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Abstract. In this paper we study linear and semilinear second order elliptic bound-
ary value problems with measures as data. We are particularly interested in the non-
coercive case where we establish existence and multiplicity results, given suitable
growth and monotonicity restrictions for the nonlinearities.

1. Introduction. This paper is concerned with semilinear elliptic bound-
ary value problems (BVPs) of the types

—Au = f(z,u,Vu) + p inQ,
u=0 onTly, (1.1)
oyu = g(z,u) + o1 only,

and
—Au = h(z,u) + p in Q,
U = 0g on Iy, (1.2)

o,u =0, onI' .

Here Q is a bounded smooth domain in R”, where n > 2, and I' := T UT";
denotes its boundary, the ‘Dirichlet boundary’ I'y and the ‘Neumann bound-
ary’ I'y being open in I" and disjoint. Moreover, u, 0o, and o1 are bounded
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Radon measures, and f, g, and h are given continuous functions satisfying
the following growth restrictions:

|f (@, &m)| < e(T+ €7 +nl™) ,
l9(y, &) < e(1+ [¢]) , (1.3)
Az, )] < (1 + [¢]™)

for (¢,7) € R x R and (z,y) € Q x T, where

1<r0<%, 1<r1<%, 1<r2<Z—_;. (1.4)

We show that these problems — in fact, their generalizations which are
obtained by replacing —A by a general second order strongly uniformly
elliptic operator in divergence form, and J, by a corresponding boundary
operator — can be put in a functional-analytical framework. Using this fact
we will be able to derive existence, regularity, and multiplicity results by
invoking methods from nonlinear functional analysis.

Elliptic problems involving measures have been studied by many authors.
Much of the published work deals with the problem of obtaining precise
information on the singularities of (possible) solutions. For this aspect, which
we do not touch here, we refer to [31], [25], and the references therein.

As for existence results: in almost all papers known to us existence is
proven by approximating the given problems by smooth ones and by subse-
quent limiting procedures. This requires a priori estimates, of course. Thus
this approach is essentially restricted to coercive problems, that is, to the
case where f is independent of 7, and f, g, and h are decreasing in £ (at
least asymptotically). In this situation it is, however, possible to replace —A
by a second order quasilinear operator satisfying suitable monotonicity con-
ditions (see the survey [11] and the references therein, as well as [21], [26],
[15], [16], for example; in this connection we also refer to [12] and [9]).

In our paper we are primarily concerned with the noncoercive case. In this
situation only very few existence results seem to be known. In fact, Baras
and Pierre [8] study the existence of positive solutions for

—Au=u"4+ApinQ, u=0onl, (1.5)

where 1 is a positive bounded Radon measure and A € RT. They show that
(1.5) has for each sufficiently small A > 0 at least one positive solution (in
a suitably generalized sense) belonging to Lj 1oc. They also show that the
restriction for r; specified in (1.4) is optimal: if r; > n/(n — 2) then there
exists a positive y € L1 () such that (1.5) has no solution for A > 0.

The methods of [8] rely heavily on the fact that (1.5), involves the Laplace
operator. Indeed, it is one of the main points of [1] that the results of [§]



4 H. AMANN AND P. QUITTNER

remain valid if —A is replaced by —V - (@V-) + ao, where a(z) is a positive
definite (n x n)-matrix depending continuously differentiably on z € €2, and
ag € Lo () is nonnegative.

In [31, Theorems 3.9 and 3.10] it is shown that there exists A* > 0 such
that (1.5) has for each A € (0, A*) at least one positive solution and no such
solution for A > A*, provided 0 € Q and y = §y, the Dirac mass at zero. The
proof uses in an essential way the facts that the differential operator is the
Laplacian and that u is Dirac’s measure.

As a very special case of our multiplicity result it follows that there ex-
ists A* := A*(u) > 0 such that (1.5)) has at least two positive solutions for
0 < A < X* and no solution for A > A\*, provided p # 0.

Another multiplicity result for radial solutions of the problem
—Au = Me" —Agdp for [z <1, w=0for|z|=1,

where A1, A2 are suitable positive numbers, was recently obtained by Spiel-
mann [28]. His result is based on a phase plane analysis and it cannot be
extended to non-radial situations.

In [2] the authors consider problem (1.1) with I'; = (§ and assume that f is
nonnegative and convex with respect to 7. Then they show that (1.1) does
not possess a positive solution if y is large enough, provided f is independent
of £ and superlinear in 7 (see [2, Theorem 2.1]). In particular, it follows that
there exists A* > 0 such that

—Au=|Vu|"+AinQ, u=0onT, (1.6)

does not have a positive (weak) solution for A > A\*. But in [2] there is no
existence result for (1.6),. The conditional existence assertion of [2, Theo-
rem 5.1] guarantees that (1.6), possesses a positive solution if there exists a
positive supersolution (in the distributional sense). However, the existence
of such a supersolution has not been established.

It is an easy consequence of our Theorem 9.4 and of the positivity asser-
tion of Theorem 5.1 that there exists A\, > 0 such that (1.6), has for each
A € (0, Ay) a positive solution uy. In fact, it is the only small positive solution
and the map X — uy is continuously differentiable from (0, \.) into W, ()
with 1 <p <n/(n—1).

Now we describe some of our main results for problems (1.1) and (1.2).
For easy statements we impose more stringent conditions than are needed
in some cases. More precise and more general theorems are found in the
main body of this paper. We also restrict ourselves to the case where f is
independent of 7. Thus we can handle problems (1.1) and (1.2) simultane-
ously. However, there is an important difference: if the Dirichlet boundary
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is charged by a nontrivial measure, we cannot allow a nonlinearity on the
Neumann boundary and we have to impose a more severe growth restriction.

To be more precise, we consider the problem
—Au = f(z,u) + A\ inQ,
u= Ao on Ty, (1.7)
Oyu = g(z,u) + Ao onTy ,

where 4 and o are bounded positive Radon measures on 2 and T', respec-
tively, such that (u,0) # (0,0), and A € R*. We also suppose that f and g
are continuously differentiable and that

02£ (O S e+ [E77) 1829, S e+ €7, €€R,

where either

ollp=0, 1<r<n/(n—2), 1<p<(n—-1)/(n—2),

or (1.8)

olly>0, 1<r<n/(n—1), ¢g=0.
If 0|y = 0, we can assume that

nfiln—1)<r<n/(n—2) and p<(1—1/n)r (1.9)

by increasing r, if necessary. Then we put pe := nr/(n +r).

By a solution u of (1.7), we mean a weak solution in the following sense:
e if 0|Ty = 0 then u € W, () with |y = 0 and

/Vv-Vuda::/vf(-,u)dx+)\/vdu+/ vg(-,u)dI‘+)\/ vdo
Q Q Q Ty T

for all v € C1(Q) satisfying v = 0 on Ty;
e if 0|y > 0 then u € L,(9) and

—/uAvd:z::/Uf(-,u)dx+/\/vdu—/\/ Ovdo+ X\ | wvdo
Q Q Q To Iy

for all v € C?(Q) satisfying v = 0 on T'y and d,v = 0 on T';.
Of course, it is understood that all conditions on T' hold in the sense of
traces. Note that pe, resp. r, is the smallest number such that f(-,u) € L1(Q2)
and g(-,u) € L1(T) for all w € W} if 0|Ty = 0, and f(,u) € L1() for all
u € L, (Q) if ¢|Ty > 0, respectively.

It should be observed that, thanks to the results of Baras and Pierre [8],
the growth restriction on f is optimal if o|T'g = 0. On the other hand, if
o |y > 0 then the optimal condition should perhaps be r < (n +1)/(n — 1)
as is suggested by [31, Section 4.1]. Note, however, that in this reference
another concept of solution is employed that is weaker than ours.

The following result shows that solutions to (1.7), possess much better
regularity properties than required for the well-posedness of the problem.
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Theorem 1.1. If u is a solution of (1.7)y then

ue {WE‘E(Q) ifo|To=0,
Wi e(Q) ifo|Ty >0,

for each € € (0,1). Thus, by Sobolev’s embedding theorem,

6{W;(Q) if o|To =0,
(] .
Lp(Q) ‘lfO"P() >0,

for 1<p<n/(n—1).

The first part of this regularity theorem, which is a special case of The-
orem 9.3, is new even in the simplest case. All the other works dealing
with nonlinear elliptic problems involving measures guarantee only that
ueWHQ) for 1 <p<n/(n—1)if o|Te=0.

Next we describe some of our existence results, where we restrict ourselves
to the case of positive solutions. For this we assume, in addition to the above
growth restrictions, of course, that

(£(,0),9(-,0)) = (0,0), )

there exist w > 0 and wr > 0 such that

Oof(€) > ~w, 0rg(€) > -wr, E€RT, 3} (1.10)
and

0f(-,0) <ap, 02g(-,0) <0,

7

where «q is the least eigenvalue of the elliptic eigenvalue problem
—Au=auin, u=0onTy, du=0o0onT;.

The following theorem is a vast generalization of all the known existence
results for the noncoercive case. Its proof is given in Section 14.

Theorem 1.2. Let (1.10) be satisfied. Then there exists A\* € (0,00] such
that problem (1.7)x has for each X € (0,\*) a positive solution Ty and no
solution at all for X > X*. If A € [0, \*) then every solution uy of (1.7), sat-
isfies uy > uy, where ug := 0. The map A — ), is left continuous and strictly
increasing from [0,\*) into W\ (Q) if 0|To = 0, and into L.(Q) if 0| Ty > 0.
If the maps & — f(x,€) and & — g(y,&) are either both convex or both con-
cave on RY for (z,y) € Q x T, then X+ Ty is continuously differentiable,
and Ty is an isolated solution of (1.7)x in W, (Q) or L.(Q), respectively. If
there exists B > 0 such that f(-,&) > apf — B for £ € RT then \* < 0.
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Finally, we describe our main multiplicity result, a special instant of The-
orem 14.1, in the present situation. For this we impose a superlinearity con-
dition on f with a precise asymptotic behavior. Namely, we assume that

there exist ¢ € (1,7] and a bounded and everywhere
strictly positive function £ such that

1026 (-, < c(1+[€]*1)
for £ € R, and (1.11)
E7 f(2,6) = bz) (€ 00),

uniformly with respect to z € Q .
IfTyg#Tthent<(n+1)/(n—1)and p< (t+1)/2.

7/

It should be noted that ¢ is restricted to be smaller than (n+1)/(n — 1) if
'y # 0, even if g = 0. (Of course, the boundedness of £ is a consequence of
the uniform convergence in (1.11), which implies £ € C (). However, in the
main body of this paper we drop the continuity assumption on f with respect
to . Then £ is no longer automatically bounded. Moreover, it would seem
natural to put ¢ = r. But since we assume (1.9) if 0|’y = 0, for convenience,
this would impose an unnecessary restriction.)

Theorem 1.3. Let assumptions (1.10) and (1.11) be satisfied. Then there
ezists A« € (0, \*] such that problem (1.7)x has for each A € [0, \.) at least
two solutions. If the maps & — f(xz,&) and & — g(y, &) are both convezr on RT
then A = A*.

For example, there exists A* € (0, 00) such that
—Au=u'inQ, du=v"+doonl, u>0,

has at least two solutions for 0 < A < A\* and no solution for A > \*, provided
t<(n+1)/(n—1)and p < (t+1)/2. Or there exists A* € (0,00) such that

—Au=u"+AppinQ, u=0onlT, u>0, (1.12)

has at least two solutions for 0 < A < A* and no solution for A > A\*, provided
1<r<n/(n—2).

There remains, of course, the question whether there exists a solution
if A = A*. For this we give a positive answer in Section 15 if we restrain
the growth restriction even more. For simplicity, we confine ourselves to
problem (1.12).

Theorem 1.4. Suppose that 1 <r < 2/(n —2). Then problem (1.12) pos-
sesses exactly one solution for A = \*.

It should be observed that Theorem 1.4 restricts n to be 2 or 3.
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Now we briefly describe the contents of the following sections. In Section 2
we collect the basic results from [5] on linear elliptic boundary value problems
in interpolation-extrapolation spaces, and we discuss the relations between
these spaces and bounded Radon measures. In Section 3 we establish local
and global a priori estimates in these weak settings. The results of those two
sections are basic for the whole paper.

In Section 4 we introduce the concepts of weak and very weak solutions
for linear elliptic boundary value problems involving measures. As an easy
application of the results of Section 2 we prove a regularity theorem which is
optimal in the framework of Sobolev-Slobodeckii spaces. We also formulate
global a priori estimates.

It is worthwhile to point out that everything proven in Sections 2—4 holds
for (normally) elliptic systems as well.

Section 5 discusses positivity properties. In particular, we establish the
inverse positivity of elliptic boundary value problems in the weak settings as
well as existence and monotonicity properties of a principal eigenvalue.

It should be mentioned that the results of Sections 2-5 are also of im-
portance for the study of semilinear parabolic equations involving measures.
This will be done in a forthcoming paper.

In Section 6 we start with the discussion of semilinear problems. In par-
ticular, we establish our general regularity result and a local existence and
uniqueness theorem. In the following section we generalize the well-known
sub- and supersolution theorem to semilinear problems involving measures.

In Section 8 we turn our interest to parameter-dependent problems and
positive solutions. By specializing the general results of the preceding section
we show that the set of parameters for which there exists a positive solution
is an interval and that there exists a least positive solution @) such that the
map A — Wy is increasing and left continuous. We also derive a sufficient
condition for this interval to be bounded. In addition, we establish an ab-
stract condition — in terms of fixed point index properties of ) and a priori
bounds for families of solutions — guaranteeing the existence of at least two
solutions.

