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SEMILINEAR PARABOLIC EQUATIONS INVOLVING
MEASURES AND LOW REGULARITY DATA

H. AMANN AND P. QUITTNER

Abstract. A detailed study of abstract semilinear evolution equations of the

form u̇+Au = µ(u) is undertaken, where −A generates an analytic semigroup

and µ(u) is a Banach space valued measure depending on the solution. Then
it is shown that the general theorems apply to a variety of semilinear para-

bolic boundary value problems involving measures in the interior and on the
boundary of the domain. These results extend far beyond the known results in
this field. A particularly new feature is the fact that the measures may depend

nonlinearly and possibly nonlocally on the solution.

Introduction

In this paper we extend the theory of linear parabolic evolution problems in-
volving measures, developed in [5], to the case of semilinear evolution equations of
the form

u̇+Au = µ(u) in [0, T ], (0.1)
where −A generates a strongly continuous analytic semigroup on some Banach
space and µ(u) is a Banach space valued measure depending Lipschitz continuously
on u. We demonstrate the power of our general results by discussing a number of
applications to a variety of nonlinear parabolic boundary value problems involving
measures in space and time, which may depend nonlinearly and in a nonlocal way
on the solution.

In this introduction we present some simple model problems in order to show the
scope of the theory. We restrict ourselves to questions of well-posedness. However,
our abstract results, in particular the fact that we prove that the solutions depend
continuously on the data, are important for qualitative investigations. This will be
illustrated in forthcoming publications in which applications to control problems
are given.

Throughout this paper we assume that Ω is a nonempty domain in Rn with a
compact smooth boundary Γ, and Ω lies locally on one side of Γ if Γ 6= ∅. Further-
more, Γ0 and Γ1 are disjoint and open in Γ with Γ0 ∪ Γ1 = Γ. Of course, either Γ0

or Γ1 can be empty. In this introduction we also suppose that n ≥ 2.
For a σ-compact metric space X we denote by M(X) the Banach space of

bounded Radon measures on X, that is, M(X) = C0(X)′, where C0(X) is the
space of continuous functions on X vanishing at infinity. If E is a Banach space
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then we writeMloc(R+, E) for the space of all E-valued Radon measures µ on R+

such that µ | [0, T ] is of bounded variation for each T > 0. (See [5, Section 2] for
precise definitions.)

Given a σ-compact separable metric space X and a positive Radon measure µ
on X, we write ϕ ∈ Car1(X × Rm,R) if ϕ : X × Rm → R is a Carathéodory func-
tion such that ϕ(x, ·) is continuously differentiable for µ-a.a. x ∈ X, where it is
understood from the context which measure µ we refer to.

Unless stated otherwise, we assume that f belongs to Car1
(
(Ω× R+)× R,R

)
,

satisfies f(·, ·, 0) = 0, and there exist an increasing function κ : R+ → R
+ and a

constant λ > 1 such that

|∂3f(x, t, ξ)| ≤ κ(t)(1 + |ξ|λ−1), (x, t, ξ) ∈ Ω× R+ × R. (0.2)

A prototype of such a function is given by

f(x, t, ξ) = a(x, t) |ξ|λ−1 ξ, (x, t, ξ) ∈ Ω× R+ × R,

where a :=
(
t 7→ a(·, t)

)
∈ L∞,loc

(
R

+, L∞(Ω)
)
.

We also put

F (u)(x, t) := f
(
x, t, u(x, t)

)
, u : Ω× J → R, (x, t) ∈ Ω× J,

where, in general, J is a nontrivial subinterval of R+ containing 0.

In this introduction we consider the parabolic problem

∂tu−∆u = F (u) + µΩ(u) in Ω× R+,

u = µ0(u) on Γ0 × R+,

∂νu = µ1(u) on Γ1 × R+,

 (0.3)

with ∂ν being the derivative with respect to the outer unit normal on Γ. (Of course,
here and everywhere else in this paper, all explicit or implicit references to Γ have
to be neglected if Ω = R

n.) Furthermore, given a suitably regular function v on R+,

~µ(v) :=
(
µΩ(v), µ0(v), µ1(v)

)
∈Mloc

(
R

+,M(Ω)×M(Γ0)×M(Γ1)
)
, (0.4)

where the map v 7→ ~µ(v) is always supposed to possess the Volterra property,
meaning that, given any T > 0, up to time T the measure µ(v) depends on the
values of v up to time T only, that is, ~µ(v) | [0, T ] depends on v | [0, T ] only. In
other words, (0.3) is a semilinear heat equation involving measures (in space and
time) in the domain Ω and on the boundary Γ, which may depend nonlinearly and
nonlocally on the solution.

We suppose that 1 < q <∞ and 1 ≤ r <∞. By a (weak) Lr(Lq)-solution of
(0.3) on J we mean a u ∈ Lr,loc

(
J, Lq(Ω)

)
such that∫

Ω×J
(−∂tϕ−∆ϕ)u dx dt =

∫
Ω×J

ϕF (u) dx dt+
∫

Ω×J
ϕdµΩ(u)

−
∫

Γ0×J
∂νϕdµ0(u) +

∫
Γ1×J

ϕdµ1(u)
(0.5)

for every ϕ ∈ D(Ω× J∗) satisfying

ϕ(·, t) |Γ0 = 0, ∂νϕ(·, t) |Γ1 = 0, t ∈ J, (0.6)
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where J∗ := J \{supJ}, and D is the space of smooth functions having compact
support in the indicated domain. Clearly, u is a C(Lq)-solution if u ∈ C

(
J, Lq(Ω)

)
,

and u satisfies (0.5).
Besides of (0.4), we also consider the more regular case where

~µ(v) ∈ Lr,loc

(
R

+,M(Ω)×M(Γ0)×M(Γ1)
)
.

In this case we study the initial boundary value problem

∂tu−∆u = F (u) + µΩ(u) in Ω× (0,∞),

u = µ0(u) on Γ0 × (0,∞),

∂νu = µ1(u) on Γ1 × (0,∞),

u(·, 0) = u0 on Ω.

 (0.7)

Note that (0.7) is a special case of (0.3), of course, since we can replace µΩ(u)
in (0.3) by µΩ(u) + u0 ⊗ δ0, with δ0 being the Dirac measure with support in t = 0.
Thus it is clear what is meant by an Lr(Lq)- or a C(Lq)-solution of (0.7).

In the following theorem we collect — somewhat informally — some of the main
results proven in this paper for problems (0.3) and (0.7). Precise formulations of
the various continuity properties are given in Theorems 1.2 and 2.2. Of course,
ξ′ := ξ/(ξ − 1) is the dual exponent of ξ ∈ [1,∞], and BUC is the space of bounded
and uniformly continuous functions. Moreover, Lipschitz continuity is always un-
derstood in the local sense.

Theorem 0.1. (i) Suppose that

λ < (n+ 2)/(n+ 1) (0.8)

and that the map v 7→ ~µ(v) is Lipschitz continuous from Lλ,loc(R+, Lλ) into
Mloc

(
R

+,M(Ω)×M(Γ0)×M(Γ1)
)
. Then (0.3) has a unique maximal

Lλ(Lλ)-solution u. It depends Lipschitz continuously on ~µ and f , and it is
positive if ~µ is positive.

(ii) Assume that

λ < n/(n− 1), r > 2
/

(1− n/λ′), (0.9)

and that v 7→ ~µ(v) is locally Lipschitz continuous from C
(
R

+, Lλ(Ω)
)

into
Lr,loc

(
R

+,M(Ω)×M(Γ0)×M(Γ1)
)
. Then problem (0.7) has for each

u0 ∈W 1−n/λ′
λ a unique maximal C(Lλ)-solution u. It depends Lipschitz

continuously on u0, ~µ, and f , and it is positive if u0 and ~µ are positive.
(iii) In each one of the foregone cases, J(u), the interval of existence of u, is

open in R+.
(iv) If the hypotheses of (i) are satisfied, suppose that

u ∈ Lλ
(
(0, T ) ∩ J(u), Lλ(Ω)

)
for every T > 0;

otherwise assume that

u ∈ BUC
(
[0, T ] ∩ J(u), Lλ(Ω)

)
for every T > 0.

Then J(u) = R
+, that is, u is a global solution.

Remark 0.2. This theorem is a particular case of the much more general The-
orem 5.1 (also see Proposition 5.9 and, for the continuity assertion, Theorems
3.2–3.4). In fact, it allows for the following generalizations:
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(a) The assumption that µΩ(v) and µ1(v) are measures in x and t can be re-
placed by the hypotheses that µΩ(v) and µ1(v) are measures on R+ with values in
M−1(Ω) and M−1(Γ1), respectively, where M−1(Ω) is the dual of the space of all
C1-functions v on Ω vanishing at infinity and satisfying v |Γ0 = 0 and ∂νv |Γ1 = 0,
and M−1(Γ1) := C1(Γ1)′.

(b) In the intermediate case, where

~µ(v) ∈ Lr,loc

(
R

+,M(Ω)×M(Γ0)×M(Γ1)
)

with 1 ≤ r < 2
/

(1− n/λ′), one gets an upper bound for λ lying between the values
(n+ 2)/(n+ 1) and n/(n− 1) and depending on r as well (see Theorem 5.1). Fur-
thermore, the uniform boundedness assumption for f with respect to the variable
x ∈ Ω can be replaced by an integrability condition.

(c) If µ0 = 0, that is, in the case of homogeneous Dirichlet data, we can replace
the condition on λ in (0.8) by λ < 1 + 2/n and (0.9) by λ < 1 + 2/(n− 2), respec-
tively. Furthermore, f may depend nonlinearly on the gradient of u as well, and
µ1(v) can be replaced by µ1(v) +G(v), where g ∈ Car1

(
(Γ1 × R+)× R,R

)
, satis-

fying a suitable growth restriction similar to the one given in (0.2), and where
G(v)(x, t) := g

(
x, t, v(x, t)

)
. In this case the unique maximal solution satisfies

u(·, t) ∈W 1
q (Ω) for almost all t in the interval of existence and a properly chosen q.

Thus it is a weak solution of (0.3) in the sense that∫
Ω×J

{
−(∂tϕ)v +∇ϕ · ∇v

}
dx dt

=
∫

Ω×J
ϕF (u) dx dt+

∫
Ω×J

ϕdµΩ(u) +
∫

Γ1×J
ϕG(u) dσ dt+

∫
Γ1×J

ϕdµ1(u)

for all ϕ ∈ D(Ω× J∗) vanishing on Γ0 × J , where dσ is the volume measure of Γ
(cf. Theorem 6.1 as well as Propositions 6.5 and 6.6).

(d) F and G can be nonlocal maps possessing the Volterra property.
(e) The negative Laplace operator −∆ and ∂ν can be replaced by a general

second order strongly uniformly elliptic operator in divergence form and by the
corresponding conormal derivative, respectively. Furthermore, the above results
extend to systems and higher order parabolic boundary value problems.

(f) Problems (0.3) and (0.7) enjoy important comparison theorems (see Theorems
5.3, 5.5, 6.3, and 7.3). �

Theorem 0.1 is the first result taking into consideration measure data depending
nonlinearly on the solution. So far, almost all papers in this field deal with very
particular model problems in which ~µ is independent of u (see the references in
Sections 5–8).

In order to illustrate the scope of Theorem 0.1 (and its generalizations) we now
present two model problems, where, for simplicity, we assume that Ω is bounded.
First we suppose that

X : R+ → Ω, Y : R+ → Γ1

are locally Lipschitz continuous maps. Then, given v ∈ L1

(
J, L1(Ω)

)
, we put

x(v, t) := X
(∫ t

0

∫
Ω∗
v(x, τ) dx dτ

)
, y(v, t) := Y

(∫ t

0

∫
Ω′
v(x, τ) dx dτ

)
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for t ∈ J , where Ω∗ and Ω′ are nonempty open subsets of Ω. We also assume that
ϕ,ψ ∈Mloc(R+) and (µΩ, µ0, µ1) ∈Mloc

(
R

+,M(Ω)×M(Γ0)×M(Γ1)
)

as well
as a ∈ L∞,loc

(
R

+, L∞(Ω)
)

are nonnegative. Then we consider the nonlinear heat
equation

∂tu−∆u = −auλ + δx(u,t) ⊗ ϕ+ µΩ in Ω× R+,

u = µ0 on Γ0 × R+,

∂νu = δy(u,t) ⊗ ψ + µ1 on Γ1 × R+.

