@z+(h—%~-+tmhﬂﬂkdh-~dm,
0 0
where[h]* := (h,...,h) € X¥. From this we get
[u]§ oo <M 285 0 Jullpo, 0<O<1, O<k, §>0, ueBC. (11.9)

Thus, by [I1.6),
1900 Scm) ]l 0y 0<O<1 (11.10)

We also setfok < s <k +1

o5 1=l o + mas[Ouloi .

If £ <s<k+1,then|-| and

s, 00 T || Hs,oo

BC*® = BC*(X,X) := ({u e BC* ;m‘ax[a Us—jp,00 < 00}, ||+ ||Sk) k<s<k+1,

is aHolder spaceof orders.
Givenh = (h',...,h™) € X, we seth; := (0,...,0,h7,...,h™) for 1 < j < m, andh,,+1 := 0. Then
Apu(x Z (z + hj) — u(z + hjt)).

Jj=1
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From this we infer fol) < 0 < 1andh/ £ 0for1 <j<m

(Sl e) —ulee 5l ) —

= N [ Zoik
=Y sup MM E) mulloe gy
TS hi>0 (h7)
Consequently,
[u]g,00 < sup ” |21|l9|°° < m [ulg,c0, 0<0<1. (11.11)
0

This shows thaBC* coincides, except for equivalent norms, with the usuabddspace of orderif s € RT\N.
From [I1.11) we read off that the last embedding of

BC*! < BC® < BC* «— BUC*,  k<so<s<k+]1, (11.12)

is valid. The other two follow fron{{1118) an@(11]10).
We introduce théesov-Hlder space scalé B3, ; s > 0] by

. (BUCk, BUCK ™), 1 oo, k<s<k+1,
= | (BUCY, BUCH*?), s o, s=k+1.

Theorem 11.1
(i) [I-1% . and|-[I;",, are norms forBs,.
(i) B3, = (BUC*, BUC™)(s_y)) (ki ko) o0 TOF ko < s < k1.
(i) If 0 <sp<s1and0 <6 <1,then(B, Bsl)g oo = B3 = [B32, B3l]g.
Proof. (1) Fors > 0 we denote byB3 . = B3, (X, &) the ‘standard’ Besov space modelediog for

whose precise definition we refer id [4] (choosing the tfiwiaight vector therein).
It is a consequence df[4, (3.3.12), (3.5.2), and Theoreni}itHat
Bgo,oo = (BUOkO,BUOkl)(S_kO)/(kl_ko)po, ko < s < ky.
This implies
B3, = B3, o (11.13)
and, consequently, statement (ii).
(2) The first part of (iii) follows by reiteration from (ii).

Foré € R™ we setA(€) := (1 + [£]2)1/2. Givens € R, we putA® := F~'A*F, whereF = F,, is the Fourier
transform oriR™.

Suppose&X = R™. It follows from [4, Theorem 3.4.1] an@(11]13) that

A € Lis(BiF*, BL), (A°)'=A", t, s+t>0. (11.14)
We setd := —A**~*°, considered as a linear operator/j with domainB:.. Then [4, Proposition 1.5.2 and

Theorem 3.4.2] guarantee the existence & (7/2, 7) such thatthe sectet, := { z € C; |argz| < ¢ } U {0}
belongs to the resolvent set dfand||(A — A)~!|| < ¢/|A| for A € S,,. Furthermore, by(4, Proposition 1.5.4
and Theorem 3.4.2] we find that® € £(B2°) and there exists > 0 such that| A%|| < ce” ™I for Re z < 0.
Now Seeley’s theorem, more precisely: the proof in R. Sef@é}; and [I1.14) imply B39, BSl]y = B2¢. This
proves the second part of (i) ¥ = R™. The casé&X = H™ is then covered by [4, Theorem 4.4.1].

(3) By [4, Theorems 3.3.2, 3.5.2, and 4.4.1] we @t ., — BUC. Using this and the arguments of the
proof of [4, Theorem 4.4.3(i)] we infer from[4, Theorem 2 pthat||-| Bs ™ |-1I5 - By appealing to[[50,

Theorem 1.13.1] in the proof of[4, Theorem 3.6.1] we obtailarly |||/ ;.  ~ ||~|\:j‘oo, making also use of
(II112) in the usual extension-restriction argument. UEL.LB) this proves (i). O
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Corollary 11.2
() Bs, = BC®forse RT\N.
(i) BUC* — B* and BUC* # BE .

Proof. (i) is implied by part (i) of the theorem.

(i) The first claim is a consequence bf [4, Theorem 3.5.2jollows from Example 1V.4.3.1 in E. Steifh [48]
that the ‘Zygmund space3., contains functions which are not uniformly Lipschitz contous. This proves the
second statement. O

By (I1.12) we see that
BC** < BC*,  0< sy < s1.

However, these embeddings are not dense. Since dense d@ngsedre of great importance in the theory of
elliptic and parabolic differential equations we introdubte smaller subscale of ‘little’ Holder spaces which
enjoy the desired property.

Supposes € R*. Thelittle H dlder space

be® = be® (X, X) is the closure oBC™ in BC”.
Similarly, thelittle Besov-Holder space scaléb., ; s > 0] is defined by
b3, is the closure oBC™ in BZ_. (11.15)

These spaces possess intrinsic characterizations.
Theorem 11.3
(i) bck = BUC*.
(i) b5, =bc® fors € RT\N.
(i) Supposé < s < k + 1. Thenu € B3 belongs ta2,_ iff

lim [0%u]° =0, la| = k. (11.16)
6—0

s—k,00

(iv) BC® i> b9 for0 < s < s.

Proof. (1) Assertion (i) is a consequence[of (11.5). Statefiig follows from CorollanIL.R(i).
(2) Supposé < s < k + 1. We denote by?_ the linear subspace @, of all u satisfying [T1.16). Then we
infer from (I1.9) that N
BC™ < BUCH™ < b%_. (11.17)
Letu € b5, ande > 0. Then [IIIR) implies the existencewt BUC*2 with |lu — v||3%, < /2. By (LIIT)
we can findj. > 0 such that[agv]‘zikyoo <eg/2for|al = kand0 < § < .. Hence
05Uk 00 < [05 (u— )]

s—k,o00

O
s—k,o00 + [asv]s—k,oo < Hu - sz*oo + 5/2 <e€

for || = k andd < 4.. This proveds_ c b_.

(3) Suppos& = R™ andu € bZ_. We claim thatw, * u converges inB5_ towardsu asn — 0. Using [11.4)
andog (wy, * u) = wy, * 05u we can assume < s < 1 and then have to show

Wy * U — Uls.co > 0 asn — 0. 11.18
] ,

Note

wn * u(z) — uz) = / (u(x — y) — u(z))wn(y) dy.
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From this we infer
[wy *u—u]® o < 2[u]’ § > 0. (11.19)

5,00 — 5,007

Fix 6. > 0 such thafu]} ., < ¢/4. Then we get fron{{1116) anB{11]19) that there exjsts- 0 such that
[Wy * U — U500 < /24+407° |Jwy *u— ul|os < €

for n < n., due toB:, — BUC and [I1.}). This proveb(11]18). ThE@ C b3,

(4) If X =H"™, then we geggo C b, from (3) and a standard extension and restriction argumasedon
the extension operator (4.1.7) bf [4]. Together with theiltesf step (2) this proves claim (iii). The last assertion

follows from (IT.12) and (1117). O

It should be remarked that assertion (iii) is basically knaisee, for example, Proposition 0.2.1 in A. Lu-
nardi [32], where the case = 1 is considered). The proof is included here for further rexiee.

Little Besov-Holder spaces can be characterized by intatipn as well. For this we recall that, given Banach

spacest; i> Xo, the continuous interpolation spadgty, Xl)gyoo of exponen® € (0, 1) is the closure oft;

in (Xp, X1)0.00. This defines an interpolation functor of exponérnn the category of densely injected Banach
couples, thecontinuous interpolation functoit possesses the reiteration property (cf. [2, Sectiopfd2more
details and, in particular, G. Dore and A.Favini[13]).

Theorem 11.4

(i) Supposéo < s < ki withs ¢ N. Then(bc™, be™)(, ;o hy o = b

(ii) 1f 0 < s <s;and0 <6 < 1,then(bs,b3)g o, = b5 = [b52, b5 .

[o oRihge o] [o oRihdee]

Proof. (1) The validity of (i) and the first part of (i) follorom Theoren{_11]1(ii) and (iii) and Theo-
remIL.B(i).

(2) We deduce fron{(11.2)[ (11]12), and Corollary 11.2 that> = ,. , B5,. From this and[(11.14) we
infer A*> € Laut(BC>). Hence, using the definition of the little Besov-Holder sggmand once morg(11]14)
and Corollary 112, we find

A€ Lis(BLs bt), (A) P =A"°,  t t+s>0.

oo ) Yoo

Thus the relevant arguments of part (2) of the proof of Thedid.1 apply literally to give the second part
of (ii). This is due to the fact that the Fourier multiplier @rem [4, Theorem 3.4.2] holds fét,_ also (seel[3,
Theorem 6.2]). O

Now we turn to anisotropic spaces. We set
BC*/™:= ({ue C(X x J,X); 0507u € BOX x J,X), || +jr <kr}, || ls),
where
lulliejr = masx [10507u]oc
This space is complete and contains

BUC*/™ .= {u e BC*/™; 929’u € BUC(X x J, X), |a| + jr < kr }

as a closed linear subspace.
Proposition 11.5 BUC*"/™ = (\_, BUCY(.J, BUC*=7)"),
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Proof. (1) Due tou(x,t) — u(y, s) = u(z,t) — u(y, t) + u(y, t) — u(y, s) for (z,t), (y,s) € X x J, the
claim is immediate fok: = 0.

(2) Supposé € N* andu € BUC*"/™, Suppose alsb < j < k — 1 and|a| < (k — j)r. Then, by the mean
value theorem,

1
0% u(x,t 4+ h) — 0% u(x,t) — hO2 T u(x, t) = h/ (020" u(z, t + Th) — 920" M u(a, b)) dr
0

for x € X andt, h € J. Thus, givere > 0, the uniform continuity 0997 *1« implies the existence af > 0

such that , j j
[P (0207 u-, t + ) — 02D u(-, 1)) — 920 u(-,t)||

< max [|0207 T u(-,t 4+ 7h) — 980T u( )| < €
0<7<1

for h € J\{0} with |a| < 4. Hence the magt — 9997u(-,t)) : J — B(X, X) is differentiable and its deriva-
tive equalst — 9297 u(-,t). From this and step (1) we infar € BUCY(J, BUC=)") for 0 < j < k.

This implies BUC*"/™ — ﬂ?;o BUCY(J, BUC*=9)7). The converse embedding is an obvious consequence
of step (1). O

It is an immediate consequence of this lemma that
BUC*/™ — BUC(J, BUC*™) n BUC*(.J, BUC).

It follows from Remark 1.13.4.2 in [50], for instance, tHal/C'*"/7 is a proper subspace of the intersection space
on the right hand side.

We infer from [I1.1) thaBC*+)/7 < BUC*"/™ — BC*/™. Consequently,
BC>®/T .= N, BC*/™ = N, BUC*"/™ = BO®(X x J, X). (11.20)

Fors > 0 we set
el e = D (s ) e + 50 ()], o

= |lulloo + sup [u(-1)], .+ sup [u(z, _)]S/mo. (11.21)
Supposé < s < r. Then
el 57700 = sup [[u, D)5 o0 + sup [u(@. )] /700
If kr < s < (k+ 1)r with k € N*, then
lull3jr oo = max [0707ull7 ) 700 (11.22)

|| 4-jr<kr

s/T

Theanisotropic Besov-Hlder space scal¢ B," ; s > 0] is defined by

Bs/7 (BUCHT, BUC(HI)T/F)(S*M)/T,OO, kr <s < (k+1r,
0o = (BUO]W/F;BUO(kJrQ)T/F)l/Q,oo, 5 — (k 4 1)7’

The next theorem is the anisotropic analogue of Thebren 11.1
Theorem 11.6

@ 11157 and||-[/7 ., are norms forB".

(II) Supposéyr < s < kyr. Then(BUCk“T/F, BUCle/F)(s—kor)/(kl—ko)r,oo = Bié?.
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(iiiy If 0 < 59 < sy and0 < 6 < 1, then(B33 BT Bié/’?)e_yoo ~ B/T = [BQ/F Bié/F]e.

(iv) 0007 € £L(BETIHI/T BT for o € N™ and;j € N.
Proof. (1) We infer from([4, (3.3.12), (3.5.2), and Theoreuh.4] that
BT = B", (11.23)

and that (ii) is true.

(2) The first part of (iii) follows from (ii) by reiteration.

(3) For(¢,7) € R™ x Rwe seth (¢, 7) := (1 + €[> +72)1/2". ThenA® := F,;} | A*F,,. 11 for s € R. From
[4] Theorem 3.4.1] and (11.23) we get

A € Lis(BE)/T BUTY (A)' =A%t t+s>0,

providedX = R™ andJ = R. Now we obtain the second part of (iii) by obvious modificagmf the relevant
sections of part (2) of the proof of Theorém 11.1.

(4) Taking [4, Section 4.4] into account, we get from Theosed18.2 and 3.5.2 therein that.” — BUC.
Supposér < s < (k + 1)r. By [4, Theorem 3.6.1]

s|+1 sr+1
1AL s IAG D oo

U|| ps/7 ~ ||U + sup
[l llloe o0 R T e

where[t] is the largest integer less than or equal ®R. Sinceu € BC it follows

sl1 s]+1 s/r]+1 s/r]+1
1AGLS) wlloe = sup A7l )lloo, IAG ulloe = sup 1477 u(z, oo

Thus|-[| go/= ~ |-l

s/T,00"

(5) SupposeX = R™ andJ = R. Then (iv) follows by straightforward modifications of theopf of [4,
Lemma 2.3.7] by invoking the Fourier multiplier Theorem .2.¢herein. Similarly as in the proof dfl[4, Theo-
rem 2.3.8], we see that, givén< s < r andk € N,

57~ max (0297 -

e (11.24)

(cf. [4, Corollary 2.3.4]). In the general case we now obthia validity of (iv) and [I1.24) by extension and
restriction, takingBs.” < BUC into account.

(6) Suppos® < s < r. Then||-[|{/; o, ~ |- Il;/7  follows from TheoreniIII1(i). By combining this with
(I1:23) we see that the latter equivalence holds for ekeryN. This proves the theorem. O

Corollary 11.7
() BL" = B(J,B3) N B (J,B).
(i) Set
el Sy, 0 := sup uls D 5o0 + sup fu@, )l s> 0.

Then||- |7~ . is a norm forB:,_.

s/ 7,00

Proof. (i) is implied by Theorefn 11.6())B3, — BUC* if k < s < k + 1, and Propositioh I1}5. (ii) fol-
lows from (i) and Theoref 171.1(i). O
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We defineanisotropic Holder spacesby BC*/™ := BiéF for s € RT\rN. By means of the mean value
theorem and using the norjn||” for example, we find, similarly as in the isotropic caset tha

s/700
BC®/T < BC*/T, 0<so<s.
In order to obtain scales of spaces enjoying dense embesidiagefinenisotropic little H dlder spacedy
be*/T is the closure oBC™/"in BC*/",  seR*. (11.25)
Similarly, theanisotropic little Besov-Holder space
b:/T is the closure oBC>/" in B/", s> 0.

These spaces possess intrinsic characterizations ashwelllow for a simple formulation we denote by the
largest integer strictly less than

Theorem 11.8
(i) bekr/T = BUCH/T,
(i) bes/™ =bL7if s € RT\N.
(i) we bl iff u e B and

0

s—[s]—,00

0

sup max [9%u(-,1)] —i—sup[(’“)[S/T]*u(x,-)} =0 (11.26)

t lal=[s]- s/r—[s/r]_ 00

asd — 0.
(v) BC™ <% b2/ for0 < 5o < s.

Proof. Asin previous proofs it suffices to consider the cdse R™ andJ = R.

(1) We know from[(Z1.20) thaBC>/™ — BUC*"/T. Let{ w, ; n > 0} be amollifier orR™**. If u belongs
to BUC*"/™, then it follows from [ITW) and2d? (w,, * u) = wy, * (090 u) thatw, * u — u in BC*/™ as
n — 0. This proves assertion (i). Claim (ii) is trivial.

(2) Letkr <i<s<i+ 1< (k+1)rwithi e N. Suppose: € b:." ande > 0. Then we can find belong-
ing to € BUC(k+2r/7 s BY™ such thaf|u — v||**.. _ < £/2. By Propositiofi IZ]5 we know

s/T,00
BUC*+2r/™ s BUC(J, BUC*2™) 0 BUCK2(J, BUC).
Hence it follows from[(I1]9) that

(6% 6 .
sgp[@mv(-,tﬂsiiym < 0 ||v] (k42)r /700 0<d6<1, |a=1.

Similarly,
5
sup[0™v(z, -)]S/Pk’OO < 0 ||vl| (kt2)r /7,005 0<o<1.

Thus we findj. > 0 such that

sup max [0 v(-, t)] °

¢ IO[‘:Z S—i,OO

<e/2, 0<d<é..

s/r—k,00

+ sup [8kv(:c, )} o
Consequently,

—|—supmax[8§v(~,t)]5 <e

t laj=i s=hoo =

supmax[8;‘11(-,t)rS < sup max 9% (u — v)(-,1)]

¢ IO[‘:Z S—i,OO - ¢ IO[‘:Z S—i,OO

for 0 < § < 4.. This shows that the first term ih_(11]26) converges to zermldgously, we see that this is true
for the second summand.
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(3) Suppos@ < s < 1 andu € B, satisfies[(T1.26). BY{11.3) it suffices to show that

[wy *u—ull5)r0 — 0 asn—0. (11.27)
It follows from AEiB;(wn *U) = Wy * (AEh o) U u) that
|G (o x )@, O < sup [ ATl oo, (1) € X x T
Consequently,
sup [wy, * u(-,t)]i o < sup[u(-,t)]jm, 0 << o0.

t ’ t

Lete > 0 and fixd. > 0 with sup, [u(-,#)]°*_ < /4. Then

sup[(wy *u —u)(-,1)] ii}o < 2s1:p[u(-, t)] e < e/2.

t s,00
Thus we infer from[(11]6) that

Sup[(u)?7 * U — u)(~,t)]s o < e/2 4407 ° sup ||(wy * u — u)(-, )] co-
¢ ’ ¢

Sinceu € BUC (X x J, X) it follows from (I1.3) that

SIip | (wy *u —u)(t)| oo = [|[wy *u —ullpxxsx) — 0 asn—0.

Hence
sup [(wy *u — u)(~,t)]s . 0 asnp—0.
: :

Similarly,
sup [ (wy * u — u)(z, )] sfroo 0 asn—0.

This proves[(11.27), thus, due to step (2), assertion ¢iiipf< s < 1.

(4) To prove (iv) assumér <i<s<i+ 1< (k+1)r andu € B3" satisfies[T1.26). Then it follows
from 9297 (w,, = 1) = w, * (0°09u) for |a| + jr < s and step (3) that, * u — u in B, asy — 0. Hence
u € bL", which shows that claim (iii) is always true.

(5) The proof of (iv) is obtained by employing (I1.7). (111.8hd Corollary IT17(ii). O

Anisotropic little Holder spaces can be characterizedhitgrpolation, similarly as their isotropic relatives.
Theorem 11.9

(i) b3l = (bckor/T, bcklr/r*)?s/riko)/(kl7,60)700 for kor < s < kyr.
(ii) If 0 < sp < sy and0 < @ < 1, then(b3/™,65/7)) = b3%/™ = [/, b3/ .

(i) 0297 € LTI 53/ for o € N™ andj € N.

Proof. (1) The first assertion as well as the first part of @Gijdw from part (i) of Theoreri 1118. Part two
of (ii) and the first claim are implied by part (iii) of Theordhi.8.

(2) The last part of statement (ii) is obtained by repladit@> andA® in step (2) of the proof of Theorem 11.4
by BC>/™ andA’, respectively.

(3) Theoreni 1116(iv) implie82d? € L£(BC>/T). Thus, using the definition @t.” and once more the latter
theorem, we obtain (iii). O
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In the next section we need to employ Holder spaces withtecpéar choice of¥ which we discuss now. For
this we remind the reader of the notations and conventidnsdoced at the beginning of Sectidn 7.