It should be observed that Sections 6-8 deal with general, possibly non-
local nonlinearities depending nonlinearly on measures as well.

Sections 9-11 are devoted to problems of the types (1.1) and (1.2) involv-
ing local nonlinearities and general elliptic differential operators (in Section 9
even systems are admissible). Besides of establishing some technical lemmas
we adapt the results of Sections 6-8 to that setting.

It should be mentioned that the existence and structure theorems proven
in Sections 6—11 are more or less straightforward applications of some of the
results on fixed point equations in ordered Banach spaces contained in [3].
This is due to the fact that — on the basis of our results for linear elliptic
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boundary value problems in spaces of measures, developed in the earlier
sections — we can reformulate the boundary value problems as equivalent
fixed point equations in suitable ordered Banach spaces, where the nonlinear
maps are order-preserving. However, in the present case we have to work in
spaces whose positive cones have empy interiors. This is due to the fact that
the solutions of our problem are unbounded, in general, and so do not belong
to C(Q2). This is in contrast to the situation for classical boundary value
problems. Thus we cannot rely on those results of [3] which use properties of
positive cones with nonempty interiors. This is the case for the multiplicity
results proven in [3] and the computations of local fixed point indices, in
particular. Hence, in order to determine fixed point indices we have to work
much harder. This is done in Section 12 where we also derive a condition

guaranteeing that the A-interval, for which @, exists, is not reduced to {0}.

In order to use the information on the fixed point index established in Sec-
tion 12 to prove multiplicity theorems, we have to establish a priori bounds
for all solutions. This is done in Section 13 by building on ideas of Gidas and
Spruck [19]. In Section 14 we combine the results of the preceding sections
to prove the main result of this paper as far as the nonlinear case is being
concerned. In the last section we briefly discuss the question of the existence
of a solution for A = A\*.

2. Linear Elliptic Boundary Value Problems. We write E := E((2)
for the Banach space

C*(Q, R x CHQ,R") x CHQ,R") x C(Q,R) x C'(T,R)
with REXT being the space of symmetric (n X n)-matrices. We define for

each (a, b, ag, d) € E a linear differential operator A on by
Au := =V - (aVu + bu) + &- Vu + agu
and a boundary operator B on I' by
Bu := §{8,,u+ (vb- 7+ d)yu} + (1 —0)yu .

Here §: I' — {0,1} is defined by 6=1(j) :=T; for j € {0,1}, and  denotes
the trace operator. Moreover, 0, u := v/ - y(aVu) is the conormal derivative
with respect to A, where 7/ is the outer unit-normal on T'.

Then (A, B) is said to be a linear BVP on Q (of order at most two in
divergence form). We topologize the set of these BVPs by identifying them
with E by means of (A, B) < (a,b,&,ag,d). Then & := £() is defined to be
the subset of all strongly uniformly elliptic BVPs, that is, (A, B) € E belongs
to £ iff a(z) is positive definite for each z € Q. Note that £ is open in E.
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We associate with each (A, B) € £ its formally adjoint BVP, defined by
Aty := —V - (aVv + &) + b Vo + agu

and
B :=6{0,,v + (Y& 7+ d)yv} + (1 - &)y,

as well as its Dirichlet form
a(v,u) := (Vo,aVu + bu) + (v, Vu + agu) + (yv,dyu)s .

Here (u,v) := [, uvdz is the L,(Q)-duality pairing and (u,v)s := [ uvdl
stands for the L,(T')-pairing.

We denote by W} := W;(2) the Sobolev-Slobodeckii spaces for s € R

and 1 < p < oo, and write ||-||s, for their norms, where ||-||o, = |||, We
also put
oW =Wt P(To) x W=7/P(Ty),  seR, 1<p<oco.

Here and in the following it is understood that obvious modifications are
employed if I'y or I'; is empty.

If E and F are locally convex spaces, we write L(E, F) for the space of
all continuous linear operators from E into F, endowed with the topology
of uniform convergence on bounded sets, and Lis(E, F) is the subset of all
isomorphisms in £L(E, F). Recall that Lis(E, F') is open in the Banach space
L(E,F), if E and F are Banach spaces.

It follows from the trace theorem that (A,B) € L(W2, L, x 0W,?) for
1< p<ooand (A,B) € E. This fact can be expressed more precisely by

E < L(W}, L, x OW,}) , l<p<oo, (2.1)

where — denotes continuous injection.

It is the purpose of the following considerations to associate with an el-
liptic BVP (A, B) € & suitable weak formulations. For this we introduce the
Banach spaces W, for s € [=2,2]\(Z +1/p) and 1 < p < oo by

{ueW,; Bu=0}, 1+1/p<s<2,
o J e (1=0u=0}, 1/p<s<l+1/p,
p,B A 0<s<1/p,
Wy )" s€[-2,0\(Z+1/p) ,

where p + p’ = pp’ and the dual space is formed with respect to the duality
pairing (-, -) induced by the L,-pairing. We denote the norm in W’z by ||-

S,P
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as well. This will not lead to any confusion since the spaces W’ will only be
used for s > —1 + 1/p in which case W, 5 is a closed linear subspace of W}
(see Remark 2.4(b)).

First we show that the ‘negative’ spaces W;g and OW,,"* contain bounded
Radon measures if s and p satisfy suitable restrictions.

Let X be a o-compact metric space and denote by Co(X) the Banach
space of all continuous real-valued functions on X vanishing at infinity, en-
dowed with the maximum norm. Then M(X), the Banach space of bounded
Radon mesures on X, is the dual of Cy(X), that is,

/

M(X) = [Co(X)] (2.2
with the usual identification of continuous linear functionals on Cy(X) with
bounded Radon measures.

Lemma 2.1. Fiz (A,B) € € and p € (1,1%), where 1* :=n/(n —1).
(i) If 1/p<s <2 —n/p then

M(QUT1) x M(T1) = W5% x W= t=1/2(Ty) |
(i) If 0<s<1—n/p then
M(QUT;) x M(T) = W25? x oW .

Proof. First note that k <k+1—n/p’ <k+1/p for k € N. Hence the

spaces W’ ; are well-defined if the above restrictions for s are met. Also note

that 2 — s >n/p’ > 1/p’ implies (1 — d)yv =0 for v € V[/'pz,’_Bs,j and s # 1/p.

Hence Sobolev’s embedding theorem entails

Wf,;n‘ico(QUI‘l), 0<s<2-n/p, s#1/p,
as well as
WP ) G oMy, 0<s<k+l-n/p, k=01, (23)

d
where — denotes dense injection. Thus (2.2) implies
M(QUF1)<—>WZEQ, 0<s<2—-nfp, s#1/p,

and [Vth, (I‘)}' =W, (') for 0 < ¢ < 2 guarantees, together with (2.2) and
(2.3), that
M(Ty) = We=k=1P(Ty),  k=0,1.

This proves the assertions. [
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Remark 2.2. Suppose that 1 <p < 1* and 0 < s < 1—n/p’. Then W:,g2

and W}f_l_l/ P(T;) contain singular distributions which are not measures.

Proof. Suppose, for example, that x; € M(£2) has compact support in
for 1 < j <mn.Put ji:= (p1,--.,4,) and observe that V - i is a distribution
of order 1 with compact support in {2, which is not a measure, in general.
Fix ¢ € D, where D := D() is the space of test functions on 2, such that
1) equals 1 on the support of fi, and set

(V- i,0) = (V - i, ) =—Z/96j(¢v)duj

for v € %2,7_3‘3 < CY(Q). Then V - ji belongs to (V[/ﬁ’_;ﬁ)’ = WZEQ, and the
assertion is proven for W:’E?
Note that

WP () & eMry) S o)

so that C1(T';) — VVps_l_l/p (T'1), which entails the assertion for the bound-
ary space. [

Suppose that (A,B) € £ and that s € [0,2]\(N + 1/p). Consider the el-
liptic BVP
Au=finQ, Bu=gonTl, (2.4)

with (f,g) € V[/;',Ez x OW,’. Then u is said to be a W’-solution of (2.4) if
the following is true: u € W’ and

e if1+1/p <s<2then Au = f holds in 2 in the sense of distribu-
tions and Bu = g on I' in the sense of traces;
e If1/p<s<1+1/pthen (1—d)yu=(1—40)g and
a(0,0) = (0, ) + (y0,09)s , v E WL s
e if 0 < s < 1/p then

(.Aﬁv,u) - <’U,f) + <(5 - 1)(9ya’l) + 5’7’0ag>6 ’ S V[/;le,_[;ﬁ .

More precisely: a W’-solution is said to be

e strong ifl+1/p<s<2;
e weak if I/p<s<l+1/p;
o very weak if 0<s<1/p.

Note that a weak W3 -solution is a weak solution in the variational sense.
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It is well-known that for each (A, B) € £ there exists w € R such that
(A + A, B) belongs to Lis(W,?, L, x OW;?) for Re A > w and 1 < p < 0. This
and (2.1) imply that

Eo=&(Q) = {(A,B) €€ ; (A,B) € Lis(W;, L, x W), 1 <p < o0}

is a nonempty open subset of £.

The following extension theorem is the basic solvability and continuity
result for problem (2.4).

Theorem 2.3. Suppose that (A,B) € . There exists, for each p € (1,00)
and each s € [0,2]\(N + 1/p), a unique extension

As,p € Lis(W,;, W;S,Ez x OW,)
of (A,B). If l1<g<p<oand 0<t<s<2witht¢ N+1/q then

Apg DU p - (2.5)

The map
Eo = Lis(W), W5° x OW) , (A, B) = 2, (2.6)

s analytic.
Lastly, uw=2;2(f,9) for (f,9) € WZ_Q x OW,} iff u is a W -solution
of (2.4).

Proof. This is a consequence of the results in [5, Sections 4-9] (also see [6]),
where the analyticity of (2.6) follows from the fact that this map is the
restriction to &y of a continuous linear one. [

Since 2, is uniquely determined by (A, B) we denote it again by (A, B)
without fearing confusion.

Remarks 2.4. (a) Suppose that K is a compact subset of £. Then there
exists w € R such that

(A+A,B) € Lis(W, W 5% x 0Wy)) , l<p<oo, s€l[0,2\(N+1/p),

for ReA > w and (A, B) € K.

Proof. This follows from Theorem 2.3 and the fact that the assertion is
true for s = 2, as is well-known from the standard L,-theory of elliptic BVPs

(e.g., [6]). O
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(b) Observe that 1/p < s <1+ 1/piff 1/p’ <2 —-s<1+1/p’. Thus

%2/’_83”:%2,7_68:{’1]6%2,_5;(1—6)’)”1}:0}’ 1/p<8<1+1/p
Also note that
Woa=W," =W, -1+1/p<-s<0. (2.7)

Proof. Equality (2.7) follows from the density of D in W;, that is, from

Wi =Wg =W3 5 for0<s<1/p/. O

It should be mentioned that the above theory of generalized linear ellip-
tic BVPs is an extension and simplification of the Lions-Magenes theory of
generalized L,-solutions (see [22]). However, there is an important difference:
in [22] the right-hand side of Au = f is restricted to lie in a space of distri-
butions on €2, which, in general, cannot be explicitly described. In our case

f has to belong to W;f,EQ, which is a space of distributions iff the space D of
test functions is dense in V[/p%,_;ﬁ'
as the dual of W';,’_Bsﬂ, which is most useful — as we shall see below — and
makes it a natural and optimal choice.

However, W;fgz has a natural description

3. A Priori Estimates. It is not difficult to derive a priori estimates
from Theorem 2.3. For later use we include local estimates. Here and below
1 denotes the function which is equal to 1 everywhere.

Theorem 3.1. Suppose that p € (1,00) and s € [0,2]\(N + 1/p). Also sup-
pose that o, € C3(Q) with 1| supp(p) =1, and y(@Ve) =0 if s <1/p.
Then

lpullsp < C(H‘PAuHs—lp + ”'Y(PB“HaWIf + ”d’“”s—lm) ) u€ V[/;,S )
uniformly with respect to (A, B) in compact subsets of €.

Proof. First we note that
0; € LWSp, W5, 1/p<s<l+41/p, 1<j<n. (3.1)

Indeed, this is clear if s > 1. Thus assume 1/p < s < 1. Then Wzgl = V[/;f_l

by Remark 2.4(b). If ' = T'g then W,z = Vi/ps and (3.1) follows from the
well-known fact that

0, € LWF, WY, keZ, 1<j<n,
and by interpolation, thanks to
W= (W Wi ok, k<s<k+l, k€eZ,

where (-)g,p is the real interpolation functor and = means ‘equivalent norms’
(e.g., [30] or [6]). If I' =Ty then Wz =W’ and (3.1) is obtained by the
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usual restriction procedure from 9; € L(W,(R™), W' (R™)) (cf. [30, Theo-
rem 4.2.2] and recall that W’ = B, ). Finally, in the intermediate case where
I' #T; for j = 0,1, assertion (3.1) follows from the two cases just discussed
and the fact that 0; is a local operator (by reducing the question by means
of local coordinates to full-space and half-space problems, respectively).

Denote by M, point-wise multiplication u — au. Then it is obvious that
(a— M,) € L(CHQ),LW}5), ke{0,1}.

