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ABsTRACT. In this work we study existence and multiplicity questions for positive
solutions of second order semilinear elliptic boundary value problems, where the
nonlinearity is multiplied by a weight function which is allowed to change sign and
vanish on sets of positive measure. We do not impose a variational structure so
that techniques from the calculus of variations are not applicable. Under various
qualitative assumptions on the nonlinearity we establish a priori bounds and employ
bifurcation and fixed point index theory to prove existence and multiplicity results
for positive solutions. In an appendix we derive interior Lp-estimates for general
elliptic systems of arbitrary order under minimal smoothness hypotheses. Special
instances of these results are used in the derivation of a priori bounds.

1 Introduction. In this paper we analyze existence and multiplicity questions for
positive solutions of

Au = du+ a(z) f(z,u)u in Q,

(1.1)
Bu=0 on 0Q) ,

where Q is a bounded domain in R” of class C2, that is, Q is an n-dimensional
compact connected C?-submanifold of R® with boundary 9. Moreover, A € R and

n n
A:i=— Z aij(?i@j + Zaj(?j + agp
7,7=1 7j=1

is uniformly strongly elliptic with

aij:ajiEC(Q), aj,aOELOO(Q), 1<2,7<n.
(Throughout the main body of this paper all functions are real-valued.)
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We denote by I'y and I'; two disjoint open and closed subsets of 02 with
'y UT'y = 92 and put
{ U on I’y ,
Bu :=
Opu+bou onT'y,

where 8 € C'(I';,R*) is an outward pointing, nowhere tangent vector field and
bo € C(I'1) is nonnegative. Thus B is the Dirichlet boundary operator on I'g, and
the Neumann or a first order regular oblique derivative boundary operator on I';.
Of course, either I'y or I'y may be empty.

We suppose that a is a bounded measurable function on © and put

Qp:={zeQ; ai(a:)>0},

where a™ := max{a, 0} is the positive, and a~ := a* — a is the negative part of a.
Then we assume that

Q4 and Q_ are open and of class C? and } (12)

a™ is bounded away from zero on compact subsets of Q. .

Note that 2, and 2_ have only finitely many components. If I" is any of the
components of I'; then we require that

rnoQ, #0 = T Co,, ie{+,-}. (1.3)
As for the nonlinearity, we suppose that

feC((Qpuo) xR, R, f(,0)=0,
where RT := [0, 00). Then, denoting by fi the restriction of f onto Qi x Rt, we
assume that the derivative of fi with respect to &, denoted by 0fy, exists on

Q4 x (0,00) and is continuous, and

Of_(z,&) > 0 for(z,£) € Q_ x (0,00) ,

5lim f-(z,&) = oo, uniformly for z in compact subsets of Q_ . (1.4)
—00
Moreover,

f+(-,6) >0 for € € (0,00); r € (1,00); and £ is a bounded positive

function on Q,, which is bounded away from zero, such that (1.5)

glim " fu(x, &) = £(x), uniformly for z € Q .
—> 00

(Here and in the following we use the point-wise order for real-valued functions,
and we write g > h if ¢ > h and g # h.)

Note that f(z,&) = ¢! satisfies the above hypotheses, and in this case the
nonlinearity in (1.1) equals a(z)u".

Our setting is wide enough to include purely sublinear problems (24 = (}) and
purely superlinear equations (2_ = )). The most general situation occurs, of course,
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if both Q, and Q_ are nonempty. In this case one speaks of superlinear indefinite
problems.

Semilinear elliptic boundary value problems of type (1.1) have attracted a great
deal of interest during the last few decades. Most of the published research deals,
however, either with the purely sublinear or with the purely superlinear case,
where — in addition — a is not allowed to vanish on sets of positive measure,
in general. A substantial amount of the literature in this field concerns self-adjoint
problems that can be analyzed by variational techniques.

The simplest case is {2_ = €2 and it has been studied by many authors. Large
positive constants provide supersolutions, and there is at most one positive solution.

A more difficult case occurs if 2, = @ and Q_ # Q, since now the a priori bounds
do not prevail. In the particular situation where A := —A and I'y = () existence
and uniqueness of positive solutions have been established in [BO] by variational
methods. The corresponding Neumann problem, that is, A := —A and 'y = () with
B = 0,, where v is the outer unit normal on 0€2, but for a less general class of non-
linearities, has been studied in [O2] by continuation methods. The results of [BO]
have been extended in [FKLM] to not necessarily self-adjoint problems with smooth
coefficients under rather general boundary conditions by means of the method of
sub- and supersolutions.

Classical papers devoted to the superlinear case Q4 = Q are [AR], [BT], [FLN],
[GS2], [N], [Po], and [Tu]. In [BT] it was shown that there exist positive solutions
under Dirichlet boundary conditions (that is, I'y = (), provided r < (n +1)/(n — 1)
and A > 0, and A satisfies the strong maximum principle. The proof relies on the
existence of a priori bounds and positive operator theory. In [BT| substantial gen-
eralizations of the earlier theorems in [N] and [Tu] are achieved. The results of
[Po] and [AR], which are obtained by variational techniques, as well as an analysis
of the radially symmetric case suggest that a priori bounds for positive solutions
should exist for r < (n+2)/(n—2) if n >3 (cf. [A2, Section 22|, [BT]). Indeed,
it was in [GS2] where the existence of a priori bounds for all positive solutions
was established for all » > 1 if n =2, and for r < (n+2)/(n —2) if n > 3. The
proof consists of an indirect argument using a scaling technique which reduces the
equation to a Liouville type problem. About simultaneously, the same result had
also been obtained in [FLN] by exploiting the symmetry properties of the Laplace
operator.

Relatively little is known in the case of indefinite superlinear problems. The
Neumann problem for A= —A has been studied in [02] for f(-,£) = ¢! By
means of variational techniques it was shown that there exist two positive solutions
for each A\ belonging to some interval (0, \y), provided r < (n + 2)/(n —2) and
n > 3. This paper also contains a priori bounds for positive solutions. However,
these bounds do not seem to be valid for all positive solutions.

In [AT] the authors investigate the Dirichlet problem for A = —A by means of
variational techniques for fi (-,€) = ¢""! and f_(-,&) = €P~! where 1 < r < p and
r < (n+2)/(n—2)if n > 3. They establish the existence of numbers o and \g with
o < Ag such that (1.1) has for each A € (0, A¢) at least two positive solutions and
no positive solution for A > Ag.

More general classes of equations have been handled in [BCN2] and in [L2].
These results are local inasmuch as they can be obtained by local bifurcation and
implicit function arguments, although in [BCN2] variational techniques have been
employed.
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The paper which has strongly motivated our research is [BCN1]. Besides of im-
posing more regularity on A and restricting the class of admissible boundary oper-
ators the authors of [BCN1] assume that

QL A0, O —O\0, 40, O,N0 CcQ,

and _ _
Va(z) #0, reQLNQ_ .

Thus a full neighborhood for 0€2 belongs either to €2, or to €2_, and a is not allowed
to vanish on a set of positive measure. Under these assumptions the main result
of [BCN1] guarantees that (1.1) has a positive solution provided A = 0 and

1<r<(n+2)/(n—1) (1.6)

and the principal eigenvalue, o2, of (A, B) is positive. The proof of this theorem
is based on a priori bounds for positive solutions and Leray-Schauder degree argu-
ments. The a priori bounds are established by adequate adaptions of the rescaling
argument of [GS1] and a new Liouville type theorem for semilinear elliptic equations
in cones.

It is one of the goals of our paper to give an extension of the main result
of [BCN1]. More precisely, we show that if there exists a constant v > 0 such that

at(z) ~ [dist(, (‘3Q+)]7 near 024 , (1.7)
and if
r<(n+1++v)/(n—1) (1.8)
and
r<(n+2)/(n-2) forn >3, (1.9)

then the positive solutions of (1.1) are bounded in C(£2) if A stays bounded (cf. The-
orem 4.3). Moreover, if we denote by A the set of A-values for which (1.1) has a
positive solution, then either A = (—o00,0%) or A = (—o00, \*] for some \* > o
(Theorem 7.1). In the latter case (1.1) has at least two solutions for o < A < \*
(Theorem 7.4). Observe that, even in the case where v =1, arising if Va™ # 0
on 04, this result is a substantial generalization of the main theorem of [BCN1],
not only since it guarantees the existence of multiple solutions but also due to the
absence of further restrictions on 2.

Our proof adapts the rescaling arguments of [GS2] and [BCN1] and relies on
the crucial new observation that positive solutions are bounded in C(Q) if they
are bounded in C(Q,) (Theorem 4.1). The latter fact is derived by investigating
the growth of the positive solutions of the underlying sublinear problem if A ap-
proaches the point where bifurcation from infinity occurs (Section 3), and on a
characterization of the strong maximum principle by the existence of positive strict
supersolutions (Theorem 2.4).