Let{ Fs ; 8 € B} be a countable family of Banach spaces. Then it is obvious tha

f: FX—>HF§, u+— fu:= (prgou) (11.28)
B

is a linear bijection. Sinc# carries the product topologye F* is continuously differentiable iff
ug = prﬁoueCl(X,FB), 8 € B.

Thend;u = (9jug), that s,
fody=050f, aeN™. (11.29)

SettingC* (X, F) := [, C*(X, Fj) etc., it follows
f € Lis(CF(X, F),C*(X,TF)). (11.30)
Furthermore,
f € L(BC*(X,lx(F)), b (BCH (X, F))). (11.31)
Suppose: € BC! (X, (o (F)). Then, givere € X,

;161128) Ht_l(ug(:zr +tej) — uﬁ(:zr)) - 8ju5(:c)HFﬁ = Ht_l(u(:c +tej) — u(:c)) - (%-u(m)Héoo(F) —0

ast — 0, with ¢ > 0 if X = H™ andj = 1. From this we see that mapsu € BC* (X, {«(F)) into the linear
subspace of ., (BC’“(X, F)) consisting of allv = (vg) for which v is k-times continuously differentiable,
uniformly with respect tg8 € B. Thus [Z1.311) is not surjective if > 1.

We denote by
éoo,unif (bck (Xa F))

the linear subspace 6f, (BC’“(X, FF)) of all v = (vg) such thab™vy is uniformly continuous oiX for |a| < &,
uniformly with respect tg € B.

Lemma 11.10 f is anisomorphism
frombck (X, Loo (F)) ONtO Lo unit (be” (X, IF)) (11.32)

and
from B3, (X, (oo (F)) ontol o (B2, (X, F)), s> 0. (11.33)

Proof. (1) Suppose € bc* (X, {(F)). Then, by the above, it is obvious thit € &,o,umf(bc’C (X,F)).
Conversely, assume = (ug) € £w7unif(bck(X,F)). Setu := f~'u, which is defined due t§{11.80). Then

[u(@)]l e r) = sup usg(@)l|py, 2z eEX,

and
[u(@) = uy)llery = sup lus(@) —usW)llFs, 2y €X,

showu € be(X, (oo (F)). Hence we infer fron{(I1.29) thatu € be(X, (oo (F)) for o] < k.
(2) Letk > 1 and1 < j < m. Then, by the mean value theorem,

til(urg(x +tej) — u5(:17)) — Ojug(x) = /0 (ajuﬁ(x + ste;) — 8ju5(:17)) ds,
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wheret > 0if j = 1 andX = H™. Hence
||t—1 (uB(:E +tej) — u,g(x)) Djup(x ||F < E&p sup 10jup(x 4 tej) — Ojus(z)|| Fy
< sup [|0ju(- + te;) — Ojulle, (BoF))
[t|<do

for [t| < 4§, x € X, andg € B. Thus

Ht_ ( (- +tej) _u) 9; UHB < SUP |0;u(- + te;) — Ojulle, (BOxF))

oo (F)) 1<

for |¢| < é. This implies that is differentiable in the topology aBC (X, /.. (F)). From this, step (1), and by
induction we infer

1€ L(Coo it (be® (X, F)), be® (X, oo (F)))-
This proves[(11.32).
(3) Suppos® < s < 1and set := [s]_. Itis convenient to writé, > 0 iff h € (0, 00)™. Givenu belonging
to BS, (X, loo(F)), we deduce from\yug = prg(Anu) that

A g (@)l
S%p[Pra(fu)}s,w;Fﬁ = SUP[U]s.cc;, = SUP S SUp ok SR

B h>0 x |h|®
AL u(@) o () A ey (11.34)
= Sup sup = su
>0 @ |h[® h>>0 |h|s
= [u]s,oo;loo(F)~
From [11.31) and(11.34) we infer
f € L(B (X, Lo (F)), Lo (B2, (X, F))). (11.35)

Now it follows from (I1:29) thaf{11.35) holds for ary> 0.
It is obvious from [T1.11) and (11.P9) that, giver< s < k + 1,

loo (B2 (X, F)) < Loounit (be® (X, F)).

From this, [I1.34), and (I1.B2) we get thjais ontol (B2, (X, F)). Due to [11.3D) this proveE (11133). O
We denote fok < s < k + 1 by
éoo unif (bs (X F))

the linear subspace @go)unif(bck (X, IF)) of all v = (vg) such thalims_,o maxq|—1[0F vg)?
formly with respecttg3 € B.

Lemma 11.11 f € Lis(b5, (X, los (F)), Loo,unit (b3 (X, F))).

o kooFﬁ—O,um-

Proof. The proof ofl(11.34) shows that, giver< s < k + 1,
g 5
Slﬂlp [prﬂ(fu)} s,00;Fp - [u]s,oo;fx(F)v d>0.

Thus the claim follows by the arguments of step (2) of the podemmaII.ID and from Theordm 11.3. [

Now we extendf point-wise ovet/:

f: FXX]%HFXXJ, u'—>}u:=(t>—>fu(-,t)).

As above B3/"(X x J,F) := [, BL"(X x J, Fs) for s > 0. Analogous definitions apply 5/"(X x J, F).
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Clearly,
Coounit (b7 (X x J, )

is the closed subspace 6f, (BC*"/"(X x J,F)) of all u = (ug) for which 9¢07us € BUC(X x J, Fz) for
|a] + jr < kr, uniformly with respect t@ € B.
Supposér < s < (k + 1)r. We denote by

Coo it (BEL7(X x J,T))
the set of allu = (ug) € £oo (BE7(X x J,F)) satisfying

— 0

fe% g s/rl_ 5
supsup max [8mu5(~,t)]s_[s]ﬂoo;Fﬂ—|—supsu [8[” u5(:c,~)}s/T_[s/r]ﬂoo;FB

gt lal=[s]- B =
asd — 0.
Now we can prove the following anisotropic analogue of Lersi@a 10 an@ 11.11.

Lemma 11.12 f is an isomorphism
from bek™/ (X % J, £oo (F)) ONtO Lo unit (b™ /(X x J, TF))

and
from B3/ (X x J, £oo (F)) Ontolog (BT (X x J,F))

as well as .
from b3/ (X x J, £oo(F)) ONtOLog unit (b7 (X x J,F)).

Proof. Noted’ o f = fod’. Hence the first assertion follows frofd (11.32). The renmajrstatements
are verified by obvious modifications of the relevant partshef proofs of Lemmas_I1.110 ahd 17.11, taking
Corollary[I1.7(ii) and Theorem I1.8 into account. O

12 Weighted Holder Spaces

Having investigated Holder spaceskft andH™ in the preceding section we now return to the setting of dargu
manifolds. First we introduce isotropic weighted Holdpases and study some of their properties. Afterwards
we study to anisotropic Holder spaces of time-depentiémalued(o, 7)-tensor fields od/. Making use of the
results of Sectio 11 we can give coordinate-free invadafinitions of these spaces.

By B>* = B% (V') we mean the weighted Banach space of all sectiook) satisfying

lullocin = l[ullo,coin =[]~ Juln ||, < oo,
endowed with the norrfi- || .., andB := B%°.
Fork e N
BCH* = BCFA (V) = ({u e CHM,V) 5 ullkoon <00}y [l .00in)
where
lulli.oon 1= max, [[p™7=7 [V ula| ..

The topologies o3%* and BC** are independent of the particular choicepof T(M). Consequently, this is
also true for all other spaces of this section as follows ftoeir definition which involves the topology &C**
for k € N only. Itis a consequence of TheoreEm12.1 below Bat*:* is a Banach space.

We set
BC>™* = BC*N(V) := (N, BC**,
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endowed with the obvious projective topology. Then
bchA = bckA (V) is the closure oBC>* in BC**, k€ N.
Theweighted Besov-Hblder space scalé B2 ; s > 0] is defined by

(bPA bR o, B <s<kA+1,

12.1
(bck’)\, bck+2.’>\)1/2,oov s=k4+1. ( )

B = BIAV) = {

It is a scale of Banach spaces.
The following fundamental retraction theorem allows toreltéerize Besov-Holder spaces locally.

Theorem 12.1 Supposé € N ands > 0. Theny is a retraction from¢,.(BC") onto BC** and from
{+(B2,) onto B3, andy? is a coretraction.

Proof. (1) The first claim is settled by Theorem 6.3[df [5].
(2) Supposé: € N. Itis obvious by the definition dbic”, step (1), [Z11), and{7.3) that

Y2, is aretraction fromfo, it (bc®) ontobc™*, andy? is a coretraction. (12.2)

(3) If OM = 0, then we puM := R™, B := &, andF} := E,, := E for k € &. Then, definingf by (I1.28)
with this choice off3 andX := R™, LemmdI1.I0 implies

f € Lis(be" (M, £oo(E)), loo,unit(be)). (12.3)

(4) Supposed)M # (). Then we setiy := &\ Koy and & := Kypnr. With B, := F for k € & we put
E;, = Hmeﬁi E,, and definef, by settingB = &; andF,, = E,. Then, lettingX, := R™ andX; := H™, we
infer from Lemmd 1170

£ € Lis(bck (X, loo(E2)), oo,unit (be” (X4, Er))), (12.4)

with be® (X, i) = [T, beF (Xi, Ex).

Forbc® =[], bck we use the natural identificatidie® = be” (Xo, Eo) ® be” (X1, Eq). Itinduces a topo-
logical direct sum decomposition

éoo,unif(bck) = éoo,unif (bck (XO, EO)) 53] goo,unif (bck (Xl, El))7 (125)

where on the right side we use the maximum of the norms of thestummands.
Denoting by LI the disjoint union, we sé¥l := R™ LI H™ and

be? (M, oo (E)) := be" (Xo, b (Eo)) @ be® (X1, Lo (E1)).
It follows from (I2.3) and[{12]5) that
fi=foopry+ fiopr, € Eis(bc’C (M, éw(E)),éoo,unif(bCk)). (12.6)
(5) Returning to the general case, whérg may or may not be empty, we set
®h=fTlopk, Wi =vlof.
We deduce fron[{1212)[(12.3), arid (12.6) that
W2, is a retraction fronbc® (M, £ (E)) ontobc®*, and®?, is a coretraction. (12.7)

As a consequence of this, TheorEm 11.1(ii), definition (I,.2ahd general properties of interpolation functors
(cf. [2], Proposition 1.2.3.3) we find

W2, is aretraction fronBs, (M, ((E)) onto B}, and®?, is a coretraction. (12.8)
Since
W =Whof T el =fo®l (12.9)

we get the second assertion frdm (12.8) and Leifnmall1.10. O
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Corollary 12.2
(M) w e ully o = $UDgsy 2 (55X (1) | 005 IS @ MOIM fOrBC,

(i) Suppose > 0. Then

wi fulll} oopn = sup ok [[ (k5% 0)s (meu)|
kX p

*
s,00; B

and
w = [ulll e = sup P [1(5x0)w (Tut)l| 250 i

kX

are norms forBs:.
(iii) Assumekg < s < ki with ko, k1 € N. Then(bckoA, ek ) s koyoo = B
(V) If 0 < so < s1and0 < 8 < 1, then(Bo, BsiA)g oo = B30 = [BsoA, Bs1A],.

Proof. (i) and (ii) are implied by[{719) and Theorém 11.14%ksertions (iii) and (iv) follow from[{1Z]7) and
(12.8) and parts (ii) and (iii) of Theorelm 11.1, respectiyahd [(12.D) and Lemnia 11]10. O

Weighted Holder spacesare defined byBC** := B3* for s € R*\N. This is in agreement with Theo-
remILA(ii).

Parts (i) and (ii) of Corollar{_12]2 show that the presentrdifin of weighted Holder spaces is equivalent
to the one used il [5]. It should be noted that Corol[ary 1iR) 2(ives a positive answer to the conjecture of
Remark 8.2 of([5], provide@®C** and BC**+1:* are replaced byc** andbck+1:A, respectively.

We defineweighted little Holder spaceshy
be* s the closure oBC™ in BC**, s> 0.
Similarly, theweighted little Besov-Hblder space scaléb®” ; s > 0] is obtained by
b is the closure oBC™* in B3 . (12.10)

Theorem 12.3 2 is a retraction fromV., u,ir(b5,) ontods*, andy? is a coretraction.

Proof. We infer from[(I1.20) thaBC> (M, (o (E)) = (), bc® (M, (oo (E)). Hence we get froni{12.7) that
W), is a retraction fromBC> (M, /. (E)) onto BC**, and®?, is a coretraction. Due to this and definitions

(I1.15) and[(12.10) we deduce from (12.7) dnd (112.8) that

W2, is a retraction frombs, (M, ( (E)) ontobs}, and®?, is a coretraction (12.11)
Now the assertion follows from Lemrha 11111 ahd (12.9). O
Corollary 12.4

(i) Supposé < s < k; with kg, k1 € N. Then(bcko-A, bc’“’A)?S_ko)/(,ﬁ_,m))OO = b5,

(i) If 0 <so<siand0 <6 <1,then(bio?, b3A)g = b32A = [b32, b3
Proof. These predications are derived from (IP.11) and fémald 1.2 O

Now we turn to weighted anisotropic spaces. We set
BCO/F@; = BCO/F"()\’O) = ({ u e C(J, C(V)) 5 |‘uHoo;Bov>‘ < o0 }7 ||'Hoo;Bov>‘) (1212)
and, fork € N*,

BCH/TE = Ly e C(J,C(V)); Vidiu € BOUTOTHIm0) g jp < kr ), (12.13)
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endowed with the norm

u = [ullgr 7 0@ 1= i+r§1ra<xkr HviajuHOO;)\-H-kju' (12.14)

It is a consequence of Theorém 12.6 below tAat*"/™ is a Banach space.

Similarly as in the isotropic case, anisotropic Holdercgsacan be characterized by means of local coordi-
nates. For this we prepare the following analogue of Lef#a 7.

Lemma 12.5 Supposé € Nand s > 0. Then
S € L(BCE, BCE) N L(bck,bck) N L(BS, 7, B3, ) N LS, 7, b5 )

00, R 00,k Yoo,k

and||Szx|| < cfork € M(x) andk € K.

Proof. Asin the proof of Lemmia4.2 we see that the statemepitespfor the spaceBC* andbc®. Now
we get the remaining assertions by interpolation, due taiérag 1.1 (i) anB_1I14(i). O

Theorem 12.6 ¢/ is a retraction fromé,, (BC*™/™) onto BC*"/™% and %, is a coretraction.

Proof. (1) From[(9)6) and Theordm 1P.1 we get

|‘<p§o,nu”oo;BC§’” = |‘<péo,nu”oo;BC§’” <c ||u||oo;BC’”’)‘a KXp € AxD.

Similarly, by invoking [9.5) as well,
18705 wttll o ot = 95 E O ull  pet—ar < el ull o pot—iratsr
for 0 < j < kandkxp € Ax®. From this and definitio (12.14) we infer
H‘%’fouHEx(BcWT‘) < CHUHkr/F,oo;w’-

(2) Givenk € 8 andk € N(k),
Pho e © Voo 7 = A Sin (12.15)
with
azn = (p) pr) N (FaT) Srn (R
It is obvious that the scalar-valug?C*-spaces form continuous multiplication algebras. Hehc® (47.3), and
LemmdIZ.b imply
llazsll Borr < ¢, K€ N(k), K€ R (12.16)

Thus we deduce froni (IZ115), (12116), and Lenimal12.5 that
||Spéo,n © wi,EUEHOO;BC,’y‘ = H(péo,m © %\o,zUEHoo;ch <c ||UEHoo;Bc§T

for k € M(k) andrx p, Kxp € Ax . By this and the finite multiplicity off we obtain

Ik m 0 ¥E0llocimore = | D0 @hono v zen
REN(K)

co; BCE™
<c max ||}, . 0 ¥Y zvillosmorr < clvllo, (BB
T ReM(r) O TooR PR T o '

for kxp € AxP.
Note
_ S _ N
I3 0 @ 092 zvall o = 9202 0 Y @ vR) | g
for0 < j < kandkxy, kxp € Axd. Thus, as above,
37 0 & o wivnzw(Bc(k*W) <ol (pBot-r)), 0<j<k.
Now we deduce from Corollafy 12.2(i)
1050 lkr /700 < cllvlle BErr/m-

Sincey?, is a right inverse for)® the theorem is proved. O
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Next we introduce a linear subspace®f*"/™< py
bckT/™% s the set of alk in BCH/™ with ¢% 1 € o yni(be™/T).

Due to the fact thaf.. it (bc™"/") is a closed linear subspace @f (BC*"/7) it follows from the continuity
of ¢9 thatbc®/™% is a closed linear subspace BE*"/™4,

The next theorem shows, in particular, thaf”/™“ is independent of the particular choice®k ® and the
localization system used in the preceding definition. Fisritre set

BCOO/F,GJ — ﬂchkr/F,d?7

equipped with the natural projective topology.
Theorem 12.7

(i) ¥% is a retraction froms, unir(be™/™) ontobe" /™% and 2 is a coretraction.
(ii) bckm/™9 is the closure oBC>/™% in BCk /™%,

Proof. (1) Supposg® u = 0 for someu € BC*"/™, Then it follows from[@.B) thatrx ). (m,.u) = 0 for
ki € Ax®. Hencer,u = 0 for k € &, and consequently?u = 0 for k € &. This impliesu = ", 72u = 0.
Thusy?. is injective.

(2) We denote by the image space d8C*"/™< undery? . Theoreni 1216 and[4, Lemma 4.1.5] imply

loo(BCH/T)y = Y @ ker(vZ), 2 e Lis(Y, BCF/T&), (12.17)
Thus, by step (1) (see Remarks 2.2.10f [4]),
P € Lis(BCY/™2. ), (p%) 7 =9 | .
SinceX := Y N loo.unit(bc*™/7) is a closed linear subspaceYfwe thus get

% € Lis(bcF/TC X)), (9% bk /)T = ¥ | X, (12.18)

Due to [IZIIV) we can write € (oo unit(be™/7) in the formw = u 4 v with w € X andv € ker(¢/%). From
this and [IZ38) it follows)<. (Lo unit(be™/ ™)) C bk /79, Hencey € L(foo unit(be®/ ™), be?/™¥) and
Y% 0 09 u = uforu € bk /™9, This proves (i).

(3) Using obvious adaptions of the notations of the proofleédreni IZJ1 we deduce from Lemma 11.12

f € Lis(bF™ ™ (M x J, loo(E)), oo unit (be*"/T)). (12.19)

We set

Then we infer from (i) and(12.19) that
U< is a retraction frombe™/™ (M x J, o (E)) ontobc® /™%, and®%, is a coretraction. (12.20)

Definition (T1.Z5) guarantees
BC™ (M x J, loo(E)) < bc"™/" (M x J, loo(E)).

It is an easy consequence of the mean value theoren?th@C*17/7) — ¢ ie(bc*/™). From these
embeddings, Theorem 12.6, and (i) we infer that the first @ftfections

BO<k+1)T/F’Q N bckr/ﬁ&i N BOkr/F,LZJ‘
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is valid. Thus . . .
Bcoo/r,w _ ﬂchkr/r,w _ ﬂkbCkT/T’w.

Now it follows from (I1.20) and(12.20) that
U% is a retraction fromBC> (M x J, £ (E)) onto BC™>/™4.
Assertion (ii) is implied by[(12.20) and][4, Lemma 4.1.6]. O

s/T,@

We define thaveighted anisotropic Besov-tblder space scale B ™ ; s > 0] by

(bckr/ﬁ‘v, bc(kﬂ)r/ﬁa)(s,kr)/rm, kr <s < (k+1r,

- . 12.21
(bckr/r"”, bc(kJrQ)T/T’“’)l/g)oo, s=(k+1r. ( )

B = BT V) = {

These spaces allow for a retraction-coretraction theomewedl which provides representations via local coordi-
nates.

Theorem 12.8 ¢ is a retraction fromv,, (B:/") onto B, and¥, is a coretraction.