Since
Wi = (Lp,Wpp)sp »  s€(0,1)\{1/p},

(e.g., [5]), it follows, by employing duality and (M,)" O M, as well, that
(a = M,) € L(C'(Q),L(W;5)) , se[-1,1\(Z+1/p) . (3.2)
Now suppose that 1+ 1/p < s < 2. Then
A(pu) = pAu + [A, ¢l (Yu) ,  Blou) = ypBu + [B,¢l(Yu) ,  (3.3)

with .
[A, plu = —2Vp-aVu+ ((¢—b) - Vo — V- (aVy))u

and [B, plu := 6(0y, ¢)yu. It is an easy consequence of (3.1) and (3.2) that
(A.B) = (1A, ¢ [B.])) € L(E LV~ W2 x OW,) . (3.4)

Let K be a compact subset of £. By Remark 2.4(a) we can fix w > 0 such
that (A + A, B) € Lis( ps,B,W';gz). Then we obtain from (3.3) that

ou = (w+ A,B) " (pAu + wou + [A, ] (Yu), yoBu + B, ¢](u)) . (3.5)

Since the map B+ B~! is smooth from Lis(E, F) into L(F,E), with E
and F' being Banach spaces, it follows that

Ipullsp < c(l@Aulls—ap +w I @ull, s +IlA, @ (Wu) o2

+ lrpBullow; + 1B, ¢l (wu)law; )

for u € W7 and (A, B) € K. Now (3.4) implies the assertion.
Next suppose that 1/p < s <1+ 1/p. Then

(v, pu) = alpv, u) + (v, Oy (hu) (3.6)
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with
(v,Cpu) := (Ve -aVv + (- V)v,u) = (Vv, (@Vp)u) + (v, (¢- Vo)u) .
Thus, using (3.1) and (3.2) together with the definition of the spaces Wz,
it is not difficult to verify that
Cp € L(E LTS5 Wi5) (3.7)

Since v € I/Vp2, 5 implies v € W, 5+ by Remark 2.4(b), it follows from (3.6)
and the weak formulation of problem (2.4) that u being a W-solution of

(2.4) implies (1 — 0)y(pu) = (1 — §)(yp)g and

o, (v, pu) = (v, of +wpu + Co(pu)) + (y,8(v9)g), ,  vEWI T,
where a,, := a + w(-, -). Consequently, by Theorem 2.3,
pu = (w+ A, B)™ (pAu + wpu + Cp(u), yoBu) . weW . (38)

Now the assertion is implied by (3.7) and the arguments used in the preced-
ing case.

Lastly, suppose that 0 < s < 1/p. Then
(A, pu) = (A*(pv),u) + (v, C,(hu)) (3.9)
with (v, C,pu) :== —([A¥, p]v,u). Since
—[A* plv =2V -aVv +av = 2Vv -aVy + av

wherea := (€—b) - Vo + V- (aVyp) € Cl(_) it follows that y(aVy) = 0 im-
plies (1 — &)y ([A%, plv) =0 for v € W, - Hence

(('Aa B) = ['A ]) € [’(E ﬁ(Wz BB?VVZ:I,_BS&)) )
thanks to (3.2). Consequently,
(v, Cpu)| < ||[«‘Uj,<,0]||g(w2 o Wi 19l g lela-np

for (v,u) € W, R W;El, which shows that

Co € L(E LW, 5", Wy5") - (3.10)
Also note that
B (v) = ypB'v + 6(3y,)yv = 0 , SR (3.11)

thanks to y(@aVy) = 0. Thus v € W, ¢ Whenever v € W2, "5 Thus we infer
from (3.9) that

ou=(w+A,B)! (<,0.Au + wpu + Cy, (Yu), ('y<p)Bu) (3.12)

and the assertion follows from (3.10) and the arguments of the first case. O
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Corollary 3.2. Suppose that 1 <p < 0o and s € [0,2]\(N+ 1/p). Then

lullsp < c(lAulls-2p + 1Bullows + [lulls-2,) ,  w€W,,

uniformly with respect to (A, B) in compact subsets of £.

Proof. This follows from (3.5), (3.8), and (3.12), respectively, by setting
¢ =1 =1, and by observing that [A4,1] =0, [B,1]=0,and C; =0. O

Remarks 3.3.

(a) Suppose that 1 <p < oo and 0 < s < 1/p. Also assume @, € C3(f)
satisfy 1| supp(¢) =1 and §9,,¢ = 0. Given ¢ € (—1+ 1/p, s],

[ulls.p < c(llpAulls—2p + IveBullow; + [Yullop) ,  uweW,,

uniformly for (A, B) in compact subsets of &.

Proof. Observe that

((Aa B) = [Aﬁa(»o]) € ‘C(E"C(V[/;’,Bﬂamfptl,_én)) ’ 1/pl <t<1l+ 1/pl .
Hence the argument leading to (3.10) shows that
Co € L(B LWy 5, W75")) —1+1/p<o<l/p.

Since 60,,¢ = 0 implies that v € Wﬁ;u whenever v € W/p%’_;ﬂ, thanks to

(3.11), the arguments of the preceding proof imply the statement. [
(b) Suppose that u is a W,’-solution of (2.4) and denote by X the comple-
ment of supp(f) Usupp(g) in Q. Then u|X € C?(X).

Proof. This follows by an obvious bootstrapping argument from Theo-
rem 3.1. O

Remarks 3.4.

(a) Suppose that ¢ is constant on I'. Then the exceptional set N+ 1/p can
be replaced by {é + 1/p}. Thus s =1+ 1/p is admissible in the case of a
pure Dirichlet boundary condition (§ = 0), and s = 1/p is admissible if we
consider pure Neumann type boundary conditions (§ = 1).

(b) For simplicity, we have imposed more regularity for (4, B) than actu-
ally needed. For example, it suffices throughout this paper to assume that
ag € Lo(Q). Moreover, the assumption @ € C? has only been used in the
proof of Theorem 3.1. Theorem 2.3 remains valid for @ € C*. The regularity
hypotheses can be further relaxed if we are interested in W, -solutions for s
in a given subset of [0,2]\ (N + 1/p) only. For details we refer to [5] (also
see [6]). O

4. Linear Problems Involving Measures. In this paper we are partic-
ularly interested in the case where the right-hand sides in (2.4) are measures.
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To formulate the optimal regularity results we introduce suitable locally con-
vex spaces.

Suppose that J C R is an interval and { E; ; t € J } is a family of Banach
spaces such that s > t implies E; — E;. Then, given s € J, we put

E,_:=()E =1mE,, B, :=|JE :=IlnE,,
t<s tts t>s tls

provided s > infJ or s < sup.J, respectively. It is obvious that E,_ is a
Fréchet space.

It follows from the trace theorem that
Wig={ueW; (1-6yu=0}

is a well-defined closed linear subspace of W§ for 1 < s < 2. Hence Wll_
and le,g are well-defined.

Lemma 4.1.
wit=(1 N W
1<p<1* 0<s<1—n/p’

wis= () N Ws

1<p<1* 1<s<2—n/p’

and

Proof. From Sobolev’s embedding theorem we deduce that
Wi—Wwy if 1>1/p=1—(—-s)/n>0. (4.1)

If ¢t — s increases from 0 to 1 then 1/p, defined by (4.1), decreases from 1
to 1/1*, that is, p increases from 1 to 1*. Thus we infer from (4.1) that

Wi ) N w (4.2)
1<p<1* 0<s<1—n/p’

and that

Wig = ) N Wis- (4.3)
1<p<1* 1<s<2—n/p’

On the other hand, W, < W; implies that the right-hand side of (4.2)
injects continuously in
N N wr.

1<p<1* 0<s<1—n/p’
If 0 <t < 1 then we can find p € (1,1*) such that 1 —n/p’ > t. Hence
N N Wiew!, o<t<l.
1<p<1* 0<s<1—n/p’

Consequently, the space on the right-hand side of (4.2) injects continuously
in Wi~ Similarly, it follows that the space on the right-hand side of (4.3)
injects continuously in ng This proves everything. O
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Corollary 4.2. W;~ < Li«_ and ng — Wll*_’B = N1<p<tn WI},B-

After these preparations we can prove the following regularity theorem
for very weak and weak solutions, respectively, of problem (2.4) in the case
where f and g are measures.

Theorem 4.3. Suppose that (A,B) € E (). Then
(A,B)"t e LIM(QUTy) x M(T), W)
and

(4,8)7" € L(M(QUT1) x ({0} x M(T1)), W5) -

Proof. This follows from Theorem 2.3 and Lemmas 2.1 and 4.1. O
In analogy to the definition of W5 we put

{ueC(Q); 1—8)yu=0}, k=1,

{ueC?*Q); Bu=0}, k=2.

Suppose that (A, B) € £ and (u,0) € M(QUT;) x M(T). Then w is said to
be a very weak solution of the elliptic BVP

Cf = CE(Q) := {

Au = p in Q Bu=oconl, (4.4)
iff u e L; and

/(Aﬂv)udx:/vdu—/ a,,aUdO'—{-/ yodo veCp . (4.5)
Q Q F(] 1—‘1

If 0|’y = 0 then u is called weak solution of (4.4) iff u € Wll, 5 and

a(v,u) = / vdu—i—/ yvdo v € Cpy - (4.6)
Q r

It is easily verified that each weak solution is a very weak one as well.
Using these definitions we can prove the main result of this section.

Theorem 4.4. Suppose that (A,B) € Ey(QQ). Then the elliptic BVP (4.4)
has for each (p,0) € M(QUT;) x M(T') a unique very weak solution u, and
u belongs to Wll_. Ifo|Ty = 0 then u is a weak solution and belongs to leg
Moreover, given s € [0,1),

lulls,s < e(llpllameurs) + lollaqry)

and, if o|T'yp =0, then
lull1+s,1 < c(llellmeaury) + llollmry))

where ¢ depends on s, Q, and (A,B) only. In fact, ¢ can be chosen to be
independent of (A, B) if these operators vary in a compact subset of Ey(2).
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Proof. The asserted existence and regularity as well as the stated estimates
are easy consequences of Theorems 2.3 and 4.3. As for uniqueness, it suffices
to show, since each weak solution is also a very weak one, that u € L, and

/Q(A%)udx =0, weCs, (4.7)

imply u = 0. Given ¢ € D, classical elliptic theory guarantees the existence
of a unique v, € CL%,, satisfying Afv = . Hence it follows from (4.7) that
fQ pudz = 0 for each ¢ € D, which shows that u =0. O

Corollary 4.5. Given p € [1,1%),

lullp < e(llellm@uryy + llollmm)

and, if o|T'y =0, then

lullie < c(llelmeaury) + llollmery))

where ¢ depends on p, Q, and compact subsets of &y containing (A, B), only.
Proof. This is a consequence of Corollary 4.2. O

Linear elliptic boundary value problems whose right-hand sides are mea-
sures occur in control theory, for example. In this connection the Neumann

problem
Au=pinQ, J,u=oconTl (4.8)

for the operator A:=—V - (aV:)+ap with a9 > 0 has been studied by
Casas [13]. In that paper it is shown, building on a priori estimates of Stam-
pacchia [29], that (4.8) has a unique solution in W{._ and that the a priori
estimate of Corollary 4.5 is satisfied in this case.

Remarks 4.6.

(a)It is clear that M(I';) can be identified with the linear subspace of
M(QUT) consisting of those measures in M(2UT';) whose supports are
contained in I';. Thus there is an ambiguity in (4.4) as far as 01 € M(T'1)
is concerned: namely, we can put ¢; in the equation on 2 or in the bound-
ary condition on I';. However, this is a formal inconsistency only since (4.4)
does not have a meaning except the one given in (4.5) or (4.6), respectively.
But there is no such ambiguity in (4.5) or (4.6). Nevertheless, we prefer
formulation (4.4) for its intuitive appeal.

(b) Everything said up till now remains valid for normally elliptic systems
and complex-valued coefficients. For this we also refer to [5]. O

5. Positivity. So far our spaces of distributions could be complex Ba-
nach spaces. Now we restrict ourselves to the real setting and discuss order
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properties. Thus in the remainder of this paper all vector spaces are over the
reals. If, in a given formula, there occur explicitly complex numbers or it is
referred to the spectrum or the resolvent set of a linear operator, it is always
understood that the corresponding complexifications are being considered.

Let E, F, and Ey,..., E, be ordered Banach spaces (OBSs), whose pos-
itive cones we denote by ET, F*, and Ef,..., EF, respectively. Then the
space E1 X --- X E,, is always given the product order whose positive cone
equals the product of the positive cones EJ"' A bounded linear operator T'
from E into F is positive iff T(Et) C F*, and we write T € LT(E, F) in
this case. The real line is always given the natural order whose positive cone
equals RT. Then (E')* := L*(E,R) is the dual wedge of E*. It is a cone,
hence E' is an ordered Banach space, iff E* is total in E, that is, E¥ — E*
is dense in E. In the following all our positive cones will be total and the
dual spaces are always given the dual order induced by the respective dual
positive cones. If G is a Banach space such that G — F then G is given the
natural order induced by E whose positive cone equals G N E* = i~1(E¥),
where i is the injection G < E. Thus i € LT(G, E).

Let X be a o-compact metric space. Then Cy(X) is endowed with the
natural order whose positive cone equals

Cy(X)={ueCy(X); u(z)>0,z€X}.
It follows that Cy(X) is an OBS, in fact: a Banach lattice. Consequently,
M(X) is a Banach lattice as well. Given gy € M (X) and 1 < p < oo, the Ba-
nach space L, (X, u1) is also given its natural order whose positive cone equals
LE(X,p) :i={ue Ly(X,n); u(z) >0 p-ae.} .
Then L,(X,p) is also a Banach lattice.