Observe that (1.9) implies (1.8) if n > 3 and v > 2n/(n — 2). Thus in this case
we get a priori bounds for positive solutions in the range 1 < r < (n+ 2)/(n — 2),
which is optimal. In particular, we extend in this case the multiplicity results of
[02] and [AT] to our general setting which is not variational.
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The smallest range for r for which we establish a priori bounds occurs when
v = 0, that is, if a™ is bounded away from zero on €2, . In this limiting case r has to
satisfy the restriction 1 <7 < (n+1)/(n — 1) which is the bound of [BT] (where
no assumptions on the decay of a™ near 92, have been made).

A second goal of this paper is the derivation of a priori bounds without imposing
a restriction of the form (1.7). This is achieved by employing the weak Harnack
inequality on Q% interior L,-estimates, and bootstrapping arguments, provided
Q. Cc Qand Q, NQ_ = . This leads to existence and multiplicity results if

r<n/(n—2) (1.10)

for n >3 (Theorems 5.2 and 7.4). Since (n+1)/(n—1) <n/(n—2) our result
improves the main theorem of [BT]. Moreover, (1.10) is less restrictive than (1.8)
if a™ satisfies (1.7) and v < 2/(n — 2).

This paper has three parts and an appendix. In the first part, which consists of
Section 2, we give a characterization of the strong maximum principle for our general
elliptic boundary value problem (A, B) by means of the existence of positive strict
supersolutions and the positivity of the principal eigenvalue. This characterization
extends the one of [L1], where Dirichlet boundary conditions have been considered,
to the case of the general boundary operator B, where we emphasize that there
is no sign restriction on by. The results of this section are the basis for showing
that the usual monotonicity and comparison theorems, which are known to hold
for Dirichlet boundary conditions and which are used throughout this paper, can
be extended to our general setting.

In the second part we establish a priori bounds for sets of positive solutions
of (1.1) under various restrictions, some of which we have described above.

In the third part which comprises Section 7 we deduce existence and multiplicity
results for positive solutions of (1.1) by employing monotonicity and bifurcation
techniques as well as fixed point methods in ordered Banach spaces (cf. [A2]).

In the appendix we include a proof of interior L,-estimates for elliptic equa-
tions under minimal smoothness assumptions on the coefficients (Theorem A2.1).
In addition, we show how these estimates can be used to improve a priori bounds
for families of semilinear elliptic equations (Theorem A3.1). These results are used
in the proofs of Theorems 5.2 and 6.1. Since interior L,-estimates under minimal
smoothness hypotheses are of independent interest and since we could not find them
in the literature in the form which is needed in this paper we have decided to derive
them for rather general elliptic systems of arbitrary order.

2 A Characterization of the Strong Maximum Principle. In [L1, Theo-
rem 2.5] the strong maximum principle for second order elliptic equations has been
characterized in the case of Dirichlet boundary conditions by the existence of posi-
tive strict supersolutions. In this section we extend that characterization to bound-
ary conditions of the form Bu = 0. For this we rely on an inverse positivity result
and an existence theorem for the principal eigenvalue given in [A3]. In this section
we do not impose a sign restriction on by.

In the following we use the natural product order on L,(€2) x L,(0f2). Recall
that p > n implies W(Q) < C?"/P(Q) and that each u € W2(Q) is ae. in Q
twice classically differentiable (e.g., [St, Theorem VIII.1]).

Supose that p > n. Then u € W2(Q) is said to be strongly positive if u(z) > 0
for x € QUT; and d,u(z) < 0 for x € Ty with u(z) =0 and any outward point-
ing, nowhere tangent vector field o on I'g. Finally, (A, B,) is said to satisfy the
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strong maximum principle if p > n, u € W;?(Q), and (Au, Bu) > 0 imply that
u 18 strongly positive.
Using this definition we can formulate Theorem 6.1 of [A1] as follows:

2.1 Theorem. There eristswy € R such that (A+w, B, Q) satisfies for each w > wq
the strong maximum principle.

Suppose that p > n and consider the eigenvalue problem
Au=0u inQ, Bu =0 on 0Q (2.1)

in W2(Q). Putting W?5(Q) := {u € W2(Q) ; Bu=0}and A, := A|W?5(Q), con-
sidered as an unbounded linear operator in L,(Q2) with dense domain W 5(€),
problem (2.1) can be reformulated as the eigenvalue equation A,u = ou in Ly(92).
It is an easy consequence of standard regularity theory that the spectrum and the
eigenspaces of A, are independent of p > n.

2.2 Theorem. There exists a least real eigenvalue of (2.1), denoted by o*(A, B)
and called principal eigenvalue of (A, B,(2). It is simple and possesses a unique
normalized positive eigenfunction, the principal eigenfunction of (A, B,Q). It
is strongly positive and 0**(A, B) is the only eigenvalue of (2.1) possessing a posi-
tive eigenfunction. Any other eigenvalue o of (2.1) satisfies Reo > o*(A, B), and
(w+ Ap)~t € L(Ly()) is positive, compact, and irreducible for w > o**(A, B).

Proof. This is Theorem 12.1 of [Al]. In the proof of that theorem it has been
referred to [S, appendix 3.2] to assert that a positive compact irreducible linear
operator on a Banach lattice has a strictly positive spectral radius. However, this
does not follow from the results in [S] but is Theorem 3 in [P]. O

If p>n then we W;,Q(Q) is said to be a positive strict supersolution for
(A, B,Q), provided @ > 0 and (Au, Bu) > 0.

2.3 Lemma. Suppose that p > n and u € W;f (Q) is a positive strict supersolution
for (A,B,Q). Then u is strongly positive.

Proof. Fix w > 0V wg. Then ((A—i—w)ﬂ, Bﬂ) > 0, and Theorem 2.1 implies the
assertion. [J

After these preparations we can easily prove the announced characterization of
the maximum principle.

2.4 Theorem. The following assertions are equivalent:
(i) o%(A,B) > 0;
(ii) (A, B,Q) possesses a positive strict supersolution;
(iii) (A, B,) satisfies the strong maximum principle.

Proof. (i)=-(ii): In this case ¢ is a positive strict supersolution for (A, B, ).
(ii)=(iii): Suppose that p > n and u € W,?(Q) satisfies (Au, Bu) > 0 and u % 0.
By assumption there exist ¢ > n and a positive strict supersolution @ € VVq2 (Q) for
(A, B, Q). Since W2 (Q) — W,2(Q) for p1 > pa, we can assume, by replacing p or ¢
by p A q, that w € I/sz(Q). Since u is strongly positive, there exists ¢t > 0 such that

tw + u > 0. Denote by ¢ the minimum of all these numbers and note that ¢ > 0. Then
tu + u is a positive strict supersolution for (A, B, ), hence strongly positive. From
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this we easily infer that there exists s € (0,¢) with su+ u > 0, which contradicts
the definition of . Thus w > 0 and (A, B, ) satisfies the strong maximum principle.
(iii)=-(i): This is an easy consequence of the Krein-Rutman theorem. [

From Theorem 2.4 and by means of the arguments of [L1] we can obtain all the
comparison and monotonicity properties of the principal eigenvalues that we use in
this paper. Moreover, the proof of Theorem 4.2 of [L1] can easily be modified to
yield that o%*(A, B) depends continuously on € if we perturb 2 in such a way that
I'y is kept fixed.

3 Necessary Conditions For the Existence of Positive Solutions. Let '
be an open set of class C? contained in  such that, given any component I' of 952,

rnoY #0 = T co .

Then ' is said to be regular. In this case we put

5 _ { u on o N,
Q= Bu on 0Q' NoQ .
Then the results of Section 2 guarantee that the principal eigenvalue O'Q’(.A, Bar)

of (A, Bor, Q') is well-defined.
We assume throughout that

D :=Q\Q_ is regular . (3.1)

Then D possesses a finite number of components Dy, ..., Dy, if it is not empty. In
the latter case we define the principal eigenvalue of D by

D . D,
o” = min o~ (A, Bp.
Jin, o7 (4, Bp,)

and we assume without loss of generality that o = oP1(A, Bp,). Using these no-
tations and conventions we begin by considering an auxiliary problem. Here and in
the following we put

o't := oA, B)

for abbreviation.

3.1 Theorem. If Q_ # () then

Au=u—a" f_(-,u)u in Q,

(3.2)
Bu =0 on 0S) ,

has a positive solution iff o2 < X\ < oP. If this is the case, there exists exactly one
positive solution, denoted by 0y, and the map

(0,6P) = C(Q), A~ 0 (3.3)

is C1, increasing, and 0y — 0 in C(Q) as A — o
Proof. This follows easily by adapting the arguments of [FKLM] and [L1]. O

The next proposition describes the behavior of (3.3) at the right endpoint of its
interval of existence.
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3.2 Proposition. lim,_,, b 0y = oo, uniformly on compact subsets of D;.

Proof. By differentiating (3.3) with respect to A we find, for any fixed A € (¢%,0P),
(A4 a=020f— (- 0)) +a " f—(-,0)) —A)0r =0y inQ,

and By = 0 on 012, where 0, denotes the derivative of § with respect to A. Since
a~ vanishes on D; it follows that

(.A—)\)Q.A:H,\ in Dl, BDléAZO on 8D1 .