Proof. We infer from[(12.20), Theordm 111.6(ii), and defmit{12.21) that

U is aretraction fronB:." (M x J, £ (E)) onto BY/™, and®Z, is a coretraction. (12.22)

Thus the assertion follows from B B
P =Fo®%, YL =9 of (12.23)
and Lemmall.d2. O

Corollary 12.9
(i) Supposeégr < s < kir with ko, k1 € N. Then(bchor/7@ bk /T@) (v gy oo = BT,

(i) If 0< so<syand0 <6 <1, then(B/™ BL/™9)y oo = B2/™9 = [BR/™9 B3/™9,.
Proof. Thisisimplied by[(12.20)[(12.P2), and Theofem1.1.6 O

/7@

Weighted anisotropic Holder spacesare defined by settinggC*/™% := B3,"* for s € R\N. Then we
introduceweighted anisotropic little Holder spacesy

be®/ ™9 = pe/ T4 (1, V) is the closure oBC/™¥ in BC'®/™%

for s > 0. Note that this is consistent with Theorém 12.7(ii).
Lastly, we get thaveighted anisotropic little Besov-Hilder space scalébiff’w ;s> 0] by

b3/™“ is the closure oBC>*/™% in B/™4. (12.24)

Theorem 12.10 (i) 1/)§o is a retraction frorrléoo,unif»(biéf) ontobié’?’“j, and<p§o is a coretraction.
(ii) Supposégr < s < kyr with kg, k; € N. Then

(bckor/nwv bcklr/rﬂw)?s/r—ko)/(kl—ko)po = be®/ 7.

(i) If 0 < sp < spand0 < 6 < 1, then

(bcso/ﬁ@"bcsl/?,d?)g’oo - bcsg/?,[u’ S [szO/F’Q,bCSI/F’Q]e.

Proof. Assertion (ii) and the first part of (iii) follow fromd@ollary[IZ.9(i) and definitior {12.24). From (ii),
Theoreni I1.9(i), and (IZ.R0) it follows that

U< is a retraction fronbe®/™ (M x J, £o (E)) ontobe™ ™%, and®, is a coretraction. (12.25)

Due to this the second part of (iii) is now implied by Theofefd(ii). Statement (i) is a consequencelof (12.25),
(I2.23), and Lemma I1012. O
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13 Point-Wise Multipliers

In connection with differential and pseudodifferentiabogtors there occur naturally ‘products’ of tensor fields
possessing different regularity of the factors, so calfeint-wise products’ or ‘multiplications’. Although ther
is no problem in establishing mapping properties of difificd operators say, if the coefficients are smooth, this
is a much more difficult task if one is interested in operatuith little regularity of the coefficients. Since such
low regularity coefficients are of great importance in pi@ctve derive in this and the next section point-wise
multiplier theorems which are (almost) optimal.

Let X;, j = 0,1,2, be Banach spaces. Aultiplication Xy x &7 — A5 from Xy x &) into X is an element
of L(Xp, X1; X»), the Banach space of continuous bilinear maps figimx X} into Xs.

Before considering multiplications in tensor bundles wetfinvestigate point-wise products in Euclidean
settings. Let?; = (E;,|-|,), ¢ = 0, 1,2, be finite-dimensional Banach spacis; {R™,H"}, andY := X x J.

Theorem 13.1 Suppose € L(Ey, E1; F2) and
m: EY x BEY = EY, (ug,u1) +— b(ug,u)

is its point-wise extension. Then

(i) me L(B/T(Y, Ey),B*/"(Y, Ey); B¥/™(Y, E,)) if eithers € YN and B € {BC, bc}, or s > 0
andB € {Boo, boo }-

(i) m e L(BC™(Y, Eo), Wy (Y, E1); Wy/ (Y, E)), s € rN.
(i) me L(BX/(Y,Eo), ) (Y, E1); 5/ (Y, Es)), 0< s < s0.
In either case the map — m is linear and continuous.

Proof. (1) Assertion (i) fos € rN andB € {BC, bc} as well as assertion (ii) follow from the product rule.
(2) Supposey; € EY, i =0,1,and0 < § < 1. Then

71

Ae(m(ug,u1)) = m(Deug, ur(- +£)) + m(ug, Agur), £cY. (13.1)

From this we infer, letting = (h, 0) with i € (0,4)™,
sup[m(uo, ) ()], < e(sup[un(1)]g . lunlloe +sup[un(,0)],  lluoll)
for 0 < § < oco. Similarly,
sup[m(uo, w) (2. )], < e(sup[uole, )] o e +sup[ur (2, )] uolloc).

By step (1), [A1.21), and(I1P2) we infer that (i) is truesi€E RT™\N. Now we fill in the gapss € N by
means of Theorenis 11.6(iii) ahd 111.9(ii) and bilinear caamphterpolation (cf. J. Bergh and J. Lofstrom [8,
Theorem 4.4.1]). This proves (i) far> 0 andB € {Bw, boo }-

(3) Assumes € rN andsy > s. By TheorenlILI8B:Y/ " (Y, Eq) < b7 (Y, Ey) < BCL™ (Y, Ey). Hence
we deduce from (ii)

m e L(B/™(Y, Eo), Wy/"(Y, Er); W/ T(Y, Ez)), serN, s<so.
Using this, Theorem 8.2(iv), and once more bilinear compléarpolation we obtain
m € L(BX/"(Y, Eo), H/"(Y, E1); HY/T(Y, Ep)),  0<s < so.
(4) We assumér < s < (k4 1)r with & € N. Itis well-known that

B3 (X, Eo) x By(X, Er) — By(X, E2),  (vo,v1) = b(vo, v1)
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is a multiplication (see Remark 4.2(b) in H. Amahh [1], wh&® is denoted byBUC*°, Th. Runst and W. Sickel
[39, Theorem 4.7.1], or V.G. Maz'ya and T.O. Shaposhnik®2j,[and H. Triebel[51]), depending linearly and
continuously orb. From this we infer

[m (o, ui)llp;sx,E2) < clltolloo; 520 (x, m0) 1UtllpsBs (. 1) - (13.2)

By the product rule and (ii)

)
||8Z (m(uo, ul)) ||p;Lp(X,E2) = CZ Haju0|‘<>0;B(X7Eo) Hagiju1| piLp(X,Eq)
J=0 (13.3)
< cl|uolk,00;B(x, Eo) ||U1Hk,p;Lp(x,E1)

< cllwollsy /oo Bx,Eo) 1Ualls/rpL, 5,1
for0 </ <k.
We deduce fron{{13]1) that, givéne (0, 1),
[m(UO,Ul)} 0,p;Lp(X,E2) S C([UO]G,OO;B(X,EQ) ||ul||p;Lp(X,E1) + HU’O”OO;B(X.,EQ) [ul]e,p;Lp(X,El))'
Hence
[m(a‘jU’O’ ak_julﬂ (s—kr)/r,p;Ly(X,E2) <c Hajuo||>(ksfkr)/r,oo;B(X,Eo) ||ak_ju1 ||>(ksfkr)/r,p;Lp(X,E2)
< clluollsy /oo Bx,Eo) Nt lls)rpsL, (%, E2)

where we usetBig/T(J, B(X, Ey)) — B" (J. B(X, Ep)) in the last estimate. Thus

[ak (m(u07 ul)} (s—kr)/7,p;Lp (X, Es) <c Huon:/r,oo;B(X,Eo) ||u1||:7r,p;Lp(X,E1)' (134‘)

By Corollary[10.2
B;/T(Y, E;)=1L, (J, B;(X, Eg)) N B;/T (J, L,(X, Eg))

Thus we infer from[(1011) an@ (13.2)—(1B.4) that
m € L(BX/(Y, Ey), BY/™(Y, E1); B/™(Y, B»)),  s¢rN.

Now we fill in the gaps at € »N once more by bilinear complex interpolation, which is pbisdue to Theorems
[B.2(iv) and 11 B (iii).

Since the last part of the statement is obvious from the abomsiderations, the theorem is proved. [

It should be remarked that J. Johnspnl|[20] has undertakemadedestudy of point-wise multiplication in

anisotropic Besov and Triebel-Lizorkin spacesRih However, it does not seem to be possible to derive Theo-
rem[13.1 from his results.

Next we extend the preceding theoren{iot)-dependent bilinear operators.
Theorem 13.2 Suppose € L(Ey, E1; E2)" and set

m: By x BY - EY, (up,u1) > ((z,t) — b(x,t) (uo(x, t), u1(z,1))).

Then assertiongi)—(iii) of the preceding theorem are valid in this case also, pravidgossesses the same
regularity asug.

Proof. Consider the multiplication

bo : ﬁ(EQ, El; EQ) X EO — E(El, EQ), (b, 60) — b(eo, )
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and letmg be its point-wise extension. By applying Theodem13.1(i)obéain
mo € L(BY7(Y, L(Eo, Ev; E»)), BY™(Y, Eo); B (Y, L(E1, E»))), (13.5)

where eithes € rN andB € {BC, bc}, ors > 0 andB € {Boo, boo }-
Next we introduce the multiplication

L(E1,E2) x By — Ey, (A, e1) — Aeq
and its point-wise extensian;. Then we infer from Theorem 13.1
m1 € L(B*/7(Y, L(E1, E)), BY™(Y, E1); BY/(Y, Es)), (13.6)

if eithers € rN andB € {BC, bc}, ors > 0 andB € {Boo, boo },

my € L(BCY/™(Y, L(Ey, E2)), Wi/ (Y, E1); W/T(Y, Ey)), serN, (13.7)
and
my € L(B2/7(Y, L(Ey, E2)), 85/ 7(Y, E1); 85/7(Y, E»)), 0<s<s. (13.8)
Note
_ Y Y
m(ug, uy) = ml(mo(b,uo),ul), (uo,u1) € Ey x EY.
Thus the statement is a consequenc€of (13.5)3(13.8). O

In order to study point-wise multiplications on manifolds wrepare a technical lemma which is a relative of
Lemmd12.b. For this we set

Treu(t) := u((p,i/pg)“t), teJ, Rz :=Tx.0S5%., kK,KE R (13.9)

Note
Ok . = (pu/pr)" " Tre®h o, KEER 1<g< o0 (13.10)

We also put
o= paTIOl (x9)u(Xe), X € RXD.

Then, using: = >~ 72u,

Pl = aruRrugis, (13.11)
REN(K)
where
Ak = (p,g/pg)k-’_(m-’_u)/qxs;g,{(T{*TFQ). (13.12)

Hence, giveny € [1, oc], we deduce fron{413), Lemmha1P.5, ahd{7.3)(iii) that
aze € BC*(X,), lazellboo <c(k), KeN(k), we€K keN. (13.13)
Lemma 13.3 Supposé: € N ands > 0. Let®,. € {Wyr/™, BCE/™ bekr/™ g3/7 BT b7}, Then
Rzp € L(65,8,), ||Rzl <cgc, kEeEN(K), KXp, KXY € AXD. (13.14)
Proof. Itisimmediate fron{{915)[(9.6)._(4.3), and LemmaSithat
Ry € LOVIT WEITY 0 L(BCET, BOET) 0 L(bel ™, bekr/T)

and that the uniform estimates bf (13.14) are satisfied. Newemaining statements follow by interpolatiori.]
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AssumeV; = (V;, h;), j =0,1,2, are metric vector bundles. By laundle multiplicationfrom V; & V3
into V5, denoted by
m: Vo@® Vi — Vo, (vo,v1) — m(vo,v1),

we mean a smooth sectianof Hom(V, ® Vi, V5) such thain(vg, v1) := m(vo ® v1) and
Im(vo, v1)|hy < ¢lvolng [V1|hy s v, € (M,V;), i=0,1.
Examples 13.4 (a)lhe duality pairing
(v, s VeV - MxK, (v%,0) = (05,0
is a bundle multiplication.
(b) Assumes;, 7; € Nfor: =0, 1. Then the tensor product

®: TIOM @ T M — T3 M, (a,b) —a®b

To+T1

is a bundle multiplication whereX®70 @ X*®70) @ (X®1 @ X*®7) .= X®@ota) g x*(10+m) where we
setX® = X'® ... ® X7 etc.

(c) Supposd <i<oandl <j<7. We denote byC§ : T M — T2~ M the contraction with respect
to positions andyj, defined by

Ci (@ Xk ®X;) = (XX RXFe@X;.  XPeD(M,TM), X;eT(MT"M).
k=1 =1 k=1 =1
ki (4]
It follows from (@) and (b) that

7. o g o14o2—1 i
Co: TOM@TEM — TP M, (a,b) = Ci(a®b)

T1+712—1

is a bundle multiplication, where< i < o; + o andl < j < 7y + 7o.
(d) LetW; = (Wj, hw;), j =0,1,2, be metric vector bundles and, 7; € N. Suppose

w: Wo® Wy = Wa, t: TOOM®TIM — TS M
are bundle multiplications. S&¢’ (M, W) := (T7) M © W, h;) with h; := (-,-) 7 @ hw,. Then
t@w: T (M, W) ® T (M, W1) — T2 (M, Ws),
defined byt ® w(ap ® ug, a1 ® uy) := t(ag, a1) ® w(ug,u1), is a bundle multiplication. O
Let m be a bundle multiplication fromy, & V; into V5. Then
LM, Ve Vi), = T(M,V2)”,  (vo(t),vi(t)) = m(vo(t),v1(t)), ted,

is thepoint-wise extensioaf m, denoted byn also.

After these preparations we can prove the following poirgenmultiplier theorem which is the basis of the
more specific results of the next section.

Theorem 13.5 Let W; = (W}, hw;, D;), j =0,1,2, be fully uniformly regular vector bundles ovér.
Assumer;, 7; € N satisfy

09 —Tg =00+ 01 —To—T1- (1315)
Set
‘/j = (‘/Jv hjv VJ) = (Tg] (Ma ij)a ('a );JJ ® hVV}vv(ng D]))

and supposen : Vp @ Vi — Vs is abundle multiplication)g, A1 € R, Az := Ao + A1, and@; := (A, u). Then

(i) m e L(B/™%0(J,Vy), B/T%1(J,V1); BS/™%2(J, V3)), where eithers € rN and B € {BC, bc}, or s > 0
andB € {Boo, boo }-
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(i) m e L(BCY™%0 (1, Vo), Wy ™ (J,V4); W/ ™22 (1, V), s € .
(i) me L(BX/ ™ (1 Vo), 83" (V) 33/ (1, Va)), 0 < s < so.
Proof. (1) Suppose
M=Xe{R™H"}, g=gm, p~1, W= (MxF;()p,dw,),
wheredyy; is the F;-valued differential. Set
Ej = (EZ(F), ([ )us), Vi= (XxEj () de,),

where(-[-); == (-]") g,
Introducing bases, we define isomorphisfs~ K”"i. By means of thenm is transported onto an element
of £(KNo KN1; KN2)% which has the ‘matrix representation’

KN x KN 5 (&,m) = (M2, (2)€7°0" ) 1<v<n, € KV2.

vovi

Assumem € BC> (X, L(Ey, E1; E»)). Then the assertion follows from Theorem 13.2.

(2) Now we consider the general case. We choose uniformlylaegtlasesix ®; for W; over & with model
fiber F;. Givenkxp; € Ax®; we define, recallind(Bl3)m,. € D(X,, L(Eo, E1; E2)) by

My (10, 1) := (KX ©2)x (Xem((KX00) 10, (KX P1) 1))
forn; € E;fg*“. It follows from (5.11) and the fact that is a bundle multiplication that

T2—02 ,00—T0

Im(no,m)l2 < cp2™2p
Hence we infer from({13.15)
mx € BC* (X, L(Eo, E1; E2)),  |Imgllkoe < c(k), ki, € Ax®;, keN.

pet " [molo Iml, n; € Bir.

(3) In the following, it is understood that,“;’j is defined by means afx®; for 1 < ¢ < co. Then, given

vj € D(M,V;)7,
¢ (m(vo, v1)) = pRoppt P10 (kX p2) (mem(vo, v1)) = M (952 v, Pokv).
Consequently, we get froh (13]11)
032 (Mo, v1)) = Y aremea (952 00, Rigtpyhvr)- (13.16)
REMN(K)

(4) Suppose eithes € N and B € {BC,bc}, or s > 0 and B € {Bw, b }. Then we infer from[(13.13),

Lemmd13.B, Theorem13.2, and steps (1) and (3) that
llazeme (o, M)l ermev,, m2) < €lmollgermv,., o) 1Ml Bor7 (v, 1)

uniformly with respect ta:x ¢, Kx @ € Ax ®5. Hence we get froni (13.16) and the finite multiplicityf

Hstj(m(anvl))ng(gsﬁ(y,@)) < cllvolle, e/ (v, 20y 1Villen Bo/7(v, 1)) (13.17)

Thus Theorems 12.6 ahd IP.8 imply, due[fol(7.8),

[[m(vo, Ul)HBs/mz(,},w) <c HUOHBS/F«%(J.,VO) HUIHBS/F%(J.,Vl)a

provided eithes € rN andB = BC, ors > 0 andB = B.

If serNandB =bc, ors > 0 andB = b, then [I3.1]7) holds witlf, replaced byl .,ir €verywhere.
Thanks to Theorenis 12.7(i) ahd 12.10(i) this proves asse(ii. The proofs for (i) and (iii) are similar. O

It is clear that obvious analogues of the results of thisieedtold in the case of time-independent isotropic
spaces. This generalizes and improvés [5, Theorem 9.2].
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14 Contractions

In practice, most pointwise multiplications in tensor blasdbccur through contractions of tensor fields. For this
reason we specialize in this section the general multiplieroreni 1315 to this setting and study the problem of
right invertibility of multiplier operators induced by ctraction.

LetV, = (Vi, h;), i = 1,2, be uniformly regular metric vector bundles of ramkover M with model fiberE;.
Set V) = (Vo, ho) := (Hom(V1, V), hi2). By Example[30(f), V4 is a uniformly regular vector bundle of
rankniny over M with model fiberL(E;, Es). Theevaluation map

ev : F(M,V()@‘/l)_)F(Ma‘/Q)v (avv)Hav

is defined byav(p) := a(p)v(p) forp € M.
Lemma 14.1 The evaluation map is a bundle multiplication.

Proof. We fix uniformly regular atlase®x ®;, i = 1,2, for V; over&. Then, using the notation of Sectigh 2,
it follows from (2.1%)

* \V1 _ prvll Ua T U2
(a a);1 =hj az? ho .5, az’.

Hence we infer from(315)

k(lalh,) = ki (te(a*a)) = K hI n*agf K N2 5,0, n*a% ~ Z |keal?|? = te([kyal*[Keal),

V1,V2

uniformly with respect ta: € &. Furthermore[{2.12) anfl(3.5) imply

K (Jauln,) = ‘((/@K(pu)*a)(ﬂbﬂpﬂ*u (kX p2).ho

(14.1)
~ | ((kxpr2)ca) (kxpr)ul . < |(kX@r2)ealeim, B,) (K1)l e,

for u € I'(M, V1) andrx; € Rx®;. SinceL(Ey, E») is finite-dimensional the operator norif, 5, p,) is
equivalent to the trace norm. Hence, usii@f;, £») ~ K"2*"t and [2.1P2) and (3]5) once more, we deduce
from (I4.1) thats. (Jau|n,) < cki(|aln, )k (|uln, ) for k € £ Consequently,

lau|n, < clalng [uln,, — (a,u) € (M, Vo & V1).
This proves the lemma. O

Suppose, o;, 7,75 € Nfori = 1,2 with o + 7 > 0. We define theenter contractiorof ordero + 7,

C=Clol: DM, T M & T7 7 M) — T(M, T 72 M), (14.2)

[7] T2+0 T+T1 T1+T2
as follows: Given(ix) € J,,, (ji) € J-, fork =1,2,ando € J,, 7 € J, we set
(127]) = (i2,17 cee 7i270'21j17 cee ajT) S JG’2+T

etc. Assumes € I'(M, 72> 7 M) is locally represented ofi, by

To+o

_ G O 9 (G2) (3)
=ag, 5(i2) ® 520 ® dxV? @ dx

a
andb has a corresponding representation. Then the local regegsm ofC(a, b) on U, is given by

(in3g) j(isi1) O 9 (G2) G1)
(J2;%) b(j%jl) Oxliz2) ® O lin) @ dz\92) @ dziv)

A center contractiod (14].2) isamplete contractiofon the right) ife; = 71 = 0. If Cis a complete contraction,
then we usually simply write - « for C(a, u).
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Lemma 14.2 Thecenter contractioassociated with the evaluation map,

Cwev: D(M, T2 (M, Vo) ® TZETH (M, V1)) — D(M, T2 (M, V),

)T Tat0 THT1 T1+T2
is a bundle multiplication.