 (0.10)

Note that this problem contains heat sources located at points x(u, t) ∈ Ω and
y(u, t) ∈ Γ1 whose positions at time t depend on the total heat in Ω∗ × [0, t) and
Ω′ × [0, t), respectively. In addition, if ϕ and ψ vanish on some intervals then these
points disappear and may reappear again.

Theorem 0.3. Let the above condition be satisfied and suppose that

1 < λ < (n+ 2)/(n+ 1).

Then problem (0.10) possesses a unique global positive Lλ(Lλ)-solution.

Proof. Put
~µ∗(v) :=

(
δx(v,·) ⊗ ϕ+ µΩ, µ0, δy(v,·) ⊗ ψ + µ1

)
.

One verifies that v 7→ ~µ∗(v) is locally Lipschitz continuous from Lλ
(
(0, T ), Lλ(Ω)

)
intoM

(
[0, T ],M−1(Ω)×M(Γ0)×M−1(Γ1)

)
for every T > 0, and that it has the

Volterra property. Thus (0.10) is a special case of (0.3) in the generalized version
of Remark 0.2(a). From this we obtain the existence of a maximal Lλ(Lλ)-solution
(cf. the proof of Proposition 5.16 and Remark 5.17(a)). Positivity is a consequence
of Corollary 5.4, and global existence is derived as in the proof of Theorem 5.14. �

Clearly, Theorem 0.3 can easily be generalized to the case of several heat sources
in Ω and on Γ1. In Section 5 we consider the case where the positions of the
heat sources at time t depend on the average heat

∫
Ωj
u(x, t) dx at time t (see

Proposition 5.16).
Our next model problem deals with moving interfaces. For simplicity, we consider

a very simple geometry. Much more general situations are studied in Section 5.
We suppose that

X : R+ → R
n, R,A : R+ → R

+

are locally Lipschitz continuous maps and A is bounded. Then, given v ∈ L1(Ω)
with v ≥ 0, we put

x(v) := X
(∫

Ω

v dx
)
, r(v) := R

(∫
Ω

v dx
)
, α(v) := A

(∫
Ω

v dx
)
.

We also set

M(v) :=

{{
x ∈ Ω ; |x− x(v)| = r(v)

}
if r(v) > 0,

∅ otherwise.

Thus M(v) is the intersection of Ω with the (n− 1)-sphere with radius r(v) and
center at x(v), if r(v) > 0. We also denote by n(v) the outer unit normal of M(v),
that is, n(v)(x) :=

(
x− x(v)

)/
r(v) for x ∈M(v), if M(v) 6= ∅. Then M(v) is a
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smooth hypersurface of Ω oriented by n(v). Thus, given a piece-wise smooth func-
tion u, the jump of its normal derivative along M(v), denoted by [∂n(v)u]M(v), has
the obvious meaning (see Section 5 for precise definitions).

We assume that a0 ∈ L∞,loc

(
R

+, L∞(Ω)
)

and

(µΩ, µ0, µ1) ∈ L∞,loc

(
R

+,M(Ω)×M(Γ0)×M(Γ1)
)

are nonnegative. Then we consider the following initial boundary value problem
with a transmission condition:

∂tu−∆u = −auλ + µΩ in Ω× (0,∞),

[∂n(u)u]M(u) = α(u) on M(u),

u = µ0 on Γ0 × (0,∞),

∂νu = µ1 on Γ1 × (0,∞),

u(·, 0) = u0 on Ω.


(0.11)

Clearly, the second equation means that, at time t, the jump of the normal de-
rivative of the solutions u(t) along M

(
u(t)

)
has the value α

(
u(t)

)
. Note that{

M
(
u(t)

)
; t ∈ J(u)

}
is a family of moving interfaces which may disappear and

reappear, depending on the mean value
∫

Ω
u(x, t) dx of the solution u at time t.

Moreover, the size of the jump of its normal derivative along M
(
u(t)

)
depends on

this mean value as well.
By a positive (weak) C(Lλ)-solution of (0.11) on J we mean a nonnegative

function u ∈ C
(
J, Lλ(Ω)

)
satisfying∫

J

∫
Ω

(−∂tϕ−∆ϕ)u dx dt

=
∫
J

{∫
Ω

−ϕ(t)a(t)uλ(t) dx+
∫

Ω

ϕ(t) dµΩ(t)−
∫

Γ0

∂νϕ(t) dµ0(t)

+
∫

Γ1

ϕ(t) dµ1(t) +
∫
M(u(t))

ϕ(t)α
(
u(t)

)
d volM(u(t))

}
dt

+
∫

Ω

ϕ(0)u0 dx

for each ϕ ∈ D(Ω× J∗) satisfying (0.6).
The following theorem is a particular case of the much more general Corollary

5.13 and Theorem 5.14.

Theorem 0.4. Suppose that 1 < λ < n/(n− 1). Then problem (0.11) has for each
u0 ∈W 1−n/λ′

λ with u0 ≥ 0 a unique global positive C(Lλ)-solution.

This paper consists of four parts and an appendix. In Part 1 we present the
abstract results for problem (0.1). Their proofs are deferred to Part 4. The second
part illustrates the power of the general theorems by means of applications to a
variety of model problems. In Part 3 we extend the foregoing results to systems.
In the appendix we provide mapping properties of Nemytskii operators possess-
ing little regularity only, which are needed in the applications of Part 2 and are
of independent interest. Then we study linear problems thus complementing [5]
by extending those results to nonautonomous equations and giving compactness
theorems. Nonautonomous equations occur in the proof of a version of a weak



SEMILINEAR PARABOLIC EQUATIONS INVOLVING MEASURES 7

maximum principle which is somewhat technical and therefore relegated to this ap-
pendix. However, it is crucial for the positivity and comparison theorems mentioned
above.

It should be noted that the results of Sections 5–7 generalize earlier investiga-
tions of other authors considerably. We refer to these sections for discussions of
the relation between our work and those earlier results. However, we emphasize
that this paper contains the first systematic study of general parabolic evolution
equations involving measures which depend nonlinearly on the solution.

Finally, we direct the readers’ attention towards Remark 4.2(c) for a correction
and improvement of an erroneous assertion made in [5].

Part 1. The Abstract Results

Throughout all of this part we assume that
• E0 is a reflexive Banach space;
• A0 is the negative infinitesimal generator of a

strongly continuous analytic semigroup on E0.

 (A0)

We put E1 := D(A0), where D(A0) is the domain of A0 endowed with the graph
norm. We also fix a real number ω0 > 0 such that the resolvent set ω0 +A0 contains
the left complex half-plane [Re z ≤ 0] and denote by E−1 the completion of E0 with
respect to the norm u 7→ ‖(ω0 +A)−1u‖E0 . Then E1 and E−1 are Banach spaces
satisfying

E1
d
↪→ E0

d
↪→ E−1,

where ↪→ denotes “continuous injection” and the superscript d means “dense”.
Moreover, E−1 is independent of the choice of ω0, except for equivalent norms.

For each θ ∈ (0, 1) we fix an admissible interpolation functor of exponent θ, where
“admissible” means that either (·, ·)θ equals the real interpolation functor (·, ·)θ,q for
some q ∈ (1,∞), or (·, ·)θ is the complex interpolation functor [·, ·]θ. Then we set

Ek+θ := (Ek, Ek+1)θ, 0 < θ < 1, k ∈ {−1, 0}.
It follows that

Es
d
↪→ Et, −1 ≤ t < s ≤ 1.

Furthermore, there exists a unique A−1 ∈ L(E0, E−1) extending A0, where L is the
space of bounded linear operators. We denote by As the maximal restriction of A−1

to Es for 1 < s ≤ 1. Then

At ⊃ As, −1 ≤ t < s ≤ 1,

the operator −As generates a strongly continuous analytic semigroup on Es for
−1 ≤ s ≤ 1, and As ∈ L(Es+1, Es) for −1 ≤ s ≤ 0. The family[

(Es, As) ; −1 ≤ s ≤ 1
]

is said to be the interpolation extrapolation scale generated by (E0, A0) and (·, ·)θ,
0 < θ < 1. For proof of these facts and more details we refer to [3, Chapter V].

Now we can formulate the second basic hypothesis which is presupposed through-
out Part 1. Namely, we assume that

• 0 ≤ α < β < 1;
• A := Aα−1.

}
(A1)
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We also fix a positive real number T and consider the semilinear evolution equation

u̇+Au = µ(u) in [0,T], (EV)

where µ is an Eβ−1-valued measure on [0,T] depending nonlinearly on u and pos-
sessing the Volterra property.

Equation (EV) is a suitably generalized formulation of the Cauchy problem
u̇+A0u = µ(u) which, in general, is not well-posed. This will be clear by look-
ing at the concrete applications of the abstract theory presented in Part 2. Note
that A ∈ L(Eα, Eα−1) so that (EV) is an equation in Eα−1. The hypothesis that
µ(u) be an Eβ−1-valued measure is a regularity condition meaning that the measure
is “subordinate” to the linear operator A.

1. Weak Solutions of Semilinear Problems

In this first section we consider a setting in which solutions to (EV) cannot
be expected to have a time derivative in a strong sense. Thus (EV) has to be
interpreted in a generalized sense. For this we need some preparation.

Denote by E]0 and A]0 the dual of E0 and A0, respectively. Then E]0 is a reflexive
Banach space as well, and −A]0 generates a strongly continuous analytic semigroup
on E]0. Hence we can define E]1 and E]−1 by replacing in the definition of E1 and E−1

the space E0 by E]0 and the operator A0 by A]0. We also set

E]k+θ := (Ek, Ek+1)]θ, 0 < θ < 1, k ∈ {−1, 0},

where (·, ·)]θ is the interpolation functor dual to (·, ·)θ. Then

E]s
d
↪→ E]t , −1 ≤ t < s ≤ 1,

and there exists a unique A]−1 ∈ L(E]0, E
]
−1) extending A]0. We let A]s be the max-

imal restriction of A]−1 to E]s for −1 < s ≤ 1. It is a basic fact (cf [3, Theorem
V.1.5.12]) that

(Es)′ = E]−s, (As)′ = A]−s, −1 ≤ s ≤ 1, (1.1)

with respect to the Es-duality pairing 〈·, ·〉s, naturally induced by the E0-duality
pairing. Henceforth,

A> := A]−α.

It follows that A> ∈ L(E]1−α, E
]
−α) and that it is the dual of the bounded linear

operator Aα ∈ L(Eα, Eα−1).
We denote byM

(
[0,T], Eβ−1

)
the Banach space of all Eβ−1-valued Radon mea-

sures of bounded variation on [0,T]. By the generalized Riesz representation theo-
rem and (1.1) it is the dual space of C

(
[0,T], E]1−β

)
. Thus we also write suggestively∫

[0,T]

v dµ, (µ, v) ∈M
(
[0,T], Eβ−1

)
× C

(
[0,T], E]1−β

)
for the corresponding duality pairing.

Suppose that 1 < p <∞, that

µ : Lp
(
(0,T), Eα

)
→M

(
[0,T], Eβ−1

)
,

and that it possesses the Volterra property. Let J be a subinterval of [0,T] contain-
ing 0 and more than one point (i.e., a perfect interval). Recall that J∗ := J \{supJ}.
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By a weak Lp(Eα)-solution of (EV) on J we mean a u ∈ Lp,loc(J∗, Eα) satis-
fying ∫

J

〈−v̇ +A>v, u〉α dt =
∫
J

v dµ(u) (1.2)

for all v ∈ Cc(J∗, E]1−α) ∩ C1(J∗, E]−α), where the subscript c means “compact sup-
port”. Note that (1.2) is meaningful since E]1−α ↪→ E]1−β and v vanishes near the
right endpoint of J so that, given T ∈ J with v(t) = 0 for t ≥ T , the Volterra prop-
erty implies ∫

J

v dµ(u) =
∫

[0,T]

v dµ(u).

A weak Lp(Eα)-solution u is maximal if there does not exist another such
solution being a proper extension of it. Then J(u) := dom(u) is its maximal
interval of existence. A weak Lp(Eα)-solution u is global if J(u) = [0,T] and
u ∈ Lp

(
(0,T), Eα

)
. In this case [5, Corollary 2] guarantees that u has a well-defined

trace u(T) at T in Eβ−1. (Notice that, choosing x ∈ Eβ−1, any weak solution of
(EV) on [0,T] is also a weak solution of the equation

u̇+Au = µ(u) + x⊗ δT on [0,T],

due to the fact that every test function v in (1.2) vanishes near T. The trace
theorem eliminates this ambiguity.)