By means of the preceding definitions and conventions it follows that W7
and W' as well as 0W,’ are OBSs, whenever they are defined. Moreover,
the injections

Wi =W, W < oW,, -2<t<s<2, 1<qg<p<oo,
are positive, when defined.
Suppose 1 < p < oo and s € [0,2]\(N + 1/p). For (A, B) € £ we put
AS—Q:P = AH/I/;,B € ‘C’( pS,B’ V[/;,S,Ez) )

and consider A;_5 , as a linear operator in VV;?. Due to Theorem 2.3 and
Remark 2.4(a),

At_0q D As_2p 0<t<s<2, 1<g<p<oo, (5.1)
provided ¢ ¢ N+ 1/q. Since
Wep <= W)y, 0<t<s<2, t¢N+1/q, (5.2)

where < denotes compact injection, we infer from Remark 2.4(a) that
A,_5, has compact resolvent. Then it is an easy consequence of (5.1) that
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the spectrum and the eigenspaces of A;_5, are independent of s and p.
Henceforth we often simply denote A,_5 , by A if no confusion seems likely.

Theorem 5.1. Suppose that (A,B) € . Then A possesses a least real eigen-
value Ao := Ao(A, B), the principal eigenvalue of (A, B). It is simple and
possesses a positive eigenfunction o € C% satisfying p(z) > 0 forz € QU
and 0y, p(z) < 0 for z € Ty. Moreover, Ay is the only eigenvalue of A having
a positive eigenfunction, and there is no eigenvalue X # Ao with Re A < Ap.
Lastly, if A > —Xo then

A+ A,B)™" € LT (W52 x OW,, W) (5.3)

for s € [0,2]\(N+1/p) and 1 < p < cc.

Proof. The assertions concerning the spectrum of A and the eigenfunction ¢
follow from [4, Theorem 12.1], the preceding remarks and standard regularity
theory. (In the proof of Theorem 12.1 in [4] it has been referred to [27,
appendix] to assert that a positive irreducible compact linear operator on
a Banach lattice has a strictly positive spectral radius. However, this does
not follow from the results in [27], but is Theorem 3 in [14].) Suppose that
s =2 and p >n. Then (5.3) is a consequence of [7, Theorem 2.4]. Note
that (W;2)* C (W2)" and that L, x 0W,? is dense in L, x dW;? for p > q.
Hence the continuity of (A, B)™! entails (5.3) for s =2 and all p € (1,00).
In [5, Theorem 8.7] it has been shown that (A + As_2,)~! is positive for
s €[0,2]\(N + 1/p), provided A is sufficiently large. That proof applies to
all A > —)¢ to guarantee that

A+ AT e LT W52 W), s€0,2\(N+1/p), 1<p<co.
By mollifying (in local coordinates) it is not difficult to see that (9W,7) is
dense in (OW,})* for 0 < s < 2. Fix A > —Xg and p € (1,00). From what we
know already it follows that

(A+ A, B~ {0} x OW2 € L+ (OW7, W) .
Hence, by density and continuity,
(A + A, B)7H {0} x OW; € LHOWS,Wy), s € [0,2\(N+1/p) .
Thus the decomposition
A +AB)T (f,9) = A+ AT+ (A+AB)7(0,9)

implies (5.3). O
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Remarks 5.2. Suppose that (A,B) € €.

(a) Since (A*, B¥) € £ we can define A* by Ag_z,p, = Al ;,,_Bz,,. Then Theo-
rem 5.1 holds for (A, B*) and A¥. Since Ay, and Ag,p, have common points
in their resolvent sets one verifies that Ag,p, = (App)". This implies that
Xo(A, B) = Ao (A", B¥) and that there exists a positive eigenfunction ¢* of A*
possessing the same properties as .

(b) The operator A,_s , is characterized as follows:

o if 1+1/p<s<2then A, 5, = A|WS5%
e if 1/p<s<1+1/pthen

<U7As—2,pu> = Cl(U,’u) ’ (’LL,’U) € V[/;)S,B X V[/Z,_lgsﬂ 5

e if 0 < s < 1/p then

<U,A8—2,pu> = <Aﬁvau> ’ (u,'u) € V[/;JS,B X Wz',_[j:gﬁ :

p

Proof. See [5, Section 8. O
(¢) The map

Lo x CYT1) = R, (b,8) = X(A+b,B+387)

is strictly increasing and continuous.

Proof. The isotonicity follows by an obvious modification of the proof of
[23, Proposition 3.2(i)] employing [7, Theorem 2.4].

The proof of Theorem 5.1 shows that [A+ \o(A+b,B+ 5ﬁ’y)]_1 is a

simple eigenvalue of the compact linear map
A+ A+b,B+067)7" Ly x {0} € L(Ly) ,

where A is a sufficiently large positive number and p > n. Hence the asserted
continuity is a consequence of the upper semicontinuity of the spectrum. 0O

6. Semilinear Equations: The General Case. Throughout Sections
6-13 we suppose that

(A,B) €& and MXg:=Xo(A,B)>0. (6.1)

It follows from Theorem 5.1 that (A, B) € & and (A, B)~! is positive.
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Henceforth we put

[ M(QUT) x M(T), ji=0,
Mj_{M(QUrl)XM(I‘l), j=1.

We identify M; with the closed linear subspace M(Q UT';) x {0} x M(T;)
of M := Mj and write m = (u, o) for a generic point of M. Observe that
M is a Banach lattice.

We suppose that 1 <p < 1*and 0 < s; <1—n/p’ and put E; := %Sj-l-j
for j € {0,1}. We also suppose that

(F;,G5) € C(E; x M, M;) . (6.2)
Then, given m € M, we consider the semilinear elliptic BVP
Au = Fj(u,m)in Q, Bu=Gju,m)onTl . (6.3),m

By a solution u of (6.3);,, we mean an element v € E; such that u is a
very weak or a weak solution, respectively, of the linear BVP Au = p,, in 2,
Bu = o,, on T, where p,, := F;(u,m) and o, := Gj(u,m) for j =0or j =1,
respectively.

Lemma 6.1. Put
Ti(u,m) := (A, B)_l(}"j(u,m),gj(u,m)) , (u,m) € Ej x M .

Then
(i) 7; € C(B; x M,WH)7).
(ii) Suppose that U x M C E; x M. If (F;,G;)(U x M) is bounded in
M then T;(U x M) is bounded in Wl(lﬂ)_ and contained in a com-
pact subset of E;.
(iii) If (F;,Gj) is [strictly] increasing on U x M then Tj is also [strictly]
increasing on U X M.
(iv) If m € M then u is a solution of (6.3);m, iff u is a fized point of
T;(:,m) in E;.
Proof. (i) and (ii) are easy consequences of (A,B) € &, Theorem 4.3,
Corollary 4.2, the fact that L; — M(Q UT;), and the Rellich-Kondrachov

theorem.
(iii) follows from the positivity of (A, B)~!, and (iv) is obvious. [

As an immediate consequence of this lemma we find the following regu-
larity result.

Corollary 6.2. Ifu is a solution of (6.3); ,, for some m € M then u belongs
to Wl(lﬂ)_, hence to Wi._.

First we prove an almost trivial existence and uniqueness theorem. Here
and below we omit the index j everywhere if no confusion seems possible.



ELLIPTIC PROBLEMS INVOLVING MEASURES 25

Theorem 6.3. Suppose that (F,G) € CY(E x M, M). Also suppose that
m* € M and u* is a solution of (6.3),« such that the linearized problem

Av=0,F(w*,m")vin Q, Bu=0G(u",m")vonT (6.4)

has the trivial solution only. Then there exists an open neighborhood U x M
of (u*,m*) in E x M such that (6.3),, has for each m € M ezactly one solu-
tion u = u(m) € U. The map m — u(m) is continuously differentiable on M.

Proof. Define ® € C}(E x M, E) by ®(u,m) := u— T (u,m). Then ® van-
ishes at (u*,m*), and &1 ®(u*,m*) =id — 1T (u*,m*). Since

nT (u*,m*)v = (A,B)~! (81.7-"(u*, m*)v, 1 G(u", m*)v)

it follows that 91 F (u*,m*) is a compact linear map of E into itself. Thus
01 ®(u*, m*) is a Fredholm operator of index zero. The assumption on the
linearized problem (6.4) implies that 0y ®(u*, m*) has a trivial kernel. Hence
019 (u*, m*) € Lis(E, E), and the assertion follows from the implicit function
theorem. O

Remark 6.4. Suppose that (A,B) € £. Fix w > —Xg(A,B). Then prob-
lem (6.3),,, is equivalent to

(A+w)u = Fj(u,m) +wuin @, Bu=G;ju,m)onT .

Thus, since Ao(A + w,B) = X\o(A, B) + w > 0, it is no loss of generality to
assume that A\o(A,B) >0. O

7. Sub- and Supersolutions. Suppose that m € M. Then w is said to
be a subsolution of (6.3),, iff w € E and

Aw < F(w,m) in Q, Bw<Gw,m)onl . (7.1)
If both inequality signs in (7.1) are reversed then w is a supersolution
of (6.3)m.

Lemma 7.1. Suppose that m € M. Then w is a subsolution [resp. super-
solution] of (6.3);, iff w < T (w,m) [resp. T (w,m) < w].

Proof. This is immediate by Lemma 2.1 and (5.3). O

It is a consequence of Lemmas 6.1 and 7.1 that the well-known techniques
of nonlinear functional analysis in OBSs can be applied to problem (6.3),,.
As a first result we prove a generalization of the method of sub- and super-
solutions to the present setting.
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Theorem 7.2. Suppose that W is a subsolution of (6.3)m and W is a super-
solution of (6.3)7 such that (w,m) < (W, m). Also suppose that (F,G) is
increasing on the order interval [(w,m), (@, )], and that (F(-,m),G(-,m))
is, for each m € [m,m], bounded on [w,w).

Then (6.3),, has for each m € [m, m] a least solution u(m) and a greatest
solution uw(m) in [w,w]. Furthermore, u(-) and u(-) are increasing maps
from [m,m] into E. If (F(u, -), G (u, )) are strictly increasing on [m,m| for
u € [w, W] then u(-) and u(-) are also strictly increasing.

Proof. It follows from Lemma 6.1 that 7 is increasing on [(w,m), (@, )],
and that 7 (-,m) is compact on [w, W] for each m € [m, m]. Hence

w < T(@,m) <T(@m), T(@m)<T@m)<d, memin.

Thus [3, Corollary 6.2] guarantees the existence of the least and the greatest
fixed point of 7(-,m) in [w, w]. Suppose that m < my < m; < m. Then

a(my) = T (u(m1),m1) > T (w(m1),mo) ,

with a strict inequality sign if (.7-" (u,-), G(u, )), hence T (u,-), are strictly
increasing. Thus 7 (-,my) has a fixed point u in [w,%(m1)], which is distinct
from w(m, ) if T (u, -) is strictly increasing. Consequently, T(mg) < u < u(m;)
which shows that () is increasing, and strictly increasing if T (u, -) is strictly
increasing. Similarly, we prove the assertion for u(-). O

Remark 7.3. Theorem 7.2 remains valid if it is only assumed that there
exists a constant w > 0 such that
(u,m) = (F(u,m) + wu, G(u, m) + dwyu)

A~

is increasing on [(w, m), (@, Mm)].

Proof. Clearly, problem (6.3),, is equivalent to

(A+w)u = F(u,m) + wu in Q,
(B + dwy)u = G(u,m) + dwyu onT .

Since Remark 5.2(c) implies A\o(A + w, B + dwy) > Ao(A, B) > 0, the asser-
tion follows. O

8. Positive Solutions. Now we restrict our considerations to the study
of positive solutions. For this purpose we assume that

(F,6)(0,0) = 0 and

(F,G) is increasing on ET x M* and
bounded on bounded subsets of ET x M™
and on order intervals in ET x M™ .

(8.1)
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We also suppose that

m: RY — M is continuous and increasing with m(0) =0 . (8.2)
We put

Y= {(\u) € RT x ET; (A u) is a solution of (6.3),,(») }
and
A:={X€eR" ; there exists u € ET with (\,u) €T} .

We also define S € C(RT x E*,ET) by

S\ u) =T (u,m(N)) , AMeRY, ueE".

Then it follows from Lemma 6.1 and assumptions (8.1) and (8.2) that S is
well-defined, increasing, and maps bounded sets and order intervals into
compact sets. Moreover, (A, u) € X iff u = S(A\, u).

Theorem 8.1. A is an interval (possibly degenerate) containing 0, and
problem (6.3)m,(n) has for each X € A a least positive solution uy. The map
A — E*T, Xy is increasing and left continuous. If S(-,u) is strictly
increasing on RT for u € ET\{0} then \ — uy is also strictly increasing. If
A* :=supA < oo then \* € A iff the set {uy ; \* —e < A< X*} is bounded
in E; for some € > 0.

Proof. Thanks to the preceding observations this follows from [3, Theo-
rem 20.3], where it suffices to observe that the normality of the positive cone
had only been presupposed to guarantee that the map under consideration
sends order intervals into compact sets. [

The next proposition gives a sufficient condition for A* to be finite. Here
and below we denote by ¢! a fixed positive eigenfunction of A*. For abbre-
viation we also set

Cﬁ._{(a_l)alla"i_&Ya 7=0,
) v j=1.

Proposition 8.2. Suppose that B € C(RT,R) satisfies
Aok u) + B(A) < (¢F, F(u,m(N)) + (C*F, G (u,m(N))), (8.3)

for (A\,u) € 3, where \g := Xo(A, B). If limy_,o B(t) > 0 then \* < cc.

Proof. By testing (6.3),,,(.) at (A, u) € T with ¢ and by taking into acount
Remarks 5.2, the very weak or weak formulation, respectively, of (6.3)(.,
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and the hypothesis, we see that S(A) <0 for (A, u) € 3. This proves the
assertion since A is an interval. [

It should be remarked that the idea behind Proposition 8.2 is the same
as the one in [3, Proposition 20.2].