Proof. Note thatC is a composition of + 7 simple contractions of typéé. Hence the assertion follows
from Lemmd 1411 and Examples113.4(c) and (d). O

Henceforth, we write agai@ for C ® ev, if no confusion seems likely. Furthermore, we use the sgmbel|
for point-wise extensions to time-dependent tensor fididgddition, we do not indicate notationally the tensor
bundles on whiclt is operating. This will always be clear from the context.

Throughout the rest of this section we presuppose

o W;= W, h;D;), i =1,2,3, are fully uniformly regular vector bundles
of rankn; over M with model fiberF;.

Fori,j € {1,2,3} we set
Wij = (Wijs hwiy, Dij) == (Hom(Wi, Wy), (-]) g V(Di, Dy)).-

Exampld3.]L(f) guarantees tHaj; is a fully uniformly regular vector bundle ovér .
We also assume farj € {1,2,3}
® 04,7, 045, Tij €N;
o Vi=(Vihi,Vi) = (T2 (M, W), (-");, ® hw;, V(Vy, Di));
o Vi = (Vig, hij, Vig) = (T2 (M, W), (-1)77 @ hwi;, V(Vg, Dij))s

) im
o A\, A €R, Wi = (N ), @iy = (Nij, ).

Due to Lemma_14]2 we can apply Theorem 13.5 and its corollaty w = C. For simplicity and for their
importance in the theory of differential and pseudodiffdia operatorsye restrict ourselves in the following to
complete contractionst should be observed that conditidn (14.4) below is voidAif = ¢ and.J = R.

Theorem 14.3

(i) Suppose
A2 =MXa+ A, 02=012—T1, T2=Ti2— 01, (14.3)

and

{ (—l—i—l/p it 9M # 0, m

~1+1/p) if OM =0andJ =R".
Let one of the following additional conditions be satisfied:

() s =terN, g:=o00, B=® € {BC,bc};
(B) s =terN, g:=p, B=BC, 6 =W,
() s =t>0, g:=00, B=6 € {Bu,bcx};
) ls| < t, qg:=p, B=DBy, 6=3.

Assume € B!/7912 (] Vi5). Then
A= (urs a-u) € L(SY (], V1), 879 (],Vy)),

whereBC, := BC andbcs, := beif (o) applies. The map — A is linear and continuous.
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(i) Assume, in addition,
A3 =Xz +Xo, 03=093— T2, T3=To3— 02

andb € BY/7923 (] Va3). SetB := (v + b-v). Then
BA = (urs C73(b,0) - u) € £(65/™ (1, V1), 87 (J, V5)).

Proof. (1) Suppose > 0 with s > 0 if § = B. Then, due to Lemna_14.2, assertion (i) is immediate from
Theoreni 135.

(2) Choose uniformly regular atlaséx ®;, ¢ = 1,2, for IV; over&. Let

_ a(ilz)ﬂjz (t)

(J12),v1 ® dz12) ® b12/2 ® ﬂIUl’ ted, (14.5)

0
Oxlirz)

be the local representation @fin the local coordinate frame fdr;» overU,; associated witm«pu € AX P9,
where (b4, ..., b, ) is the local coordinate frame fdi; over U, associated withex®;, and (3;,...,3")
is its dual frame (cf. Example_3.1(b) and (5.5)). Write,) = (i¢; jx) € Jo,, and (jxe) = (Je; i) € Iy, for
k.0 € {1,2} with k # ¢, where(i) € J,, and(jx) € J-,

We definen’ € T'(M, T2 (M, Hom(W3, W})))” by

7T T12

(usiz)wa gy 0 0 i " b2
0 ) 5y © 5y @de™ @ dil® @ B @8], e,

Whel’ea (71712)7']2 — a(i2§j1);1’2
(i1352),v1 (j23i1),v1"
It is obvious that
a' € BY/79e (1, 1912 (M, Hom(W3, WY))), (14.6)

the mapu — o’ is linear and continuous, anid’)’ = a. Furthermore, sincg;’ = 7.7 (M, W),
(,a-u)y, = (@ -v,u)y,, (v,u) € T(M,Vy & V;)”. (14.7)
(3) Suppose condition] is satisfied and < 0. It follows from (I4.3), step (1), and(13.6)
Cla) = (v a’-v) € L(5," (1, V5),5,°" " (W) (14.8)
From Theorer 8]3(ii) and assumptidn (14.4) we infer

5TV =5, =12

Thus we deduce froni (8.5)_(14.7), abd (14.8) tBat’) = C(a)’. Hence, usindga’)’ = a, we get the remaining
part of assertion (i), provided 0 if § = B. Now this gap is closed by interpolation.

(4) Itis clear thalC(b)C(a) : T2 (M, V1) — T72 (M, V3) is given by
v C(b,C(a,v)) = C(C (b,a), ) = (v — C[‘72 (b, a)v)). (14.9)
Setm = C%Zz] in TheorenTI315. Also sét := Wass, Vi := Wi, andVs := W5 in Lemmal14.R. Then it
follows from that lemma and Theordm1B.5 that
CZ2l (b, a) € B/ a= X0 (T8 (M, Why)).

Thus claim (i) is a consequence bf (I4.9) and assertion (i). O
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Next we study the invertibility of the linear magp. We introduce the following definition: Suppose- 0 and
a € BTN (J,Viy), o1 =T =01+ 71 (14.10)
Thena ia said to be\;; -uniformly contraction invertibléf there existsz 1 € T'(M, Vy,)” satisfying
at-(a-u)=u, a-(at-u)=u, ueT(M, V)7, (14.11)
and
p M a () |n, <ec teJ (14.12)

Note that the second part 6f (14110) guarantees that theletemgontractions if (14.11) are well-defined. Also
note that there exists at most ame! satisfying [I4.111), theontraction invers@f a. For abbreviation, we put
Biéi’fvn(J, Vi1) == {a € B (J,Vi1) 5 ais \i1-uniformly contraction invertiblg.
Let & and) be Banach spaces and létbe open inX. Thenf : U — )Y is analyticif eachzy € U has a
neighborhood in whictf can be represented by a convergent series of continuousmialso If f is analytic,

thenf is smooth and it can be locally represented by its TayloesetfK = C, andf is (Fréchet) differentiable,
then it is analytic. For this and further details we refer tdHille and R.S. Phillips[19].

To simplify the presentation we restrict ourselves now ® itiost important cases in whidh= B,,. We
leave it to the reader to carry out the obvious modificatiorthée following considerations needed to cover the
remaining instances as well.

Proposition 14.4 Supposer;; = 141 = 01 + 71. ThenBt/m“(J, V11) is open inBééF’@“(J, Vi1). If

a€ Biéi’fvn(J, Vi1), thena=t € Biéi’év’hl’“)(J, Vi1). The map
BT (J, Vi) = BYSCM (A, s o)
is analytic.

Proof. (1) Without loss of generality we 1éf, = K" and setr := oy;. Note thatE := £(K")™" *™" is
a Banach algebra with unit of dimensiof := (nm?)2. Itis obvious that we can fix an algebra isomorphism
from E ontoKV*¥ by which we identifyE with KV*V,

Forb € KV*N we denote by? the (N x N)-matrix of cofactors ob. Thush? = [bfj] with

bE] = det[bl, ceey bifl, €4, bi+1, ceey bN], (1413)
whereb,, . .., by are the columns df ande; is the j-th standard basis vector BfY. Then, ifb is invertible,
b=t = (det(b)) b (14.14)

(2) Suppose eitheX := (Q™, g,,) Or X := (Q™ NH™, g,,), andY = X x J. Set
XY7(Y,E) = B(J,B.(X,E))n B (J,B(X,E)), (14.15)
whereB!_(X, E) is obtained fromB!_(R™, E) by restriction, of course. Note
X'YT(Y,E) — Boo(Y, E). (14.16)

It follows from Theoreni13]5 that*/7(Y, E) is a Banach algebra with respect to the point-wise extensite
(matrix) product ofF.

Assumeb € X/7(Y, E) andb(y) is invertible fory € Y such that

b W)le <co.  yeY. (14.17)
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Then the spectrumi(b(y)) of b(y) is bounded and has a positive distance ftom C, uniformly with respect to
y € Y. Hence
1/¢(co) < | det (b(y))| < e(co), yey, (14.18)

due to the fact thadet (b(y)) can be represented as the product of the eigenvalug pfcounted with multi-
plicities.
Sincedet (b(y)) is a polynomial in the entries éfy) andX*/™(Y) := X*/7(Y,K) is a multiplication algebra
we infer )
det(b) € X/7(Y). (14.19)

Using the chain rule if > 1 (cf. Lemma 1.4.2 ofi[4]), we ge(tdet(b))71 € X¥/7(Y) from (I4.I8) and(14.19).
Now we deduce froni{14:13)(14]14), and the fact thi&t"(Y") is a multiplication algebra, that
b e XY E), b | arvm) < elco),

wheneveb € X'/7(Y, F) satisfies[(14.17).

By (I4.18) it is obvious that the set of all invertible elerteeof X*/7(Y, E) satisfying [14.1l7) for some
co = co(b) > 1is open inX*/7 (Y, E).
(3) AssumeRx @, is a uniformly regular atlas fo/; over&. Givenkxp; € Ax P4, put

o —p’\l@“ LX), XOa —p)‘“®“ L(EXp11) 0

forv € I'(M,V1)” anda € T'(M, Vi1)7, respectively, and;, := Q™ x J.
Suppose: € Bt/’” “11(J,Vi1). Then we deduce fromi (14111) (see Exaniplé 3.1(f)) and

o =x2 (" (av) = (M a (G a)xEe (14.20)

for kixp1 € Ax®; andv € I'(Uy, V1)”. Note thaty! is a bijection fromI'(Uy,, V1)” onto (E2!)¥=. Thus it

follows from (IZ.20) thag\ "o~ is a left inverse for@11a in By (Yy, E). Similarly, we see that it is also
arightinverse. Henck, := x“1a is invertible in B, (Y, E) and

bt = xhme (14.21)
We infer from [4.1)(iv), [5.11),[(315) [(3.10)_(14]110),ch({[Z4.12) that
b e < c@‘o‘oy,{m(p_’\“ la™n,,) < ¢ KXp1 € APy, (14.22)

Recalling [4.8), [([7.70), and (13]10) we find
wn( 3 w~) Y Sru(Femr) Reng™ia (14.23)

REMN(K) REMN(K)

Sincea € Bié?’w“(J, Vi1) implies ¢%11q € (oo (BYT) we deduce from{14.23)[(7.3)(iii), LemmBs 12.5 and
[I3:3, Theorerd 1315, and definitidn (14.15)

||b,.;||Xt/r~(ymE) < cllallt /00w, kX1 € AxPy. (14.24)
Seta, := p;*1b,.. Then it follows from [I4.2R) and(14.24) that
pat € XYL E), oM an lavry, my S 6 kXpr € Ax . (14.25)
Employing [Z.B)(iii) and Theorein 13.5 once more we derieafi14.25)

plontta™t = x T (mea™t) = (kemo)by ! € B (Ye, E) = BYT, (14.26)
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andgpéo M) g € (oo (BYT). Hence Theoref 12.8 implies
-1 _ 1/}gof)\117#)(<p((>g)\11-,#)a*1) c Bééf-,(*kunu)(!]"/ll). (1427)

(4) Let X be a Banach algebra with unit Denote byG the group of invertible elements of. For
bp € X andd > 0 let X(by,d) be the open ball in¥’ of radiusd, centered ab,. Suppose, € G. Then
b=by— (b — b) = (e — (bo — b)by ' )b and

1(bo = 0)bg [l < llbo — bl lIbg '] < 1/2, b€ X(bo, [lbg ' [1/2),

imply thatb € X (b, ||by '||/2) is invertible and
b=t =by (e — (bo — b)by _b‘lz (bo — )by (14.28)

In fact, this Neumann series has the convergent majorare—. Note thatp;(z) := (—1)%b; *(vby ')" is @
continuous homogenous polynomiakine X. Hence it follows from[(14.28)

-t :Zpi(b_bO)a be X(b07|‘bal||/2)7

and this series converges uniformly af{by, ||b; *||/2). Thusg is open and the inversion mapy : G — X,
b — b~ is analytic.

e setY = ) ,V11)) and define a multiplication bya, b) — a,b). ThenX is a Banac
(5) We sett := B(J, B(M, V; d defi ltiplication ba, b) — C|7!](a,b). ThenX is a Banach
algebra with unit := ((p,t) — idz(vy),))-

Consider the continuous linear map

fi BYTON (V) = &, aw pMia
ThenG = f~1(G) is open inBiéF’Q”(J,VH). Consequently,
for=invo (f|G): G—= X, aw (pMra)™?

is continuous (in fact, analytic) by step (4). Note that = p*11 fo(a) is the contraction inverse aof Further-
more, fo(a) € X implies
p—>\11 |a_1(t)|h11 = |f0(a)(t)|h11 <gc, ted

Hence eacl € G is \1;-uniformly contraction invertible. Conversely,dfe Bt/m“(J Vi1) is A11-uniformly

contraction invertible, then belongs toG. ThusG = Bf)érlfvn(J Vi1) which shows thaIBf)éTlfV“(J Viq) is
open.

(6) We denote byj,, the group of invertible elements (BW Supposeyy € G. Then step (3) (se€(14]24)
and [14.2b)) guarantees thagt, := x*'*ag € G, and

bo.wll ey + bowll ey e kxepr € Ay

Hence we infer from step (4) that there exists 0 such that the open balBt/T (bo,s, 0) belongs tag,, fork € &
and the inversion mapnv,, : G, — BZZJK is analytic onBt/T (bo,x,9), uniformly with respect ta; € £ in the

sense that the series
Zbom (bo.x — br)by )’

converges irBééi, uniformly with respect té,, € Bt/r (bo,r,0) andsk € R.
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Note that
B! (b, 5) HBW (bo,x, 6)

is open inl., (B!/™). The above considerations show that
inv: BY7(by,0) = leo(BY), b (inv,(by)) (14.29)
is analytic. It follows from[(14.24) that the linear map
X s BYPE (1, Vi) = bu(BYT), v (x210) (14.30)

is continuous. Henc€ := (x“11)~! (B! (bo,)) N G is an open neighborhood af in G. Itis a consequence
of (TZ.29) and[14.30) thanv o x“' is an analytic map front, into /. (B'/").
Consider the point-wise multiplication operator

71 Lo (BYT) = loo(BYT), b ((kame)bs).

It follows from (Z.3) and Theorein 13.5 that it is a well-defineontinuous linear map.
If a € Go, then we know from[{14.21) and (14]24) that

inv o x“’“( ) = (x,g_)‘“’“)a_l) c KOO(BZ)F).

Hence we see by (14.26) aid (14.27) that = v 5" o 7 o inv o y“11a. Thus
(a—aH) =y oroinvox® 1 Gy — BYSTMum (1 1)
is analytic, being a composition of analytic maps. This pothe proposition. O

Henceforth, we sef := B S0 that§, is defined forl < ¢ < cc.
Theorem 14.5 Supposé < ¢ < oo and

t > 0 ands satisfieqI4.4)with |s| < ¢ if ¢ = p,ands =t if ¢ =

Assumer;; =11 =01+ 71 and)\g = A1 + 1. Ifae Bt/T 1 (J Vll) then

A =C(a) € Lis(F/ ™ (I, V1), §/ 79 (1, ) (14.31)
andA~! = C(a™!). The mam — A~ is analytic.

Proof. It follows from Theoreri I413(i) and Proposition 14hét [I4.31) applies and+— C(a~1) is ana-
lytic. Part (i) of that theorem implied ~! = C(a~1). O

Next we study the problem of the right invertibility of theanatorA of Theoreni 1413. This is of particular
importance in connection with boundary value problemsstiire need some preparation.
We assume
O12 =02+ 71, Ti2=T2+01, 021 =Ti2, T21 =012 (14.32)

Then, giveru € T'(M, V12)”, there exists a unique’ € T'(M, Va1)”, thecomplete contraction adjoint af, such
that

ha(a - u,v) = hy(u,a* - v), (u,v) € (M, V; @ V). (14.33)
Indeed, recallind (1415) set

ia)wr (1)) e T (a)Uis) ———
(@) G )s = 9Gm o) e @Gt 52 9y (i) W rave (14.34)
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Then it follows from [2.Ib) and, = (-|-)** @ hw,, that

Okt

3 (21),v 0 ; 1 v
(") Goyon oy © 42 ®1b,, © By (14.35)

is the local representation af* over U,; with respect to the coordinate frame fgs; over U, associated with
KX a1,

We set
)\;1 = Ao + 091 — To1, (3;1 = ()\317/0 (1436)
and suppose ¢ B%F’Q”(J, Vi12). Then itis a consequence 6F (B.5). (5.9), (5.10), (14.34),[@4.35) that
H(p(;g}'ia*”B;éF(YhE:zzll) ~ H(p‘oﬁé,zma”BiéF(YhE:llzZ)v KEXp; € AxP;, i=1,2.
From this, Theorem 12.8[(7.8), aid (14.34) we infer
(a— a*) € L(BYL™¥2(J, Vig), B9 (], Vay)). (14.37)

Assumea*(p,t) € L((Va)p, (V1)p) is injective for (p,t) € M x J. Thena(p,t) € L((V1)p, (V2)y) is sur-
jective. This motivates the following definition:

a € BYT¥2(,J Vi,) is Ajo-uniformly contraction surjectivi

pret(me=e) /215 (1) Ll > Julp, e, uw€T(M,Va), te . (14.38)
The reason for the specific choice of the exponentwfll become apparent below. We set
Biéi’f,}f(bf, Vi) := {a € BY™92(J,Vi2) ; ais \i2-uniformly contraction surjectivé.
For abbreviation, we put
a®a* = CE‘_E}] (a,a*), 022 :=To2 =02+ T2, Aag:=2\12+ T2 — 012.
It follows from (I4.3T) and Theorem 13.5 that
BY™92(J Vig) — BY™%22 (] Vay), a— a®a* (14.39)

is a well-defined continuous quadratic map. Hence it is ditaly
Lemma 14.6 a € B2 (J,Viy) iff a © a* € BL52 (J, Vaa).
Proof. It follows from [14.3B) that
ha((a ® a*) -u,v) = ha(a- (a* - u),v) = hi(a”* - u,a* - v), (u,v) € T(M, Vo @ Vo). (14.40)
HenceC(a ® a*) is symmetric and positive semi-definite. We see frbm (14tH&) [14.3B) is equivalent to
p?ha((a @ a*)(t) - u,u) > |ulf, /e, uel'(M,Va), telJ
By symmetry this inequality is equivalent to the,-uniform contraction invertibility otz © a*. O

In the next proposition we give a local criterion for cheaki »-uniform surjectivity.

Proposition 14.7 Suppose: € BZF’wlz(J, Vi2). Let Ax®;, ¢ = 1,2, be uniformly regular atlases fov;
overR. Set

¢ = Y |malrnd),
(il)evﬂle(jl)EJT1
1<v1<na

for{ € E72 (F5)Q andt € J. Thena is \12-uniformly contraction surjective iff

PO ~ICP (e BR(F)Y, neR tel
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Proof. Assumes € I'(M, V2)” and putw := (hs),v € T'(M, V)7, whereVy = T72(M,W3). Then, lo-
cally onUj,

_(G2),v2 0 (j2) 2 _ . (G2) 0 (i) v
v = v(jz) 8:6(12) (24 dCC J2 ® bl/2, w = w(i2)7y2 8:@(]2) (24 dCC 2 (24 /822,

where
G2)  _ (52)() A
Wia)vs = (i) (1) Wawaia Viz) >

due tohy = (-]) 2 ® hw,. Thus it follows from [14.34) that, locally ofi,,

((a@a*) -’U)(i2)"l/2 (i2;51)sv2  (i1)(@1) p*ntn  (2501),02 | (J2)

Ga) Ujosin)n IG1)Gr) (G2;21),01  (32),02°
Hence _ .
ha((a ©a*)-v,0) = 983))(%2)) AWs s, ((a © a®) - v)gz))m vgzg’az
- (w0 i,

(i2351),v2  (J2) (11)(21) B (2;71).02 . (32)
Gaiin) o Piia) e I G) " (G2i01),01 " (32), 02
Thus we deduce fronh (3.5)._(4.3)._(b.9). (5.9) (appliedifd
K (222 ha ((a ® a*) - v,0)) ~ ph22T2(1=91)3 (¢ () (14.41)

for kixp; € Ax®;, i =1,2,andv € I'(M, V»)’, where

o ) @ X T
¢ = (rxpa)e ((ha)p) € (B2 (F5)) % . (14.42)
Since(hs), is an isometry and} is the bundle metric of;* we get from[(5.111)
polol,) = kel ~ 27 (B )y HER (14.43)

with v and¢ being related by[{14.42). Now the assertion follows from 824, [14.36), [(14.41), anf(14143)0
Suppose: € Bééf’@”(J, Vi2) anda® € Bf,é’?’(’m’“)(J, Va1 ) are such that - (a¢ - v) = v for v belonging to
(M, Vz)”. Thena© is aright contraction inverse of.