Let F and G be normed vector spaces. Then C1−
b (F,G) is the space of all

maps from F into G which are bounded on bounded sets and uniformly Lipschitz
continuous on such sets.

Now we can formulate our general existence and uniqueness theorem for maximal
weak Lp(Eα)-solutions.

Theorem 1.1. Suppose that 1 < p < 1/(α− β + 1) and that

µ ∈ C1−
b

(
Lp
(
(0,T), Eα

)
,M

(
[0,T], Eβ−1

))
(1.3)

has the Volterra property. Also suppose that there exists an admissible interpolation
functor {·, ·}β−α of exponent β − α such that

Eβ−1
.= {Eα−1, Eα}β−α. (1.4)

Then:

(i) There exists a unique maximal weak Lp(Eα)-solution u := u(µ) of (EV).
(ii) If u ∈ Lp

(
J(u), Eα

)
then u is global.

It is an important additional fact that the solution u(µ) depends Lipschitz con-
tinuously on µ. The precise assertion is formulated in the next theorem. Note that
assumption (1.3) implies the existence of a constant ω with

‖µ(0)‖M([0,T],Eβ−1) ≤ ω (1.5)

and of an increasing function λ : R+ → R
+ satisfying

‖µ(v)− µ(w)‖M([0,T],Eβ−1) ≤ λ(R) ‖v − w‖Lp((0,T),Eα) (1.6)

for each R > 0 and all v, w ∈ Lp((0,T), Eα) whose norms are bounded by R.
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Theorem 1.2. Let the hypotheses of Theorem 1.1 be satisfied. Fix any positive
T ∈ J

(
u(µ)

)
, where T < sup

(
J
(
u(µ)

))
if u(µ) is not global. Also fix ω and λ satis-

fying (1.5) and (1.6), respectively, as well as R with R > ‖u(µ)‖Lp((0,T ),Eα). Then
there exists ε > 0 such that J

(
u(ν)

)
⊃ [0, T ] whenever

ν ∈ C1−
b

(
Lp
(
(0,T), Eα

)
,M

(
[0,T], Eβ

))
has the Volterra property and satisfies (1.5) and (1.6) as well as

sup
‖v‖Lp((0,T),Eα)≤R

‖(ν − µ)(v)‖M([0,T],Eβ−1) ≤ ε. (1.7)

Moreover, there exists a constant c such that

‖u(ν)− u(ν̃)‖Lp((0,T ),Eα) ≤ c sup
‖v‖Lp((0,T),Eα)≤R

‖(ν − ν̃)(v)‖M([0,T],Eβ−1)

for all ν, ν̃ ∈ C1−
b

(
Lp
(
(0,T), Eα

)
,M

(
[0,T], Eβ−1

))
possessing the Volterra property

and satisfying estimates (1.5)–(1.7).
The constants ε and c depend on R, T , λ, and ω only.

The proofs of these theorems are postponed to Section 13.

2. Strong Solutions of Semilinear Problems

In this section we present existence, uniqueness, and continuity theorems for
(EV) in cases where µ(u) is absolutely continuous with respect to Lebesgue’s mea-
sure on [0,T] and satisfies suitable integrability conditions.

Let J be a perfect subinterval of [0,T] containing 0. Given γ ∈ [0, 1], put

W
1
p,loc

(
J∗, (Eγ−1, Eγ)

)
:= Lp,loc(J∗, Eγ) ∩W 1

p,loc(J∗, Eγ−1), 1 ≤ p ≤ ∞.
Recall that the trace theorem implies

W
1
p,loc

(
J∗, (Eγ−1, Eγ)

)
↪→ C

(
J∗, (Eγ−1, Eγ)1/p′,p

)
, 1 < p <∞, (2.1)

(cf. [3, Theorem III.4.10.2]).
We assume that

1 < r < 1/(β − α) and 1 ≤ p < 1
/

(α− β + 1/r).

We also assume that

f : Lp
(
(0,T), Eα

)
→ Lr

(
(0,T), Eβ−1

)
and that it has the Volterra property. Then, given x ∈ Eβ−1, we consider the
semilinear initial value problem

u̇+Au = f(u) in (0,T], u(0) = x. (2.2)

By a strong Lr(Eγ)-solution of (2.2) on J , where α ≤ γ < β, we mean an element

u ∈ Lp,loc(J∗, Eα) ∩W1
r,loc

(
J∗, (Eγ−1, Eγ)

)
such that u satisfies (2.2) in the obvious (that is, point-wise a.e.) sense (cf. [3,
Theorem III.1.2.2]). Thanks to the Volterra property this definition is meaningful,
and (2.1) implies that u ∈ C(J∗, Eγ−1) so that the initial condition is also well-
defined. Maximal and global strong solutions are defined similarly as for weak
solutions.

Due to [5, Theorem 3], W1
r,loc

(
J∗, (Eγ−1, Eγ)

)
↪→ Lp,loc(J∗, Eα) if γ is close

to β, hence the assumption u ∈ Lp,loc(J∗, Eα) is automatically satisfied in this
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case. Moreover, the definition of Lr(Eγ)-solutions does not depend on γ: if u is
an Lr(Eγ)-solution for some γ ∈ [α, β) then f(u) ∈ Lr,loc(J(u), Eβ−1) and [5, The-
orem 5] guarantees u ∈W1

r,loc

(
J(u), (Eγ−1, Eγ)

)
for any γ < β. Hence u is an

Lr(Eγ)-solution for any γ ∈ [α, β).
Using these notations and definitions we can formulate the following existence,

uniqueness, and continuity theorem for maximal strong Lr(Eγ)-solutions.

Theorem 2.1. Assume that 1 < r < 1/(β − α) and 1 ≤ p < 1
/

(α− β + 1/r). Also
suppose that α ≤ γ < β, that

(x, f) ∈ Eβ−1/r × C1−
b

(
Lp
(
(0,T), Eα

)
, Lr
(
(0,T), Eβ−1

))
, (2.3)

and that f has the Volterra property. Then:
(i) Problem (2.2) has a unique maximal strong Lr(Eγ)-solution u := u(x, f).
(ii) If u ∈ Lp

(
J(u), Eα

)
then u is global.

As before, an important continuity theorem is valid in this case also. For this
we observe that assumption (2.3) implies the existence of a constant ω such that

‖x‖Eβ−1/r + ‖f(0)‖Lr((0,T),Eβ−1) ≤ ω (2.4)

and of an increasing function λ : R+ → R
+ satisfying

‖f(u)− f(v)‖Lr((0,T),Eβ−1) ≤ λ(R) ‖u− v‖Lp((0,T),Eα) (2.5)

for each R > 0 and all u, v ∈ Lp
(
(0,T), Eα

)
whose norms are bounded by R.

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied. Fix any positive
T ∈ J

(
u(x, f)

)
, where T < sup

(
J(x, f)

)
if u(x, f) is not global. Also fix ω and λ

satisfying (2.4) and (2.5), respectively, as well as R > ‖u(x, f)‖Lp((0,T ),Eα). Then
there exists ε > 0 such that J

(
u(y, g)

)
⊃ [0, T ] whenever

(y, g) ∈ Eβ−1/r × C1−
b

(
Lp
(
(0,T), Eα

)
, Lr
(
(0,T), Eβ−1

))
,

are such that g possesses the Volterra property, (y, g) satisfies (2.4) and (2.5), and

‖y − x‖Eβ−1/r + sup
‖v‖Lp((0,T),Eα)≤R

‖(g − f)(v)‖Lr((0,T),Eβ−1) ≤ ε. (2.6)

Moreover, there exists a constant c such that
‖u(y, g)− u(ỹ, g̃)‖W1

r((0,T ),(Eγ−1,Eγ))

≤ c
(
‖y − ỹ‖Eβ−1/r + sup

‖v‖Lp((0,T),Eα)≤R

‖(g − g̃)(v)‖Lr((0,T),Eβ−1)

)
for all (y, ỹ) ∈ Eβ−1/r and g, g̃ ∈ C1−

b

(
Lp
(
(0,T), Eα

)
, Lr
(
(0,T), Eβ−1

))
possessing

the Volterra property and satisfying (2.4)–(2.6). The constants ε and c depend on
R, T , λ, and ω only.

Next we turn to the case where r > 1/(β − α). As usual, Cρ denotes the space
of (locally) ρ-Hölder continuous maps.

Theorem 2.3. Suppose that 1/(β − α) < r <∞ and 0 ≤ ρ < β − α− 1/r. Then
Theorems 2.1 and 2.2 remain valid if we replace the spaces Lp

(
(0,T), Eα

)
and

Lp
(
(0, T ), Eα

)
by Cρ

(
[0,T], Eα

)
and Cρ

(
[0, T ], Eα

)
, respectively.

We close this section with a series of remarks containing useful complements and
extensions of the preceding general theorems.
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Remarks 2.4. (a) Given the hypotheses of Theorem 1.1, the maximal solu-
tion u(µ) is global iff the Eβ−1-valued measure µ

(
u(µ)

)
is of bounded variation

on J
(
u(µ)

)
. Similarly, given the hypotheses of either Theorem 2.1 or 2.3, the

maximal solution u(x, f) is global iff f
(
u(x, f)

)
belongs to Lr

(
J
(
u(x, f)

)
, Eβ−1

)
.

(b) Let the hypotheses of Theorem 1.1 be satisfied. Also suppose that µ is
linearly bounded, that is,

‖µ(v)‖M((0,T),Eβ−1) ≤ c
(
1 + ‖v‖Lp((0,T),Eα)

)
for all v ∈ Lp

(
(0,T), Eα

)
. Then µ(u) is global. Similarly, let the assumptions of

Theorem 2.1 be valid and suppose that

‖f(v)‖Lr((0,T),Eβ−1) ≤ c
(
1 + ‖v‖Lp((0,T),Eα)

)
(2.7)

for all v ∈ Lp
(
(0,T), Eα

)
. Then the strong solution u(x, f) of (2.2) is global. If

the hypotheses of Theorem 2.3 are satisfied and (2.7) holds with Lp
(
(0,T), Eα

)
replaced by Cρ

(
[0,T], Eα

)
then the corresponding strong solution u(x, f) exists

on [0,T] as well.
(c) The assumptions of Theorem 2.1 imply that u(x, f) ∈ C

(
J
(
u(x, f)

)
, Eγ−1/r

)
.

(d) Assume that αj < β < αj + 1 and 1 < pj < (αj − β + 1) for j = 0, 1, . . . ,m.
Set

L~p
(
(0, T ), E~α

)
:=

m⋂
j=0

Lpj
(
(0, T ), Eαj

)
, 0 < T ≤ T.

Also suppose that µ : L~p
(
(0,T), E~α

)
→M

(
[0,T], Eβ−1

)
has the Volterra property.

Then by a weak L~p(E~α)-solution of (EV) on J we mean an element

u ∈
m⋂
j=0

Lpj ,loc(J∗, Eαj ) =: L~p,loc(J∗, E~α)

satisfying (1.2) for each αj and each v ∈ Cc(J∗, E]1−αj ) ∩ C
1(J∗, E]−αj ).

Replace Lp
(
(0,T), Eα

)
and Lp

(
(0, T ), Eα

)
in Theorems 1.1 and 1.2 as well as

in (1.6) by L~p
(
(0,T), E~α

)
and L~p

(
(0, T ), E~α

)
, respectively. Then these theorems

remain valid and guarantee the existence of a unique maximal weak L~p(E~α)-solution
with the corresponding continuity and global existence properties, provided for
each j there exists an admissible interpolation functor {·, ·}β−αj of exponent β − αj
such that Eβ−1

.= {Eαj−1, Eαj}β−αj .
Analogous extensions of Theorems 2.1, 2.2, and 2.3 are valid as well.
(e) Let the assumptions of Theorem 1.1 be satisfied for µ ∈ {µ1, µ2}. Assume, in

addition, that E0 is an ordered Banach space, A0 is resolvent positive, and u1 ≥ u2

implies µ1(u1) ≥ µ2(u2). Then u(µ1) ≥ u(µ2) on J
(
u(µ1)

)
∩ J
(
u(µ2)

)
.