Since 8(, -) is continuous and maps bounded subsets of E* into compact
ones the fixed point index i(S(\,u),U) :=i(S(,-), U, ET) is well-defined
for each open subset U of E* with u # S(A,u) on dU (cf. [3, Theorem 11.1]).
The next proposition evaluates this fixed point index in a simple situation.
It is the basis for certain multiplicity results. Here and below B is the open
unit ball in £, and B} := pB N E™ for p > 0. By 0B} we mean the boundary
of Bf in E*.

Proposition 8.3. Suppose that A* > 0 and p > 0 are such that
{Mu)eT; 0<A<A}CB,. (8.4)

Also suppose that, given T > 0, there exists R > 0 such that each positive
solution of

Au = F(u,0) + 70 in Q, Bu=G(u,0) onT, 0<7<T, (85)
belongs to Bgr. Lastly, let estimate (8.3) be satisfied for A =0 and each
u € EY. Then i(S(A,-),B,) =0 for 0 <X < A%,

Proof. By testing (8.5) with ¢! and using (8.3) for A =0 and u € E7 it
follows that 3(0) + 7{¢*, ¢) < 0 whenever 7 € R* and « is a solution of (8.5).
Since (!, ) > 0 we infer that there exists 7* > 0 such that (8.5) has no
solution for 7 > 7*.

Put
S(r,u) == (A, B)"H(F(u,0) + 79,G(w,0)) , weEt, 7>0.

Then S(0,-) = 8(0,-), and there exists p > 0 such that S(),-) and S(r,-)
have no fixed points on 8183;," for 0 <A< A® and 0 < 7 < 7%, respectively.
Thus, by the homotopy invariance of the fixed point index,

i(S(-),BF) =i(8(0,-),B)) =i(S(r",-),Bf) =0

for 0 < X < A*, where the last equality holds since S (7*,-) has no fixed point
at all. O

Suppose that u* is an isolated fixed point of S(),-) in E* for some A € A.
Then the local index

(S, ), u") == lim i(S(A, ), (u* + pB) N ET)

p—0

is well-defined.
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Corollary 8.4. Let the hypotheses of Proposition 8.3 be satisfied. Suppose
that A € AN[0,\*] and that uy is an isolated fized point of S(N,-) in ET
lying in B,. If i(S(A,-),Wx) # 0 then (6.3)m(x) has at least two solutions
in ET.

Proof. This follows by the additivity property of the fixed point index. O

It should be remarked that in the literature there seem to be no results
on elliptic BVPs involving measures in the same general form as in prob-
lem (6.3);,,. In all papers known to us measures are simply added to the
nonlinearities as in model problems (1.1) and (1.2), except for [24], where
equations containing a term uy are being considered.

It is the main purpose of Sections 6-8 to show that the precise results for
the linear BVPs given in Section 1 allow a reformulation of the nonlinear
BVP as a fixed point equation on a suitable ordered Banach space involving
a compact map. Thus we can appeal to well-known general theorems from
nonlinear functional analysis to obtain existence theorems etc. Using this
observation it is easy to obtain further results by imposing more specific
conditions like asymptotic linearity or concavity, for example. We leave this
to the interested reader.

9. Semilinear Equations: Local Nonlinearities. In this section we
study generalizations of problems (1.1) and (1.2), namely problem

Au = f(z,u,Vu)+ pin Q, Bu=dg(z,u) +oonT (9.1)m

and problem
Au=h(z,u)+pinQ, Bu=oconl, (9-2)

respectively, where m := (u,0) € M and f, g, and h are Carathéodory func-
tions satisfying estimates (1.3) and (1.4).
By increasing 71, if necessary, we can (and will) assume that

ig(i_l)/\<1—l)l, (9.3)

1 To n n’rg

First we show that (9.1) and (9.2) can be cast in form (6.3);,, so that
the results of Sections 6-8 are applicable.

Let X, Y, and Z be nonempty sets and let ¥ be a map from X xY
into Z. Then we set % (u)(z) := 1 (z,u(z)) for u: X - Y and z € X. Thus

" is the Nemytskii operator induced by 1.
Suppose that 1 < p < 1* and put

n(2-21),, =0,
sj<p>:={[ s J

n(%—%)—lh, j=1.
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Note that 0 < s;(p) < 1- n/p’. If 0 <t <1—n/p then, by Sobolev’s em-
bedding theorem, Wi+7 < L, (t), where

pn < n
n—p(t+j) n—(1+7)

pi(t) =

Observe that (9.3) implies p;(t) > r; for t > s;(p). Put Fy(u) := h*(u) and
Fy(u) := f%u, Vu). The above considerations, the Krasnosel’skii-Vainberg
theorem (eg., [5, Lemma 14.2]), and the commutativity of the diagrams

(id, V) n
W w9V e
1& ,/h“ Fll : f
Ly Ly -~ Lp1(t) X (Lpo(t))n

guarantee that
F; € C(WIH L), sj(p)<t<l—mn/p .

Similarly, Wy *'"/?(T") < L,, ) with
p(n—1) n—1
t) := .
P2(t) n—pt+1) n-2

Set G(u) := g*(yu). Since (9.3) entails py(t) > ro for t > s1(p), the commu-
tativity of the diagram

v -

g |

Ly(T) Ly, 2)

implies
Ge oW, L), si(p)<t<l—n/p .
D

Lastly, we put

and

o g, J=0,
Gy, m) = {6(G(u) +o0), =1,

for u € W}*7 and m := (u,0) € M.
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Lemma 9.1. If s;(p) <t <1—n/p’ then (F;,G;) € C(Wit x M, M;),
and this map is bounded on bounded sets. If f is independent of n € R"®
then (F;,G;) is bounded on order intervals as well. If f is independent of n
and f, g, and h are increasing in & then (F;,G;) is also increasing.

Proof. This follows from the above considerations. [

Now we assume that
f(-,0,0), g(-,0), and h(-,0) are bounded a.e. and )
f, g, and h are continuously differentiable with respect to
(¢,m) € R x R™, and condition (1.3) is replaced by

102 f (@, &,m) < e(1+ [€m 7 + |nlmo/m)
190 (@,€m)| < c(1+ 1€/ + ) (4

1029(y, &) < c(1+1€71)

|02(,€)| < e(1+ [g[™7)

for (¢,7) € R x R" and a.a. (z,y) € Q x I J

It is easily verified that (9.4) implies (1.3).
Lemma 9.2. Let assumption (9.4) be satisfied. If s;(p) <t <1 —n/p’ then
(F;,G;) € CLWItT x M, M;) and (0F;,0G;) is bounded on bounded sets.

Proof. This follows by an obvious modification of the proof of Lemma 9.1,
using the ‘differentiable version’ of the Krasnosel’skii-Vainberg theorem. O

We can assume that n/(n — 1) < r; < n/(n — 2) and define p, € (1,1*) by
1 1 '
_::_+la jZO,l,
De i n
so that s;(p) =0 for p, <p < 1*. Of course, j =1 if we consider prob-
lem (9.1),,, and j = 0 for (9.2),,. It follows from Lemma 9.1 that the follow-
ing definitions are meaningful:

u is a weak solution (in W) of problem (9.1),, if u € W}, ;5 and

a(v, u) :/Qvf(-,u,Vu)da:—l—/deu+/F ’yvg(-,’yu)df‘+/ yvdo (9.5)

'
'[Ifl .
fOI' NS pl, B

u is a very weak solution (in L,,) of problem (9.2),, if u € L,, and

/(.Aﬁv)udw:/Uh(-,u)d:v+/vdp— Byafud0+/ yodo  (9.6)
Q Q Q To Iy

for v € W;)Z, gt~ Of course, a weak or a very weak solution, respectively,

of (9.1),, or (9.2),,, respectively, is just a solution of (6.3)1,, or (6.3)0,m,
respectively.

For these types of solutions we have the following regularity result.
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Theorem 9.3. Suppose that u is a weak [resp. a very weak] solution of
(9.1),n [resp. (9.2)m]. Then u belongs to Wi~ [resp. W[ ™), hence to Wi _
[resp. Lis_].

Proof. Put p := p,. Then (9.5) [resp. (9.6)] and Lemma 9.1 imply that v is
a weak [resp. very weak]| solution of (9.1),, [resp. (9.2),,] iff u is a solution
(in W) of problem (6.3); ,, where j =1 [resp. j = 0]. Thus Corollary 6.2
entails the assertion. O

Theorem 9.4. Let assumption (9.4) be satisfied. Suppose that m* € M and
u* is a weak [resp. very weak] solution of (9.1)m,« [resp. (9.2)m+]. Also sup-
pose that the linear BVP

Av =0 f(-,u*, Vu*)v + 03 f(-,u*, Vu™) - Vo inQ,
Bv = 0029(-,u™)v on T,
[resp. Av = 0h(-,u)vin @, Bv=0 on I‘]

has the trivial solution only. Then there ezists a neighborhood U x M of
(u*,m*) in W, x M [resp. L,, x M] such that (9.1),, [resp. (9-2)m] has
for each m € M ezactly one weak [resp. very weak| solution in U.

Proof. This is a consequence of Lemma 9.2 and Theorem 6.3. O

Remark 9.5. It should be noted that everything said so far in this section is
also true — with the obvious modifications — if (A, B) is a normally elliptic
system. [J

Clearly, u is said to be a weak [resp. very weak| subsolution of (9.1),,
[resp. (9.2)m] if u € W, [resp. Ly, ] and u satisfies (9.5) [resp. (9.6)] with the
equality sign replaced by < and only nonnegative test functions v being
admitted. Similarly, weak [resp. very weak]| supersolutions are defined by
replacing the equality signs by > .

10. The Sub- and Supersolutions Theorem. In the remainder of this
paper we consider the case where f is independent of 1 € R™. To be more
precise, we consider the BVP

Au= f(z,u) + pin Q, Bu=dg(z,u)+oonl, (10.1),,
with m = (u,0) € M and f and g being Carathéodory functions such that

|f (@, )l <c(L+1E7) . 1g(y &) < c(1+[¢]°)
for £ € R and a.a. (z,y) € QA x T,

where 7 and p satisfy (1.8) and (1.9),
and f(z,-) and g(y,-) are increasing for a.a. (z,y) € Q x I.

(10.2)



ELLIPTIC PROBLEMS INVOLVING MEASURES 33

We put j:=0if 0|y # 0 and j := 1 otherwise. Note that now

By a solution of (10.1),,, we mean a weak solution in W, if o|Ty = 0 and a
very weak solution in L,, if o|T'y # 0. Similar definitions apply to sub- and
supersolutions of (10.1),,.

The preceding considerations together with Theorem 7.2 lead directly
to the following fundamental existence theorem which generalizes the well-
known sub- and supersolutions theorem for classical elliptic BVPs.

Theorem 10.1. Suppose that W is a subsolution of (10.1)7 and W is a
supersolution of (10.1)z such that (w,m) < (w,m). Then (10.1),, has for
each m € [m, m] a least solution w(m) and a greatest solution u(m) in [w,w]
and the maps u(-) and u(-) are strictly increasing.

Remark 10.2. For Theorem 10.1 to remain valid it suffices to assume

that (f(z,-),g(y,-)) is increasing on [w(z), W (z)] x [yw(y), y@(y)] for a.a.
(z,y) e xT. O

11. Parameter-Dependent Problems. Now we investigate the exis-
tence of positive solutions. For this we assume, in addition to (10.2), that

(f('ao)ag('aO)) = (an) and m = (Uaa) >0. (11'1)
Then we consider the parameter-dependent problem
Au = f(z,u) + Apin Q, Bu=dg(y,u) +AoconT . (11.2) xm

The next theorem guarantees, in particular, that each solution of (11.2)y,,
is positive if A > 0. Recall that Ao := Ao (A, B).

Theorem 11.1. Theorem 8.1 is valid for problem (11.2)y,. If there exists
B > 0 such that

f(xaf) > A05_/8 ’ fe R* y  0.0. T € Q ’ (113)

then \* < oc.

Proof. From our earlier considerations we know that (11.2),,, is a special
case of problem (6.3) ; xm, where j = 0if |y # 0, and j = 1 otherwise. This
implies the first assertion.
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We deduce from (11.3) that
() > dolehu) — B [ o, we (W),
Q

Since " € C? with ¢#(z) > 0 for z € QUT; and 8, ¢*(z) < 0 for z € Ty we
see that = [, o* du + (C'¢*, 0)9 > 0. Hence

(", F(u) + M) + (C'", 6G (1) + Aa) > Ao(ph,u) + B(N)

for (A, u) € X, where B(A) := Aa — 8 [ ¢* dz. Hence B(\) — oo as A — oo,
and \* < oo follows from Proposition 8.2. [

12. Index Computations. Now we strengthen hypotheses (10.2) by
assuming differentiability. More precisely, we suppose that m = (u,0) >0
and f and g are Carathéodory functions such that

(f(.’E, ')79(?/; )) € Cl(R’ R) with

Bt < (141, 10ag(y )] < et + lgP)
for a.a. (z,y) € 2 x T and £ € R,

where r and p satisfy (1.8) and (1.9),

(f(x,O),g(y,O)) = (0’0) and (82f('77a '),829('!/, )) > (Oé,O)
for a.a. (z,y) € Q x ' and some « > 0.

s (12.1)

We set E := W) and T'(u) := (A, B)~!(F(u),5G(u)) for u € E. Then
S(A\,u) =T (u) + AL(m) , (AMu) eRXE,

where

L(m) = (A, B)"}(u,0) € WD~

and L(m) > 0. It follows from (12.1) and Lemma 9.2 that S € C'(R x E, E)
and that

9SS\, u)v = 0T (u)v = (A, B) ™' (8F (u)v, §0G (u)v)

with

(OF (u)v, 0G (u)v) = ((82f)" (w)v, (929)" (yu)yv) -
Note that £ < L, and that

[v = (8F (u)v, 0G(u)v)] € L(L,, L1 x L1(T)) .