Proposition 14.8 Let conditions[14.32)be satisfied. TheBi@fﬁf(J, Vi2) is open inBiéF’w“(J, V12) and
there exists an analytic map

¢ B2 (1, Vig) — BYP M2 (V)

00,surj

such that’“(a) is a right contraction inverse fou.

Proof. It follows from [I4:3P), Propositidn 14.4, and Lemi&8 thatS := Biéifjjz(J, Vi12) is open in
B9 (], V). Set

I°(a) := q:;]] (a*,(a®a")™"), acs,

where(a ® a*)~! is the contraction inverse af ® a* € BYL™“**(J, Viy). Then [IZ3r), [1Z:39), and Theo-
remI335 imply that© is an analytic map fron§ into BL.™(~*12:#) (J, Va1). Since

a-(I°a)-v)=a-(a*- ((e®a*) ™" v)=(a@a*) ((a®a*)™"v) =0, ve (M, Vs),
the assertion follows. O

After these preparations it is easy to prove the second rhaiorém of this section. For this it should be
noted that definition[(14.38) applies equally welkifc BY/7<2(.J, V) where eithe3 = b, ort € rN and

B € {BC,bc}. HenceBt/F’Q”(J, Vi2) is defined in these cases also.

surj
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Theorem 14.9 Let assumptionfl4.3)and (14.2)be satisfied and < ¢ < cc.

(i) Assumés| < tif ¢ =p,ands =t > 0if ¢ = co. Then there exists an analytic map

AC s BYTER (1 Vig) = L(F5/7%2 (0, Vo), 33/79 (1, V0))

00,surj
such thatd¢(a) is a right inverse ford(a) = (v +— a - v).
(i) There exists an analytic map

A s BIETR (I, Vig) = L(BY92(J, Vo), B/ ™41 (J, V7))

surj
such thatd¢(a) is a right inverse forA(a) if eithers € rNandB € {BC,bc}, or s > 0 and5 = b.

Proof. The first assertion is an obvious consequence of Engd4.8 and Propositidn 14#.8. The second
claim is obtained by modifying the above arguments in theaagmt way. O

As in the preceding section, the above results possessugbaimlogues applying in the isotropic case.

15 Embeddings

Now we complement the embedding theorems of SeLlion 8 bilesdtg further inclusions between anisotropic
weighted spaces.

Theorem 15.1 Suppose\y < A\; and putd; := (A, p) for i =0, 1. Then%f/ﬁ% A SZ/F’% if p<1,
S/F,Lvl

whereagp > 1 impliesg), Sy SZ/F’QO for s € R.

Similarly, Bs/7%0 < Bs/T%1if p < 1, andB*/™%1 — Bs/7% for p > 1, if eithers > 0 andB € {Boo, boo }
ors € rNandB € {BC, bc}.

Proof. Ifp <1, thenitis obvious that

I - o S d e - - o
%kr/r,wo < m/;)kr/r,wl %kr/r,wo < V[/p}’cr/r,u.zl7 Bckr/r,wo N Bckr/r,wl

3

for k € N. Thus, by duality,

%kr/ﬁ(ﬁo i> m/;)kT/ﬁ@l’ ke _NX.

S/F,@o

By interpolationg, 5 SZ/F’% follows. The proof of the other embeddings is similar. O

The next theorem contains Sobolev-type embedding redultthe anisotropic case they involve the weight
exponents as well as the regularity parameters.

Theorem 15.2
(i) Suppose, < s1 andpg, p1 € (1, 00) satisfy
s1— (m+r)/p1 = so — (m+7)/po. (15.1)
- s1/7,@ A ~s0 /@0
Setdy == (A + (m + ) (1/p1 — 1/po), p). Thengyt/ ™% 5 Fro/me,

(i) Assume > 0ands > ¢+ (m +r)/p. Setdo := (A + (m + p)/p, ). Thengy/ ™% < b7,
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Proof. (1) Note that; > so and [I5.1) implypy > p;. Hence it follows from[(I5]1) and Theorems 3.3.2,
3.7.5,and 4.4.1 of 4] that

S1 T d S0 7 d S0 7
épl (spl/ ) — épl (3'p()/ ) — ZPO (3'[)0/ )
Also note that we gezt;p@] = 1/)5; from (I5.1). Thus we infer from Theordm 9.3 that

L Pm o
/" oy (3327
d
p@o
oo 0 N
po/ %0 Coo (3397

is commuting. From this we obtain assertion (i).
(2) We infer from Lemm&9]2 and][4, Theorem 3.3.2] that
s/ __ s s t _ t/7
Bp,/m - Bp,/: — Bp,/ol;,ﬁ — BOé’;’OO,H - B(x/),m
and from [4, Theorem 3.7.1] thafy." — B3/% ... Consequentyg:/. < BL.. From this and the density of
D(Y,., E) in g5/ it follows, due toD(Y,., E) — b7, thatgs/ . < b7 Thus, by [71L),

6(F3T) = Lo (BELD). (15.2)

Itis obvious thatD (Y, E) < £oo unit(b'."). By Theoreni9B we know tha® (Y, E) is dense irfp(szﬁ). From

this and [I5R) we dedudg (F5/") < loounit(b2"). Observingy¥ = ¢, we infer from Theoremg 9.3 and
[12.10 that the diagram

L #p .
ST —— (&)
btoér',woo éoo,unif(btoér)
is commuting. This proves (ii). O

Remark 15.3 Define theanisotropic small klder space\.i'g/m = CS/F’@(J, V') to be the closure dP(.J, D)
in B:.™“ for s > 0. Then the above proof shovgé/?’@ — CS/F’Q“’ if the hypotheses of (i) are satisfied. [

16 Differential Operators

First we establish the mapping propertieSo&ndo in anisotropic weighted Bessel potential and Besov spaces.
They are, of course, of fundamental importance for the thebdifferential equations.

Theorem 16.1 Suppose eithes > 0and® = §,, or s > 0 and® € {B., b }. Then
V € £(®S+1,)\’ 65,)\( T0'+1)) N £(6(5+1)/’F,Q’ 65/’7‘,&3(!]7 T0'+1))
andd ¢ E(@(s-ﬁ-r)/ﬁ[u” @s/a(,\w,u))_

Proof. We consider the time-dependent case. The proof istit@nary setting is similar.

(1) From [5.156) and (5.16) we know that

(kX )« Vv = 0,0 + a,v, veC(J,CH Xk, E)),



69

wherea,. € C>~(Qm', L(EZ,EZ,)) satisfies||a.|| < c(k) for kxp € &x®. Hence it follows from Theorem
133 ands( /" < &3/7 that

A= (v agyw) € L(SETV/T /T(Y,, E2, 1)),  [|Adll <e, rxp € Ax®.
By [4, Theorem 4.4.2] and Theoreins 71.6 and111.9 we get

Op € L(SETV/T @3/7(Y, E7,)), 0€ L@/ &) (16.1)

(2) Setq := pif & = F,, andg := oo otherwise. Then, given € &{/™¢,
0o (Vu) = pa 90k (k@) (1 V) = (rame) (%) V) (B ).

Hence we get fron{(13.11)
037 (Vi) =Y b (kX 0). V(Riw ity ),

RER

wherebz,, = (k«7y)az, andaz, is defined by[(13.12). From thig, (7.3], (13.13), Lenimall8t&p (1), Theo-
rem13.5, and the finite multiplicity of we infer

||90§(VU)|\eq(¢ss/F(Y,Eg+l)) <c ||90§U|\eq(e5<5+1)/F)

foru € &(+1/7% Using Theorems913,_12.8, and 12.10 we thus obtain

ue BEI/IS,

leg (Vulllgyeormme, ) < cllullseinimae,

Thus the first assertion follows froWiu = 1/;;3 (<pf(Vu)) by invoking these theorems once more.

(3) Since (sed(915))

PO (Du) = plipf Ou = O(¢5 w),
the second assertion is implied by the second paffofl(1@djze arguments of step (2). O

By combining this result with Theoreln 14.3 and embeddingtéms of the preceding section we can derive
mapping properties of differential operators. To be moeejse, fork € N* we consider operators of the form

.A = Z Qjj - Vla]

i+jr<kr

wherea,;; are suitably regular time-dependent vector-bundle-witersor field homomorphisms ang - V97
equals(u — a;; - (V'd7u)), of course. Recall th@ ., = Bo.

Theorem 16.2 LetW = (W, hy;,, Dyyr) be a fully uniformly regular vector bundle ovéf. Supposé, &, 7
belong toN and\ € R. For0 < i < k set

oi=0+T+i, Ti=T+0, @:=(\p).
(i) Giveni,j € Nwithi+ jr <k, put
Nig = A= A=, &= (i, ).
Let condition(I4.4)be satisfied. Suppose> |s| if ¢ = p, ands = |s| > 0if ¢ = oo, and
a;; € BY™96 (1,15 (M, Hom(W, W))), i+ jr <k. (16.2)

Then - . )
Ae ﬁ(gl(ls+kr)/r,w’32/r,w (J7 VE(W))), 1<q< oo
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If BY™% in (@I62)is replaced b)biém”, then
A€ LTS p/TE (1 VE(W))).

(i) Fix
=(m+r)/(kr —i—jr), i+jr>kr—(m+r)/p,
pii{ >, i+ jr=kr—(m+r)/p,
=, i+ jr <kr—(m+r)/p,
and set

Nij = A= A= jpu—(m+p)/pij,  @ij = (Nij, 1)
fori + jr < kr. Suppose
aij € Ly, (J, Ly (TS (M, Hom(W, W)))).

Then . -
A€ L(WF/TE L (J,LY(VE(W)))).

(iii) In either case the mafu;; — A) is linear and continuous.
Proof. (1) Theorefi 161 implies
Vil e E(&(ZSHW)/F@,S((ZS*iJr(k*j)T)/?y()\Jrj#y#)(J, VTU_H,)) (16.3)
and this is also true i, is replaced by.,. Since
&(Is—i+(k—j)r)/ﬁ(/\+ju7u)(Jj VTUH) N &SI/?,(/\Jrju,u)(J7 V‘raJri)

assertion (i) follows from Theorei 14.3.
(2) If i + jr > kr — (m + r)/p, then we get from Theoreim I5.2(i)

H;()kriiijr)/Fﬂ(AJrj#”u) (']7 VTU-l—i) — LQij (Ja LSJA” ( Td-l—i))v

Wherel/qij = 1/p — 1/[)”
Suppose + jr = kr — (m +r)/p. Thenp;; > p impliess := i + jr + (m +r)/p;; < kr. Thus, invoking
Theoreni I52(i) once more,

H =i P Oiin) (1) e =i/ BO%I0 (] V) o Ly, (J, L2290 (V).
If i + jr < kr — (m + r)/p, then we deduce from Theorém 15.2(i)
H;gkrfifjr)/a(”j“’“)(‘]a Vo) = Loo(J, Léof)\ij( i)
Sincegq;; = < if p;; = p we getin either case frorh (16.3)
Vidhu € L, (J.L)-2 (VL)) =t Lg, (J, Xi),  we HF/™E,
NoteA +7 — & = \;j + 7, — 0i + A — \ij + T + i — o implies, due to Lemm@aT4.2,
pX-i-f—& |aij . Viajuhl < Cp,\ij-rn—ai |aij|h” pX—kij-i-r—H‘—a |Vi8ju|h“

whereh == (-, )] @ hyy, hij := (-, )7 ® hyy, andh; = (-, )] @ hyy. Hence, by Holder’s inequality,

llai; - viaju”Lp(J,L;\(Vf(W))) < ||aij||Lpi].(J,Y¢j) ||Vi3ju||Lqi].(J,xw),

whereY;; := Ly’ (T2 (M, Hom(W, W))). By combining this with [I6]3) and using’ /e = gr/mE e
get assertion (ii).
(3) The last claim is obvious. O

It is clear which changes have to be made to get analogoulssému stationary’ differential operators in the
time-independent isotropic case. Details are left to theee
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17 Extensions and Restrictions

In many situations it is easier to consider anisotropic fiamcspaces on the whole line rather than on the half-line.
Therefore we investigate in this section the possibilitgxtending half-line spaces to spaces on alkof

We fix h € C*((0,00), R) satisfying

/ t*|h(t)|dt < 00, s€ER, (—1)’€/ thh(tydt =1, keZ, (17.1)
0 0

andh(1/t) = —th(t) fort > 0. Lemma 4.1.1 of([4], which is taken frorn [118], guaranteeseRistence of such
a function.

Let X be alocally convex space. Then theint-wise restriction
rT C(R,X) —» O(RT,X), uw u|RT, (17.2)

is a continuous linear map. Fore C(R™, X') we set

ev(t) := / h(s)v(—st) ds, t <0, (17.3)
0
and
v onRT,
etv = (17.4)
ev on(—o0,0).

It follows from (I7.1) thate™ is a continuous linear map fro@(R*, X) into C'(R, X), andrte™ = id. Thus
point-wise restriction[(17]2) is a retraction, asitis a coretraction.

By replacingR™ in (I7.2) by—R* and using obvious modifications we get the point-wise retin — ‘to
the negative half-line’ and a corresponding extensionafpet . Thetrivial extension operator

eq : CoyRT, X):={ueCR",X);u0)=0}— CR,X)

is defined byej v := v onR* andeg v := 0 on(—o0, 0). Then

rg =rf(l—er7): C(R,X) = Ci)(RT,X) (17.5)
is a retraction, andy is a coretraction.
We define: . o
/™2 ((0,00), V) is the closure oD ((0, 00), D) in §/ ™4 (R*, V).
Thus

S/TERY, V) = F/T9((0,00), V) = F/ERY, V).
Now we can prove an extension theorem ‘from the half-cylindex R to the full cylinderd/ x R.
Theorem 17.1

(i) Suppose € R wheres > —1 + 1/pif M # (. Then the diagram
d

'D(R+,'D) C ;/F’Q(RJF,V)
\f+ et/
d -
id D(R, D) —— §/"°(R,V) id
%+ r*\‘
+ C d s/7,@ +
D(R™,D) p T (RT,V)

is commuting.
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(i) If s > 0, then

d L
D((0,0), D) ¢ 2/ 79((0,00),V)
N\ ’ v
id D(R, D) ——— §/"(R,V) id
% o ”3\«
d L
D((0,00),D) ¢ 2/ 79((0,00), V)
is a commuting diagram as well.
Proof. (1) Suppose
M =X, gn)wWithX e {R™"H"}, p=1, W=XxF, D=dp. (17.6)

If k € N, then it is not difficult to see that* is a retraction fron#*"/"(X x R, E) ontoW,*"/"(X x R+, E),
andet is a coretraction. (cf. steps (1) and (2) of the proof of Tlkeeo#.4.3 of [4]). Thus, it > 0, the first
assertion follows by interpolation.

(2) Let (TZ.6) be satisfied. Suppose- 0 and.J = R™. Itis an easy consequence of
8/ T(V) = Ly( 8 (V) N8}/ (4. Lp(V)) (17.7)
that o )
§o/(J, V) = Ly (1, 55(V)) N7 (J, Lp(V)). (17.8)

From this it is obvious that . )
e € L(FYT(L,V),5/T(R,V)).

Note thatL, (V) = L,(X, E) is a UMD space (e.g.[[2, Theorem 111.4.5.2]). HenCe [4, Leauinl.4], defini-
tion (IZ.5), and the arguments of step (1) show
rg € L(3 (R, Ly(V)), 87 (J, Lp(V))).
From this, [Z7117), and{17.8) we deduce assertion (ii) in $eiting.
(3) Assumel(1716) and < O with s > —1 + 1/pif X =H". ThenF (V') = é;,S(V’) by Theorem 4.7.1(ii)
of [4]. Hence
g;S/F(j, V/) =Ly (J, g;/s(v/)) A S,;/s/r (j7 Lp/(V/)) _ Lp/(J, %;/5(‘//)) n g;/s/r (j, Lp/(V/))

_ As/T

=&/ V).
Thus, by [8.5),

gZ/T(J, V) - (S;/S/T(J, V/))I'

The results of Section 4.2 dfl[4] imply", respectivelye™, is the dual ofe, respectivelys. From this and
step (2) it follows (se€ [4, (4.2.3)] that assertion (i) hoid the present setting if < 0, provideds > —1 +1/p
if X =H™.

(4) It follows from (9.2) and[(Z712)E(14.4) that
rto el,.,=0l,0 rt, eTo O, =0l,0° et
for1 < ¢ < co. Hence
rg 0@k =0t ord, efo®h =0 oef. (17.9)

Thus
@ +.N A m LN a3
05 (rTu) = ph IO (k). (mertu) = 1 (F )
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and, similarly,

This implies thatp? andy¥ commute with-+, r{", ™, andeg . Hence the statements follow from steps (1)—(3)
and Theorerh 9]3. O

The next theorem concerns the extension of Besov-Holderespfrom half- to full cylinders.

Theorem 17.2 Suppose eithes € rN and B € {BC,bc}, or s > 0 and B € { B, b }. Thenrt is are-
traction fromBs/™¥(R, V) ontoB*/™¥(R*, V), ande™* is a coretraction.

Proof. (1) Letk € NandB € {BC,bc}. Itis obvious that
rt e L(BF/TE(R, V), BF/TE(RY, V).

It follows from (I7.1) that € £L(B*/74(R*+, V), B¥/"<(—R*,V)). Thus, by the second part ¢f(1l7.1) and
(174, - o

et c E(Bkr/r,w(RJr’ V), Bkr/r,w(R’ V))
From this we get the assertion in this case.

(2) If s > 0 andB € {Bw, b}, then, due to Corollary 12.9, we obtain the statement bypoeiation from
the results of step (1). O

Lastly, we consider little Besov-Holder spaces ‘with \&ming initial values’. They are defined as follows: If
k € N, then .
u € bckr/r’“’((O, 00), V) iff

N . (17.10)
u € b*T/TE(RT, V) andd?u(0) = 0 for 0 < j < k.
Furthermore}s.™“ ((0, 00), V') is defined by
(bckr/ﬁ&i((o’ ), V), bc(kJrl)r/M((o’ 0), V))((Jsfkr)/r o kr<s<(k+1)r
N » 0 : (17.11)
(bCkT/T7w((Oa OO), V)a bc(k+2)r/7‘,w((0’ OO), V))1/2 oo’ §= (k + 1)T’

wherek € N.
Theorem 17.3 Letk € Nands > 0. Thenr{ is a retraction frombc*™/™%(R, V) ontobck™/™4((0, 00), V')
and fromb3,™* (R, V) ontobs,™* ((0,00),V), andeg is a coretraction.

Proof. Itis easily seen bf(17.5) and the preceding theoheirthe assertion is true foe*"/™ spaces. The
stated results in the remaining cases now follow by intexiparnh. O

18 Trace Theorems

Supposd” is a union of connected componentsa¥/. We denote by’: T' — M the natural injection and
endowI” with the induced Riemannian metijc:= *g. Let(p, &) be a singularity datum fa¥/. Forx € fr we
putUe := U, = U, NT andr := iy o (&*k) : Us — R™ 1, wherey : {0} x R™~1 = R™1, (0,27) — 2.
Thenf := {R; k € Ar } is a normalized atlas fdr, the one induced bg. We setp := *p = p|T. It follows

that (g, R) is a singularity datum foF', so thatl" is singular of typd5]. Henceforth, it is understood thBtis
given this singularity structurie@duced byX(M).