(f) We denote by
{
U(t) ; t ≥ 0

}
the semigroup generated by −A on Eα−1. For

0 < T ≤ T and h ∈ L1

(
(0, T ), Eβ−1

)
we set

U ? h(t) :=
∫ t

0

U(t− τ)h(τ) dτ, 0 ≤ t ≤ T.

A solution of the integral equation u = Ux+ U ? f(u) is often said to be a mild
solution of (2.2). Hence Theorem 2.1 implies the existence and uniqueness of mild
solutions. However, this theorem contains more detailed information. In particular,
it shows that these solutions are strong ones. �
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The proofs of the preceding theorems and remarks are given in Section 14.

Part 2. Parabolic Differential Equations

In this part we exhibit applications of the general results presented in Part 1
to a variety of concrete parabolic initial boundary value problems. For simplicity,
we restrict ourselves to second order scalar equations with smooth coefficients.
Extensions to higher order problems and systems are given in Section 8 and Part 3,
respectively.

More precisely, we assume throughout

a = [ajk] ∈ BUC∞(Ω,Rn×n) (P0)

is symmetric and uniformly positive definite. Then we put

Au := −∇ · (a∇u) (P1)

and

Bu :=
{

γu on Γ0,

∂νu on Γ1,
(P2)

where γ is the trace operator and ∂ν is the derivative with respect to the conormal
ν := aν, with ν being the outer unit normal on Γ, provided Γ 6= ∅, of course.

Section 3 contains the main result for semilinear second order parabolic boundary
value problems with measures, namely Theorems 3.2–3.4. They are obtained by
straightforward applications of the theorems of Sections 1 and 2. The next section
is devoted to the interpretation of these theorems in more classical terms.

Sections 5–7 contain a variety of model problems. The first of these sections
deals with the most singular setting in which we allow distributions more general
than measures. Here we study, among other things, moving interface transmission
problems as well as problems with moving point sources. In Section 6 we inves-
tigate semilinear boundary value problems with measures in the interior and on
the Neumann boundary. In particular, we consider nonlinear boundary conditions
and derive existence results under optimal growth restrictions. In Section 7 we
investigate problems with integrable low regularity data.

In the last section we show, by means of simple model problems, how our general
abstract results can be applied to higher order problems.

3. Semilinear Second Order Problems

We also suppose that

1 < q <∞ and s ∈ [−2, 2].

We write W s
q := W s

q (Ω) for the usual Sobolev-Slobodeckii spaces; hence W 0
q = Lq.

Furthermore, W̊ s
q is the closure of D in W s

q , where D := D(Ω) is the space of smooth
functions with compact support in Ω. Then W̊ s

q = W s
q for all s ∈ R if Γ = ∅, and for

s < 1/q otherwise. Moreover, W−sq = (W̊ s
q′)
′ for s ≥ 0 with respect to the Lq-duality

pairing induced by

〈u, v〉 :=
∫

Ω

u · v dx, u, v ∈ D. (3.1)

We also set D(Ω) :=
{
u |Ω ; u ∈ D(Rn)

}
, etc.
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If Γ = ∅ then we put
W s
q,B := W s

q , s ∈ R.
Otherwise,

W s
q,B :=


{u ∈W s

q ; Bu = 0 }, 1 + 1/q < s ≤ 2,

{u ∈W s
q ; γu = 0 on Γ0 }, 1/q < s < 1 + 1/q,

W s
q , 0 ≤ s < 1/q,

(W−sq′,B)′, −2 ≤ s < 0, s /∈ Z+ 1/q,

(3.2)

where (W−sq′,B)′ is determined by the duality pairing induced by (3.1). Furthermore,
the values s = 1 + 1/q and s = −2 + 1/q are admitted if Γ = Γ0, and s = 1/q and
s = −1 + 1/q are included if Γ = Γ1. Finally,

Iq :=


[−2, 2], Γ = ∅,
[−2, 2]\{1/q,−1 + 1/q}, Γ = Γ0 6= ∅,
[−2, 2]\{1 + 1/q,−2 + 1/q}, Γ = Γ1 6= ∅,
[−2, 2]\(Z+ 1/q) otherwise.

We define the Lq-realization A0 of (A,B) by

dom(A0) := W 2
q,B, A0u := Au.

Then A0 is densely defined in E0 := Lq and the following is true, where .= means:
equal except for equivalent norms.

Lemma 3.1. (i) The operator −A0 generates a strongly continuous analytic
semigroup on E0, and A]0 is the Lq′-realization of (A,B).

(ii) Let [ (Eξ, Aξ) ; −1 ≤ ξ ≤ 1 ] be the interpolation extrapolation scale gener-
ated by (E0, A0) and the interpolation functors

(·, ·)θ :=

{
[·, ·]θ if θ = 1/2,
(·, ·)θ,q if θ ∈ (0, 1)\{1/2}.

(3.3)

Then Eξ
.= W 2ξ

q,B for 2ξ ∈ Iq.
(iii) E0 is an ordered Banach space with respect to the natural (point-wise) order,

and A0 is resolvent positive.

Proof. (i) and (ii) follow from [5, Theorem 6].
(iii) If Ω is bounded, this is a consequence of the maximum principle. Thus

suppose hat Ω is unbounded. Fix λ > 0 and put u := (λ+A)−1v, where v belongs
to D+ := { v ∈ D ; v ≥ 0 }. Then u ∈ C0(Ω). Suppose that −m := inf u < 0. Fix
R > 0 such that Γ ⊂ {x ∈ Rn ; |x| < R } and |u(x)| ≤ m/2 for |x| ≥ R. Then u has
a negative minimum in ΩR ∪ Γ, where ΩR := {x ∈ Ω ; |x| < R }. Since u satisfies
(A+ λ)u ≥ 0 in ΩR and Bu = 0 on Γ, this contradicts the maximum principle.
Thus u ≥ 0. Now the assertion follows from the density of D+ in the positive cone
of Lq. �

In the rest of this section it is understood that
[

(Eξ, Aξ) ; −1 ≤ ξ ≤ 1
]

is the
scale defined in Lemma 3.1(ii).

We assume that
s, σ ∈ Iq, 0 ≤ s < σ < 2. (3.4)
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Then we set α := s/2 and β := σ/2 as well as

A := Aα−1 ∈ L(W s
q,B,W

s−2
q,B ). (3.5)

Hence −A generates a strongly continuous analytic semigroup on W s−2
q,B , and we

consider the semilinear parabolic problem

u̇+Au = µ(u) on R+, (3.6)

where µ(u) ∈Mloc(R+,W σ−2
q,B ) has the Volterra property.

To be more precise, given Banach spaces E and F , we write µ ∈Mloc(R+, E)
if µ is an E-valued measure on R+ such that µ | [0, T ] belongs to M

(
[0, T ], E) for

every T > 0. We also write

µ ∈ C1−
b

(
Lp,loc(R+, F ),Mloc(R+, E)

)
to mean that

µ | [0, T ] ∈ C1−
b

(
Lp
(
(0, T ), F

)
,M

(
[0, T ], E

))
for each T > 0. Similarly, if r ∈ [1,∞] then

f ∈ C1−
b

(
Lp,loc(R+, F ), Lr,loc(R+, E)

)
has the analogous meaning.

Suppose that 1 ≤ p <∞ and

µ ∈ C1−
b

(
Lp,loc(R+,W s

q,B),Mloc(R+,W σ−2
q,B )

)
(3.7)

has the Volterra property.
By a (weak) Lp(W s

q )-solution of (3.6) on J , where J is a perfect subinterval
of R+ containing 0, we mean a u ∈ Lp,loc(J∗,W s

q,B) satisfying∫
J

〈−∂tv +Av, u〉 dt =
∫
J

v dµ(u), v ∈ D(J∗,DB), (3.8)

where DB :=
{
v ∈ D(Ω) ; Bv = 0

}
.

Now we can prove the following basic existence, uniqueness, and continuity the-
orem for Lp(W s

q )-solutions of (3.6). For an easy statement of the continuity prop-
erties we use a slightly incorrect notation. The precise meaning, however, is clear
from Theorem 1.2. Often we also write JT for [0, T ].

Theorem 3.2. Suppose that s, σ ∈ Iq, 0 ≤ s < σ < 2, and

1 ≤ p < 2/(s− σ + 2). (3.9)

Also suppose that (3.7) is true and that µ has the Volterra property. Then prob-
lem (3.6) has a unique maximal Lp(W s

q )-solution u(µ). The map

C1−
b

(
Lp,loc(R+,W s

q,B),Mloc(R+,W σ−2
q,B )

)
→ Lp,loc(R+,W s

q,B),

sending µ into u(µ), is Lipschitz continuous in the sense made precise in Theo-
rem 1.2. If u(µ) ∈ Lp

(
J
(
u(µ)

)
∩ (0, T ),W s

q

)
for each T > 0 then J(u) = R

+.

Proof. (a) First we observe that [5, Lemma 8 and Sections 7A and 7B] guarantee
that DB is dense in W 2−s

q′,B
.= E]1−α. From this we infer that D(J∗,DB) is dense in

Cc(J∗, E
]
1−α) ∩ C1(J∗, (E]−α). Furthermore, it follows from [5, Theorem 8] that

〈A>v, u〉 = 〈Av, u〉, (v, u) ∈ DB ×W s
q,B.

From this we deduce that (3.8) is equivalent to (1.2).
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(b) If 2ξ, 2η ∈ Iq satisfy 0 < η − ξ < 1 then it follows from [3, Theorem V.1.5.9]
that

Eη−1
.= (Eξ−1, Eξ)η−ξ,q,

provided 2η /∈ Z.
(c) Suppose that s, σ /∈ N. Then the theorem is an easy consequence of (a), (b),

Lemma 3.1, and Theorems 1.1 and 1.2.
(d) Assume that s or σ belong to N. Fix s, σ ∈ Iq\Z satisfying s < s < σ < σ

and p < 2/(s− σ + 2). Then (3.7) is satisfied with s and σ replaced by s and σ,
respectively. Hence (c) guarantees the existence of a unique maximal Lp(W s

q )-
solution u of (3.6). Clearly, u is an Lp(W s

q )-solution of (3.6) on J(u).
Suppose that w is any Lp(W s

q )-solution of (3.6) on some perfect subinterval J
of R+ containing 0, whose interior is denoted by J̊ . Then µ(w) ∈M(JT , Eβ−1) for
each T ∈ J̊ , and w |JT is a weak Lp(Eα)-solution of the linear problem

v̇ +Av = µ(w) on JT . (3.10)

Since α < α := s/2 < β = σ/2 it follows from [5, Theorem 4], by replacing α by α,
that w |JT is a weak Lp(Eα)-solution of (3.10). This being true for every T ∈ J̊ ,
we see that w is an Lp(W s

q )-solution of (3.6) on J . Thus J ⊂ J(u) and w = u |J by
the uniqueness and maximality of u. This proves that (3.6) has a unique maximal
Lp(W s

q )-solution in this case also. The continuity assertion follows in an obvious
manner. �

Now we suppose that 1 < r <∞ with σ − 2/r ∈ Iq and that

(u0, f) ∈W σ−2/r
q,B × C1−

b

(
Lp,loc(R+,W s

q,B), Lr,loc(R+,W σ−2
q,B )

)
(3.11)

with f possessing the Volterra property. Then u is said to be a strong Lp(W s
q )-

solution of
u̇+Au = f(u), 0 < t <∞, u(0) = u0 (3.12)

on J if u is an Lp(W s
q )-solution on J of (3.6) with

µ := f + u0 ⊗ δ0
such that

u ∈W1
r,loc

(
J∗, (W s−2

q,B ,W s
q,B)

)
. (3.13)

Observe that u(0) is well-defined, thanks to u ∈ C(J∗,W s−2
q,B ).

The next theorem guarantees the well-posedness of problem (3.12) in the sense
of strong solutions.

Theorem 3.3. Suppose that s, σ ∈ Iq, 0 ≤ s < σ < 2, and

1 < r < 2/(σ − s), σ − 2/r ∈ Iq, 1 ≤ p < 2
/

(s− σ + 2/r). (3.14)

Also assume that (3.11) is true with f possessing the Volterra property. Then (3.12)
has a unique maximal strong Lp(W s

q )-solution u(u0, f). The map

W
σ−2/r
q,B × C1−(Lp,loc(R+,W s

q,B), Lr,loc(R+,W σ−2
q,B )

)
7→ Lp,loc(R+,W s

q,B),

sending (u0, f) into u(u0, f), is Lipschitz continuous in the sense made precise
in Theorem 2.2. If u(u0, f) ∈ Lp

(
J
(
u(u0, f)

)
∩ (0, T ),W s

q,B
)

for each T > 0 then
u(u0, f) is a global solution.