Let ¢1 be the principal eigenfunction of (A, Bp,, D1). Then there exists ¢p > 0 such
that 0y > copy on D;. Since A < P, Theorem 2.4 implies that (A — A, Bp,, D1)
satisfies the strong maximum principle. Hence

. C
O > (A= X)"teop = JTO_)\% on D ,

where we write A for A, if it is irrelevant which p > n is being considered. Now the
assertion follows from the fact that ¢; is bounded away from zero on every compact
subset of D;. O

We turn to the study of problem (1.1) for a fixed A € R, that is, to

Auv=u+af(-,u)u in Q,

3.4
Bu=0 on Of) . (3-4)x

Henceforth we presuppose that
QL #0

since the case 2, = 0 is covered by Theorem 3.1. First we prove a nonexistence
result.

3.3 Theorem. Problem (3.4)y does not have positive solutions if A > oP.

Proof. Let u be a positive solution of (3.4), for some A € R. Then
(A—af(,u)u=Au inQ, Bu=0 on 99,

and the uniqueness result for the principal eigenvalue contained in Theorem 2.2
guarantees that

)\:aQ(A—af(-,u),B) ) (3.5)

Since a~ vanishes on D it follows from the monotonicity of the principal eigen-
value that

A< O—D(A_ a+f('au)aBD) < O'D(.A, BD) = o'D ,
thanks to f(z,£) >0 forz € Qy and £ > 0. O

Next we establish a technical estimate which will also be useful in Section 7.
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3.4 Lemma. Let u be a positive solution of (3.4)5 for some A < o and let Q be
open and of class C% with Q C Q. Then

O'Q (.A, BQ) - A
ian at )

Inain f-i- (" u()) <

Proof. Since Q C Q4 C D we infer from the monotonicity properties of the princi-
pal eigenvalue that A < o < 09 (A, Bg). Moreover, from a~ |Q; = 0 and (3.5) it
follows that

A< UQ(A - Cl+f+(‘,U),BQ) < UQ(Aa BQ) - igfa’-i- IIEIlf_F(',’U/) ’
Q

which proves the assertion. [

Using these results we establish a sufficient condition for (3.4), not to have
positive solutions for A in a neighborhood of oP.

3.5 Theorem. Suppose that Dy N Q, # (). Then there exists \* < o such that
(3.4)x does not have a positive solution for A > X*.

Proof. Let uy be a positive solution of (3.4)y for some A € (¢%},0P). Then u, is
a supersolution of (3.2). Fix w > 0 such that w+ ¢ > 0 and add wu on both
sides of the first equation in (3.2). Then (A + w, B,(2) satisfies the strong max-
imum principle by Theorem 2.4, and we infer that uy > 6,. Let () be an open
ball with Q@ C D; N, and fix € > 0 such that £(z) > 2¢ for a.a. x € Q_. Then
Proposition 3.2 and (1.5) guarantee the existence of \* < oP such that

(3.6)

0% (A, Bg) — 0¥ ) 1/(r—1)

ux(2) 2 Ox(x) = ( einfga™

and
f(z,un(®)) > (U(z) — e)u(z)" " > eu(z)""

for z € Q and any A € [A\*, o) for which (3.4), has a positive solution uy. Hence
we deduce from Lemma 3.4 that

09 (A, Bg) — 0¥
Q o einfg at

minu" "t <

which contradicts (3.6). Thus (3.4)x cannot have a positive solution for A > \*. O

3.6 Remark. If D is nonempty and connected and €2, is nonempty as well then
the hypothesis of Theorem 3.5 is satisfied. [

4 A Priori Bounds by Scaling Arguments. In the following (u, A) is said to
be a positive solution of (1.1) if u is a positive solution of (3.4).

We begin by establishing a prior bounds for sets of positive solutions of (1.1)
which will be useful for deriving existence and multiplicity results in later sec-
tions. Our first theorem shows that uniform a priori bounds on 24 imply uniform
bounds on 2.
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4.1 Theorem. Let S be a set of positive solutions of (1.1) such that
As={X€R; (u,A\) €S}

1s bounded. Then

sup supu< oo = sup supu < o0 , (4.1)
(w,\)ES Q4 (w,\)ES Q

provided Q. # ().
Proof. Fix (u,\) € S. Then X\ < P by Theorem 3.3. Since

Qp = 0\(Q, UQ.) (4.2)

is a regular open subset of 2, properly contained in D, we see that A < 0% (A, Bg, ).
Put
Qs = QU {:U €N_; d(z,Q-) < (5} U (092- NQ)\ o2

for 6 > 0. Then €25 is for each sufficiently small § a regular open subset of €2, and
Qs | Qp in the sense of [L1]. Since the boundaries of distinct Qs differ only where
Bq, reduce to Dirichlet boundary operators it follows that

lim 0% (A, Bo,) = 0 (A, Ba,) -
6—0

In fact, the family { Qs ; > 0} can by obtained from €2 by a parameter-dependent
holomorphic family of diffeomorphisms and hence the previous relation follows
from the theory described in Chapter VII of [K]. Thus we can fix § > 0 such that
A < o8 (A, Bg,), so that (A — X, Bq,,Qs) satisfies the strong maximum principle,
thanks to Theorem 2.4.

Denote by M the supremum on the left-hand side of (4.1) and let ¥ be the unique
solution of

M on 005N (0024\09) ,

AN = in =
(A=XNv=0 inQs, Ba,v {0 on 0€5\ (0924\09) .

Fix p > n and denote by w € W’ () an extension of 4 | 25/, with mingw > 0. Then
we claim that kw is for sufficiently large & > 0 a positive strict supersolution of

Av =2 —a” f(-,v)v in Q\Q, ,
v=M on 09, \09 (4.3)x
Bv =0 on O(Q\Q;) NN,

for each A € As. Indeed, in Q5,5 we have
A(kw) = kAw = kdw > kdw — a” kwf_ (-, kw)

for each k > 0, thanks to the fact that f(-,0) =0 and (1.4) imply f_(-,£) > 0 for
£>0.0n%5:={zeQ_; d(z,00_) >6/2} the functions a~ and w are positive
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and bounded away from zero, and f(x,£) — oo as £ — oo, uniformly with respect
to z, by (1.4), Thus there exists k > 0 such that

Aw > dw —a™ f(-, kw)w , A€ As,

on Ys5. Moreover, on 0(Q2\Q;)NOQ the operator Bg, coincides with B and w
equals 9 so that Bw = 0 there. Finally, on 094 \09 we know that w is bounded
away from zero. Thus u := kw is, indeed, a positive strict supersolution for (4.3),
independently of A € Ag, provided k£ > 0 is sufficiently large.
If (u,A) € S then it follows that v := @ — u satisfies
(A=X+a g(@u))w >0 in Q\Q, ,
w >0 on 0024 \092 , (4.4) 5
Bw =0 on O(N\Q,) NN,

where

1
g(ﬂau) = f—('?ﬂ) +/ 8f—(7u+tv)Udt > f—('7ﬂ) ’
0
thanks to (1.4). Hence
o\ (A=X+a g(T, u), BQ\§+) > g2\ (A= X+a f(-,m), BQ\§+) >0,

where the last inequality sign follows from Theorem 2.4 and the fact that w is a
positive strict supersolution for (4.3)y. Thus, by invoking Theorem 2.4 once more,
we infer from (4.4), that v < u, which implies the assertion. [

Now we derive a priori bounds for positive solutions on QT , provided r satisfies
suitable restrictions. For this we first prove a technical result, where we use the
scaling arguments of [GS1].

4.2 Lemma. Suppose that
r<(n+2)/(n—2) ifn>3.

Let ((uk,)\k))keN be a sequence of positive solutions of (1.1) such that (M) is

bounded and supq, ur — oo. Choose x), € Q. with ug(zg) = maxg, Uk for k € N.
Then xp, — 0.