Hence 0T (u) is a compact endomorphism of L,. In this interpretation we
denote it by K (u).
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Lemma 12.1. Suppose u € E*. Then the spectral radius k(u) of K(u) is
positive and a simple eigenvalue. There exist an eigenfunction (u) of K(u)
which is positive a.e. in Q and a stricly positive eigenvector ' (u) of [K(u)]l
to the eigenvalue k(u). Moreover, k(u) is the only eigenvalue of K(u) pos-
sessing a positive eigenfunction, and the map u — k(u) is continuous on E*.

Proof. Since u > 0 it follows from (12.1) that K := K(u) is a positive en-
domorphism of L,. Note that

Kv> (A,B) Y aw,0) = ad™ v, veL’.

Hence
KFy > aobA k| veLr, keEN. (12.2)

Since A™' € L(Lg, W?) for g € (1,00) and W,? — Lg, with1/q1 > 1/q—2/n
we can fix ko > 1 such that (a=*A)~*o+! € £(L,, L,) for some ¢ > n. Thus,
by the maximum principle [4, Theorem 6.1], w := w(v) := a*° A=*oy is con-
tinuous on 2 and everywhere positive on  UT;, provided v € (L;)\{0}.
Hence we deduce from (12.2) that K*ov > w. Consequently,

KA —K)™w =Y AFKky > x7hogroy > Ao, v e (L;)\{0},
k=1

for every A > K := k(u). This shows that K is irreducible (cf. [27, V.7.7 and
App. 3]). Since L, is a Banach lattice, de Pagter’s theorem [14, Theorem 3]
guarantees that x > 0. Now [27, App. 3.2] implies that x is a simple eigen-
value of K, that it possesses a positive eigenfunction 7, and that K’ has a
strictly positive eigenvector ¢’ belonging to . Note that

P =Kk Kt = kTR > ko () (12.3)

so that 1) is positive a.e. in €.

Suppose that ¢ is an eigenvalue of K possessing a positive eigenfunction v.
Then, by applying ¢’ to tv = Kwv, it follows that (', v) = k(¢',v). Since
' is strictly positive, (¢',v) > 0, so that ¢t = k.

Lastly, observe that the map u — K (u) is continuous from F into £(L,).
Since K (u) is compact, ko(u) is an isolated simple eigenvalue for u € E¥.
Thus the upper continuity of the spectrum entails that x(-) is continuous O

Remark 12.2. It should be observed that (12.3) contains more precise
information on %(u). For example, if j =1 then (12.3) also implies that
yp(u)(y) > 0 for a.a. y e Ty. O

It is easily seen that Lemma 12.1 guarantees the existence of a positive
eigenvalue, namely 1/k(u), and of a corresponding positive eigenfunction,
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namely 1)(u), for the elliptic eigenvalue problem
Aw = X0z f(-,u)w in @,  Bw = Add2g(-,u)w on T

whenever u € E*. However, thanks to the low regularity of d5f(-,u) and
029(-,u), the eigenvector 9'(u) cannot be interpreted as the solution of
the ‘dual’ linear eigenvalue problem which is obtained by replacing (A, B)
by (A%, BY).

Lemma 12.3. The set A := {)\ €N ; k(uy) < 1} is open in A, and
(A= m@y) € CI(AO,E+) .

If A € Ay then uy is an isolated fized point of S(A,-) in E. If k(0) < 1 then
X* > 0. Lastly, if \* is finite and a limit point of Ag in A then k(uy«) = 1.

Proof. Put ¥(\,u) :=u—S(A\,u) =u—T(u) — AL(m). Then ¥ is contin-
uously differentiable and

AU N\ u)v=v— 0T (u)v , Mu)ERXE, veE. (12.4)

Moreover, ¥(A,u) =0 for (A\,u) € 3.

Suppose that Ag € Ag. Since k(uy,) < 1 and (@, ) is the spectral radius
of K(u),), it follows from (12.4) and the fact that K (u),) equals 8T (uy,)
as an endomorphism of L,, that 02¥(A,%y,) is an automorphism of E.
Hence the implicit function theorem guarantees the existence of a neigh-
borhood J x U of (Ao, Uy, ) in R x E and of a map u(-) € C*(J,U) such that
W(A,u) =0 holds for (\,u) € J x U iff X € J and u = u(\).

Assume that 0 < Ao < A*. Then the left continuity and isotonicity of
A — @y, implies that u(\) = @y for A € JNRT. Hence suppose that Ay = 0.
Since £(0) < 1 we can compute u(A) for A sufficiently small by the itera-
tion scheme

Unt1 = SN\, up) = T(uy) + AL(m) , n€eN, ug =0 .

From this we infer that u(A) >0 for 0 < A < ¢, which entails that A\* > 0
and u(A) = 1wy, for 0 < A < € and a suitable € > 0.

Finally, it follows from w) = u(A) for A € Ay that Ag is open in A. The
last assertion is a consequence of the continuity of u + k(u) in E*, which
is guaranteed by Lemma 12.1. O

Remarks 12.4. (a) Suppose that f(z,-) and g(y,-) are either both convex
or both concave on Rt for a.a. (z,y) € Q x I'. Then (0, A\*) C A,.

Proof. The assumption entails that (9>f(z,-),d29(y,-)) is either increas-
ing or decreasing on Rt for a.a. (z,y) € Q x I'. This implies that either
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K(u) < K(v) or K(v) < K(u) for 0 < u < v. Suppose that 0 < A\g < A1 and
A1 € A and set u; := Uy,- Since A — uy, is strictly increasing, it follows that

1
Uy — Ug > T(ul) — T(’u,()) = / K(UQ + t(u1 — U())) dt (u1 — U())
0
> K (up)(u1 — up)
or uy — ug > K(uy)(u1 — up), respectively. Now the assertion is obtained by

applying either ¢’ (ug) or 9’ (u1), respectively, to these inequalities. [

(b) Suppose that A* < co. Also suppose that f(z,-) is strictly convex and
9(y,) is convex for a.a. (z,y) € Q x I'. If A* € A then problem (11.2)x«, is
uniquely solvable.

Proof. Let u # u* := Uy« be a solution of (11.2)y+,,. Then u > u* and,
similarly as in the proof of (a), we see that u — u* > K (u*)(u — u*). Thus, by
applying 9’ (u*) to this inequality, it follows that x(u*) < 1 which contradicts
Lemma 12.3. O

(c) Assume that (92£(-,0),029(-,0)) € C(Q) x CY(T). If
)\0(./4 - azf(', 0), B — 6629(,0)’)’) >0 (125)

then x(0) < 1.
Proof. Observe that x(0)y = K(0)y with ¢ > 0 iff p € (W2 _)* and

[A—K(0)7180f(0)]p=0  nQ,
[B — K(0)~"6029(-,0)y] =0 onT .

Hence it follows from Theorem 5.1 that x(0) is the unique solution of
¢(t) = Ao (-A - t_162f('a0)a8 - t_1582g('50)’7) =0, t>0.

Since (82f(-,0),29(-,0)) > (e, 0), Remark 5.2(c) implies that ¢ is a strictly
increasing function of ¢. Hence assumption (12.5) guarantees that ¢(¢) > 0
for t > 1, which proves the assertion. [

Lemma 12.5. i(S(},-),u) =1 for X € Ao.

Proof. Fix A € Ag and put ug := w) and S(u) := S(A, u). Lemma 12.3 guar-
antees the existence of €y > 0 such that ug is the only fixed point of S in
ug + €9B. Note that

S(u) —ug =T(u) — T(ug) = K(ug)(u —uo) + 7(u, up)(u —up) , ueER,

where 7(u —up) — 0 as u = up in E. Fix a and S with k(ug) < a < g < 1.
Since x(ug) is the spectral radius of K (ug) we can fix an equivalent norm —
again denoted by ||-|| — on E such that || K (ug)|| < « (e.g., [20, Lemma 2.2]).
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Hence choosing €1 € (0, £¢9) so small that ||r(u,ug)| < 8 — afor u € ug+ 1B,
it follows that

18(w) = uoll < eflu —uoll + (B = a) lu — uoll = B [lu — uoll < [lu—uoll
for ||u — ug|| < &1. Thus
| (¢S (u) + (1 — t)uo) — uo| =t |S(u) — uo| < e, 0<t<1,

for u € ug + 0BT and 0 < e <¢e;. Hence tS(u) + (1 —t)up has no fixed
point on uy + 0BT for 0 < e <e; and 0 <t < 1. Since tS(u) + (1 — t)ug
belongs to Et for u € E* and 0 <t < 1, the homotopy invariance of the
fixed point index guarantees that

Z(S, (uo +€B) ﬂE+) = i(uo, (uo + EB) ﬂE+) =1

for 0 < € < g1, where the last equality sign follows from the normalization
property of the fixed point index (see [3, Theorem 11.1]). This proves the
assertion. [J

13. A Priori Estimates. In this section we establish a priori bounds for
solutions of problem (11.2)),,. Combined with the results of the preceding
section these bounds will imply the existence of multiple solutions.

We begin with a technical lemma for which we observe that p, > n.

Lemma 13.1. Let p, € C3(Q) be such that 1 equals 1 in a neighborhood
of supp(y). Fiz py € (ps.,1*) and define s; and t; by

Lp-n(2-2), Ll l_Jy

t; n—1 \py n

Also fiz a € (0,1 —n/pl). Let ((.Ak,Bk)) be a relatively compact sequence
in & such that infy \o(Ag, Br) > 0 and let ((ak,bk)) be a bounded sequence
in Ly, x Ly, (T1). Suppose that uy, € W;?. and

Arur = agug in Q, Brug = 51,jbk5'yuk on T, keN. (13.1)

Then uy, € C*(Q) for k € N. If the sequence (Yuy) is bounded in Wy, then

(pug) is bounded in C*(€2).
Proof. It follows from (13.1) that

ug = (Ag, Br) " arug, 01,jbpdyur) = Prug + 01, Qrug , (13.2)
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where
Pou = A;laku ,  Qru:= Ribrdyu ,

and
ng = (AkaBk)_l(Oag) ’ g€ V[/;)_l_l/p(l—‘l) , 1<p<oo.

Sobolev’s embedding theorem, Holder’s inequality, and Theorem 2.1 imply
the commutativity of the following diagram of continuous linear maps:

1%\ ,A,;l (13.3)

] Tj
with
1.1 G 11 Gl 2-5 1
T, T; n_¢g S8 mn_p n 8 n
13.4
1 2 1 (13.4)
L2 (L)
p n Po 1N
for 1 < p < oo with p > p, if j = 1. Similarly, we see that
Y _
W, W, I Lo(T)
le {bk&
1 1+1/t—e By
Wi — W Ly(T)
with
1 1\1 1\ /1 1
L (- Do g (DG e )
s n/t n n/\q 11 n (13.5)
1 1 1\ 1 € 1 1-—¢ 1 1 )
2———+(1——)—+—=—— +(p—1)(———)
p n n/tiy n p n Po 7N

for pe < p < 00, provided 0 < € < 1/t. The restriction p > p, for j = 1 stems
from the fact that we have to insure that r; > 1in (13.4) and ¢ > 1 in (13.5).
Since 1/¢; > 0, the second inequality in (13.4) implies r; < s;. Now we infer
from the first inequality in (13.4) that 1/7; > 1/s; — j/n. Note that py > pe
entails ) )
gyt r_1
s; n T n Pe Dl

This shows that (13.3) holds for p > p, if 7; < p.
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Similarly, since 1/g > 0 we deduce from the second inequality in (13.5)
that ¢ < ¢1 so that the first inequality in (13.5) gives

Since pg > p. implies
1\ 1
(-hyLepmlo 111
n/t T n r p

(thanks to j = 1 in this case), we see that Qy € E(W;,l, W1, provided 1/7

is greater than or equal to 1/p), + ¢/n.
Thanks to 0 < ¢ < 1/t and ¢t < ¢; we can fix € with

1 2 1
0<e<9(——1+—)/\—/\(1—3—a)
2\r n t JA

independently of p > p,. Observe that

2 1 2 1 2 1 2

BT N DO AT A SEPR: T

n Po N n De T n T n

and
1— 11 1—e p—1
——S - - ) <———+F
Po n n ) T1 (13.6)
cfp1-2l e
n n T n

Hence it follows from (13.4) and (13.5) and the above considerations that

P LW, W) s Qr € LW, Wiy (13.7)
where 1/q(p) > (1/p —e/n) vV (1/p, + ¢/n) for p > p,.
Suppose that j = 0. By replacing W;f_j in (13.3) by L, it follows that

1 1 r—1

P, € L(L,,W?2), —=C <1.
k (T pl) b1 7'+ bo

Thus we deduce from (13.2) that

o 1 1 =0,
ukem/;?l—J , _::{ /'f‘+(‘l" )/p07 .7
p1 1/pe j=1.

An obvious bootstrapping argument, based on (13.2) and (13.7), shows that
up € W,2™9 with 1/p > 1/p, +¢/n for k € N. Since 1/p, +¢/n < (1 —a)/n,
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thanks to the choice of €, we see that u; belongs to W;/(l_a), hence to C%(Q),
for k£ € N.