Proof. This follows easily from Theorems 2.1 and 2.2. �
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Lastly, we consider the case r > 2/(σ − s). Clearly, if 0 ≤ ρ < 1 then u is a
strong Cρ(W s

q )-solution of (3.12) on J if it belongs to Cρ(J,W s
q,B) and satisfies

(3.8) and (3.13).

Theorem 3.4. Suppose that s, σ ∈ Iq, 0 ≤ s < σ < 2, and

2/(σ − s) < r <∞, 0 ≤ 2ρ < σ − s− 2/r.

Also suppose that

(u0, f) ∈W σ−2/r
q,B × C1−

b

(
Cρ(R+,W s

q,B), Lr,loc(R+,W σ−2
q,B )

)
(3.15)

and that f has the Volterra property. Then (3.12) has a unique maximal strong
Cρ(W s

q )-solution u(u0, f). The map (u0, f) 7→ u(u0, f) is Lipschitz continuous from
the space occurring in (3.15) into Cρ(R+,W s

q,B) in the sense made precise in The-
orem 2.3. If u(u0, f) is uniformly ρ-Hölder continuous on J

(
u(u0, f)

)
∩ (0, T ) for

every T > 0 then it is a global solution.

Proof. This follows from Theorem 2.3. �

Remarks 3.5. (a) The maximal Lp(W s
q )-solution of (3.6) is independent of those

s, σ, and p satisfying (3.4) and (3.9) for which (3.7) is true. If Ω is bounded then
it is independent of q as well.

Proof. This follows from the arguments of part (d) of the proof of Theorem 3.2 and
from [5, Theorem 4], thanks to W s

q1,B ↪→W s
q0,B if q0 < q1 and Ω is bounded. �

(b) Similarly, the maximal strong Lp(W s
q )-solution of (3.12) is independent of

those s, σ, r, and p satisfying (3.14) for which (3.11) is true, and of q, provided
Ω is bounded.

(c) Suppose that s > 1/q. Then u is an Lp(W s
q )-solution of (3.6) on J iff u

belongs to Lp,loc(J∗,W s
q,B) and∫

J

{
−〈∂tv, u〉+ a(v, u)

}
dt =

∫
J

v dµ(u), v ∈ D
(
J∗,D(Ω ∪ Γ1)

)
,

where
a(w, z) := 〈∇w,a∇z〉, w, z ∈ D(Ω),

is the Dirichlet form associated with (A,B).

Proof. This is a consequence of [5, Theorem 8] and the density of D(Ω ∪ Γ1)
in W 2−s

q′,B which follows from 2− s < 1 + 1/q′. �

(d) The last assertion of Theorem 3.2 is equivalent to: u := u(µ) is a global
solution if

µ(u) ∈M
(
J(u) ∩ [0, T ],W σ−2

q,B
)

for every T > 0.
Similarly, the last assertion of Theorem 3.3, resp. Theorem 3.4, is equivalent to:
u := u(u0, f) is a global solution if

f(u) ∈ Lr
(
J(u) ∩ (0, T ),W σ−2

q,B
)

for every T > 0.

Proof. This follows from Remark 2.4(a). �

(e) Let the hypotheses of Theorem 3.3 be satisfied. Then the corresponding
solution belongs to C

(
J(u),W τ−2/r

q,B
)

for τ < σ with τ − 2/r ∈ Iq.
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Proof. This is implied by Remark 2.4(c). �

(f) Everything said above remains valid if we suppose a ∈ BUC1(Ω,Rn×n) only,
provided we replace DB by W 2−s

q′,B everywhere.

Proof. For this we refer to [2]. �

4. Interpretations

In order to give interpretations of problem (3.6) we turn to the study of vector-
measure-valued functions µ which possess special structures occurring frequently
in applications.

To simplify the presentation we assume from now on that

• n ≥ 2

and leave to the reader the simple modifications of the following proofs which are
needed to cover the case n = 1.

Unless explicitly stated otherwise, we suppose throughout that

• 1 < q < n/(n− 1) (4.1)

to avoid tedious discussions of special cases. Consequently, 0 < 1− n/q′ < 1/q and
2− n/q′ ≤ n/q.

For later reference we collect some embedding results. For this, given a smooth
submanifold M of Rn, we denote by C1

0 (M) the closure of D(M) in BC1(M),
the space of bounded continuous functions having bounded and continuous first
derivatives. We also put

C1
B(Ω) :=

{
v ∈ C1

0 (Ω) ; Bv = 0
}
.

Note that C1
B(Ω) =

{
v ∈ C1(Ω) ; Bv = 0

}
if Ω is bounded.

Lemma 4.1. Suppose that t, σ ∈ Iq ∩ R+ and σ < 2− n/q′. Then

(i) W t
q,B

d
↪→ Lρ for 0 < 1/q − t/n ≤ 1/ρ with 1/ρ ≤ 1/q if Ω is unbounded;

(ii) Lρ ↪→W σ−2
q,B for 1 ≤ ρ ≤ q;

(iii) M(Ω ∪ Γ1) ↪→W σ−2
q,B ;

(iv) W
t−1/q
q (Γ1) ↪→ Lτ (Γ1) for 1 ≥ 1/τ ≥ (n/q − t)

/
(n− 1) with τ being finite

if t = n/q;
(v) Lρ(Γ1) ↪→W

σ−1−1/q
q (Γ1) for 1 ≤ ρ ≤ q;

(vi) M(Γ1) ↪→W
σ−1−1/q
q (Γ1);

(vii) If 0 ≤ σ < 1− n/q′ then
(
C1
B(Ω)

)′
↪→W σ−2

q,B , M(Γ0) ↪→W
σ−1/q
q (Γ0), and

C1(Γ1)′ ↪→W
σ−1−1/q
q (Γ1).

Proof. The assertions are easy consequences of Sobolev-type embedding theorems
(cf. [2, Lemma 9]) and duality arguments, where we have to use L1 ↪→M in the
case where ρ = 1. �

We also observe that the trace theorem implies

γ1 :=
(
u 7→ (γu) |Γ1

)
∈ L

(
W 2−σ
q′,B ,W

1−σ+1/q
q′ (Γ1)

)
(4.2)

if σ < 1 + 1/q, and

∂ν,0 := (u 7→ ∂νu |Γ0) ∈ L
(
W 2−σ
q′,B ,W

−σ+1/q
q′ (Γ0)

)
(4.3)
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if σ < 1/q.
Throughout the rest of this section we suppose that

• s, σ ∈ [0, 2− n/q′) ∩ Iq, s < σ, 0 ≤ p <∞, 1 ≤ r <∞. (4.4)

In order to avoid tedious repetitions we introduce some compact notation: If J is
a perfect subinterval of R+ containing 0, we set

Xs
p,q(J) :=

{
Lp,loc(J,W s

q,B), 1 ≤ p <∞,
Cp(J,W s

q,B), 0 ≤ p < 1,

where, of course, C0 := C. We also put Xs
p,q := Xs

p,q(R
+).

Local Nonlinearities

Assume that
• (F,G) ∈ C1−

b

(
Xs
p,q, Lr,loc

(
R

+, (L1 + Lq)× L1(Γ1)
))

;
• F and G possess the Volterra property.

}
(4.5)

We postpone the derivation of sufficient conditions for the validity of this assump-
tion to Section 15 in the appendix. It follows from (4.2) and Lemma 4.1 that

µreg := F + γ′1G ∈ C1−
b (Xs

p,q, X
σ−2
r,q ), (4.6)

and µreg has the Volterra property. Furthermore, setting

〈u, v〉Γ1 :=
∫

Γ1

u · v dσ, u, v ∈ C(Γ1),

with dσ denoting the volume measure of Γ,∫
J

v dµreg =
∫
J

{
〈v, F 〉+ 〈γ1v,G〉Γ1

}
dt

=
∫

Ω×J
vF dx dt+

∫
Γ1×J

vGdσ dt

(4.7)

for v ∈ C0

(
J∗, C0(Ω ∪ Γ1)

)
.

Measures

Next we assume that

• (µ, µ0) ∈ C1−
b

(
Xs
p,q,Mloc

(
R

+,M(Ω ∪ Γ1)×M(Γ0)
))

;
• µ0 = 0 if σ > 1/q;
• µ and µ0 possess the Volterra property.

 (4.8)

Then it follows from Lemma 4.1 and (4.3) that

µM = µ− (∂ν,0)′µ0 ∈ C1−
b

(
Xs
p,q,Mloc(R+,W σ−2

q,B )
)
, (4.9)

and µM has the Volterra property. Furthermore,∫
J

v dµM =
∫
J

v dµ−
∫
J

∂ν,0v dµ0

=
∫

(Ω∪Γ1)×J
v(x, t)µ (dx dt) +

∫
Γ0×J

∂ν,0v(y, t)µ0(dy dt)
(4.10)

for v ∈ C0

(
J∗, C1

0 (Ω ∪ Γ1)
)
.
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Here and elsewhere, given a σ-compact metric space X, we identify M(JT , X)
withM(X × JT ) for T > 0 in the obvious way (cf. [5, Example 1(d)]. We also put

Mloc(X × R+) :=Mloc

(
R

+,M(X)
)
.

In general, µ ∈Mloc

(
R

+,M(Ω ∪ Γ1)
)

charges the boundary Γ1. For a neat inter-
pretation of an Lp(W s

q )-solution of (3.6) it is desirable to separate this contribution
of µ from its “part” in the interior Ω. The following remarks show how this can be
done. As usual, we omit Ω in the notation of spaces, that is, we put C0 := C0(Ω)
and M :=M(Ω).

Remarks 4.2. (a) Suppose that Γ1 6= ∅. Clearly, γ1 ∈ L
(
C0(Ω ∪ Γ1), C(Γ1)

)
, and

it is a retraction. Let γc1 ∈ L
(
C(Γ1), C0(Ω ∪ Γ1)

)
be a coretraction. Then

pΩ := id− γc1γ1 ∈ L
(
C0(Ω ∪ Γ1)

)
is a projection onto C0 (cf. the proof of [5, Theorem 10]). It is a consequence of [5,
Theorem 11] that

M(Ω ∪ Γ1) ∼=M×M(Γ1).
An isomorphism is given by

M(Ω ∪ Γ1)→M×M(Γ1), µ 7→
(
rΩµ, (γc1)′µ

)
,

with rΩ ∈ L
(
M(Ω ∪ Γ1),M

)
being the restriction map µ 7→ µ |C0. Its inverse,

R ∈ L
(
M×M(Γ1),M(Ω ∪ Γ1)

)
,

is given by
R(νΩ, ν1) := p′ΩνΩ + γ′1ν1.

Note that∫
Ω∪Γ1

w dR(νΩ, ν1) =
∫

Ω

pΩw dνΩ +
∫

Γ1

γ1w dν1, w ∈ D(Ω ∪ Γ1).

(b) Suppose that µ ∈Mloc(R+,M) and denote by µ0 the completion of the
Borel measure

B(Ω∪Γ1)×R+ → R, B 7→ µ
(
B ∩ (Ω× R+)

)
,

where B(Ω∪Γ1)×R+ is the Borel σ-algebra of (Ω ∪ Γ1)× R+. Then µ0 belongs to
Mloc

(
R

+,M(Ω ∪ Γ1)
)

and, given T > 0, the map

M(JT ,M)→M
(
JT ,M(Ω ∪ Γ1)

)
, µ |JT 7→ µ0 |JT

is an isometry. We call µ0 “trivial extension of µ over Ω ∪ Γ1” and put∫
JT

ϕdµ :=
∫
JT

ϕdµ0, ϕ ∈ C
(
JT , C0(Ω ∪ Γ1)

)
, T > 0. (4.11)

Henceforth, we usually do not distinguish notationally between µ ∈Mloc(R+,M)
and its trivial extension over Ω ∪ Γ1. In other words, µ ∈Mloc(R+,M) is identified
with an element of Mloc

(
R

+,M(Ω ∪ Γ1)
)

by means of (4.11).
(c) In [5, Lemma 10(iii)] it is claimed that∫ ∞

0

pΩv dµΩ =
∫ ∞

0

v dµΩ, v ∈ D(R+,DB]),

if µΩ ∈Mloc(R+,M) satisfies

dist
(
supp(µΩ,s),Γ1 × R+

)
> 0, (4.12)
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where µΩ,s is the singular part of µΩ. However, its proof, more precisely, the proof
of [5, part β of Lemma 10(i)] on which it is based, is wrong. Nevertheless, as a
consequence of (b), the main results of of [5], namely Theorems 1 and 2, Remark 2
and Theorem 14, remain true, even without assumption (4.12). �

For abbreviation, we set

~M :=M×M(Γ0)×M(Γ1).