Proof. We have to show that each neighborhood of 99, in Q. contains all but
finitely many of the z. Let this be false. Then there exist a compact subset K
of Q4 and a subsequence, again denoted by (zy), such that z; € K for k € N and
T — Too fOr SOMeE oo € K.
Put
Mk = ’U,k(CL'k) s Pk ‘= Mlgl_r)/2 s keN ; (45)

and observe that r > 1 and M} — oo imply pr — 0. The change of variables
vi= (e —a)/oe . o) =" Vu(a)
transforms the first equation of (1.1) into

Agvi, = pedivk + ajf fi(y, vi) (4.6)
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where

Ap = — Z aij;kaiaj + Zpkaj;kaj + p;%ao;k (4'7)

3,j=1 Jj=1
with a;5.6(y) := aij(zk + pry) ete., a;:(y) = a™(xk + pry), and

Fr@ve) = pp "D fo (o + w7 Do) o T P

provided zy + pry € Q4. Given any R > 0, it follows from pr — 0 and K CC Q4
that there exists kr such that xx + pry € 4 for each k > kg and all y € R* with
lyl < R+ 1. We also see from (4.5) that

0<wr(y) Swe(0)=pp/ UMy =1, [y<R+1, k>kn.  (48)
Hence (1.5) implies

lim Ty, ve(y))

=l(Ts) , <R+1. 4.9
R T N (49)

Now we infer from (4.6), (4.8), (4.9), and Theorem A2.1 of the appendix that, given
any p > n, the sequence (v) is bounded in W}? (Br), where Br denotes the open ball
in R™ with center at the origin and radius R > 0. Thus, by passing to a suitable sub-
sequence, again denoted by (v), and by using the compact embedding of W,?(Br)
in C'(Bg) — W, (Bg) < L,(Bg), we can assume that there exists v € W2(Bg)
such that v >0 and vy converges weakly in W7(Bgr), and strongly in W, (Bg)
and in C(Bg) towards v. From this we easily infer that (Agvg) converges weakly
in L,(Bgr) towards

n

.AOO’U = Z aij(:voo)ﬁiajv

ij=1

and that (p2A\pvr, + af fr (-, vi) wen converges strongly, hence weakly, in L,(Br)
towards at(Zeo ) (T oo )v”. Consequently,

Aot = a7 (200 )l(To0)v"  in Bp

for each R. By a standard diagonal sequence argument it is not difficult to see that
v E W;)%IOC(R”) and that A.v = av” on R”®, where a := a™ (25 )l(7s) > 0. Since
v" € CY(R"), standard elliptic regularity implies that v € C?(R™). Also note that
v(0) = 1. Finally, by a linear change of coordinates we find that there exists a non-
trivial nonnegative function w € C?(R") satisfying —Aw = w", which contradicts
Theorem 1.1 of [GS2]. This proves the lemma. O

After these preparations we can derive the desired a priori bounds by arguments
similar to the ones used in the proof of Theorem 3.1 of [BCN1].

4.3 Theorem. Suppose that there exist a: Qi — RT, which is continuous and
bounded away from zero in a neighborhood of 0S4, and a constant v > 0 such that

at(z) = a(z)[dist(z, 89”}7 , x € Q. (4.10)
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Also suppose that
r<(n+1l4+7v)/(n—1) (4.11)

and
r<(n+2/(n—2) ifn>3. (4.12)

Let S be a set of positive solutions of (1.1) such that Ag is bounded in R. Then
S is bounded in C(£2) x R.

Proof. Let the assertion be false. Then Theorem 4.1 and Lemma 4.2 imply the exis-
tence of a sequence ((uk, )‘k))keN in §, a sequence x in 24, and a point xo, € 082
such that zx — To, and My := ug(zg) = Supq, uk — 00 as k — 0o. Now we define

pr > 0 by
pl(cz‘f"Y)/(T_l)Mk -1

and transform the first equation in (1.1) by the change of variables

yi=(z—a)/on, vi) = p " (w)
in

Apv = pi)\kvk + a,jgk(-, ’Uk) , (4.13)
where Ay, is defined in (4.7) and

9k (Y o) = P2 f+ (zn + prys o O o)y (4.14)

provided xy + pry € Q4. By an additional change of coordinates, that is indepen-
dent of k € N, we can also assume that 2 is a neighborhood of 0 in the half-space
H” :={x € R"”; 2™ > 0}, and that z,, = 0. Hence, given R > 0, there exists kg
such that vy is well-defined and satisfies (4.13) on

IiR,]C =Br N (—(:L‘Z/pk) +Hn)

for k > kr. Note that 0 < vg(y) < vx(0) = 1 and, thanks to (4.10),

ay (y) = plalzr + pry) (Y™ + 23 /pr)" (4.15)
for k > kr and y € Hp i, since z™ = dist(z, 0Q4).

(i) Suppose that (z}/pk)ken is not bounded away from zero. By passing to an
appropriate subsequence, we can assume that z}/pr — 0 as kK — co. Then the se-
quence (Hpg r)ken approaches Hg := B NH"™ and from (1.5) and (4.14) we see that

Y
k—oo vg (y)T

=l0(0),  [y[<R.

Hence we deduce form (4.13) and (4.15), together with the arguments of the proof
of Lemma, 4.2, based on the corresponding estimates up to the boundary, that there
exists a nonnegative v € C2(H") satisfying v(0) = 1 and Axv = a(0)£(0)(y™)"v".
By an additional suitable linear change of coordinates we see that there exists a
nontrivial nonnegative solution of

—Au = (™) in C*(H") , (4.16)
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which, thanks to (4.11), contradicts Corollary 2.1 of [BCN1].

(ii) Suppose that (2} /pk)ken is not bounded above. Then, by selecting a suit-
able subsequence, we can assume that Sy := pi/2} — 0 as k — oo. In this case
(HR,k)ken approaches Br as k — oo. By introducing the variable z := y /S equa-
tion (4.13) transforms into

Awwi = (prBr) 2 Mewy, + (2, wg)
where .,zlvk is obtained from Ay by replacing px by Brpr everywhere, and

2 _ 24y
hi(z,w) == pi PV alay, + prBrz) (ﬂ:r7 2+ 1) fo(n + prBrzspy U D w)w
provided z € (1/8)Hy. Note that 8 — 0 as k — oco. From this and the arguments
of the proof of Lemma 4.2 we infer that there exists w € C?(R") with w > 0 and
w(0) = 1 such that A.w = «(0)£(0)w”. Thus, after a linear coordinate change, we
find that there exists a nontrivial nonnegative solution of —Au = u" in C?(R").

Thanks to (4.12) this contradicts Theorem 1.1 of [GS2].

(iii) Lastly, suppose that (z7/pk)ken is bounded above and bounded away from
zero. Then, by choosing a subsequence, if necessary, we can assume that 27 /pr — s
for kK — oo and some s > 0. Then, by employing the arguments of the proof of
Lemma 4.2 once more, we infer from (4.13) and (4.15) the existence of a nonnega-
tive w € C?(—s + H") satisfying Asow = «(0)£(0)(y™ + s)"w" and w(0) = 1. Con-
sequently, after an appropriate linear change of coordinates we see that (4.16) has a
nontrivial nonnegative solution, which is impossible. This proves the theorem. [

4.4 Remarks. (a) Suppose that n > 3 and v > 2n/(n — 2). Then condition (4.12)
implies (4.11). Thus, given any set S of positive solutions of (1.1) such that Ag is
bounded, we see that S is bounded in C(Q) x R, provided 1 < r < (n + 2)/(n — 2).
Observe that (n + 2)/(n — 2) is the optimal exponent for which we can get uniform
a priori bounds for the superlinear problem if n > 3 (e.g., [FLN], [GS2]).

(b) Suppose that v < 2n/(n — 2) if n > 3. Then any set S of positive solutions

of (1.1) such that Ag is bounded, is bounded in C(2) x R, provided
r<(n+1l+7v)/(n-1). (4.17)

If v =1 then (4.17) reduces to r < (n+2)/(n — 1). Under this restriction a cor-
responding boundedness result for a positive solution of (1.1) has been obtained
in [BCN1, Theorem 3.1]. However, the authors of that paper also assume that
a € C%(Q), that a has a nonvanishing gradient on Q2 N OQ_, and that Qg = 0.

(c) Suppose that A= —A and T'; = () and that 9Q N 9N, satisfies the geomet-
rical condition (18) of [FLN], which is valid if all sectional curvatures at each point
are strictly positive. Let S be a set of positive solutions of (1.1) such that Ag is
bounded. Then step 2 of the proof of Theorem 1.1 in [FLN] implies uniform a priori
bounds for § near Q2 N 9. Thus in this case condition (4.10) is not required on
o2NoQ,. O

5 A Priori Bounds By Harnack’s Inequality. If we do not impose a decay con-
dition on a*(x) as x approaches 9., that is, if v = 0 in (4.10), then Theorem 4.3
guarantees a priori bounds for positive solutions of (1.1) if r < (n+1)/(n —1).
This restriction is also required in the main theorem of [BT|. Now we show that
this bound can be improved, provided

Q. CcQ, Q. nQ_=90. (5.1)

For this we first establish a preliminary estimate.
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5.1 Lemma. Let (5.1) hold and let S be a set of positive solutions of (1.1) such
that As is bounded. Then there exists an open set 0* with Q4 CC Q* CC Q\Q_
such that
sup |lullz,q+) < oo, (5.2)
(u,\)ES
provided p € [1,00) satisfies p < n/(n—2) if n > 3.
Proof. Fix R > 0 such that Q, +Byr CC Q\Q_. Then
Au=u+af(,u)u= u+a" fi(,u)u> I inz+Bag

for x € §+ and (u,\) € S. Thus u is a positive supersolution of A — X on = + Bop
for z € Q. Hence the weak Harnack inequality (e.g., [GT, Theorem 8.18]) implies
the existence of a constant ¢ such that
Null L, (@4+Bar) < c(l + i_llef u) , reQy, (u,N)€ES. (5.3)
z+Br
Now we deduce from Theorem 3.3 and Lemma 3.4 (cf. the proof of Theorem 3.5)
that, given any x € Q, the right-hand side of (5.2) is bounded above, uniformly
for (u,\) € S and z € Q. Since Q. is compact, there exist xgp,...,zn € Q4 such
that Q, C U;.V:O(a:j + Byr) =: Q*. Consequently, (5.3) implies (5.2) and ©2* has the
asserted properties. [

After these preparations we can prove the main result of this section.