We denote by/f/ = Wr the restriction of#/ toT" and byhm-/ := [*hy the bundle metric off induced byhyy .
Furthermore, the connectidhvf/ for W, induced byD, is defined by restricting

D: TM x C®(M,W)— C®(M,W) to TT x C®(,W),
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considered as a map in@> (T, W). ThenW = (I/f/, hyt,, Dys,) is a fully uniformly regular vector bundle
overl'.

We setV := Tf(F,W) and endow it with the bundle metri¢ := (-[")por ® hyy, Where(-[)rop is the
bundle metric ori7’?T" induced byg. Then we equiﬂ7 with the metric connectiol := V(Vs, Dv?/)‘ Hence

V= (I'/, h, ﬁ). It follows that&f,/F’“j(J, V) is a well-defined anisotropic weighted space with respethéo
boundary weight functioi.

We writen = n(I") for the inward pointing unit normal oF. In local coordinates; = (z!,...,2™),
-1 0
n = (v/g11|0U) ST (18.1)

Letu € D = D(M,V) andk € N. Thetrace of orderk of wonT, dju = 0, u € D(T, V), is defined by

(OFu, a>‘;* = <Vku|F, a® n®k>‘;*, a € D, V*). (18.2)

We also setyr := 32@) and call ittrace operator orl". We write agairdt = 82@) for the point-wise extension

of 9}, over J, that is, (95 u)(t) := 0y, (u(t)) for t € J andu € D(J, D), and call itlateral trace operator
of orderk onT' x J. Correspondingly, théateral trace operator orl” x J is the point-wise extension ofr,
denoted by)r as well. Moreover,

9k o+ D((0,00), D) = D((0,00), DI, V)), uws du

is the restriction o) to D((0,00), D).
AssumeJ = RT. ThenM, := M x {0} is theinitial boundaryof the space-time (half-)cylindev/ x R*.
Theinitial trace operatoris the linear map
Y, : D(RT,D) = D, ur~ u(0),
whereM| is identified withM . Furthermore,
oF o :=7m, 00 : DRT,D) =D, wuwrs (9Fu)(0)

is theinitial trace operator of ordelk.
Suppose, > 1/p. The following theorem shows, in particular, that theresexa unique

(V)0 € E(gzs)o/?@’B}(}So—l/p)/ﬁ(k-i-l/nu)(J’ f/))

extendingyr and being a retraction. Furthermore, there exists a cet@re(vf),, such that, for each € R,
there is . . .
(1F)s € L(ByHIITEHII (1, V), §/79)
such that . .
(1) (47)s|D(L DI, V)) = (91)s, | D(J, DT, V),

18.3
(ii) (77)s is for eachs > 1/p a coretraction fof~r)s. (18.3)

Thus(qr)s, is for eachsy > 1/p uniquely determined byr and(~f), can be obtained for aryye R by unique
continuous extension or restriction 0ff)s, for any so > 1/p. Hence we simply writeyr and~g for (yr)s
and(+¢)s, respectively, without fearing confusion. So we can-gajs auniversal coretractiorfor the retraction

A € ﬁ(g;/ﬁ@’B}()S*1/10)/7?-,(A+1/107u)(J7 f/))7 s> 1/p,

herewith expressing propertiés (18.3). Similar converstioold for higher order trace operators and traces oc-
curring below.
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Theorem 18.1 Supposé: € N.
(i) Assum@ # () ands > k + 1/p. Thendk is a retraction
from g;/ﬁ(/\vu)(bj’ V) OntOBés_k_1/p)/F’(A+k+l/p’M)(J, V).
It possesses a universal coretractioyf; )¢ satisfyingd;, o (v£)¢ =0for0 <i <k —1.
(i) Suppose > r(k + 1/p). Thendf_, is a retraction
from §5/™ 1) (RF, V) onto By~ (kHL/P)AFuk1/e) (7).
There exists a universal coretractién;_,)¢ such tha;_, o (/)¢ = 0for0 <i <k — 1.

(i) Letl’ # QPands > k+ 1/p. Then@fu0 is a retraction

from 5/ ((0, 00), V) onto BSF=1/0)/m (k1) (0, 00), V). (18.4)

The restriction ofvX )¢ to the space on the right side @8.4)is a universal coretraction.

Proof. (1) Supposk € {R™ H"}, M = (X,gmm), p=1, W =X x F,andD = dr sothatl =X x E.
PutY := X x J. Assume eithel # forJ = R*. If J = R,thenM x J =Y = H™*L If J = Rt andl’ = (),
thenM x J = R™ x Rt ~ H™*!, Finally, if J = Rt andI" # (), then

M x J=H" xRt ~ Rt x Rt x R™~ 1,

that is, M x J is a closed-corner in the sense of Section 4.3 of [4]. In each casds simply a permutation
diffeomorphism.

If either J =R or I = (), then assertions (i) and (ii) follow from Theorem 4.6.3 [of. [4f J =R* and
T # (), then assertion (i) follows from Theorem 4.6.3 and the dédiniof the trace operator for a face of
Rt x Rt x R™~1, that is, formula (4.10.12) of [4]. Claim (iii) is a conseaque of Theorem 4.10.3 of[4]
(choose any: therein withx > s + 1).

(2) Now we consider the general case. Supfdosef). Fort > 1/p we set

BY=YPIT(Y ., E) if k€ Ar,

H—1/p)/7 .
P {0} otherwise

Let~, be the trace operator @ly,, = {0} x R™~! x J if x € fr, andv, := 0 otherwise. Set

—k
Ve = ph(Ve(Feg11)) o df,  KER

It follows from step (1), [1811), and(18.2) that o OF is a retraction fron%;{,f ontoéﬁf,zl/p)/? and that there
exists a universal coretractioy ,, satisfying

(w0 d})oFf, =0, 0<i<k-—1, (18.5)
(settingvy, . := 01if k € &\ Kr). We put

C

- ke
Ve = pnk( ’7&(5*911)) Vi, k0 K € R.
Then [3.Y) and(4]11) imply

Vi € LOFT BER-PITY e e L(Bl DI g/
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and
Vel + Vel e kER

From [I8.5) and Leibniz’ rule we thus infer

Vi © Vi = Oikid,  0<i <k (18.6)

(B)We set(7 s, X 2) := (7, xx) | Ugs fOr & € &. Thenitis verified thaf (s, %) ; £ € ﬁ} is a localization
system subordinate 1. We denote by

ww . ( ps k— l/p)/r) Bés—k—l/p)/?,d?(!],"/)

the ‘boundary retraction’ defined analogouslyﬁg’). Correspondingly;‘;p03 is the ‘boundary coretraction’.
We write £ix $ for the restriction ofsix o € Ax® to " and put

k

Cron = Pe(AXP). 0 0F o (kxp)*, KX € Rpx P,

andCj, . := 0 otherwise. Notg} » = p,, for k € &r. It follows from (5.15), [18.11), and(18.2) that

k—1
Crw¥ = eV + Y aexVewv, v € D(J,D(0X,, E)), (18.7)
=0

and [5.I6) implied|as k|| x—1,00 < cfor0 < ¢ <k —1andk € & Hence, usm@s/r (S k+0/T and Theo-
rem13.5, we find

Cre € LI BEUPDIT) Ok ull <o, kER (18.8)
(4) Foru € D(J, D)
k—1
#2050 = OF (meu Z( ) OFIm )0 (xe), k€ &, (18.9)

\7

settingdX v := 0 if supp(v) N T = (. Note
ﬁ>\+k+1/17+(m 1)/p®z ( 'p((f))* (851(7711114)) (18 10)
= Pn(AxB). 0 ) o (k)" (o /PO (k@) (M) = Ci(2f ),

since@ﬁ + = 0O4 . forx € fr. Similarly, using [(13.11) and (13.112) also,

ﬁi\‘+k+1/p+(m_l)/p®;,£("%D«;))* ((ak_jﬂ'n)a%(xnu))

= Okfj,n(’i*ﬂ'n)cj n(@;}, Z Okfj,lﬁ(K*WK)Oj,K(aENREfﬂ(ngu)'
REN(K)

From this, [I8.B), and (18.1.0) we get

o (A+k-+1/p,
‘Pfo: TP k) = Cronl(e o) + Y Arorzn(l ), (18.11)
REN(K)

where

Ap_1 7 = kilbi,%nci,n o Rz, bigw = — Z( )( )Ck o (BT ) O Qe
1=0
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It is obvious that
Ciw € L(BCIH, BC™(0X,, E)), |[Cell < c(n), kER 0<I<k, neN.
From this, [Z.B), [(13.33), and Theorém 13.5 we obtain
bz € BC™(0Xi, E), |bizellnoe €, reN(k), reR 0<i<k, neN
Hence, using Theoreln 13.5 once more, we get flom(18.8) amirat13.8

Ap_17n € LFT B(S R=UP/TY | A1zl < e EeNk), kek (18.12)

PR

(5) We defineC, by

Civ = (Ok,nvn + Z Ak—l,EnUE) ; v = (V).

REN(x) reR
Then we deduce fronh (18.8), (18]12), and the finite multipliof &
Cr € L(G(FT), bp(BL=r=1/p/y). (18.13)

Employing [18.5) and.(187) we infe¥y .. o vf, ., = id. Furthermore, recalling (13.9) and usigg = p,. for
K € fr,

Cin © Rigg = fp(Rx@). 0 0}, 0 (kxp)™ 0 T 0 (5 0). (FP)" (x)
= (Pn/pz)kT: 292.Cik = (pn/pz)kthgQ,E-
By this, (18.6), and(1817) it follow§'; , o Rz, 0 vj z = 0for 0 <i < k — 1. Thus, settingy{v := (v} . vx),
N5 € L(L(BSFYDITY 0 (FT)), Cionf=0duid, 0<i<k. (18.14)
From [18.11), [18.13), and the first claim of Theoifen 9.3 we ge

k 2Z,](D/\+k+1/p7u) oC}j o spg c E(SZ/F’Q, Bzgs—kq/p)/Tj(,\JrkJrl/pw(J7 ‘./))

(6) Givenv € B+ 1/P)/T,

On(go) =Y p MMV, (0, im (k) i)

i—1 .
_ Zp-E(AJerrm/P)@;;é (ﬁ,;(l%%(ﬁ)*ciwvm +pﬂf52(j)(az 77%)(&) ((K&D«p) ))
" j=0
i—1
z/,(>\+z+1/p,u)(j Un 4 Z AJrZer/io)@ u (Ax@)* ( ) i (1) Cp
7=0
Thus we infer from[(1816),[(18.7), and (18]14)
O, (WS viw) = 6; m/) AFi+1/Pott) w € B;S’k’l/p)/F, 0<i<k.

Now (I8.1%) and the first part of Theorém19.3 imply
(vEye .= Q/Jg 0q§ o sZjéx\-HcH/zw) c E(B]gs—k—1/p)/?7(>\+k+1/p7u)(J, f/), g;/ﬁ@)

andd;, (vk)e = §;.id for 0 < i < k. This proves assertion (i).
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(7) By invoking in the preceding argumentation the secoatéstent of Theorem 9.3 we see that assertion (jii)
is true.

(8) We denote by‘ﬁf:(m the initial trace operator of ordérfor Y,, = X,, x RT. It follows from step (1) that
0o () = Lp(By TP v (9] )
is a retraction and there exists a universal coretraction
(05_0) : Gu(By TPy S 0,(FT),  w i ((0Fg,) W)

such that
& _yo (8 )¢ =06,1id, 0<j<E (18.15)
(9) We deduce froni(915) and step (1)
szo_’,{ o cpgﬁ cpp+“(k+1/p) 0dk K€ R (18.16)
Hence

3?:@ o 905 _ spg-l-lt(k-f-l/m o af:o
From this and Theorems 7.1 dnd]9.3 we infer
35:0 — 1/,ngu(kJrl/zﬂ) o 3?:() ° %f c E(SZ/F’@(RJF, V), B;*T(kJrl/p)-,Hu(kH/p) (V))
(10) Set
(90)® = 95 0 (B=g)” 0 g THIHI/P),
Then, similarly as above,
(Vfio)® € L(By " EHHPATRERL/D) () 3o/T0(RT, V).
For0 < j < k we get from[(9.p) and(18.15)

8g 0(’Yt 0) w =0/ O(Z%m O OH) O‘P;—;#(kﬂ/p) )
= SO 0 0] g0 (00,0

= 5.k2/])\+M(J+1/P) o (pzj:bu(kﬂ/p)w = §jpw

s—r(k+1/p), pu(k+1/p)

forw € D. SinceD is dense inB, , assertion (i) follows. O

SupposeV! is a compacin-dimensional submanifold dR"™. In this setting and ik = € 2N* assertions
(i) and (ii) reduce to the trace theorems for anisotropicd®bspaces due to P. Grisvafd[14]; also see O.A.
Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural'ceVal[30daR. Denk, M. Hieber, and J. Priss [11]. (In
the latter paper the authors consider vector-valued spag@ée much simpler Hilbertian cage= 2 has been
presented by J.-L. Lions and E. Magenesin [31, Chapter 4id®e?] following the approach by P. Grisvafd[15].

19 Spaces With Vanishing Traces

In this section we characteri&i/ﬁ@ and&f,/F’ﬁ(j, V') by the vanishing of certain traces. In fact, we need to

characterize those subspace%éff’?’@(J, V') whose traces vanish dneven ifI" # 9M. More precisely, we
denote by

3;/?03 = o;,/?’“j(J, V) the closure oD (J, D(M\T,V)) in §3/™%(J, V). (19.1)

Note that>/7y; = §3/™“. By Theoreni8(ii) we know already
@Z/m =3/, s <1/p, (19.2)
and, trivially, &3/ ™% = Z/m if OM =0 andJ = R. The following theorem concerns the case 1/p and

(T, J) # (0. R).
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Theorem 19.1
() fT#£0andk+1/p<s<k+1+1/pwithk € N, then

(i) Assume({+1/p) <s<r({+1+1/p)with? € N. Then
gs/rw((o oo ) _ {u c gS/T M(RJ’_ V) 8f:ou = ()7 j < g}_ (19'4)

Suppose < r/pwiths > r(—1+1/p) if ' # 0. Then&s/w((o,oo),v) = 3/ (RY, V).

Proof. (1) Let the assumptions of (i) be satisfied. Sifi;és continuous and vanishes on the dense subset
D(J,D(M\T)) of §S/T’“ it follows that the latter space is contained in the one orritjtet side of [19.B).

Conversely, let € §3/ ™ satisfydi,u = 0 for i < k. Supposer € D(M UT,[0,1]) ande = 1 in a neigh-

borhood ofl'. Thenv := au € §&/™° anddi v = 0 for i < k. We infer from [I8Y), [(I819), and{I8110) that
Vi © 8{(<p§7mv) =0fori <k andkxp € Axd. Sincey, = 0 for x ¢ Ar it follows from [4, Theorem 4.7.1]

thate$ v e §o/T for kg € Rrxd. If k € 8\ Ar, theny? v belongs togs/r as well. Moreovery vanishes
neardM\T andgy/, = 5/ for k € &\ Rons. Hence we deduce from Theor&ml9.3 thgt € 4, 35”). Now
part (i) of that theorem guarantees= ¢/ (¢5v) € 35” “_ Consequently, € Ss/’” *“. This proves claim (i).

(2) AssumeJ = RT andr(¢ + 1/p) < s < r({ + 1+ 1/p). As above, we see th@ﬁ/F’a((O, 00), V) is con-
tained in the space on the right side[0f (19.4).

Letu e §/"7(R*, V) satisfyd]_yu = 0 for 0 < j < £. We get from [I8.16) thab]_, ,.(¢% . u) = 0 for
j<[landkxyp € AxD.

Supposes € 8\ Ronr. Then [4, Theorem 4.7.1] implies; u € &,S/F(XN x (0,00), E). If k € Ronr, then
we obtain the latter result by extending := cpgy,{u first fromH™ x RT toR™ x RT (as in Section 4.1 of[4]),
then applying([4, Theorem 4.7.1], and restricting aftedganH™ x R*. From this and Theoremis 9.3 dnd 17.1

we obtain . )
eq (P5u) € 6,(F/T(X x R, E)). (19.5)

Thus, using these theorems once more and the fact thdt. ) (7 commutes with)<', we find
u=rg oef o 1/};;; o <p§u =rg o 1/)5 oeg o <p§u € SZ/F’Q((O, 00), V). (19.6)

This implies the first part of claim (ii).

Assumes < r/p. If OM = 0, thenD((0, 00), M) = D(J, M). Hence&s/””((o, 00), V) = 57O (R, V).
Thus, by [T92),35/ ™ ((0, o0), V) = 35/7F(R+, V) for s < 1/p anddM = . This shows that in either case
s >r(—1+1/p). Consequently, as above, we ded@géF(XK x J,E) = S/T from [4, Theorem 4.7.1(ii)].

Now the second part of assertion (ii) is implied by (19.5) @10). O
20 Boundary Operators

Throughout this section we suppdses ().
Fork € N we consider differential operators drof the form

E

—1

k
Z bz(ﬁ) @] 8:1, bz(ﬁ) = bij . ﬁj,
=0 7

<
Il
=]

whereb;; - Vo= (u— byj - Wu), of course. Thuﬁi(ﬁ) is a tangential differential operator of order at most
k—i.
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In fact, we consider systems of such operators. Thus we a&ssum

° k,TiGNWith’l’o<"'<Tk,
e o;,,7; € Nand)\;, € R, (20.1)
e G; = (G4, hg,, Dg,) is afully uniformly regular vector bundle ovér

for 0 <7 < k. For abbreviation,
vi = (13,04, Tis Ai), 0<i<k, wvi:=o,...,V).

Then we defindoundary operatorsnI" of order at most; by
T ) Ti—] .
Bl(bz) = ZBij (b”) o 651, Bij (blj) = Z bijj . V",
j=0 =0

whereb; := (b, ..., bi,) andb;; := (bsj.0,...,bijr,—;) With b;; » being time—dependeﬁom(l/f/, G,)-valued
tensor fields of". To be more precise, we introduce data spaces for-; by

ri—j
B3, (T, G;) = B3, (T, Giyviyp) = H Béz—m)/?,(h-ﬁ-m—j,u) (R, Tgir;Jrl (1—\’ Hom(W, Gi)))
£=0

with general pointb;;), and
B: (L, Gy) = B (0, Gi v, p) o= [ [ B850, G))
j=0

whose general point is;.

Remarks 20.1 (a) Forthe ease of writing we assume that these data spacediaegdmn the whole lin®.
In the following treatment, when studying function space®d or (0, o) it suffices, of course, to consider data
defined oriR™* only. It follows from Theoreni 1712 that this is no restrictiof generality to assume that the data
are given on all oRR.

(b) It should be observed that everything which follows belowains valid if we replace the data space
B/ mitrimi) py pE/T T3 it 5 > s — 7, — 1/p. The selected choice has the advantage that
B (T, G;) is independent gp. O

Henceforth,I € { J,(0,00) }. Givenb; € B;(T',G,), it follows from Theoreni 1612, by taking also Theo-
rem[19.1(ii) into consideration if = (0, co), that

Bi;(b;) € £(Bz(f_j_1/p)/F’(A+j+l/p’“) (I, f/)’B}()s—n-—1/p)/F,(/\+Ai+m+1/p,u) (I’Tgi (F,Gi))). (20.2)
Hence, by Theorem 18.1,
Bz(b'L) c ﬁ(S;/F,Q(I’ V), B}()Sf’r‘i*1/17)/?,()\‘%)\14’7”1’4’1/1),#) (I, T:;i (F, Gz))) (20.3)

Finally, we set7 := Gy & - - - & Gy,

k
B, G) =B (T, G,v,p) = [ [ BT, Gy)
1=0
and
B(b) = (Bo(bo), cee ,Bk(bk)), b= (bo, ey bk) S %S(F, G)

The boundary operatds; (b;) is normalif b;,., := b, o IS A;-uniformly contraction surjective, anl(b) is nor-
malif eachB;(b;), 0 < i < k, has this property. Then
%S

norm

T,G) := {be B*(I',G) ; B(b)is normal}.
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It should be observed th&t# 0M, in general. This will allow us to consider boundary valuelpems where
the order of the boundary operators may be different onriffeparts obM .