Motivated by the preceding remarks we consider the following assumption:

• ~µ := (µΩ, µ0, µ1) ∈ C1−
b

(
Xs
p,q,Mloc(R+, ~M)

)
;

• µ0 = 0 if σ > 1/q;
• ~µ possesses the Volterra property.

 (4.13)

Then, using the identification of Remark 4.2(b), it follows from Lemma 4.1 that

µΩ + γ′1µ1 ∈ C1−
b

(
Xs
p,q,Mloc(R+,W σ−2

q,B )
)

and that it has the Volterra property. Note that∫
J

v d(µΩ + γ′1µ1) =
∫
J

v dµΩ +
∫
J

γ1v dµ1

=
∫

Ω×J
vµΩ (dx dt) +

∫
Γ1×J

vµ1 (dy dt)
(4.14)

for v ∈ C0

(
J∗, C(Ω ∪ Γ1)

)
. Thus we see that (4.13) implies

χ(~µ ) := µΩ − (∂ν,0)′µ0 + γ′1µ1 ∈ C1−
b

(
Xs
p,q,Mloc(R+,W σ−2

q,B )
)
. (4.15)

Singular Data

Suppose that ν0 ∈M and ~ν = (ν1, . . . , νn) ∈M(Ω)n. Put

〈ϕ, µ〉 :=
∫

Ω

ϕdν0 −
∫

Ω

∇ϕ · d~ν =
∫

Ω

ϕdν0 −
n∑
j=1

∫
Ω

∂jϕdνj (4.16)

for ϕ ∈ C1
B(Ω). It follows from Remark 4.2(b) that (4.16) is a continuous linear form

on C1
B(Ω), which we denote by ν0 +∇ · ~ν = ν0 + div ~ν. Then we mean byM−1 the

set of all µ ∈ C1
B(Ω)′ such that there exist (ν0, ~ν) ∈M×M(Ω)n satisfying

µ = ν0 +∇ · ~ν. (4.17)

It is a Banach space with respect to the norm

‖µ‖M−1 := inf
(
‖ν0‖M + ‖~ν‖M(Ω)n

)
,

where the infimum is taken with respect to all representations (4.17) of µ. Moreover,

M−1 ↪→
(
C1
B(Ω)

)′
. (4.18)

We also put
M−1(Γ1) := C1(Γ1)′. (4.19)

Now we set
~Msing :=M−1 ×M(Γ0)×M−1(Γ1).
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Then we suppose that

• σ < 1− n/q′;
• ~F ∈ C1−

b

(
Xs
p,q, L1,loc

(
R

+, (L1 + Lq)n
))

;

• ~µ ∈ C1−
b

(
Xs
p,q,Mloc(R+, ~Msing)

)
;

• ~F and ~µ possess the Volterra property.

 (4.20)

Note that L1 + Lq ↪→M+W 0
q,B and M−1 +W−1

q,B ↪→W σ−2
q,B together with (4.20)

imply
∇ · ~F (v) ∈ L1,loc(R+,M−1 +W−1

q,B ) ↪→ L1,loc(R+,W σ−2
q,B )

for v ∈ Xs
p,q, where∫
J

〈w,∇ · ~F 〉 dt := −
∫
J

〈∇w, ~F 〉 dt, w ∈ C1
0 (J∗,W 2−σ

q′,B ). (4.21)

Thus, setting
χ(~F , ~µ ) := ∇ · ~F + µΩ − (∂ν,0)′µ0 + γ′1µ1,

it follows from (4.2), (4.3), (4.18), (4.19), (4.20), and Lemma 4.1(vii) that

χ(~F , ~µ ) ∈ C1−
b

(
Xs
p,q,Mloc(R+,W σ−2

q,B )
)
. (4.22)

Remarks 4.3. (a) Clearly, ~µ ∈ C1−
b

(
Xs
p,q, Lr,loc(R+, ~M)

)
implies

χ(~µ ) ∈ C1−
b (Xs

p,q, X
σ−2
r,q ).

Similarly, it follows from ~µ ∈ C1−
b

(
Xs
p,q, Lr,loc(R+, ~Msing)

)
that

χ(~F , ~µ ) ∈ C1−
b (Xs

p,q, X
σ−2
r,q ).

(b) If E is a product of ordered Banach spaces then we use the natural, that is,
component-wise, product order on E. Then ~µ ≥ 0 implies χ(~µ ) ≥ 0.

Of course, if ϕ is a map from a nonempty set X into an ordered vector space
then ϕ ≥ 0 means ϕ(x) ≥ 0 for all x ∈ X.

Proof. This follows from the proof of [5, Proposition 5]. �

Equivalence Theorems

Now we are ready to give formal interpretations of the semilinear parabolic
problem (3.6). For this we assume that (4.4), (4.5), and (4.13) be satisfied. Then
we consider the following problem:

∂tu+Au = F (u) + µΩ(u) in Ω× R+,

u = µ0(u) on Γ0 × R+,

∂νu = G(u) + µ1(u) on Γ1 × R+.

 (4.23)

By an Xs
p,q-solution of (4.23) on J we mean a function u ∈ Xs

p,q(J) satisfying∫
J

〈−∂tv +Av, u〉 dt =
∫
J

〈
v, F (u)〉 dt+

∫
J

d
〈
v, µΩ(u)

〉
−
∫
J

∂ν,0v dµ0(u)

+
∫
J

〈
γ1v,G(u)

〉
Γ1
dt+

∫
J

d
〈
γ1v, µ1(u)

〉
Γ

(4.24)

for all v ∈ D(J∗,DB). Maximal solutions are defined in the obvious manner.
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Theorem 4.4. Problem (4.23) is equivalent to (3.6) with

µ := F + γ′1G+ χ(~µ ), (4.25)

that is, u is an Xs
p,q-solution of (4.23) on J iff it is such a solution of (3.6) with

µ defined by (4.25).

Proof. This is an immediate consequence of (3.8), (4.7), (4.10), and (4.14). �

Similarly, assuming (4.4), (4.5), (4.20), and setting µΓ := (µ0, µ1), we consider
the problem with singular data:

∂tu+Au = F (u) + µΩ(u) +∇ · ~F (u) in Ω× R+,

Bu = µΓ(u) on Γ× R+.

}
(4.26)

An Xs
p,q-solution of (4.26) on J is a u ∈ Xs

p,q(J) satisfying∫
J

〈−∂tv +Av, u〉 dt =
∫
J

〈
v, F (u)〉 dt+

∫
J

d
〈
v, µΩ(u)

〉
−
∫
J

〈
∇v, ~F (u)

〉
dt

−
∫
J

∂ν,0v dµ0(u) +
∫
J

d
〈
γ1v, µ1(u)

〉
Γ1

(4.27)

for all v ∈ D(J∗,DB).

The next theorem is the analogue to Theorem 4.4 for the case of singular data.

Theorem 4.5. Problem (4.26) is equivalent to (3.6) with µ := F + χ(~F , ~µ ).

Proof. This follows from (3.8), (4.7), (4.16), and (4.21). �

Remarks 4.6. (a) Note that (4.24) is formally obtained from (4.23) by “multiply-
ing” the first equation of (4.23) by v ∈ D(J∗,DB), integrating over J , and applying
Green’s formula with respect to the space variables. An analogous formal argument
leads from (4.26) to (4.27).

(b) Recall that µ0 = 0 and that Remark 3.5(c) applies if σ > 1/q. �

5. Singular Data

In this section we consider nonlinear parabolic problems of the form

∂tu+Au = f(x, t, u) +∇ · ~f(x, t, u) + µΩ(u) + u0 ⊗ δ0 in Ω× R+,

Bu = µΓ(u) on Γ× R+,

}
(5.1)

where ~µ(u) =
(
µΩ(u), µΓ(u)

)
∈ ~Msing. Of course, ∇ · ~f(x, t, u) means that one has

to take the divergence of the vector field x 7→ ~f
(
x, t, u(x, t)

)
. First we derive a

general result and then we consider some special examples and model problems.

Let X be a σ-compact metric space endowed with a positive Radon measure.
Then, given a Carathéodory function ϕ : X × Rm → R, we use ϕ\ to denote the
Nemytskii operator induced by ϕ, defined by ϕ\(u) := ϕ

(
·, u(·)

)
for u : X → R

m.
Recall that ϕ\(u) is measurable if this is true for u.
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The General Theorem

We suppose throughout that

• 0 ≤ s < 1− n/q′, 1 < λ <∞,
n < ν ≤ ∞, 1 ≤ r <∞;

• 1/ν0 := 1/q′ + s/n;
• β0 ∈ Lν0 , β ∈ Lν , κ ∈ L∞,loc(R+);

• (f, ~f ) ∈ Car1
(
(Ω× R+)× R,R× Rn

)
with (f, ~f )(·, ·, 0) = (0, 0);

• |∂3f(x, t, ξ)| ≤ κ(t)
(
1 + β(x) |ξ|λ−1

)
;

• |∂3
~f(x, t, ξ)| ≤ κ(t)

(
β0(x) + β(x) |ξ|λ−1

)



(5.2)

for (x, t, ξ) ∈ Ω× R+ × R. We also suppose that either
• r = 1;

• ~µ ∈ C1−
b

(
Lλ,loc(R+,W s

q ),Mloc(R+, ~Msing)
)
;

• u0 ∈M−1;

 (5.3)

where, as usual, ~µ = (µΩ, µ0, µ1) = (µΩ, µΓ), or

• 1 < r < 2
/

(1− n/q′ − s);
• ~µ ∈ C1−

b

(
Lrλ,loc(R+,W s

q ), Lr,loc(R+, ~Msing)
)
;

• u0 ∈W 1−n/q′−2/r
q,B ;

 (5.4)

or
• 2

/
(1− n/q′ − s) < r <∞, 0 ≤ 2ρ < 1− n/q′ − s− 2/r;

• ~µ ∈ C1−
b

(
Cρ(R+,W s

q ), Lr,loc(R+, ~Msing)
)
;

• u0 ∈W 1−n/q′−2/r
q,B .

 (5.5)

In each case we assume that

• ~µ has the Volterra property. (5.6)

We set

λ∗ := λ∗(n, r, ν) :=
2 + nr/ν′

2 + (n− 1)r
= 1 +

1− n/ν
n− 1 + 2/r

and observe that λ∗ is increasing in r and ν.
Now we can prove the following general existence and uniqueness result for (5.1).

Theorem 5.1. Let assumption (5.2) be satisfied and suppose that

0 ≤ r

2 + (n− 1)r

[ n
ν′
− λ

(n
q
− s
)]

< λ∗ − λ. (5.7)

If Ω is unbounded, also assume that
λ

q
≥ s

n
+

1
ν′
. (5.8)

Moreover, let one of conditions (5.3)–(5.5) as well as assumption (5.6) be satisfied.
Then problem (5.1) has a unique maximal Lrλ(W s

q )-solution, u(·, u0, ~µ ), if either
(5.3) or (5.4) is true, and a unique maximal Cρ(W s

q )-solution if (5.5) holds. In
either case the solution depends Lipschitz continuously on the data.
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Proof. First we note that the second inequality of (5.7) is equivalent to

rλ(s− 1 + n/q′ + 2/r) < 2.

From this we infer that we can fix σ ∈ (s, 1− n/q′) if either (5.3) or (5.4) is satisfied,
and σ ∈ (s+ 2/r + 2ρ, 1− n/q′) otherwise, with rλ < 2

/
(s− σ + 2/r

)
.