5.2 Theorem. Let (5.1) be satisfied and suppose that
r<n/(n—2) ifn>3. (5.4)

If S is a set of positive solutions of (1.1) such that Ag is bounded then S is bounded
in C(Q) x R.

Proof. Note that S is a set of positive solutions of (A — X —af(-,u))u =0 in Q*.
Fix a real number pg > (r — 1)n/2 such that pg < n/(n — 2) if n > 3, which is pos-
sible thanks to (5.4). Hence it follows from (1.5) and the fact that Q* C Q\Q_,
which implies af(-,u) = at fi(-,u) on Q*, that condition (A3.3) of the appendix is
satisfied, where ag(y,n,A) := =X —af(y,n) and s :=r — 1. Moreover, Lemma 5.1
guarantees that S is bounded in Ly, (£2*) x R. Thus we infer from Theorem A3.1
that S is bounded in C(£24) x R. Now the assertion follows from Theorem 4.1. O

Ifn>3then (n+~v+1)/(n—1) <n/(n—2)iff y < 2/(n — 2). Thus, given con-
dition (5.1), Theorem 5.2 provides us with a priori bounds for a larger range of
r-values than Theorem 4.3 if v < 2/(n — 2) and n > 3.

6 Bounds For Radially Symmetric Solutions. In this section we show that we
can obtain uniform a priori bounds for positive radially symmetric solutions under
the sole assumption r < (n + 2)/(n — 2) if n > 3, provided supp(a™) is a ball.

6.1 Theorem. Suppose that 0 < p < R < 0o and that QQ = Bg and Q0 =B,. Also
suppose that r < (n+2)/(n—2) if n> 3. Let S be a set of positive radially sym-

metric solutions of (1.1) such that As is bounded. Then S is bounded in C(£2) x R.

Proof. From Theorem 3.3 and Lemma 3.4 we deduce that sup, x)esinfo,u is
bounded above. Moreover, if w > 0 is sufficiently large,

A+wu=A+wu+atf(,u)u>0 inQy
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for (u, A) € S. Hence we infer from Bony’s maximum principle (cf. [B]) that each u
attains its minimum over Q4 on 0. Thus, since each u is radially symmetric
and 0Q4 = 0B,, we see that the family {u; (u,)\) € S} is uniformly bounded
on 0. Consequently, this family is uniformly bounded on €2, by Lemma 4.2.
Now the assertion follows again from Theorem 4.1 [

6.2 Remarks. (a) The arguments of the preceding proof do not work if 9Q, has
at least two components since the solutions may blow up on one component and
may still be uniformly bounded on another one.

(b) Very simple one-dimensional examples show that, in general, the conclusions
of Theorem 1 in [GNN] might fail. In particular, u(r) will not decrease with r, due
to the variation of the coefficients. In fact, in higher-dimensional problems the
symmetry of the positive solutions might be lost, as it occurs for the Laplacian on
the annulus, for example. Theorem 6.1 provides us exclusively with a priori bounds
for the radially symmetric solutions of (1.1). O

7 Existence And Multiplicity Results. In this section we denote by S the
set of all positive solutions of (1.1) and assume that

given any bounded interval I,
(7.1)

Ur =={u; (u,\) €Sy, A€} is bounded in C(9).

Note that, thanks to Theorems 4.3, 5.2, and 6.1, respectively, (7.1) is true if one of
the following conditions is satisfied:

(i) the hypotheses of Theorem 4.3 are fulfilled;
(i) Oy CcQ, O, NOQ_=0,and r <n/(n—2) if n > 3;
(iii) the assumptions of Theorem 6.1 are met and every positive solution of (1.1)
is radially symmetric.

From (7.1) and standard elliptic theory we infer that

given any bounded interval I,
Uy is bounded in W,?(2) and in C*(Q) (7.2)
for each p € [1,00) and each « € [0, 2).

We put I := (6 — 1,0P + 1) and B > sup{ ||ul|e ; u € Uz, } and fix
w > sup{ [A| + laf (-, u)lloo + [a0f (w)ull 5 [lulleo <B+1, A€o} . (7.3)
Then we denote by e the unique solution of
(A4+w)e=1 inQ, Be=0 on o .
Note that e is strongly positive by Theorem 2.4. We write E for the Banach
space consisting of all u € C(Q2) for which there exists a = a(u) > 0 such that

—ae < u < ae, endowed with the norm

ur Jul] i=inf{a>0; —ae<u<ae}



A PRIORI BOUNDS 17

and the natural point-wise order. Then E' is an ordered Banach space whose posi-
tive cone, P, is normal and has nonempty interior. Moreover, E — C(Q2) (cf. [A2,
Section 2]. Consequently,

X:={ueC); |lulw<B}NP

is a convex open subset of P containing 0.

It follows from Theorem 2.2 and (7.2) that K := (w+ Ap) "' |E is well-defined
and independent of p > n. Moreover, K is a compact endomorphism of E which is
strongly positive, that is, K (P\{0}) C P. We also put

Fu,p) = K((w+ 0"+ p)u+af(-,u)u) , (u,p) € EXR.

It is an easy result of our regularity assumptions on f and of E < C(2) — L, ()
that F € C'(E x R, E) and that F is compact on bounded sets. From (7.3) and
the strong positivity of K we infer that F maps X x (Ip — %) into P and that
F(-,pu)| X — P is strongly increasing for u € Iy — 0 =: J (cf. [A2] for definitions
and notations). Moreover, given (u, ) € X x J, the (right) derivative

F'(u,p) = (01F (u, ), 02F (u, p)) : ExR— E

of F' is strongly positive.

In the following we denote by r(u, 1) the spectral radius of 01 F(u, ). Note that
O1F(0, 1) = (w+ 0% + pu)K. Since K is strongly increasing and compact it follows
that (0, ) is positive if y € J, that it is a simple eigenvalue of 91 F(0, i) possessing
an eigenvector 1 € P, and that r(0, z) is the only eigenvalue of 8;F (0, x) having
a positive eigenvector (cf [A2, Theorem 3.2]). Note that 01 F (0, u)p = r(0, u)p is
equivalent to

A¢=<7M—w)w in Q, By =0 on 90fQ .

Hence we infer from Theorem 2.2 that

w-I-UQ-i-u

P ped. (7.4)

r(0, u) =
Now we put
Yi={(up) € X xJ; u=F(up), u#0}.

Then
(u,p) €Y = (u,0%4+p) €S, andpeJ. (7.5)

After these preparations we can prove the main results of this section. We begin by
describing

A={XeR; I (u,\) €St },

that is, the set of parameters A for which (3.4), has a positive solution.
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7.1 Theorem. Either A = (—o0, %) or A = (—o0, X*] for some \* € [0}, 0P).

Proof. From Rabinowitz’ global bifurcation theorem [R] and the fact that o is the

only eigenvalue of (A, B,2) with a positive eigenfunction we infer that from the

point (0,0%) of C(Q) x R there emanates a continuum C of positive solutions of

(1.1), which is unbounded in C(Q) x R. Hence (7.1) and Theorem 3.3 imply
(—00,0) € A C (—o0,0P) .

Suppose that 0 4+ yu; € AN (6%, 0P). Then there exists u; in X N P such that
up = F(u1,p1) > F(uy, p) for 0 < pp < pq. Moreover, F(0, ) =0 and 7(0, ) > 1,
by (7.4). Hence [A2, Theorem 7.6] guarantees that o> + i belongs to A. Thus there
exists p* < oP — 0% with (6%, 0% + p*) C A.

Let ((uj"uj))jeN be a sequence in Y such that p; — po. Then the compact-
ness of F' implies that, by passing to a suitable subsequence, we may assume that
uj — ug € X. If g # 0 it follows that ug € X N P since (0,0%) € C(Q) x R is the
only bifurcation point of (1.1) from the line of trivial solutions from which emanates
a branch of positive solutions. This implies, in particuler, that A\* := o + p* € A.

If po = 0 and ug = 0 then (u;,0%? + ;) € C thanks to the fact that near (0,0%)
in C(Q) x R all positive solutions of (1.1) are contained in C since we are dealing
with bifurcation from a simple eigenvalue (cf. [CR]). This means that supercritical
bifurcation occurs in this case. Since S N (C(Q) x Iy) is contained in the bounded
set X x Iy and A is bounded above by \*, we see that the global continuum C has
to ‘bend back’. This shows that there exists ug € P with (ug,0?) € Sy, that is,
0% € A. This proves the theorem. [

The following proposition guarantees that A* > ¢ provided a™t is sufficiently
small.

7.2 Proposition. Suppose that o < n < oP. Then there exists ¢ := £(n) > 0 such
that \* > n provided ||a™ || < €.

Proof. Define G € C*! (E X LOO(Q+),E) by
G(’U,,b) =u-— K(W+77+bf+(au) - a_f—('au))u ) (uab) € E x LOO(Q+) .