Lastly, we introduce the ‘boundary space’

k
3”]3:;/?@((:) — 3”]3;/?@(@7 v, ) = HBZ()S*Ti*1/p)/F=(>\+>\i+Ti+1/p-,#) (L Tgi (T, Gi))-
1=0

The following lemma shows that it is an image space for thenbdauy operators under consideration.
Lemma 20.2 If s > r; + 1/p andb € B*(I", (), then

B(b) € L(F/™9(1,V), 0135 74(Q)).

The map3(-) = (b — B(b)) is linear and continuous, an®;

norm

(T, G) isopenin®B*(T, G).

Proof. The first assertion is immediate frdm (20.3). The sdame is obvious, and the last one is a conse-
quence of Propositidn 14.8. O

Theorem 20.3 Suppose assumptid@0.1)applies. Lets > r,, + 1/pandb € B (T, G). ThenB(b) is a

norm

retraction frome/F’Q(J, V) ontoapXJSf/F’@(G). There exists an analytic map
B() B (T, G) = L0y "2(G), 579 (,V))
such that

(i) B€(b) is a coretraction for3(b),
(i) 0% 0Bb)=0for0<j<s—1/pwithj ¢ {ro,...,m}.

If J =R*, thenB¢(b)g € SZ/F’Q((O, 00), V') whenevey € 8”(0,00)8;/;’&(6?).
Proof. (1) We deduce from Theorém 14.9 fox ¢ < k the existence of an analytic ma}j(-) from

B /M (it T (T Hom (W, G;)))

00,s8urj ) T Tito
into . ) .
L(BZ()s—m—1/P)/T,(>\+>\i+m+1/z7,u) (J’ T:;'L T, Gz)) : B]gs—n-—1/10)/T,(>\-|-n--|-l/;u,u)(J7 V))
such thatd$(a) is a right inverse ford; (a) := (u +— a - u).
(2) Supposéd € B (I',G). For0 < i < k we set

norm

C,,(b;) == — i AS(bi)Bij(bij) 0 5.
=0
It follows from (20.2), step (1), and Theorém 18.1 that
Cri(by) € L(F/TE(J, V), BEi=Un)/T Ot l/mw) (7)) (20.4)
and the map; — C,.,(b;) is analytic.

Let N := [s — 1/p]- and define

N
C=(Co,...,Cn) € E(&;/W(J, V), [[ B/ m O f/))
=0

by settingC, :=0for0 < ¢ < Nwith ¢ ¢ {ro,...,ry}.
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(3) Assumey = (g, .- ., g) € Orx 33" (G). Define

N
h=(ho,...,hx) € HB}()sflfl/P)/F.,(AJrlJrl/P-#)(J’ f/)
=0

by hr, := A§(bir,)g; for 0 < i < k, andh, := 0 otherwise.
By Theorenf I8]1 there exists fgre {0, ..., N} a universal coretractiofy?, )¢ for 97, satisfying
9t o (v1)¢ = 69id, 0<(<j. (20.5)

We putug := (79)%hg € SZ/F’Q(J, V). Suppose < j < N andug,u,...,u;—1 have already been defined.
Set
uj = w1+ (%) (hy + Cjuj1 — Ouj1). (20.6)

This definesug, uy,...,uxy € &Z/F’@(J, V). It follows from (20.5) and[(2016)

8£uj =hj +Cjuj_1, 0< 7 <N, (20.7)
and
8fluj:8fluj,1, 0<t<j—1, 1<j<N
The latter relation implies
3fluj:8flun, 0<l<j<n<N.
Hence, sinc€; involvesd?, ..., 87! only, we deduce fron(20.7)

Oy = hj+Cju,, 0<j<n<N.
If j =r;, then we apply4, (b;,,) to this equation to find
Biun, = gi, r, <n<N. (20.8)

For0 <i < kwesetG’ := Gy @ ---® G; andv’ := (v, ..., ;) aswellah’ := (by, ..., b;). Thenit follows

from (20.3) that

B'(b') := (Bo(bo), - .., Bi(b:)) € L(TY™(J, V), 00w s (G V', 1) (20.9)
forr; +1/p <t < s. We define3(b") by

B(b%) (g0, - - -+ gi) = Up,.

It follows from (20.4), [20.6), and Theordm 1B.1 that

B(b') € L(OrwsY (G v ), FYP(ILV)),  rmi+l/p<t<s. (20.10)
Furthermore [(20]18) and the definition/ofmply

Ba(ba)B(1")(go, - - - 9i) = Ba(ba)B(6) (g0, - - -5 95) = Gars 0<a<i<j<k, (20.11)

anddy, B(b') = 0for0 < j <t —1/pwith j ¢ {ro,..., 7% }.

Now we setB¢(b) := B*¢(b). Then [20.D) and(20.11) show that it is a right inverse3¢b). It is a conse-
quence of step (2) an (20.6) that(-) is analytic. Due to Theorem 18.1 it is easy to see that theakssstrtion
applies as well. O

There is a similar, though much simpler result concerniegéixtension of initial conditions’.
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Theorem 20.4 Suppos® < jo < --- < j, ands > r(j, + 1/p). SetC := (82,,...,d~,) and

¢
B;*T(jfrl/p)-wru(jﬁl/p)(V) . HB;*T(ji+1/p)y>\+u(ji+1/p)(V)' (20.12)

=0

ThenC is a retraction fromg;/ ™ (R*, V) onto By~ " TH/P)ATuGet1/P) (1) and there exists a coretractiatt
satisfyingd}_, o Cc =0for0 < j < s/r—1/pwith j & {jo,...,je}

Proof. Theoreri 18)1(ii) guarantees thids a continuous linear map fro@‘i/F’@(Rﬂ V) into (20.12). Due
to that theorem the assertion follows from step (3) of th@pod Theoreni 2013 using the following modifications:
hj, :=g;for0 <4< /and

Uj = w1 + (ngo)c(hj — 8g:0uj,1)
with u_q :=0. O
Now we supposé # () andJ = RT. We writeY := I" x R™ for thelateral boundary ovei” and recall that
My := M x {0} is the initial boundary. Theix N My =T x {0} =: T is thecorner manifold ovel’. We

suppose
e assumption(2011) is satisfied

20.13
e (eNands > max{r, +1/p, r({+1/p)}. ( )

—) -
We setC := 0!_ := (0%, ...,d,). Then, by Theoref 20.4; is a retraction frong;/™“ (R*+, V) onto

¢
B;fr(Hl/p)«\Jru(Hl/p) (V) := H B;*T(jJrl/p)«\Jru(jJrl/p)(V)_

J=0

By Theoreni20133(b) is for b € B2, (T, G) a retraction frong:/ " (R+, V) ontods 3/ " (G). We put

norm

Osomy /" (G) = 05T}/ 9 (G) x By TERDATHERID (v)

andB(-) := (B(-),C). Then

—

B() : %florm

(T, G) = L(F/™RT, V), 0sum 35 ™9 (@))

is the restriction of a continuous linear map to the openetiB$,, . (I', G) of B*(I", ), hence analytic.

However,3(b) is not surjective, in general. Indeed, suppose
0<i<k, 0<j<{ s>ri+1/p+r(j+1/p)=:r.
Then we deduce froni (20.3) and Theofem 11.8.1(ii)
9o 0 Bi(b) € L(FL/TC(RT, V), By~ MAETG (T4, Gy))).

Furthermore9? (B;(b)u) = BY) (b)u, where

J .
€] _ J (aJ—ap. e
BY (b)u_g(a)&(af b;) 0 9°.

Theoreni I6]1 implies

8j"‘bi S %f(F,Gz, (Ti +T(] - Oé),O'i,Ti,/\i +/L(j - OL)),/L).
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From this and[(20]3) we infer thﬂgj)(b) possesses the same mapping propertiés as3;(b). Set

J

BY ()7 = BY (0,007 := > (! ) B0 bJvar 1= (o, 05)

a=0

with v, € By (@ H/PATReT/D) 17y Thens!)(0) is a continuous linear map

J
H B;*T(aJrl/P)aAJr#(aJrl/P)(V) s B;*Tijv)”r)\frm (ng (To, Gz))

a=0

andb — B§j>(0) is the restriction of a linear and continuous mapd, ..., (T', G). Furthermore,
- D (g "o
0o (Bi(b)u) = B, (0)0_gu,  we /R, V). (20.14)

We denote fob € B*

norm

(I', G) by

81‘%,‘217)3;”@((?) the set of all(g, h) € dsunr, 8577 (G) satisfying thecompatibility conditions
ag:ogi = ng)(o)ﬁj

for0<i<kand0<j<{lwithr,+1/p+r(j+1/p) <s.

s/T,@

The linearity and continuity of?_ anngj)(O) guarantee thaﬁl‘g‘ib) 2 (@) is a closed linear subspace of

s/7,@

dsun, 83 "¢ (G). By the preceding considerations it contains the rangé(bj. The following theorem shows

that, in factdgs /79(@) = im(B), providedb € B3 (T, G).

Theorem 20.5 Let assumptioif20.13)be satisfied and suppose
s¢{ri+1/p+r(+1/p);0<i<k 0<j<l}.

(T, G) aretraction from&f,/F’Q(Rﬂ V) onto 0% S/F’Q(G). There exists an ana-

ThenB(b) is for b € B 5b)S7

norm
lytic map

—

BE() B30T, G) = L(sum, 35/ 74 (G), 85/ (RY, V) (20.15)

such that3(b) | 0% 5/7%(@) is a coretraction for3(b).

Proof. By the preceding remarks it suffices to constigfdt) satisfying [20.15) such that its restriction to

8‘;([,) Z/F’Q(G) is a right inverse foi3(b).

By Theoreni 2013 there exists an analytic map
Be(-) : B

norm

(T, G) = L(993;/™°(G), §/ " (RT, V)
such that
CAS aFX(O,oo)gZ/F’GJ(G) = B(bjve 55/“7((07 ), V) (20.16)

forb € B?

norm

T, G).
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LetC® be a coretraction fof. Its existence is guaranteed by Theofem20.4. Giyeh) € 8guMOSZ/F’°3(G)
andb € B, .. (T, G), set

norm

BE(b)(g, h) := C°h + B°(b) (g — B(b)C°h).
ThenB<(-) satisfies[(20.15) and is analytic. Furthermore,

B(b)(B(b)(g,h)) = g. (20.17)

(T, G) and write5 = B(b) andB° = B°(b). For(g,h) € 0% S/F’w(G) we set

We fix b € B3 5(b)S7

vi=g—BCh € 9s3:/ 7% (G).
Supposé < i < k. Then
v; = gi — Blcch c B}()sfri71/p)/F,()\+)\i+ri+1/p,,u) (R+, ‘/1)7

whereV; := T7:(G;). Letj; € {0,...,(} be the largest integer satisfying+ 1/p + 7(j; + 1/p) < s. Then, by
(20.13),

Oi_gvi = 0{_o9i — O}_o(BiC°h) = 8{_og: — B;" (0)0]_C°h = 0]_o9; — B;”’ (0)h; = 0
for0 < j < j;. Hencer(j; + 1/p) < s —r; — 1/p < r(j; + 1 + 1/p) and Theorern 19 1(ii) imply
v; € Bz()sfn71/?)/F,(A+Ai+n+l/p”u) ((O, OO), ‘/z) (2018)

If there is no sucly;, thens — r; — 1/p < r/p. In this case that theorem guarantdes (20.18) also. Thigssho
thatv € 8”(0700)82/;’&(6?). HenceCBv = 0 by (20.18) and Theorem 19.1(ii) and sinee- r(j + 1/p) for
0 < j < £. Consequently¢ (B¢(b)(g,h)) = h for (g,h) € 8‘;;(1)) 5/79(@). Together with[[Z0.7) this proves
the theorem. O

Remark 20.6 Let assumptior{(2011) be satisfied. Suppose
ro+1/p<s<r/p, s¢{ri+1/p; 1<i<k}.

Then there is a lateral boundary operalforonly, since there is no initial trace. Thus this case is ceddyy

Theoreni 2013.
Assume
rlp<s<ro+1/p, s¢&{r(i+1/p);1<j<t}.
Then there is no lateral trace operator and we are in a situtgiwhich Theorei 20.4 applies.

Lastly, if =1 + 1/p < s < min{r¢ + 1/p, r/p}, then there is neither a lateral nor an initial trace operatol
5/ TCRY, V) = &/ TR, V). O

The theorems on the ‘extension of boundary values’ provetthigrsection are of great importance in the
theory of nonhomogeneous time-dependent boundary vahldgms. The only results of this type available
in the literature concern the case whéreis anm-dimensional compact submanifold Bf". In this situation
an anisotropic extension theorem involving compatibitignditions has been proved by P. Grisvard_in [14] for
the case where € rN*, and in [15] ifp = 2 (also see J.-L. Lions and E. Magengs|[31, Chapter 4, Section 2
for the Hilbertian case) by means of functional analytieghniques. Ifs = » = 2, then corresponding results
are derived in O.A. Ladyzhenskaya, V.A. Solonnikov, and NJxal'ceva [30] by studying heat potentials. In
contrast to our work, in all these publications the excewtiovalues; + 1/p + r(j + 1/p) for s are considered
also.
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21 Interpolation

In Section[8 the anisotropic spac@éﬁw have been defined for > 0 by interpolating between anisotropic
Sobolev spaces. From this we could derive some interpolatioperties by means of reiteration theorems. How-
ever, such results would be restricted to spaces with ongh@whme value of. In this section we prove general
interpolation theorems for anisotropic Bessel potenBakov, and Besov-Holder spaces involving different val-
ues ofs and\.

Reminding thaty = (1 — 0)&y 4 0&; for &y, & € Rand0 < 6 < 1, we setdy := (\g, 1) for Mg, A1 € R. We
also recall that-, ), = [, -], if § = H,and(-,-), = (-, ), if § = B.

Theorem 21.1 Suppose-oco < g < 81 < 00, Ag, A1 € R, and0 < 0 < 1.

(i) Assumesy > —1+1/pif M # (). Then

(/70 G/ M) g = Fpo 100 = [Fao/ T o /h g (21.1)

and
(H;“/F’QO,HSI/F’QI)Q,;; = B;e/ﬁﬁe' (21.2)

(i) If sg > 0,then

B3/ 70, B3/Tn]y = B/

and

[bga/ %0, b2/ = pge/ S,

Proof. (1) LetX be a Banach space add> 0. ThendX := (X, |-|sx), where|z|sx = ||0~ x| x for
x € X. Thusd X is the image space df under the map — dx so that this function is an isometric isomorphism
from X ontod X.

AssumeX s is a Banach space angd > 0 for eachs in a countable index s& Thenwe sed X := [[; 5 X5
anddz := (dgzg). Henced := (x — dz) € Lis(X,6X).

Let (X, X1) be a pair of Banach spaces such tiatis continuously injected in some locally convex space
for j = 0,1, thatis,(Xo, X1) is an interpolation couple. Suppo§e-}, € {[, . (-, ')9,;)}- Then interpolation
theory guarantees

{60X0,01 X1} o = 657967 { X0, X1}, 80,01 > 0, (21.3)
(e.g., [50, formula (7) in Section 3.4.1]).

(2) LetJ =R ands > —1+1/pif OM # 0. Put{ := X — Xo. Theng$ = pleso andyy . = p tys,

imply, due to Theorem 913, that the diagram

/7@ id /T
P P

s/T,@

is commuting. Hencebf0 is for eachs a retraction fromfp(p—fsf,/?) ontog, ", andcp;?o is a coretraction.
(3) Leté := \; — ). By Theoreni 9.8 and the preceding step each of the maps

U5 Lp(F ) = T T g L (p ) = F
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is a retraction, an(,iv;?0 is a coretraction. Thus, by interpolation,

,L/Jp&?o: {gp(%'zs)o/F)’gp(pffszl/F)}e_> {S'IS)O/F@O,S’ZI/F'QI}Q (21'4)

is a retraction, ang is a coretraction. Froni [50, Theorem 1.18.1] dnd (R1.3) erin

{6852, (P55 )}y = Lo (0™ "S4BT 85 he). (21.5)

(Recall the definition of E, F), after [9.1).) Suppos@M = (). Then [4, formulas (3.3.12) and (3.4.1) and
Theorem 3.7.1(iv)] imply

(315)?4’7‘, S}S}}é’?‘)e - 8’59/? (HS()/’F H;}N/F)e,p - BIS)?N/’F - [BS()/'F BSI/F]Q. (216)

P,k J 2L P,k TP K

This is due to the fact that, on account [of [4, Corollary 3.8l Theorem 3.7.1(i)], the definition Gﬁ/,f for
s < 0 used in that publication coincides with the definition by lityamployed in this paper.

If M +# 0, then it follows froms > —1 + 1/p and Theorem 4.7.1(ii) of[4] by the same arguments fhat}21.6
holds in this case as well.

Thus, in either case, due {C(21.4=[2146)° is a retraction front,,(p~?¢F:*/") onto AR P
and onto[&Zo/F’%, fg]/wl]g, and cpp@f) is a coretraction. On the other hand, we infer from step (2ftirgy
€ =0(\ — o), thaty is a retraction fron?,,(p~¢F5*/") onto 350/™% and @4 is a coretraction. This
implies the validity of [21.11) if/ = R. The proof for[[21.R) is similar.

(4) AssumeJ = R*. In this case we get assertion (i) by Theofem117.1(i) in coclion with what has just
been proved.

(5) Set¢ = A\, — A\o. Then as above, we infer from TheorEm 12.8 tht is a retraction fron,. (B%/™)

onto B/ ™% and fromlo. (p € BSL/T) onto B2/ ™%, andy? is a coretraction. Hence
V¢ [loo(BRYT) oo (p~ BEY/T)] , — (BT, BT (21.7)

is a retraction, angh%? is a coretraction.

We use the notation of Sections| 11 12. Then, seffil§(M x J, p~<E) := [[,. BL"(M x J, p€E),
it is not difficult to verify (cf. Lemmd411.12) that

f € Lis(BLT (M x J, loo(p™¢E)), bos(p~ ¢ BLT)) (21.8)
for s > 0. Hence we deduce frofi{21.7) that the miy = /%0 o f
(BT (M x J, b (E)), BT (M x J, los(p~SBEL"))], — [B/ ™50, B3/™51], (21.9)

is a retraction, an@“° is a coretraction.
(6) SetRy := { K € R; p. < 1}andR; := R\ KRy. Let X, be a Banach space ferec fandsetX :=[], X,

andX; == [, cq, X» as well astl (X)) := (oo (X;) for j =0, 1. Thenloo(X) = £ (X) @ £5,(X). Conse-
quently,

BT(M x J, loo(p™"E)) = BT (M x J, 0% (p™"E)) @ B/" (M x J, (% (p~"E)) (21.10)
forn € {0,&}.

(7) PutYy := B (M x J, 2 (p~<E)) andY; := B (M x J, (% (E)). Itfollows from p,, < 1forx € &

thatY; — Y;. Define a linear operatot, in Y, with domainY; by Agu = p~¢u. ThenA, is closed— A, con-
tains the sectof, , in its resolvent set and satisfigé\ + Ao) || z(v,) < ¢/|A| for A € Sy ,4. Furthermore,

[(=40)% | c(ve) < sup p*"°* <1, Rez <0.
KERo
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Hence Seeley’s theorem, alluded to in the proof of Thedred, ihplies

[B/7(M x J, 6%, (E)), B (M x J, égo(p_gE))]e = [Yo,Y1]1-9

) 21.11
= B/"(M x J,0% (p~ % E)), ( )

due to the fact that the space on the right side equals, efaregjuivalent normsiom(A}J“’) equipped with the
graph norm.