Set m0(x, t) := κ(t), respectively m0(x, t) := κ(t)β0(x), and m1(x, t) := κ(t)β(x)
for (x, t) ∈ Ω× R+. Then it follows from (5.2) and (5.8) that the hypotheses of
Proposition 15.4 are satisfied. Hence

(F, ~F ) := (f \,~f \ ) ∈ C1−
b

(
Xs
p,q, Lr,loc(R+, (L1 + Lq)× (L1 + Lq)n

))
, (5.9)

where p := rλ if either (5.3) or (5.4) holds, and p := ρ otherwise. From this we
infer that conditions (4.5) (with G := 0) and (4.20) hold. Thus we see from (4.6)
and (4.22) that

µ := F + χ(~F , ~µ ) + u0 ⊗ δ0 ∈ C1−
b

(
Xs
p,q,Mloc(R+,W σ−2

q,B )
)

if r = 1, and µ ∈ C1−
b (Xs

p,q, X
σ−2
r,q ) otherwise, thanks to Remark 4.3(a). Now The-

orems 3.2–3.4 imply the assertions. �

Remarks 5.2. (a) Suppose that q ∈
(
1, n/(n− 1)

)
, λ ∈ (1, λ∗), ν ∈ (n,∞], and

r ∈ [1,∞) with q ≤ λν′ are given. Then we can find s in the interval [0, 1− n/q′)
with λ(n/q − s) = n/ν′. Hence (5.7) and (5.8) are satisfied for this choice of s.

Proof. From ν > n and 1 < λ < λ∗ we deduce that

1/n′ < 1/λ∗ν′ < 1/λν′ ≤ 1/q.

Since
{ 1/q − s/n ; 0 ≤ s < 1− n/q′ } = (1/n′, 1/q],

the assertion follows. �

(b) Of course, Theorem 5.1 remains valid if we add to the right-hand side of the
first equation in (5.1) a nonlocal term of the form F0(u), where

F0 ∈

{
C1−
b

(
Lrλ,loc(R+,W s

q ), Lr,loc(R+, L1)
)
, r < 2

/
(1− n/q′ − s

)
,

C1−
b

(
Cρ(R+,W s

q ), Lr,loc(R+, L1)
)

otherwise,

and F0 has the Volterra property.
(c) The assumption that (f, ~f )(·, ·, 0) = (0, 0) is not restrictive since a nonzero

term can be included in µΩ.
(d) If assumption (5.4) holds then the solution of Theorem 5.1 belongs to

C
(
J(u),W s−2/r

q,B
)

whenever s− 2/r ∈ Iq with s < 1− n/q′.

Proof. This follows from Remark 3.5(e). �

(e) The assumption in (5.4) and (5.5) that u0 ∈W 1−n/q′−2/r
q,B has been imposed

for simplicity. It can be replaced by

u0 ∈W σ−2/r
q,B ,

where σ − 2/r ∈ Iq and s < σ < 1− n/q′ if either (5.3) or (5.4) is satisfied, and
s+ 2/r + 2ρ < σ < 1− n/q′ otherwise, provided rλ < 2

/
(s− σ + 2/r).

Proof. This follows from the proof of Theorem 5.1. �
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Comparison Theorems

Next we prove a comparison theorem. For this we rely on a somewhat technical
version of a weak maximum principle which is relegated to the appendix.

We consider the following hypothesis:

• Assumptions (5.2), (5.7), and (5.8) are satisfied;
• if 1 ≤ r < 2

/
(1− n/q′ − s) then p := rλ and

s+ 2/rλ′ < σ < 1− n/q′;
• if r > 2

/
(1− n/q′ − s) then 2p ∈ [0, 1− n/q′ − s− 2/r) and

s+ 2/r + 2p < σ < 1− n/q′.


(5.10)

Theorem 5.3. Let assumption (5.10) be satisfied. Suppose that u, v ∈ Xs
p,q(J) and

there exists

(u∗, ~µ∗) ∈

{
{0} ×M(J, ~Msing), r = 1,

W
σ−2/r
q,B × Lr(J, ~Msing), r > 1,

(5.11)

such that

∂t(u− v) +A(u− v)

= F (u)− F (v)+∇ ·
(
~F (u)− ~F (v)

)
+ µ∗Ω + u∗ ⊗ δ0 in Ω× J,

B(u− v) = µ∗Γ on Γ× J.

Then (u∗, ~µ∗) ≥ 0 implies u ≥ v.

Proof. We can assume that J = JT for some T > 0. Set

~c := −
∫ 1

0

(∂3
~f \ )

(
v + τ(u− v)

)
dτ, a0 := −

∫ 1

0

(∂3f)\
(
v + τ(u− v)

)
dτ.

Put π := π0 := rλ′ if r < 2
/

(1− n/q′ − s), and π := π0 := r otherwise. Also set
π1 :=∞, t0 := t1 := s, and ν1 := ν. Then, putting m0 := κ, resp. m0 := κβ0, and
m1 := κβ, we deduce from (the proof of) Lemma 15.2 that

(~c, a0) ∈ Lπ
(
JT , (Lν0)n × (Lν0 + L∞)

)
.

Consequently, (0,~c, a0, 0) ∈ Lπ(JT ,B) (cf. Section 19). The mean-value theorem
implies that u− v is a solution of the linear equation

∂tw −∇ · (a∇w) +∇ ·
(
~c (t)w

)
+ a0(t)w = µ∗Ω + u∗ ⊗ δ0 in Ω× JT ,

Bw = µ∗Γ on Γ× JT .

Thus the assertion follows from Theorem 19.4. �

Corollary 5.4. Let the assumptions of Theorem 5.1 be satisfied. If (u0, ~µ ) ≥ 0
then u(·, u0, ~µ ) ≥ 0.

Proof. This follows from Theorem 5.3 with (u∗, ~µ∗) :=
(
u0, ~µ(u)

)
, where we have

set u := u(·, u0, ~µ ). �

Observe that Theorem 5.3 extends, in particular, the comparison principle of
Remark 2.4(e).

The next theorem is useful for proving global existence.
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Theorem 5.5. Let assumption (5.10) be satisfied with s = 0. Also suppose that
one of conditions (5.3)–(5.5) as well as assumption (5.6) are true. Finally, suppose
that uj ∈ X0

p,q(JT ) and there exists (u0
j , ~µj) satisfying (5.11) such that

∂tuj +Auj = F (uj) +∇ · ~F (uj) + µj,Ω + u0
j ⊗ δ0 in Ω× JT ,

Buj = µj,Γ on Γ× JT
(5.12)

for j = 0, 1. If u := u(·, u0, ~µ ) and

(u0
0, ~µ0) ≤

(
u0, ~µ(u)

)
≤ (u0

1, ~µ1) (5.13)

then J(u) ⊃ JT and u0 ≤ u ≤ u1.

Proof. Note that (u∗, ~µ∗) :=
(
u0

1 − u0, ~µ1 − ~µ(u)
)

satisfies (5.11) and is nonnega-
tive. Furthermore,

∂t(u1 − u) +A(u1 − u)

= F (u1)− F (u) +∇ ·
(
~F (u1)− ~F (u)

)
+ µ∗Ω + u∗ ⊗ δ0 in Ω×

(
J(u) ∩ JT

)
,

B(u1 − u) = µ∗Γ on Γ×
(
J(u) ∩ JT

)
.

From this, the corresponding relation for u− u0, and Theorem 5.3 we infer that

u0 ≤ u ≤ u1 on J(u) ∩ JT . (5.14)

If 1 ≤ r < 2
/

(1− n/q′ − s) then this implies

u ∈ Lrλ
(
J(u) ∩ JT , Lq

)
= X0

p,q

(
J(u) ∩ JT

)
. (5.15)

Otherwise, (5.14) implies u ∈ L∞
(
J(u) ∩ JT , Lq

)
. From this we deduce that

µ := F (u) + χ(~F , ~µ )(u) + u0 ⊗ δ0 ∈ Lr
(
J(u) ∩ JT ,W σ−2

q,B
)
.

Since u satisfies the linear equation v̇ +Av = µ it follows from [5, Proposition 2(iii)]
that

u = U ? µ ∈ BUCρ
(
J(u) ∩ JT , Lq

)
= X0

p,q

(
J(u) ∩ JT

)
. (5.16)

Thus we obtain J(u) ⊃ JT from (5.15), (5.16), and Theorems 1.1, 2.1, and 2.3
respectively. �

Note that conditions (5.12) and (5.13) imply

∂tu0 +Au0 ≤ F (u0) +∇ · ~F (u0) + µΩ(u) + u0 ⊗ δ0 in Ω× J,
Bu0 ≤ µΓ(u) on Γ× J,

and u1 satisfies the corresponding system with both inequalities reversed. This
means that u0 is a subsolution and u1 is a supersolution for problem (5.1) with ~µ
being “frozen” at u(·, u0, ~µ ).

In the rest of this section we consider some illuminating special cases of these
general results. For simplicity, we do no longer stress the fact that the solutions
depend Lipschitz continuously on the data.
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Examples: Local Nonlinearities

First we consider the case of local nonlinearities. More precisely, we assume that
~µ is independent of u, that is, we consider the problem

∂tu+Au = f(x, t, u) +∇ · ~f(x, t, u) + µΩ + u0 ⊗ δ0 in Ω× R+,

Bu = µΓ on Γ× R+.

}
(5.17)

We also strengthen assumption (5.2) by assuming that (f, ~f ) is uniformly bounded
with respect to x. Thus we replace (5.2) by

• (f, ~f ) ∈ Car1
(
(Ω× R+)× R,R× Rn

)
with (f, ~f )(·, ·, 0) = (0, 0);

• |∂3f(x, t, ξ)| ≤ κ(t)(1 + |ξ|λ−1);

• |∂3
~f(x, t, ξ)| ≤ κ(t) |ξ|λ−1

 (5.18)

for (x, t, ξ) ∈ Ω× R+ × R, where κ : R+ → R
+ is increasing.

First we consider the case where u0 = 0 and ~µ is a measure with respect to t.

Proposition 5.6. Let (5.18) hold with 1 < λ < (n+ 2)/(n+ 1). Then problem
(5.17) has for each (u0, ~µ ) ∈M−1 ×Mloc(R+, ~Msing) a unique maximal Lλ(Lλ)-
solution. It is positive if (u0, ~µ ) ≥ 0.

Proof. This is a consequence of Theorem 5.1 and Corollary 5.4, setting ν :=∞,
r := 1, s := 0, and q := λ. �

Corollary 5.7. Suppose that

1 ≤ λ0 ≤ λ < (n+ 2)/(n+ 1)

and (a0,~a) ∈ L∞,loc

(
R

+, L∞ × (L∞)n
)
. Then

∂tu−∆u = a0u |u|λ0−1 +∇ · (~au |u|λ−1) + µΩ in Ω× R+,

u = µ0 on Γ0 × R+,

∂νu = µ1 on Γ1 × R+

 (5.19)

has for each ~µ ∈Mloc(R+, ~Msing) a unique maximal Lλ(Lλ)-solution. It is positive
if (µΩ, µ0, µ1) ≥ 0.

Remark 5.8. In the special case of (5.17) where ~µ ∈Mloc(R+, ~M) and ~f vanishes
identically, i.e., ~µ is a measure in x and t, the restriction λ < (n+ 2)/(n+ 1) (sim-
ilarly as the corresponding condition [6, (1.4)] for r0) does not seem to be optimal.
Formal computations show that λ < (n+ 3)/(n+ 1) should be the optimal growth
restriction. �

Next we consider the case where ~µ ∈ L∞,loc(R+, ~Msing).

Proposition 5.9. Let (5.18) hold with 1 < λ < n/(n− 1). Then problem (5.17)
has for each

(µ0, ~µ ) ∈W 1−n/λ′
λ × L∞,loc(R+, ~Msing) (5.20)

a unique maximal C(Lλ)-solution. It is positive if (µ0, ~µ ) ≥ 0.
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Proof. Fix r ∈ (1,∞) such that λ < λ∗(n, r,∞) and r > 2
/

(1− n/λ′). Then as-
sumption (5.5) is satisfied with s = 0 and ρ = 0. Hence the assertion follows from
Theorem 5.1 and Corollary 5.4. �

The only papers known to us involving data being more singular than measures
are [13], [14], [24], and [25]. In all those papers Ω = R

n and µΩ = u0 ⊗ δ0. Further-
more, u0 ∈ H−σq for some σ ∈ (0, 2). In particular, in [25, Remark 5] it is observed
that problem (5.19) with Ω = R, that is, n = 1, and a0 = 0 is solvable, provided
λ < 3/2.

Examples: Transmission Problems

Now we consider cases where µΩ is a u-dependent singular distribution inM−1.
First we study problems in which µΩ(u) is supported on a hypersurface of Ω× R+.