Then G(6,,0) =0 (cf. Theorem 3.1 and observe that o < o implies Q_ # ).
Moreover,
MG (0,,0)=1—-K(w+n—a f-(-,0n) —a"0f_(-,0,)0n) .
Hence 01G(6,,0) € L(E) is a Fredholm operator of index zero and v belongs to its
kernel iff
(A=n+a f_(-0n) —a~0f_(-,0,)0,)v =0 in Q (7.6)
Bv =0 on 01} . '

It follows from (1.4) that
o (A—=n+a f_(-.0y) —a"0f_(-,0,)0p. B) > e (A=n+a f_(-,0,),8) =0,

where the last inequality is a consequence of G(6,,,0) = 0 and Theorem 2.2. Hence
we deduce from (7.6) that v = 0. Consequently, 0:G(6,,0) is an automorphism of E
and the assertion follows from the implicit function theorem. [

The preceding proposition has the following counterpart which shows that A* < n
if a* is too large and f, is increasing in its last variable.
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7.3 Proposition. Suppose that there exists an open set Q of class C? with Q C Q..
Also suppose that 0 < 1 < P and

Q _
infot > ABo) = (7.7)
Q@ lan f—i—('a 9"7)
The \* < 7.
Proof. Let u, be a positive solution of (3.4),. Then, by Lemma 3.4,
Q _
infqt < T A BQ) =1 (7.8)
Q infg f(-, uy)

Moreover,

Auy = nuy + af (-, up)ty > nuy —a™ fo (-, up)uy,
Hence we infer from the strong maximum principle (cf. the last part of the proof of
Theorem 4.1) that u, > 6,. Thus we obtain from the fact that fi(z,-) is increas-

ing for x € @Q and (7.8) a contradiction to (7.7). Now the assertion follows from
Theorem 7.1. [

Finally, we prove a multiplicity result in the case that \* > o,

7.4 Theorem. Suppose that \* > 0. Then (3.4)x has for each X € (6, \*) at
least two positive solutions.

Proof. Since we are interested in A-values belonging to [0}, o) only, thus to Ip, it
follows from (7.5) that we can study the equivalent parameter-dependent fixed point
equation u = F'(u, ) in X x J. Hence it follows from the considerations at the be-
ginning of this section that hypothesis (H) on page 680 of [A2] is satisfied (for F' re-
stricted to X x J, which is all we need in the following). From [A2, Theorem 20.3] we
know that F'(-, ) possesses for 0 < p < p* a least positive fixed point w(u) and that
the map @(-) : (0, u*) — P is strongly increasing and left continuous. Moreover, [A2,
Proposition 20.4] guarantees that r(u(y), p) < 1 for 0 < p < p*. If r(@(po), po) < 1
then ug := u(po) is an isolated fixed point of F(-, o) and the Leray-Schauder for-
mula implies that the local fixed point index i (F (-, o), uo) of F(-, po) at ug equals 1
(cf. [A2, Theorem 11.4]).

Suppose that 7(ug, o) = 1. Then there exist a neighborhood V x I of (ug, o)
in P x J, a positive number ¢, and a continuously differentiable map (u(-), p1(-))
from (—¢,¢) to P x R such that (u(0), #(0)) = (uo, o) and

SNV xI)={(ult),pl); —e<t<e}. (7.9)
Moreover, u(-) is strongly increasing and
sign g’ (t) = sign(1 — r(u(t), u(t))) , It <e. (7.10)

This follows from [A2, Proposition 20.8] by observing that the continuous differen-
tiability of F' suffices for its proof (also see the proof of Theorem 2.1 in [A1]).

First we observe that p(t) < po for —e <t < 0. Indeed, u(t) < up for —e <t <0
since u(-) is strongly increasing. If u(s) > po for some s € (—¢,0) then

u(s) > (u(s)) > (ko) = uo
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since u(-) is also increasing. Hence u(t) < po for —e < t < 0.

Next suppose that wug is the only fixed point of F(-, o) in V and pu(t) > po
for 0 < ¢t < e. Then there exists s € (0,¢) such that u'(s) > 0, and (7.10) implies
r(u(s), u(s)) < 1. Thus u(s) is an isolated fixed point of F (-, u(s)) and

i(F(u(s)),u(s) = 1. (7.11)

Put X, :={ue X ; |lul]| < p} for p > 0. Then the strong monotonicity of u(-), the
monotonicity of the norm (which is a consequence of the normality of P), the fact
that ug is the least fixed point of F(-, uo), and that we can choose s arbitrarily
closse to 0, hence p(s) arbitrarily close to g, imply the existence of 0 < p < ¢ such
that u(s) is the only fixed point of F (-, u(s)) in X,\X,. From (7.9) we also infer
the existence of 7 > p(s) such that

Flu,p) #u,  (u,p) € (0X, x [u(s),A]) U (X, x {7}) -
Hence the homotopy invariance of the fixed point index (see [A2, Section 11]) entails
i(F (. 1(s), X, X) = i(F( 1), X, %) = 0.
Thus, by (7.11) and the additivity property,
(F (- 1(s)), Xos X) = 6(F (- 1(s))s u(s)) + i(F (-, 1(s)), X X) = 1.

Finally, observe that F(u,p) # u for u € X, X [po, u(s)] thanks to the fact that
u(+) is strongly increasing. Thus, by using the homotopy invariance once more,

1= i(F('a:U'(S))ame) = i(F('a,u'O)aXaay) = i(F(",UO)aU'O) 3

where the last equality sign is valid since ug is the only fixed point of F(-, yg) in X,.
Note that F(-,p) has no fixed point in X for p > p*. Hence, by homotopy
invariance,

i(F(-,uo),X,Y) = i(F(-,u),X,Y) =0.

Thus, by the additivity property, F(-, o) has at least two fixed points in X if ug is
an isolated fixed point of F'(-, o) with local index 1. By the above considerations
this is the case if either r(ug, o) < 1 or 7(ug, o) = 1 with ug being the only fixed
point of F (-, ) in V and u(t) > po for 0 < t < e.

It remains to consider the case where ug is the only fixed point of F(-, ug)
in V and 7(uo, o) =1 as well as u(t) < po for 0 <t <e. Since po < p* it fol-
lows that %(p), the least fixed point of F(-, 1), belongs to X\ V for po < p < p*.
Note that

Y= {u(p) 5 po < p<pt}CF(X,x (pp']),

where p:= ||[u(p*)||. Hence Y is a relatively compact subset of X\V thanks to
the compactness of F' on bounded sets. Thus there exist a sequence (;) in (po, p*]
converging towards po and v € X \V with u(p;) — v. Hence (v, po) € ¥ and v # ug
which show that F'(-, ug) possesses two fixed points in this case as well. [

It should be remarked that the above proof is an elaboration of the remarks
following the proof of Theorem 20.8 in [A2].
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Appendix: Interior L,-Estimates. In this appendix we derive interior elliptic
L,-estimates, where we impose minimal smoothness hypotheses for the coefficients.
Then we show how these results can be combined with bootstrapping arguments
to improve given a priori bounds.

It turns out that it is only slightly more difficult to consider rather general elliptic
systems of arbitrary order than to treat the case of a single second order equation.
For this reason — and for further use — we deal with the general situation.

In principle, the results of this appendix are known to specialists in the theory
of partial differential equations, and the techniques which we use are well-known
(cf. [M], [H]). However, we believe that our main result, namely Theorem A2.1, is
new as far as the minimal smoothness assumptions for the coefficents are concerned.
In any case, we could not find a precise statement of the needed a priori estimates
in the literature so that we decided to include proofs.

A1l Preliminaries. Let F' be a finite-dimensional Banach space over R or C, and
suppose that 1 < p < oc.

We denote by Hp := Hj (R™, F') the Bessel potential space of order s, and we
write ||-[|sp for its norm. Recall that HF = W for k € N, except for equivalent
norms. Also recall that Hj < H} for s >t and that the (generalized) Sobolev
embedding theorem asserts that

H;%Hé, s—n/p=t—-n/q, 1/p>1/qg>0, (Al1.1)
and

Hp — wk s—n/p>k, (A1.2)
where k € N. Moreover, given 0 < s < t < o0,

1—s/t t
lop < cllully "/l . we HE. (A1.3)

Ju

For proofs and more details on these spaces we refer to [T, Chapter II] and [A4,
Chapter VII], for example.
Given k € N and s > k, we define gx(s,p) € [p, oo| by

n/(s—k) ifs—k<n/p,
wsp) =4 >p  ifs—k=n/p, (AL.4)
D ifs—k>n/p.

Then it follows from (A1l.1) and (A1.2) that

1 1 1
Hy = WE s == :
kA5 Tk(sap) b Qk(sap)

(AL5)

Using these facts we can now prove the following interpolation-type estimate, where
m € N.
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Al.1 Lemma. Let o € N* satisfy |a| < k < m and suppose qr(m,p) < q < c©.
Also suppose that 2 is a bounded subset of L, (R",,C(F)) and that one of the fol-
lowing conditions is satisfied:
(i) m—k >n/p and q = qx(m,p);
(ii) m — k < n/p and either |a| < k or q > qx(m,p);
(iii) m —k < n/p and A is compact.