Now we prove the boundedness assertion. First assume that j = 0. Let
©o, p1 € C3(Q) satisfy g | supp(p1) =1 and suppose the sequence (pquyx)
is bounded in L, for some p > p,. Then the sequence (pjaj,uy) is bounded

in L, where

1 1 1 1 r—1

- 2-+—=-+ .

qg p S P Po
Since W, < Ly if 1/¢ <1/p+1/n, and since (r —1)/po <1—=1/r < 1/n,
it follows that L, — I/Vp}jl,. Hence Theorem 3.1 implies that ((p1ug)) is
bounded in W', and we infer from W' < L, with 1/7 >1/p —1/n that
the boundedness of the sequence (goux) in L, implies the boundedness of
(prug) in L, with 1/p —1/7 < 1/n.

Set o := 1 and fix an integer £ > 2 + n(1/r — 1/sq). Also set ¢, := ¢ and
choose ¢; € C3(Q) such that ¢;_; equals 1 in a neighborhood of supp(y;) for
1 < i < £— 1. Since (poug) is bounded in L, we deduce inductively from the
previous considerations that (¢g_1ug) is bounded in W, . Hence (pajug) is
bounded in L,, and Theorem 3.1 guarantees that (puy) is bounded in W2.
Since 2 —n/sp > 1 we see that W2 — C*(Q), so that (puy) is bounded
in C*(Q).

Next suppose that j = 1. Let g, 1 € C3(9) satisfy ¢g | supp(p1) = 1 and
let (¢oug) be bounded in W;,l for some p > p,. Then (’y((pouk)) is bounded

in L, (I"), where
1 n (1 1
T 2 (_ B _) )
T n—1\p n

Hence (yp1by0yuy) is bounded in Ly(T';) for

Note that Ly (T'1) < Wy ™ 7P (Ty) if W, "/P7* (1) < Ly (1), which is the

case if ) ) )
S < i (_—8_ ) (13.9)

< % —(p- 1)(i - 1) . (13.10)

By (13.6) we see that the term on the right-hand side of this inequality is
strictly bigger than (1 + 2¢)/n.
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Since (pouy) is bounded in W' it follows that (p1arus) is bounded
in L, for

1 1 1 1 1 1
——+—=——E+(r—1)(———). (13.11)

1
> -
p n S8 p

1
q

Furthermore, L, — WZEQ if Wf,_s — L, which is the case for

1.1y (13.12)
q D n
Inequalities (13.11) and (13.12) are compatible iff
s 3 1 1
S o (=-2). 13.1
non (T )(po n) ( 3 3)

Since (r — 1)(1/po — 1/n) < 1 — 1/r, the term on the right-hand side of esti-
mate (13.13) is also strictly bigger than 1/r — 14 2/n+ 1/n > (1 + 2¢)/n.
Thus, setting s := 1 + ¢, both inequalities (13.10) and (13.13) are satisfied.
Consequently, (pjaxug) is bounded in W;f_2 and (yp1brdyur) is bounded
in W' 71/?(T"y). Since (@ous) is trivially bounded in W1, Theorem 3.1
implies that (¢ju) is bounded in W,’. Thus we see that (p1uy) is bounded
in W}, provided 1/7 > 1/p —¢/n. Since t <t; and ¢ < s; we find that
1/p > 1/pl, + ¢/n. Hence we see that (¢juy) is bounded in W} if 1/7 is
greater than or equal to (1/p —¢/n) V 1/p,. Now the boundedness of (puy)
in W;l,., consequently in C%(€2), follows by a bootstrapping argument which
is analogous to the one used for the case j =0. O

Let ¢ be a smooth diffeomorphism of R™ onto itself. Then ¢ induces
smooth diffeomorphisms of Q onto p(€2) and of I'; onto ¢(I';) for ¢ =0, 1,
all of them being denoted by ¢ again, without fearing confusion. Note that
©(T') is the boundary of (), and ¢(T') = p(Ty) Up(T1). We define the
push-forward (p..A, p.B) € E((2)) of (A, B) by

(A, s B) := ps 0 (A, B) 0 ",

where ¢*w := w o ¢ is the usual pull-back by ¢, and ¢, := (p~1)* is the
corresponding push-forward.

We also define the push-forward

(Putts p20) € M(p(Q2) Up(T1)) x M(p(T))

of (u,0) € M(QUT;) x M(T) by

/ vd(pp) ::/go*vd,u, / w d(ps0) ::/cp*wda
¢(9) o (D) r



ELLIPTIC PROBLEMS INVOLVING MEASURES 43
for v € Cy(p(2) Up(T1)) and w € C(p(T)), respectively. It is obvious that

@« ttll mip@)ues )y = el m@uryy »  le«allme@y) = llollmey - (13.14)

Now we consider the particularly simple case where ¢ := (- —z)/e for
some z € R and € > 0. Denote by w,, Lebesgue’s measure on R” and by wr
the Riemann-Lebesgue volume measure on I'. Then

Oswp = "Wy ,  Pxwr = En_lww(p) . (13.15)

We set .
Acw:=—-V - (a.Vw + eb.w) + ec. - Vw + 62a0,5'w

and .
Bow := 6(0y,, w + e(ybe - 7+ d.)yw) + (1 — 8)yw

where a. := p.a = a(z + ¢-), etc. It is easily verified, by using the very weak
or weak formulation, respectively, that

o A=€e2A., ©B=¢e1B.+(1—-0)y. (13.16)
From this and (13.15) one sees that problem (11.2),,, is transformed into

Acw = 2 f. (-, w) + 27" Mue inQ, ;=10 -2),

13.17
B.w = 5(595(-,10) + 52_")\05) +(1—=8)e"xo. onT,, ( )

where we have put f.(-,w) := f(z + &-,w) and g.(-,w) := g(z + &, w) as well
as (e, 0c) = (@upt, px0) and Tz := (T).

Finally, we impose assumption (1.11), in addition to (12.1), of course.
Using this precise information on the asymptotic behavior of f — and to
some extent of g — we can now establish the following a priori bounds.

Lemma 13.2. Let assumptions (1.11) and (12.1) be satisfied and suppose
that X* € A. Then {u€ E; (\u) € S, A < A*} is bounded in E.
Proof. We proceed by contradiction using the ideas of [19].

(i) Assume that (Ag,ur) € ¥ satisfy Ay < A* and ||ug|| = oo as k — oo.
Put v :=w,,. Since A — 1) is increasing we see that 0 < v,y < v where we
set v:i=TUye € Wl(lﬂ)_. Hence the sequence (vg) is bounded in L, and, if
J =1, it follows that 0 < yv, < yv, so that (yvy) is bounded in L,(T'). This
implies that the sequence ((f%(vy),dg*(yvg))) is bounded in Ly X Lq(Iy).
Note that

UV = (A’ B)_l(fh(vk)a(sgh (’Yvk)) + )‘k:L(m) ’ keN.

Hence we infer from Theorem 4.3 that the sequence (v;) is bounded in W .
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Observe that
A(uk—'uk) = ak(uk—vk) in Q y B(uk—'uk) = bké'y(uk—vk) onT s (13.18)

where ay, := a(ug,vg) with

a(u,v) ::/0 (82f)" (v + s(u—v)) ds

and by := b(ug,vg) with
1
b(u,v) := 5/ (029)" (vv + sy(u—v)) ds ,
0

respectively. Since uy € W1(1+j )= o VVPJO by Theorem 9.3 and Corollary 4.2,
it follows from (12.1) that

(ak,bk) € sz X Ltj (Fl) . (13.19)

Lemma 13.1 and (13.19) imply uy — vy € C*(2) for a suitable a > 0. Thus

there exists z; € Q with

0 < (ug — vg)(xk) = max(ug — vg) =: My, , keN.
Q

Suppose that the sequence (M}) is bounded. Then the boundedness of (vy)
in W;,JO and uy = (ur — vg) + v, imply that the sequence (vk + s(ug — vk))
is bounded in Ly,p,/(n—jp,) uniformly with respect to s €[0,1]. If j =1
then the sequence (yvy) is bounded in L(;_1yp,/(n—po)(I'). Hence the se-
quence (yvy + sy(up — vy)) is also bounded in L, —1)p, /(n—po) (L), uniformly
with respect to s € [0,1]. From this and (12.1) we deduce that ((ax,bs)) is
bounded in L, x Ly, (I'1). Now Lemma 13.1 (with ¢ = = 1) implies that
the sequence (up — vg) is bounded in E which, thanks to the boundedness
of (v) in W — E, contradicts |ju|| — oo.

(ii) Thus we can assume that My — oo as k — o0, so that
€ 1= M,gl_t)/z -0 (k— ) .
Now we consider the diffeomorphisms ¢y, := (- — zx) /e of R”. We also put

~ _ _2/(t-1)
W = €, Ph,xWk wy € {ug, vk},

and

fk(-,é) — 6it/(t_1)fgk(-,5;2/(’*‘1)5)
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as well as 1) (et (et
(-, &) = etV g (e /)

for ¢ € R. Then it follows from (13.17) that wy satisfies

A wy, = ﬁc('aak) + Qg n Q, ,

RN (13.20)
B, wy, = 5(gk('77wk) + akaek) + (1 - 5)/8k06k on I, ,

where

ap = €;n+2t/(t—1))\k By E;n+(t+1)/(t—1)>\k _

Note that 2¢/(t — 1) > n since t <r <mn/(n—2). Also (t+1)/(t—1) >n

sincet<r<n/(n—1) < (n+1)/(n—1)if j =0. Thus o — 0 and we can
also assume that 8y — 0, since fj is only present if 7 = 0. Also note that

U — v € C*(2) and that

By passing to a suitable subsequence we can assume that zj — T € ().
Now we have to distinguish between the two cases zo, € 2 and z,, € I'.

(a) Suppose that o, € Q and set Bgr:={z € R" ; |z| < R} for R > 0.
Then, given R > 0, there exists kg such that Bry1 C Q,, for k > kg. Set
pj = npo/(n — jpo). Then

~ ~ t
1Bklz,. By < ITklln, @) = ep® Jogll,, =0
i 3 k J

_n (1 t+2>> n (1 1+2)>0
Ct—1\r 7 n/ T t—1\r n '

Thus (13.21) implies that the sequence (uy) is bounded in Ly, (Br1)-

Denote by A, the operator A., with its coefficients restricted to B
and let By be the trace operator on 3By for k € N. Then ((.Ak,Bk)) is
a relatively compact sequence in £(Bgy1) satisfying infg A\g(Ag, Bg) > 0. It
follows from (13.20) that

AUy, — Ug) = ag (U — Ug) in Bgpy1 ,

o N (13.22)
Bi(r, — 0) = y(ur — Ug) on 0Bp41 ,

where

1 ~
519 = /0 (82fk)h (5}c + S(’Uk - 5]9)) ds .
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Observe that

B fr(€) = 20afe (7 /0TVE) . €eR,

Hence we deduce from (1.11) that

102 fi (-, €)] < e2e(l+ e 2|e™h) <e(1+€]77Y), reR, (13.23)

for k € N. Thus the boundedness of the sequences (uy) and (vx) in Ly, (Br41)
implies that (ax) is bounded in L, (Bry1)- Fix ¢,1 € D(Br41) such that
| supp(p) =1 and ¢|Bg = 1. Since (1(uy, — V%)) is bounded in L, (Bg41)
we deduce from (13.22) and Lemma 13.1 (by observing that the boundary
values do not play any role in this argument) that (¢ (@ — %)) is bounded
in C%(Bg41). Consequently, the sequence (i — Uy) is bounded in C*(BR).
Since the latter space is compactly embedded in C(Bg) we can assume, by
passing to a suitable subsequence, that (uy — ¥x) converges in C(Bpr) to
some w. Since vy — 0 in L,(Bg) it follows that uy — w in L,.(Bg), hence
in L;(Bg). This implies, thanks to (1.11), that

fler + e, Myug)

t
(M)t uk

.ﬁ:('a ﬂk) =

= U Too)w

in Li(Bg). Thus, by passsing to the limit in the very weak, resp. weak,
formulation of

Artr, = fio (- Ug) + agpe,
using test functions ¢ € D(Bg) only, we see that

Acow = £(To0)w’ (13.24)

in D'(Bg), where Aev := —V -+ (a(2) V). Letting R — oo it follows that
(13.24) holds in D'(R™). It also follows that w € C(R") with w > 0 and
w(0) = 1. Thus w is a positive solution of (13.24) belonging to C?(R™) which,
after employing a linear change of variables, contradicts [18, Theorem 1.1].

(b) Suppose that z,, € I'. By a smooth change of variables we can assume
that £, = 0 and that Q is a neighborhood of zero in the closure of the half-
space H" := {z € R" ; " > 0}. Set

Qr={(y,2") eR* ' xR; |y <R, 0<z"<R}, R>0.

Also put €:=(0,...,0,1) € R* and 7y, := z}/er, > 0. Let R > 0 be fixed,
choose a smooth domain 2z such that

Qpe1 NH® C Qg C Qry2 ,

and set Qg = Qr — nke. By extending d € C*(R"~!) to a C'-function
on R" we can assume that B., is well-defined on 0Qg . Fix dy € C1(0QR)



ELLIPTIC PROBLEMS INVOLVING MEASURES 47

with dy > 0 and having its support contained in 9Qr NH". Define B to
be B, + ddo(- + ni€)y and observe that (Ax, Bi) € E(Qr,x) for k € N. De-
fine a linear automorphism v, of R™ by 9y (x) := z + nx€ and note that
or(Qr,k) = Qp. It is easily verified that ((15, Ay, wk,*Bk))keN is a relatively
compact sequence in £(Qg) satisfying infy, Ao (g « Ak, Yr,«Br) > 0.

There exists kr such that uy and vy are well-defined on Qg for k > kg
and satisfy (13.20) on Qg .