(8) SetZ, := BL" (M x J, (% (E)) andZ, := BL" (M x J,£% (p~¢E)). Thenp, > 1 for x € & implies
Z, — Zy. Define a linear map!, in Z, with domainZ; by A;u := pSu. ThenA, is closed and satisfies
[(A+ A1) (z0) < ¢/|A| for X € S, /4 @as well as

I(=A1)"lle(zo) < sup PP <1, Rez <0,
KERQ

Thus, using Seeley’s theorem once more,
(BT (M x J, 03, (E)), B2 (M x J,t% (p~*E))], = BL" (M x J, £, (p" " E)). (21.12)
Now we deduce fron(21.10J=(21]12) that
[BT(M x J lso(E)), BL" (M x J, los(p™*E))], = BL" (M x J, los(p~ " E)).
Thus [21.9) shows that
UL 0 BT (M x J, boo(p~ " E)) — [B32/™%0 B31/T41],
is a retraction, an@*_ is a coretraction. HencE{12]23) and (21.8) imply that

U2 : lac(p BT — (BT B3/

o0
is a retraction, ang“_is a coretraction. From this and the observation at the loégirof step (5) we derive that
the first part of the second statement is true.
(9) By replacind in the preceding considerations by, .,,;s and invoking Theoreffn 12,10 instead of Theo-
rem[12.8 we see that the second part of claim (ii) is also true. O

For completeness and complementing the resultslof [5] wieidiecthe following interpolation theorem for
isotropic Besov-Holder spaces.

Remark 21.2 Supposé < sg < s1, Ag, A1 € R, and0 < # < 1. Then

S0, S1,A . DSe,A S0, S1,A 1,80,
[BX70, B o = B3, [b3270, b3 Jo = 037

3

Proof. This follows from the above proof by relying on the responding isotropic results of Sectidns 11
and12. O

Throughout the rest of this section we suppose
e I A0
e assumption(2011) is satisfied
e 5>rp+1/pandbe B3 . .
e B=(By,...,Br) :=B(b).

(21.13)

Letl € {J,(0,00)}. For—1+1/p<s<swiths ¢ {k;+1/p; 0<i <k} weset
3;,/2"3(1) = {uwe /1) =F/"(I,V); Bu=0forr; <s—1/p}.

Thusg:/ 5 (1) = §/"“(1) if s < ko + 1/p.
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Supposeb is independent of. Then we can define stationary isotropic spaces with vamgshbundary
conditions analogously, that is,

pB-_{ueg“ (V)5 Biuzoforri<s—1/p}.
Theorem 21.3 Let (ZI.I3)be satisfied. Supposel + 1/p < so < s1 < sand0 < 0 < 1 satisfy
s0,51,89 ¢ {mi+1/p; 0<i <k}

and)g, A\ € R. Then

(88 (1,887 (D) = 8™ (D) = 8357 (D. 8,157 (1] (21.14)

)

and /7 /7 /7@
(Hy" (0. H D), , = B 1),

If bisindependent af € R, then

A A : Ao A A
(B8 8o e = 805 = [858, 805 o
and
50,0 51,1 . DSe,Ne
(Hp B Hp B )9717 - Bp,B :
Proof. Theorermh 2013 guarantees the existence of a colietract

B € L(OrxiFy ™0 (G),8/7°(I)),  m+1/p<s<s.

HenceB°B ¢ E( s/ “(I)) is a projection. Note thaB“B depends orb and the universal extension opera-
tors [20.5) only. Thus we do not need to indicate the paraete\, andp with r;, + 1/p < s < § which

characterize the doma{}‘}i/F’ﬁ(I).

Taking this into account and using the notation of the prdofteeoren{20.B we sek, := SZZ/F’Q" (I) for
¢ €{0,1,6} and, puttingry. 1 := oo,

idy, s¢ <ro+1/p,
P, = (21.15)

idg — BB, ri+1/p<s;<rig+1/p.

Since X, — D(.J, D)’ the sum spac&, + X, is well-defined, that is(X,, X,) is an interpolation couple. It
follows from (20:9)-[(20.111) thal, € L£(Xo + X;) and P, € L(X,) with Py| X, = P, for £ € {0,1,6}.
Theoren21]1 guarante€X,, X)p = Xy. Theoreni 2013, definitiod (2ZT115), arid [2, Lemma 1.2.3.13da
see [4, Lemma 4.1.5]) imply tha®, is a projection ontaX, 5 := S;’f{;’“’f (I) for £ € {0,1,0}. Thusitis a
retraction fromX, onto X, s possessing the natural injectiofy 5 — X, as a coretraction. Consequenihy, is
a retraction fromXy = (X, X1)g onto (Xo g, X1,8)¢. From this we get Xy 5, X1.8)s = Xo 5. This proves
the first equivalence of (Z1.114). The remaining statememtthe anisotropic case follow analogously.
Due to the observation at the end of Seclioh 14 it is clearttiemibove proof applies to the isotropic case as
well. O

There is a similar result concerning interpolations of ggawith vanishing initial conditions. For this we

assume . ' . . . .
b £1]01'--7366NW|th]0<]1<...<]€'

o C:=(0,...,0-,).
Then, givens > —1 + 1/p, we put

(21.16)

S:/gw(RJr —{ue&S/T“(RJF) i gu=0if r(ji +1/p) < s }.
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Theorem 21.4 Let (21.186)be satisfied. Supposel + 1/p < so < s1 andd € (0, 1) satisfy
so,81,80 € {7(ji +1/p); 0<i <€}
and)g, \; € R. Then

(SSOC/"';WO (RJ’»)aS‘STC/’,‘)“H (RJr)) - S;?C/T’wg (RJr) - [SSO/T;WO (R‘F),S;Tc/ﬂwl (R+)]9

P, P 0 p,C
and
(Hy ™2 (RY), Hy " (RY)) = Byid ™ (R7).
Proof. Thisis shown by the preceding proof using Thedrer RGtead of Theorem 20.3. O

Now we suppose, in addition tb (21113), thiat N ands > r(¢ + 1/p). Then we set
S:{g’w ={ue S;/F’@(RJF) s Biu=0,0_qu=0ifr; +1/p+r(i+1/p) <s}
if max{ro+1/p, r/p} <s<sands¢ {r;+1/p+r(j+1/p); 0<i<k, 0<j<(},

ST | S [TW
FET =8 (RY)

ifro+1/p<s<r/pands¢ {r;+1/p; 1<i<k},

S/TG | s /TW +
Sp,[;" '_gp.,f—:[:(R )

ifr/p<s<ro+1l/pwiths¢ {r(j+1/p); 1<j<(}, and

if —1+1/p < s <max{ro+1/p, r/p}.

The following theorem is analogue to Theorem 21.3. It déssrithe interpolation behavior of anisotropic
function spaces with vanishing boundary and initial candsg.

Theorem 21.5 Let assumptiorZ1.13) be satisfied. Also assunfes N and r(¢ + 1/p) < 5. Suppose
—14+1/p<sp<s; <sand0 < 6§ < 1 satisfy

and)g, A\ € R. Then

50/T,@0 ~81/T,@01\ - ~80/T,@00 - [~w50/T,00 ~s1/T,@1
(gp-,g ’gpﬁ Jo = gp-,g o [gp-,g ’gp-,g Jo

and /76 /7 /76
So/T,wWo S1/7r,W1 - Sg/T,Wo
(H , Hp,é ) Bp,é .

B 0.p —

Proof. This follows by the arguments of the proof of Theofel3zby invoking Theorerh 20.5 and Re-
mark20.6. O

The preceding interpolation theorems combined with theattarization statements of Sectiod 19 lead to
interpolation results for spaces with vanishing traces.dbbreviationg, ' (1) = S;{lf’“(l, V), etc.

Theorem 21.6 Suppose-1+ 1/p < sp < $1 <00, 0 <8 < 1,andAg, A1 € R.

(i) If s0,s1,50 ¢ N+ 1/p, then

o o o

(FoLT (), FLN D)), = ST (T) = [0 (), S D],
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and

(i) Assumesg, s1,50 ¢ 7(N+1/p). Then
(83/790(0,00), §H/7 (0, 00)) 5 = §3/ 79 (0, 00) = [§3/79 (0, 00), F/ 7 (0, 00)]

and

(HEO/F,JJO (0, 0), Hgl/ﬁ@l (0, oo)) - B;e/?,d?e (0,00).

0,p

(i) Supposeo, s1,s0 ¢ N+ 1/pwith sg, 51,59 ¢ r(N+1/p) if J =R*. Then
(%;0/F7Q0’§21/F7‘—31)0 - @;9/?,ﬁ9 - [éff)o/?,ﬁo7§;1/?ﬁl]0

and
(HSO/T7LU03H;1/T,W])9,[) - B;e/ﬂwe'

Proof. To prove (i) we can assume > 1/p, due to Theorerf 813(ii). Hende:= [s; — 1/p]_ > 0. Set
B:=(0%,...,0F)onT x J. Then Theoren 1911(i) guaranteéﬁ#’“j(J) = g;{é““j(J) for j € {0,1,6}.
Hence assertion (i) is a consequence of Thedrem 21.1. Thespfor claims (i) and (iii) follow analogous
lines. O

Since, in[8.5), the negative order spaces have been defjriedility we can now prove interpolation theorems
for these spaces as well.

Theorem 21.7 Suppose-co < so < s1 < 1/p, 0 < 0 < 1,and)\g, A1 € R. Assumey, s1,s9 ¢ — N+ 1/p
and, if / = R*, alsosy, s1,s9 ¢ 7(—N + 1/p). Then

(S’ZS)O/F7QO’§;1/F7Q1)0 - SZS)Q/F-QQ - [g;o/F=@o7g;1/F=@1]0

and
(H;o/ﬁ@o’H;l/?,%)e,p - B;e/?@e.

Proof. This follows easily from Theorelm 21..6(iii), the ditproperties of(-, -),,, and Theorerh 8]3(ii) and
Corollary[8.4ii). O

SupposeM is anm-dimensional compact submanifold B™ with boundary andV = M x C". In this
situation it has been shown by R. Seeley [44] that

[Lp, HS glo = Hf%,  s>0, (21.17)
with B a normal system of boundary operators (with smooth coefisje This generalizes the earlier result
by P. Grisvard[[15] who obtaine@ (21]17) in the case 2 andn = 1. The latter author proved in [16] that
(Lp, W)is)op = BYgand(Ly, B; g)o., = BYs for k € N* ands > 0. An extension of these results to arbitrary
Banach spaces is due to D. Guide€ttil[17]. In each of thoserpahe ‘singular valuesN + 1/p are considered
also. (Ifs e N4+ 1/p, thenH; ; andB; ; are no longer closed subspaces&jfand B, respectively.)

Following the ideas of R. Seeley and D. Guidetti we have gingf, Theorem 4.9.1] a proof of the anisotropic
part of Theoreni 2113 in the special case whife= H™ and.J = R, respectivelyM = R™ andJ = R™ (to
remain in the setting of this papef); = M x C", andB has constant coefficients. The proof given here, which
is solely based on Theordm 20.3 and general properties @fpiotation functors, is new even in this simple
Euclidean setting.
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22 Bounded Cylinders

So far we have developed the theory of weighted anisotrapictfon spaces on full and half-cylinders, making
use of the dilation invariance of. In this final section we now show that all preceding resutis explicitly
depending on this dilation invariance remain valid in theecaf cylinders of finite height.

Throughout this section
e J=R", 0<T<oo, Jr:=][0,T)
Furthermore§y/ ™ (J) = §3/7(J, V) etc.

Fork € Nwe introducd%kr/F(JT) by replacing/ in definition [81) by.Jr. ThenSZ/F’Q(JT) is defined for
s > 0 analogously td(813). Similarly as ih (19.1)

§;,/If’gj(JT) is the closure oD((0,7], D(M\T, V)) in §/™%(Jr) for s > 0.

Moreover, n .
570Uy = e ), BYTR0,T) = §0 ().

s/T,&

Note that we do not require thate §p,r (Jr) approaches zero ned@r To take care of this situation also we
define: o ) .
§5/™9(0,T) is the closure oD ((0,7), D) in §&/ ™% (Jr).

Then

/

S—S/F,Q(JT) — (%S/ﬁa((O,T)a V/)) ) 5> O’

P P’

and

HS/F,@(JT) — Lp(JTaL;\)a BS/F,Q(JT) — (Bp_S(p)/F’w(JT)7B;(p)/F7Q(JT))1/27p-
This defines the weighted anisotropic Bessel potentialespaale[ H;/F’J(JT) ;s € R] and Besov space scale
[By/™9(Jr); s € R] onJy.

As for Holder space scale®C*"/™(.Jr) is obtained by replacing in (IZ.12) and[{12.13) by,. Then
bckr/™9(Jr) is the closure of
BC™/"¥(Jr) = (| BC"/™4 ()
ieN

in BC*"/™%(Jr). Besov-Holder spaces are definedar 0 by

B3/ (Jp) = (22.1)

(bckr/F’Q(JT), bc(k+2)r/F,G(JT))

(b /72 () be B DTS (I)) s ke <s < (kD)
S = (k + 1)7’

1/2,00’

Moreoverb ™ (Jr) is the closure oBC™/™% (J7) in BSL™ (Jr). Lastly, b3, (0, T] is obtained by substi-
tuting (0, 7] for (0, o) in (IZ10) and[(I7.11).
Given a locally convex spac¥, the continuous linear map
rr o C(J,X)%C(JT,X), uHu|JT

is thepoint-wise restriction taJr. As usual, we use the same symbolfgrand any of its restrictions or (unique)
continuous extensions.

Theorem 22.1 Let one of the following conditions be satisfied:
(@ seRand® =33/"%,
(3)  s>0and® e {BY™ p3/TEY,
(v) keNand® e {BCF/™E pckr/ma),
®)  s>0and® =§/ 7.
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Thenry is a retraction frome&(.J) onto &(.Jr) possessing a universal coretractien. It is also a retraction
from & (0, o0) onto & (0, T'] with coretractioner if eithers > 0 and® = b, or k € Nand & = bcFm/™%

Proof. (1) Supposg € N. Itis obvious that
rt c E(%kr/F,&i(J)’ VVpkr/F,G)(JT))'

Thus we getr™ € £(&(J),&(Jr)) if (a) is satisfied withs > 0 by interpolation, due to the definition of
S/TE(1) for I € {J, Jr).
(2) Itis also clear that™ € L£(BC*/™4(.J), BC*/™4(Jr)) for k € N. Hence

rt e L(BC™/TE(]), BC®/™4 (Jr)). (22.2)

From this we obtain
rt e L(6(J),6(Jr)) (22.3)

if either (3) or (7) is satisfied. In fact, this is obvious frof{2R.2)if) applies. Ifs > 0 and® = B.™, then
(22.3) is obtained by interpolation on account[of (12.2 )rdllary[I2.9(ii), and[(22]1). From this and (2P.2) it
follows that [ZZ:B) is valid i = 55", due to [IZ:24) and the definition &f*/™& (7).

Clearly,r™ mapsD(J, D(M\T, V)) into D((0, T], D(M\T, V)). From this and step (1) we infer thR{{22.3)
is true if (§) applies. Itis equally clear that" € £(&(0, o), &(0,T)) if either s > 0 and® = bl orkeN
and® = bckr/™9,

(3) We setiy(t) :=t + T for t € R. We fixa € D((—T,0],R) satisfyinga(t) = 1 for -7'/2 <t < 0 and
put Su(t) := adiu(t) fort <0andu : Jp — C(V). Itfollows that3 € L(&(Jr), &(—R™)), provideds > 0
if () holds. Indeed, this is easily verifieddf is one of the spaced;”/™“ and BC*"/™%_ From this we get the
claim by interpolation, similarly as in steps (1) and (2).

(4) We recall from Sectioh 17 the definition of the extensigemtore~ associated with the point-wise
restrictionr— to —R™. Then we define a linear map

ep: C(Jr,C(V)) = C([T,00),C(V)), wur 6*p(e Bu).

Finally, we putepu(t) := u(t) for t € Jr andepu(t) := epu(t) for T < t < co. It follows from step (3) and
Theorem§17]1 arid 1T.2 that

er € ﬁ(@(JT), @(J)) (224)
if one of conditiong«)—(v) is satisfied, provided > 0 if («) applies.

Sincea is compactly supported it follows froa (17.1) thatu is smooth and rapidly decreasingiifs smooth.
By the density ofD([T’,00), D(M\I',V)) in the Schwartz space of smooth rapidly decreaghig/\I", V')-

valued functions oriT’, co) we geteru € §5/17 () if u € §/17(J7). From this we see thal {22.4) holds if
(0) is satisfied. It is obvious thatre; = id. Thus the assertion is proved, provided 0 if («) is satisfied.

(5) As in (IZ.5) we introduce the trivial extension mgp : C(o)(-R*, X) — C(R, X) by eq u(t) := u(t)
if £ <0, ande;u(t) :=0if t > 0. Then

rg =1 (1—etrt): C(R,X) = Co(-RT, &)
is a retraction possessig as coretraction. We also setr := §* ;. d5eq . Then
ro,r(D((0,7),D)) € D((0,00), D). (22.5)

The mapping properties aft andr™ described in Theorenis 17.1 and 17.2, and the analogous ones,f
imply, similarly as above, that

ror € L(FY/TE(), /9 (Ir)), >0
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Consequently, we get froh (22.5)
ror € L(§y/™9(),85/79(0,T)), s> 0.

We defineeo,T : 'D((O,T),'ZO)) — 'D((O,OO),'ZO)) by 607T’U,|JT =y and 607T’U,|[0, OO) :=0. Then eo,7 ex-

/7@

tends to a continuous linear map frcﬁ‘ﬁ/F’@(O,T) into 3/ (J) for s > 0, the trivial extension. Moreover,
ro,reo,r = id. Thusro 7 iS a retraction possessirg, as coretraction.

(6) Lets > 0. Foru € D(J,D) andy € D((0,T), D(M, V")) we get

T 00
/ / (@, rru)y dVy dt = / / (eo,rp, uyy dVy dt.
0o JM o Jum

Hence, by step (5) and the definition of the negative orderespa
[(o.rrubarses < ellpllgesno sy v Iullg;ermo)
foru € § */"(J) andp € §/"“((0,T),V"). Thus
— ﬁ(g;s/ﬁ&?(!])’S;S/F,&?(JT))'
(7) Forv € C(—J,D) we set

e u(t) == /0 h(s)v(—st) ds, t>0.
Then, giveny € D((0, o), D(M, V")), we obtain fromi(1/s) = —sh(s) for s > 0 and [I7.B)
/0 {p(1), afv(t)>M dt = /0 /0 {(t), h(s)v(—st)>M dsdt
0 oo
— /_ /0 <S_1(p(—7'/8)h(8),’U(T)>Md8d7'
0 oo
— /_ /0 0'_1<g0(—TU)h(1/U),’U(T)>MdO’dT
0

= —/Oo</000 h(o)p(—oT) do,U(T)>MdT = —/O (ep,v)m dr.

— 00

(22.6)

Thus, by the definition o7, givenu € D(Jr, D),

oo T oo
/ (o, eru)pr dt = / (o, u)ar dt + / (p, 0" pe~ adpu) pr dt.
0 0 T

The last integral equals, duedow(t) = e~ w(t) fort > 0 and [22.6),
0 0
/ (61, e adpu) p dt = —/ (e85, adyu) py dit
0 _

T 0o
= —/ / (h(o)p(—a(s —T)+T)do,afs — T)u(s)>M ds
0 0
sincec is supported if—T', 0]. From this we infer as in steps (3) and (4) that, gigen 0,

(e erwarxs| < ellellgere gy Illszorma gy
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for ¢ € D((0,00), D(M, V')) andu € D(Jr, D). Thus

er € L(F,*/™(Jr), 5, ()

for s > 0. This and step (6) imply that the assertion holdgif is satisfied withs < 0.
The case = 0 and§ = H is covered by step (1). ¥ = 0 and§ = B, we now obtain the claim by interpola-
tion, due to the definition aBy/ ™% (I for I € {.J, Jr}. O

Corollary 22.2 Suppose > 0. There exists a universal retractiep ;- from §,S,/F’°7(J) onto§f,/?’°3(jT) such
that the trivial extension is a coretraction for it.

Proof. This has been shown in step (5). O

As a consequence of this retraction theorem we find that, foahvious adaptions, everything proved in the
preceding sections remains valid for cylinders of finiteghi

Theorem 22.3 All embedding, interpolation, trace, and point-wise cation multiplier theorems, as well
as the theorems involving boundary conditions, remaindviéli/ is replaced by/r. Furthermore, all retraction
theorerr_ls for the anisotropic spaces stay in force, provid%dand wf are replaced bwf oer andrr o wf ,
respectively.

Proof. This is an immediate consequence of Thedren 22.1hentictt that all contraction multiplication
and boundary operators are local ones. O
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