Then there exists for each € > 0 a constant c(e) such that

lad*ully < € Jull, + (@) ull, ,  a€, weWp.

-1

Proof. Define r € [p,o0] by 7! = p~1 — ¢~1. Then Holder’s inequality implies

ladullp < lally 0%l - (A1.6)

Next we derive estimates for ||0%ul|,-, given either one of conditions (i) and (ii).
(i) If m — k > n/p then ¢ = p and r = oo. Fix s € (k, m) with s — k > n/p. Then
we infer from (A1.2) that

10%ullr < lullgr < cllull,, - (ALT)
If m — k =n/p then ¢ > p. We put s := |a| + n/q and observe that
laf <s=lal+n/g<la|+n/p<k+n/p=m.

Since s — |a| =n(p~! —r~1), we see that r = 7|4(s, p). Hence it follows from (A1.5)
that estimate (A1.7) is true.
(ii) Here we also put s := |a| + n/q. Then

la| <s=|a|+n/qg<k+n/g(m,p) =m

and s — o] = n/q < n/p, since ¢ > p. Thus we find again that r equals r|4(s,p),
so that (A1.5) implies estimate (A1.7) once more.
Now we derive from (A1.3), (A1.6), and (A1.7) that

lad®ull, < clall, [l ™ /7 . ae®, uwew.
Hence the assertion follows in cases (i) and (ii) by a standard application of Young’s
inequality.
Now suppose that (iii) is true. Thanks to (ii) we can assume that |a| =k and
q = qx(m, p). Consequently r = ri(m, p), and (A1.5) implies

[0%ullr <ul

k:”‘ S CO ||u||m’p I

u€ W™ . (A1.8)

Let € > 0 be given. Since 2 is compact, there exist a1,... ,an() € U such that, for
each a € A, we find j, € {1,...,N(e)} with

la = aj.llq <&/ (3co) - (AL9)
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Recall that D, the space of test functions, is dense in L,. Hence for each j there
exists b; € D with

llaj —bjllq <e/(3co) , 1 <7< N(e) . (A1.10)

Thus we deduce from a = (a — a;,) + (a;, — bj,) + b;, and from (A1.6) and (A1.8)-
(A1.10) that

lad%ul|, < (2¢/3) | + max ||b;0%|p (A1.11)

[l 5 1<j<N(e)

for a € A and u € W,™. Note that {b; ; 1 <j < N(e)} is a bounded subset of
La(R”, L(F )) for each g € (q;c (m,p), oo}. Hence, by applying the already proven
estimate for case (ii), we see that

Lm0 %ully < (€/3) [uly, +e(e) ull, , we W

which, together with (A1.11), proves the assertion in this situation as well. [

A1.2 Remark. Suppose that there exists a bounded open subset Y of R™ such
that supp(a) C Y for each a € 2. Then Lemma A1.1 remains valid if ¢ = oc.

Proof. Fix x € D such that x|Y = 1. Then, by identifying a with xa, it follows that
2 is a bounded subset of Lz(R™, £L(F)) for each g € [1,00). Thus we can replace
g = oo by a suitable q € (p,00). O

A2 Interior Estimates. Put D; := —id; for 1 < j <mn and let Y be a bounded
open subset of R"™. Suppose that E,(Y) is for each || < k a Banach space of
L(F)-valued functions on Y. Then we denote by Diff (E(Y)) the set of all linear

differential operators,
A= Z aoaD*
la|<k

of order at most k& with the coefficients (a4)|o|<r belonging to

EY):= [ Ea(Y) -

loe| <k

We topologize Diff (E(Y')) by means of the identification

Diffx(E(Y)) 5 A= ) aaD* +— (aa)a<k € EY),
|| <k

which identifies Diff (IE(Y)) with E(Y). We write mA for the principal part of A,
given by Z|a|:k aoD*, and wA(y) for the homogeneous differential operator of
order k with constant coefficients obtained from wA by freezing the coefficients at
y € Y. Moreover, the principal symbol of A is defined by

TAW, )= Y aa(y)é®, yeY, LER".



24 H. AMANN AND J. LOPEZ-GOMEZ

Then A is said to be uniformly regulary elliptic if there exists an ‘ellipticity constant’
€ > 0 and an ‘angle of ellipticity’ 6 € [0, 7) such that

spec(rA(y,€) C {z€C; 2| 25 large| <0},  yeY, £es,

where spec(. ..) denotes the spectrum.
Fix m € N\{0}. For 1 < p < oo we put

E,(Y):= [[ COV.£(F)) x [[ Lo imm (Vs £(F))

la|=m || <m
and
&y (Y) :={ A€ E,(Y); Ais uniformly regularly elliptic } .

It is an easy consequence of the upper semicontinuity of the spectrum that &4, (Y) is

open in E, (Y).

For each o € N* with |a| < m — 1 we fix ¢4 € [q|a|(m,p), oo} such that
da > qoj(m;p) =n/(m—laf) if m—|af<n/p.

Then we put

Ep,é’(y) = H L, (Y’ L(F)) :

laj<m—1

Using these notations we can prove the following general interior L,-estimates for
elliptic systems.

A2.1 Theorem. Suppose that A is a compact subset of EL,(Y), and B is a
bounded subset of E, 7(Y). Then, given any open subset X CC Y, there exists a
constant ¢ such that

[ullm.p,x < c(ll(A+ B)u

|p,Y + ||ul p,Y)

for allu e W™ (Y, F), A€, and B € ‘B.

Proof. By means of the upper semicontinuity of the spectrum and the compact-
ness of 2 it is not difficult to see that there exist # > 0 and 0 € (0,7) such that
each A € 2 is uniformly regularly elliptic with ellipticity constant £ and angle of
ellipticity . Moreover, if a, are the coefficients of A then

SUp max |[aqlle < 00 .
Actlal=m

These facts and Mikhlin’s multiplier theorem imply that u — (1 + WA(y))u is a top-
ological linear isomorphism from W™ := W™ (R", F') onto L, := L,(R", F') whose
inverse is uniformly bounded with respect to y € Y and A € A (e.g., Lemma 7.2
of [AHS] or [A4, Subsections VII.2.3 and VII.2.4]). Hence there exists x > 0 with
[ullmy < 6(lTA@ullp + llull,) . veW™, Aed, yeY. (A21)
Denote by o, dilation for ¢ > 0, defined by oiu(z) := u(tz), and observe that

0% ooy, =t1%lg,00% and |ogull, =t~/? lull, -



A PRIORI BOUNDS 25

Then, by replacing u in (A2.1) by oiu, we see that

Y teloull, < s (™ ImACy)ully + ull,) (A2.2)

lae|<m

forall A€, ue W, yeY,andt>0.

We write @ := (—1,1)" for the open unit-ball of R” with respect to the maxi-
mum norm. We also fix ¢, p2 € D(2Q) such that 0 < ¢; <1 and ¢;|Q =1 and
@2 | supp(p1) = 1. Lastly, Q(z,r) := x +rQ for x € R” and r > 0.

Let € > 0 be given. Since A is compact in £4,(Y), the set 72A:= {71 A; Ae A}
is compact in E := C(Y,L(F ))M(m), where M (m) is the number of multiindices of
length m. Hence there exist Aj, ..., An() in 2 such that we find for each A € 2
an index j4 € {1,...,N(e) } with

max laq = j4,all0 <€,
|a|=m

where a;, o are the coefficients of A; .
Note that, given y € Y, and denoting by b, the coefficients of B,
A (y) = (A+B)+ (rA—A—B) + (rA;, —mA) + (1A, (y) —TA;,)

= A+ B)— (aq + bo)D”
|a|§zm—1 (A2.3)

+ D [@ia0 = 0e) + (2j4,0y) = 05.4.0)] D
lae|=m

Fix r € (0,1) and y € Y with Qs := Q(y,2r) C Y. Also put

Yi(x) =@ —y)/r), zeR".

Then we infer from (A2.3), Lemma Al.1, and Remark A1.2 that

1w Aju () (1) lp < 1(A+B) (1) llp+ (26 +p(r)) [[10ll, , +c(e) l9hrull,, , (A2.4)

where

= a a i — G .
p(r) = max  max [laj,a = jsa(y)lleouan
Since 72 is compact in FE, this set is uniformly equicontinuous. Hence p is an
increasing function of r such that p(r) — 0 as » — 0, independently of y € Y and
e > 0.