(i) Suppose that limn, = 0. Then, by passing to a suitable subsequence,
we can assume that 7, — 0. Thus Qg — Qg as k — oo.

Assume that zo, =0 € I'g. In this case an obvious modification of the
arguments of step (a) shows that

Aot = £(0)u’ in H* , u =0 on OH"

possesses a positive solution in C2(H"). Hence we arrive once more at a
contradiction to [18, Theorem 1.1].

Thus suppose that 0 € I'y. Since (13.20) is valid on Qg it follows that

A (@, — ) = g (s — ) in Qpy ,

BZE&Z - GZ; = E:E(gk - gi) on agﬁ,k N oH" | (13.25)
where )

by = /0 (Bagk)* (YO + s7(Ux — %)) ds .
Observe that
0o () = erage, (e ' VE),  E€R.
Hence we deduce from (12.1) that
0,3, < ene(l+er (7 €T <e(l+[ePY),  €ER, (13.26)

thanks to p < (t+1)/2.

First suppose that j = 1. Since (vj) is bounded in W,. it follows that
(yor) is bounded in L(,_1y, (T'). Note that

~ t
1Ykl 2, e, (0520 en0m ey < €5 [0 Liy_1ye, (T)

@) 2 n—1 2 (1 1)> 2 n>0
= — = —n{\—— — —_ — — .
" t—1 (p—1t; t-—1 po N t—1 r

Consequently, (15.(70%)) is bounded in L(,_1ys, (Br+1 N OH"). It follows
from (13.21) that (vr,«(yUr)) is bounded in L(,_1)s, (Br+1 N OH") as well.
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Thus we deduce from (13.26) that (¢k,*gk) is bounded in Ly, (Bry1 N OH™).
The arguments of step (a) show that (¢ .ax) is bounded in L, (Qg).

Fix ¢, € C3(Qr) such that 1| supp(p) =1 and ¢|Qr =1, and such
that ¢ vanishes on 9Qgr NH". Then (v . (ax(@r — vx))) is bounded in
L, (Qr), hence in W;Blk (Qg), provided

1>(7~—1)(i—1)—1. (13.27)

Similarly, it follows that (goz/)k,*(bkv(ﬂk —%))) is bounded in L; (09g),
hence in W},_l/ P(002R), provided

1 —-11 1 1
Lynoll_ gyl 1y, (1329
p n t po n
Note that ) ) . . ) .
eop(lolylopl1ot
Po n n T n n
and that

1

T n r o n’

Thus we can fix p > n satisfying (13.27) and (13.28). Now (13.25) and Theo-
rem 3.1 imply that (@i, (U — Ux)) is bounded in W, (Qr), thus in CB(QR)
with 8 := 1 —n/p > 0. Consequently, (¢, . (@ — V%)) is bounded in C#(Qp).
By selecting a subsequence we can assume that (wk,*(ﬂk — 5k)) converges
in C(Qg) to some w. Now we see, as in step (a), that w satisfies (13.24)
in D'(QR)-

Observe that

G (- g )| < c(e8FTD/ G H1=20) /(=) g1e) (13.29)

Also note that (1,.(y@x)) is bounded in L(,_1);, (Br4+1 N OH"), hence in
L,(Br4+1 NOH™). Thus, since 2p < t + 1, we infer from (13.29) and the weak
formulation of (13.20) with wy := wuy, pushed forward to Qg, using test func-
tions which vanish in a neighborhood of 92 N H" that

Boow =0 on Qr N OH"
where Bo, := 7+ v(a(0)V-). Finally, by letting R — co we see that
Acow = £(0)w’ in H* , Bew =0 on 6H" . (13.30)

By standard regularity theory w € C2(H"), and w > 0 with w(0) = 1. Sup-
pose that 7 = 0. In this case ¢ =0 and it is obvious that we are led to
problem (13.30) as well.
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By employing an obvious linear change of coordinates in (13.30) we arrive
at a contradiction to [10, Corollary 2.1].

(ii) Suppose that limn, = co. By selecting a suitable subsequence we can
assume that 7, — oco. In this case Qg contains Bryy for all sufficiently
large k. Now we reach a contradiction by modifying the arguments of (a) in
an obvious way.

(iii) Lastly, assume that 0 < lim; < lim7, < oc. By going to a subse-
quence we can assume that n; — 71 for some 7 > 0. Then, by modifying the
arguments of step (i) suitably, we once more obtain a positive classical solu-
tion of (13.30), hence a contradiction.

This shows that our hypothesis that ||ug| — oo cannot be sustained.
Hence the lemma has been proven. [J

Lemma 13.3. Let assumptions (1.11) and (12.1) be satisfied and fix T > 0.
Then the set of all positive solutions of

Au = f(z,u)+7pin Q, Bu=dg(z,u) on T, 0<7<T, (13.31),
is bounded in E.

Proof. By Sobolev’s embedding and the Krasnosel’skii-Vainberg theorem
we infer from the commutativity of the diagrams

E « -+ I,

|

MEQUTy) ~— Iy

and

v _
W, ———— Wi rer) —— Ly (D)

§G { { 59"
M(Pl) - Ll(Pl) -— Lr/l*p(l"l)
and from Theorem 4.3 that
(A,B)"YF +7¢,0G) € C(E,WZ7), (13.32)

and that this map is bounded on bounded sets, uniformly with respect to
T € [0,T]. Now suppose that p, < p < n and put p* := np/(n — p). Then

I/I/;) 4>V[/})1 1/p %L /1*()

PN

4—) Lp /1* (Fl)
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and Theorem 2.3 imply that (A, B)~'(F,0G) maps W, continuously and
boundedly into W%, for s <147 /p*. From this we infer that

(A, B)"H(F + 1¢,6G) € C(W,}, W) (13.33)

whenever 1/7 > r/1*p*, and that this map is bounded on bounded sets,
uniformly with respect to 7 € [0, 7.

Note that

rr/l 2 1 1
I ) (G
nl\r n P n
Put g:=r(1/r —142/n)/2n and ¢y := (1/r — 1+ 2/n)/2. Then it follows
from the last estimate that we can choose 1/m > 7/1*p* such that

l<l—ﬁ, 1:zl—l-i-zz, l—1<5§50. (13.34)

T P P n n
From (13.32) and Corollary 4.2 we infer that each solution of (13.31), belongs
to W, where 1/pg :=1—1/n+¢eo < 1/p,. Hence we deduce from (13.33)
and (13.34) in finitely many steps that each solution of (13.31), belongs
to qu for a suitable g > n, hence to C*(Q) for an appropriate a > 0. Fur-
thermore, if the solution set is bounded in C(€), uniformly with respect to
7 € [0,T), then its image under (f%, 6g%) is bounded in L; x L;(T;), also uni-
formly with respect to 7 € [0, T]. Then the arguments leading to (13.32) show
that the solution set is bounded in E, uniformly with respect to 7 € [0, 7.

Now we can proceed by contradiction. Thus suppose that the assertion is
false. Then there exist (ug,7x) € E X [0,7] such that uy is a positive solu-
tion of (13.31), and |luk|| — oo as k — oco. By the preceding considerations
we know that uy € C(Q) and we can assume that M} := mMaxg up — 00 as
k — oo. Now an obvious modification of part (ii) of the proof of Lemma 13.2
leads to a contradiction, thus proving the assertion. [

14. General Existence and Multiplicity Results. Finally, we prove
the main result of this paper concerning semilinear parameter-dependent
BVPs whose prototypes are problems (1.1) and (1.2).

We suppose that (A,B) € £ and (u,0) € M with (u,0) > 0. Then we
consider the problem

Au= f(z,u) + Apin @, Bu=dg(y,u) + Ao on T’ (14.1)
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for A € RT, where f and g are Carathéodory functions being continuously
differentiable with respect to the second variable and satisfying the growth
restrictions

|02f (,€)] < c(L+IE[TT) , 1829(y, )| < c(1+E)77Y),  E€R, (14.2)

for a.a. (z,y) € Q x I, where r and p obey (1.8) and (1.9). We suppose that
(f(2,0),9(y,0)) = (0,0) , a.a. (z,y) € Ax T, (14.3)
and that there exists (w,wr) > (0,0) such that
Ohf(r,)>—w, oy, ) > —wr, a.a. (z,y) €A xT . (14.4)
Lastly, we suppose that
Ao(A—82f(-,0),B — 6d29(-,0)y) >0, (14.5)

and we put ag = \(A, B + dwr7y).

Theorem 14.1. Let the above hypotheses be satisfied. Then the assertions
of Theorem 1.2 are true for problem (14.1),.

If, in addition, assumption (1.11) is fulfilled then the assertions of Theo-
rem 1.3 hold for problem (14.1)y as well.

Proof. Fix@ > (—Xo(A, B)) V w and put (A, B) := (A + @, B+ dwry). Also

set f(+,€) := (&) +@¢ and g(,£) := g(+ &) + wrf for { € R. Then prob-
lem (14.1), is equivalent to

Au= f(z,u) +Apin Q, Bu=6j(z,u)+AconT, (14.6)
and
Xo(A, B) = Ao(A, B+ dwry) +@ > Xo(A,B)+& >0, (14.7)

thanks to Remark 5.2(c). It is an immediate consequence of (14.2)—(14.4)

that (f,g) satisfies condition (12.1) with a: =& —w. If f(-,€) > ap — B
then (14.7) implies

F > XABE-BF, EeRY. (14.8)

Thus the validity of the assertions of Theorem 1.2 for problem (14.1), fol-
lows by applying Theorem 11.1, Lemma 12.3, and Remark 12.4(c) to prob-

lem (14.6), taking into consideration that A—085f(-,0) = A— 8f(-,0) and
B— 5a2§(a 0)7 =B- 5829('7 O)'Y
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If f satisfies (1.11) then it is clear that f satisfies (1.11) as well. Hence we
infer from Lemma 13.2 that, given A* € A, the set of all solutions of (14.6)x
with 0 < A < A* is bounded in E. Lemma, 13.3 guarantees that, given T > 0,
the set of all positive solutions of

_,qu:f(x,u)+7-<pin9, guzé?)(x,u)onf, 0<7<T,

is bounded in E. Clearly, hypothesis (1.11) implies the validity of (14.8).
Hence we infer from the proof of Theorem 11.1 that the assumptions of
Proposition 8.3 are satisfied in the present situation. Now the second part
of the assertion follows from Corollary 8.4, Lemma 12.3, Remarks 12.4, and
Lemma 12.5. O

Remark 14.2. It is clear from the above proof that the first part of Theo-
rem 14.1 remains valid if (14.2) is replaced by

1f(@, )l <ec(T+1E7) . 9y, &) <c(1+EF), E€R,

for a.a. (z,y) € Q@ x T, and if (f,g) is only supposed to be differentiable at
£=0. O

Proof of Theorem 1.2. Put (A4,B) := (—A,4§9,, + (1 —6)7). Then
Ao (.A — azf(', 0), B— 5829(', 0)’)’) > A()(A — Qp, B) =0
by the last part of assumption (1.10). Thus condition (1.10) implies the

validity of (14.3)—(14.5). Consequently, the assertion follows from the first
part of Theorem 14.1. O

15. Existence of Solutions for A = \*. Lastly, we consider the question
whether A\* belongs to A. It is well-known from the theory of classical elliptic
BVPs that this is not the case, in general (cf. [3]).

For convenience, we restrict ourselves to a simple situation and leave it
to the reader to study more general cases.

Theorem 15.1. Suppose that g = 0, and let assumptions (14.3)—(14.5) and
(1.11) be satisfied. Also suppose that o|T'g =0, and let t < 2/(n —2). Then
X €A If f(x,-) is strictly convex for a.a. x € Q then problem (14.1)x« is
uniquely solvable.

Proof. By passing to the equivalent problem (14.6), we can assume that
Ao(A,B) > 0. Put

w = (A,B) " (u,0) € W™ . (15.1)
Then u is a solution of (14.1)y iff
Alu —w) = f(z,u) in Q, Blu—Aw)=0onT . (15.2)

If u € E then we infer from ¢ < 2/(n — 2) that f*(u) € L, for some p > n/2.
Hence (15.2), A~! e L(L,, Wf), and W;f — C?, where a := 2 —n/p, im-

ply that u — Aw € C*(€2) whenever u is a solution of (14.1),.
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Recall that Theorem 14.1 guarantees \* < co. Let (A\;) be a sequence
in A. Put uy, := 1y, and M}, := maxg(ur — Apw) > 0 for £ € N and suppose
that ||ug|| — oo. Then ||ug||, — oo and it follows from

gl < luk — Agwllr + [Aewllr < QY7 My + X* ||wl],

that My — oco. Now part (ii) of the proof of Lemma 13.2 leads to contradic-
tions. This proves that {%) ; 0 < A < A* } is bounded in E, and Theorem 8.1
guarantees that \* € A.

The uniqueness assertion follows from Remark 12.4(b). O

Remark 15.2. There are other conditions guaranteeing that A\* € A. For
example, if ) is convex and supp(p) CC Q then problem (1.12) is solvable
for \=X"ifl<r<n/(n-—2).

Proof. Thanks to Theorem 8.1 we have to establish the boundedness of
{ux; A€ A} in E. Due to Theorem 4.3, it is sufficient to find L,-estimates
for the solutions w := wy. Testing (1.12) with ¢ yields L,(K)-estimates for
any compact set K C ). Since u is a solution of the equation —Au = u” in
Q. = {x € Q; dist(z,T') < 6} for € > 0 small, the results of Gidas, Ni and
Nirenberg [17] imply d,u(z —tv) < 0 for t < £/2 and z € I". Hence

/ u" dr < c/ u" dz .
Q.'5/4 Q\Qa/zl

We refrain from giving details. O
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