Note that 9%;(z) = r=1% 0%p; ((z — y) /r) for j = 1,2. Hence, by Leibniz’ rule,

0% (yu)llp < ¢ Y w11 |00l q,, - (A2.5)
B<a
Consequently,
™ rully,, < Yo 0% ullp.qs, - (A2.6)

|| <m
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From Leibniz’ rule we also deduce that
™ [(A+ B) ()], < r™ |1 (A+ B)ull, + R, (A2.7)

where

=c Z Zr'm ||8’8u

|a|=m B<a

e 33 o810, 08 (o)l + [5ad” (Yau)ly) -

|a|§m 1 f<a

|p7Q27‘

Note that g|q|(m, p) = q)g/(m — |a| + |B],p). Hence it follows from (A1.6), (A1.5),
and the boundedness of 2 that

laad” (¥2u)llp < clloullg) o,y < N2l ja4161p -

Consequently,

A (] LD DI A ]
[vI<m—|al+|B|

<c Z rlel)|%u

laj<m—1

|p7Q2T I

where we used (A2.5) once more. Since Y is bounded it follows that
ba € Ly (mp) (Y, £(F)) 5 ol <m—1.
Hence the preceding arguments show that

P 0 )l < ¢ ST el 0%

laj<m—1

|p7Q2r I

so that

R<c Z ol 10%u|p.0,, - (A2.8)

laf<m—1

Now we replace ¢ in (A2.2) by r/7 for r,7 > 0 and obtain, by using (A2.4) and
(A2.6)—(A2.8), that

Z (m— Ial)prlalp”@au”

la|<m

<™ ||[(A+ B)ulll o, 2 + (e + ()" D P ]|0%

la|=m

te D, PN o 0n + 7E) Il g 2n)
la|<m—1

p,Q(y,r)

ullpouer  (A2.9)

for u € Wy™(X,F) and y € Y with Q(y,2r) CY, 0<e <1, and (A, B) € A x B.
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Observe that { Qrz,r); z€ ™ } is for each r > 0 an open covering of R™ such
that each point of R" is contained in at most 2" of these sets. Given any nonempty
subset Z of R, we put

Z(r)={z eR"; distoo(z,2) <1}, r>0,

where dist,, denotes the distance with respect to the maximum norm. It is easily
seen that

Z(r)(s)=Z(r+s), r,5>0. (A2.10)
Using these facts we infer from (A2.9) that

Z r(m=lapplalp [E

|| <m

< e A+ Blully 7y +ele+ o))" DL IO ) (a2

la|=m

e Y Pl 4+ T Pe(e) llull} 4
laf<m—1

for any measurable nonempty subset Z of Y and any r € (0,1) with Z(r) C Y.
Now suppose that r € (0,1) is so small that

Yo:={yeY; distoo(y,Y) >r} #0.

Put Yj41 := Yj(2_j_1r)\Ui:0 Y, for j € N. Then we infer from (A2.10) that

k k
UYi=%(Q_27r),
§=0 i=1

where the empty has the value 0, and Y(0) := Yp. Thus (J;2,Y; = Yo(r) =Y and

j+1 j
VincYo(Y 27 )\ % (Y 27r), >0 (A2.12)
=1 =1

Set d(y) := min{l, disteo (v, YC)}. Then it follows from (A2.12) that

T r

yeY;, j>1. (A2.13)

Also note that Y;(2797'r) C ¥;_; UY; UY;4; for j > 1. Using these facts we easily
deduce from (A2.13), by putting Z := Y; and replacing r by 2797 1r, and by setting
Zj = Yj_1U1/jU}/j+1 fOI‘j 2 1 and ZO I:%UH, that

Z rmn=lebp || glelgay®
<c||d™(A+B)ullp 5 +c(e+p(r Z I470%ull.z

ler|=

to 3 MUl , +TPee) ulf

lal<m—1
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for 5 € N. After summing these inequalities we arrive at

> el o,y

|a|<m

<clld™(A+Bull,y +cle+p(r)) Y ld"0%ullpy

|a|=m
te Y [ld*ovu

laf<m—1

oy +7"c(e) lull,y -

By fixing a sufficiently large value of 7 we can cancel the second to the last term
against one half of the left-hand side. Then we fix € and r so small that we can
cancel the second term on the right against one half of the left-hand side. These
operations lead to

>° lldoull,y < e(lld™(A+ Byullpy + llully.v)

|| <m

for u € W™ (Y, F) and (A, B) € 2 x B. Now the assertion is obvious, since X is at
a positive distance from Y°. [

A2.2 Remark. It is worthwhile to point out the particular case of a single opera-
tor, that is, A = { A} with A € &¢,(Y) and B = (). Then it is obvious that the lower
order coefficients of A satisfy the minimal smoothness assumptions that are needed
to guarantee that A € E(W;)m(Y, F),L,(Y, F)), provided m — n/p is not one of the
integers 0,1,...,m — 1. In the particularly important second order case we see,
for example, that aq € Ly (Y, L(F)) for |a| =1 and ag € Ly 2(Y, L(F)), provided
l<p<mn/2. O

A3 Bootstrapping. For simplicity — and in view of what is needed in this pa-
per — we now restrict ourselves to the second order case and leave it to the reader
to consider systems of arbitrary order.

We assume that A is a compact metric space and that

aji € C(Y x A, L(F)) , 1<j,k<n,

such that

spec( 3 ajnly gjgk) CC\RY, (1A eY xAxS™ 1,  (A3.1)

Jk=1
where n > 2. We also suppose that
aj,a0 € C(Y x FX A, L(F)), 1<j<n, feClY xAF),

though weaker assumptions concerning the dependence on y € Y would suffice for
what follows. Lastly, we assume that there exists s € [1,00) such that

laj(y,m, N)| <1+ n*?), 1<j<n, (A3.2)
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and

lao(y,n, M) < c(1 + |n/*) (A3.3)

for (y,m,A\) € Y x F x A. Then we consider the parameter-dependent semilinear
elliptic equation
AN u + B(u, Nu = f(u, ), (A3.4)

where

n

AN ==Y a;k(- N0k, Blu,)) = iaj(-,u, N0+ ag(-,u, \) .

J,k=1

By a solution of (A3.4) we mean a pair (u,A) € C*(Y,F) x A satisfying (A3.4)
point-wise. (Of course, weaker concepts of solutions are possible. But being inter-
ested in boundedness properties, we leave aside regularity questions.)

A3.1 Theorem. Suppose that S is a set of solutions of (A3.4) and there exists
po > 1 with pg > sn/2 such that one of the following conditions is satisfied:

(i) po > sn/2 and S is bounded in Ly, (Y, F) x A;

(ii) po = sn/2 withn > 3 and S is compact in L, (Y, F) x A.
Then S is bounded in W},.(Y, F) x A for each p € [1,00), hence in C*(Y, F) x A
for each o € [0,2).

Proof. Since A is bounded we have to show that, given any open X CC Y, the
set U :={u; (u,A) € S} is bounded in W;2(X, F) for each p € [1,00). Then the
second assertion follows from Sobolev’s embedding theorem.
From (A3.1), the compactness of Y x A x S?~1, and the upper semicontinuity
of the spectrum we easily infer that A(\) is uniformly regularly elliptic for A € A.
Set p:=po/s > n/2 if (i) is satisfied, and fix p > 1 with n/4 < p < n/2 if (ii) is
true. Then
(A= A(N) € C(A, &,(Y)) . (A3.5)

Put ¢1 :=2po/s and qo :=po/s, so that E, 7(Y) is specified. It is a well-known
consequence of (A3.2) and (A3.3) that the map

Ly, (YV,F)xA—E,z(Y), (u,A)— B(u,A) (A3.6)

is continuous and bounded on bounded sets.
Now put A := { A(X) ; A € A} if (i) is satisfied, and

A:={AN) + B(u,\) 5 (u,\) €S}
if (ii) is true. Also set B := { B(u,\) ; (u,\) € §} if (i) is valid, and B := {0}
otherwise. Then it follows from (A3.5), (A3.6), and our assumptions on S that 2 is
compact in &/4,(Y) and B is bounded in E, 7 (Y).
Let X CC Y be given and choose open sets X; with

YOO XiD0D0XeDDX3DD X .
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Then Theorem A2.1 implies that ¢ is bounded in W,?(X1, F), thanks to the bound-
edness of { f(,A); A€ A} in L,(Y,F) and the boundedness of U in Ly, (Y, F),
hence in L,(Y,F). Then we infer from (Al.5) that U is bounded in L,(X,, F),
where 7 := oo if (i) is satisfied, and 1/r:=1/p—2/n < 2/n if (ii) is true. In the
latter case we can choose p arbitrarily close to n/2 so that p; :=r/s > n/2. Then,
by replacing Y by X5 and py by p1, respectively, we are again in the situation of
case (i). Repeating the above argument we find that ¢ is bounded in L, (X3, F') in
case (i) as well as in case (ii).

Now we fix any p € (n,00) and specify E, 7(X3) by setting ¢; := go := p. Then
A:={A\); A€ A} is a compact subset of £4,(X3) and

B:={B(w, ) ; (u,\) €S}

is a bounded subset of E, 7(X3). Hence a further application of Theorem A2.1
guarantees that ¢/ is bounded in W?(X, F'), which proves the theorem. [

A3.2 Remark. If Y has a C?-boundary and we specify boundary conditions such
that we obtain a regularly elliptic boundary value problem, an analogue to Theo-
rem A3.1 for estimates up to the boundary is valid. For this we refer to [A3]. O
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