Suppose that S is an oriented C1-hypersurface of Ω× R+. Denote the positive
unit normal vector field of S by ~N = (N1, . . . , Nn+1), and assume that

~n(x, t) :=
(
N1(x, t), . . . , Nn(x, t)

)
6= 0, (x, t) ∈ S.

There exists a neighborhood U of S in Ω× R+ such that U \S consists of pre-
cisely two components U+ and U− such that M+ := U+ ∪ S and M− := U− ∪ S are
(n+ 1)-dimensional C1-submanifolds of Ω× R+ with common boundary S, that is,
∂M+ = S = ∂M−, and such that N , resp. −N , is the outward pointing unit normal
field of M+, resp. M−, on S.

If u ∈ C1(M) with M ∈ {M+,M−} then we define the conormal derivative of u
at S with respect to a by

∂nu := ~n · γS(a∇u),
where γS is the trace map for S.

We say that u ∈ L1,loc(Ω× R+) is piece-wise C1 along S if there exist a neigh-
borhood U of S as above and u± ∈ C1(M±) such that u |U± = u± |U±. If this is
the case then the jump [u]S of u, resp. [∂nu]S of ∂nu, along S is well-defined by

[u](x, t) := u+(x, t)− u−(x, t),

[∂nu](x, t) := ∂nu+(x, t)− ∂nu−(x, t),

}
(x, t) ∈ S,

respectively, independently of the particular choice of U and u±.

Lemma 5.10. Suppose that u ∈ L1,loc(Ω× R+) is piece-wise C1 along S and

∂tu, ∂
α
x u ∈ L1,loc

((
(Ω× R+)

∖
S
)
∩K

)
, |α| ≤ 2, (5.21)

for each compact subset K of Ω× R+. Then, given ϕ ∈ D(U),∫
J

〈ϕ, ∂tu+Au〉 dt =
∫
J

〈−∂tϕ+Aϕ, u〉 dt

+
∫
S

[u]∂nϕd volS −
∫
S

{
[∂nu]S −Nn+1[u]S

}
ϕd volS .

Proof. Since S is a null set for the (n+ 1)-dimensional Lebesgue measure, it follows
from Fubini’s theorem that∫

J

〈ϕ, ∂tu+Au〉 dt =
∫
U

ϕ(∂tu+Au) dx dt

=
(∫

M+

+
∫
M−

)
ϕ(∂tu+Au) dx dt.



30 H. AMANN AND P. QUITTNER

Thus, given M ∈ {M+,M−},∫
M

ϕ(∂tu+Au) dx dt =
∫
M

(−∂tϕ+Aϕ)u dx dt

+
∫
M

{
∂t(ϕu) +∇ · (ua∇ϕ− ϕa∇u)

}
dx dt.

The divergence theorem implies∫
M±

{
∂t(ϕu) +∇ · (ua∇ϕ− ϕa∇u)

}
dx dt

= ±
∫
S

{
ϕ(Nn+1u± − ∂nu±) + u±∂nϕ

}
d volS .

Hence the assertion is obvious. �

For α ∈ L1,loc(S) we define the “surface distribution” αδS and the “dipol distri-
bution” ∂n(αδS) by

(αδS)(ϕ) :=
∫
S

αϕd volS , ∂n(αδS)(ϕ) := −αδS(∂nϕ), ϕ ∈ D(Ω× R+),

respectively. Then αδS ∈Mloc(Ω× R+) and ∂n(αδS) ∈M−1.

Now we consider the parabolic problem with transmission conditions along S

∂tu+Au = 0 in Ω× R+,

[u]S
[∂nu]S

= α0

= α1

}
on S,

Bu = 0 on Γ× R+,

 (5.22)

where α0, α1 ∈ L1,loc(S). By an Lp(W s
q )-solution of (5.22) on J we mean a function

u ∈ Lp,loc(J,W s
q ) satisfying∫

J

〈−∂tϕ+Aϕ, u〉 dt =
∫
S

{
−α0∂nϕ+ ϕ(α1 −Nn+1α0)

}
d volS (5.23)

for all ϕ ∈ D
(
J∗, C1

B(Ω)
)
. In other words, u ∈ Lp,loc(J,W s

q ) is an Lp(W s
q )-solution

of (5.22) on J iff u is such a solution of

u̇+Au = ∂n(α0δS) + (α1 −Nn+1α0)δS . (5.24)

The following remark justifies this definition.

Remark 5.11. Suppose that u ∈ L1,loc(Ω× J), that it is piece-wise C1 along S,
that (5.21) holds, and that it satisfies (5.22) on (Ω× J)\S. Then u is an Lp(Lq)-
solution of (5.22) on J .

Proof. Lemma 5.10 implies the validity of (5.23) for each ϕ ∈ D(U). Now the
assertion is clear. �

Observe that S can be interpreted as a family
{
S(t) ; t ∈ R+

}
of time-dependent

interfaces in Ω along which a solution of ∂tu+Au = µΩ(u) has prescribed jumps.
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Let Σ be a metric space. Then {Sσ ; σ ∈ Σ } is said to be a time-like C1−-family
of oriented hypersurfaces in Ω× R+, provided

• Sσ is for each σ ∈ Σ an oriented C1-hypersurface in Ω× R+;
• for each σ ∈ Σ and (x, t) ∈ Sσ there exist neighborhood

V ×W of
(
(x, t), σ

)
in (Ω× R+)× Σ and a map

(σ 7→ Φσ) ∈ C1−
b

(
W,C1(V,R)

)
such that Sσ ∩ V = Φ−1

σ (0) for σ ∈W,
and gradx Φσ(x, t) 6= 0 for (x, t) ∈ V and σ ∈W.

Then ~Nσ, the positive normal of Sσ, has the representation

~Nσ =
(gradx Φσ, ∂tΦσ)√
| gradx Φσ|2 + (∂tΦσ)2

,

since we can replace Φ by −Φ, if necessary. Consequently,

~nσ(x, t) =
(
N1
σ(x, t), . . . , Nn

σ (x, t)
)
6= 0, (x, t) ∈ Sσ, σ ∈ Σ.

It follows that there exists a C1-atlas Kσ for Sσ such that κσ(domκσ) = B for
κσ ∈ Kσ, where B is the open unit ball in Rn if dom(κσ) does not intersect Ω× {0},
and B := { y ∈ Rn ; |y| < 1, yn ≥ 0 } otherwise. Henceforth, we use the notation

(σ 7→ ασ) ∈ C1−
b

(
Σ, L1,loc(Sσ)

)
to mean that(

σ 7→ (ασ
√
gσ ) ◦ κ−1

σ

)
∈ C1−

b

(
Σ, L1,loc(B)

)
, κσ ∈ Kσ,

where gσ is the Gram determinant of the first fundamental tensor for the standard
Riemannian metric of Sσ induced by the Euclidean metric of Ω× R. Using these
facts, it is not difficult to verify that

(σ 7→ αj,σ) ∈ C1−
b

(
Σ, L1,loc(Sσ)

)
, j = 0, 1,

implies

σ 7→ ∂nσ (α0,σδSσ ) + (α1,σ −Nn+1
σ α0,σ)δSσ ∈ C1−

b (Σ,M−1). (5.25)

Now we suppose that

• {Sσ ; σ ∈ Σ } is a time-like C1−-family

of oriented C1−-hypersurfaces in Ω× R+.
(5.26)

We also suppose that

• 1 < λ < n/(n− 1);

• z ∈ C1−(Lλ,Σ);

•
(
(v, σ) 7→ αj,σ(v)

)
∈ C1−(Lλ × Σ, L1,loc(Sσ)

)
, j = 0, 1.

 (5.27)

Then we put
αj(u) := αj,z(u)(u), j = 0, 1,

as well as
S(u) := Sz(u), ~N(u) := ~Nz(u), ~n(u) := ~nz(u)
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for u ∈ Lλ. Then we consider the nonlinear parabolic transmission problem

∂tu+Au = f(x, t, u) +∇ · ~f(x, t, u) + µΩ in Ω× (0,∞),

[u]S(u)

[∂n(u)u]S(u)

= α0(u)

= α1(u)

}
on S(u),

Bu = µΓ on Γ× (0,∞),

u(·, 0) = u0 on Ω.


(5.28)

Recall that the jumps on S(u) occur orthogonally to the time direction, that is,
they are evaluated in the actual time slice of S(u). Of course, (5.28) is formal. Its
precise meaning is derived from (5.23).

Possible choices for z are given by

z(u) := ϕ
(∫

Ω0

u dx
)

or z(u) := ϕ
(∫

Ω0

|u|β dx
)
, ϕ ∈ C1−(R,Σ), (5.29)

where Ω0 is a nonempty bounded open subset of Ω, and 1 ≤ β ≤ λ, or combinations
of such functions. In this case problem (5.28) can be interpreted as a nonlinear
diffusion (heat, etc.) problem with sharp interior surfaces of discontinuity (cracks,
etc.) which are moving in dependence of average densities (temperatures, etc.)
in Ω0.

Proposition 5.12. Let (5.18), (5.26), and (5.27) be satisfied. Then problem (5.28)
has for each (u0, ~µ ) satisfying (5.20) a unique maximal C(Lλ)-solution.

Proof. Set

τ(u) := ∂n(u)

(
α0(u)δS(u)

)
+
(
α1(u)−Nn+1(u)α0(u)

)
δS(u).

Then it follows from (5.25)–(5.27) and the fact that locally Lipschitz continuous
maps are uniformly continuous on compact sets that

τ ∈ C1−
b

(
C(R+, Lλ), L∞,loc(R+, ~Msing)

)
.

It is obvious that τ has the Volterra property. Observe that (5.24) implies that u is
a C(Lλ)-solution of (5.28) iff it is such a solution of

u̇+Au = τ(u) + µ(u),

where µ := F + χ(~F , ~µ ) + u0 ⊗ δ0. Now the assertion follows from Theorem 5.1 by
the arguments of the proof of Proposition 5.9. �

To be more specific, we suppose that

• Φ ∈ C1(Ω× R,R);

• Q :=
{

(y, σ) ∈ Ω× R ; Φ(y, σ) = 0, ∇xΦ(y, σ) 6= 0
}
6= ∅.

}
(5.30)

Then, putting

Σ :=
{
σ ∈ R ; there exists x ∈ Ω with (x, σ) ∈ Q

}
and

Mσ :=
{
x ∈ Ω ; (x, σ) ∈ Q

}
, σ ∈ Σ,

it follows that {Sσ := Mσ × R+ ; σ ∈ Σ } is a time-like C1−-family of C1-hyper-
surfaces in Ω× R+, oriented by ~Nσ := (~nσ, 0) ∈ Rn+1, where

~nσ := ∇xΦ(·, σ), σ ∈ Σ.
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In other words, Sσ is a cylindrical hypersurface in Ω× R+ with cross section Mσ

and axis parallel to R+. Thus the following result is an immediate consequence of
Proposition 5.12.

Corollary 5.13. Let assumptions (5.27) and (5.30) be satisfied. Also suppose that
a ∈ L∞,loc(R+, L∞) and (u0, ~µ ) satisfy (5.20). Then the transmission problem with
moving interfaces

M(u) :=
{
y ∈ Ω ; Φ

(
u, z(u)

)
= 0, ∇xΦ

(
u, z(u)

)
6= 0

}
,

∂tu−∆u = au |u|λ−1 + µΩ in Ω× (0,∞),

[u]M(u)

[∂n(u)u]M(u)

= α0(u)

= α1(u)

}
on M(u)× (0,∞),

Bu = µΓ on Γ× (0,∞),

u(·, 0) = u0 on Ω


(5.31)

has a unique maximal C(Lλ)-solution. It is positive if α0 = 0 and α1 ≥ 0 as well
as (u0, ~µ ) ≥ 0.

Proof. For the last part, it suffices to observe that τ(u) ≥ 0 if α0 = 0 and α1 ≥ 0.
Thus the positivity of the solution is a consequence of Corollary 5.4. �

To give a simple example, we fix ϕ,ψ ∈ C1(R,R), write x = (x′, y) ∈ Rn−1 × R,
and put

Φ(x, σ) := |x′|2 + ϕ(σ)y2 − ψ(σ), (x, σ) ∈ Ω× R.
Then

Mσ =
{
x ∈ Ω ; |x′|2 + ϕ(σ)y2 = ψ(σ), x 6= 0

}
, σ ∈ R, (5.32)

provided this set is not empty. Thus, depending on the signs of ϕ(σ) and ψ(σ), the
hypersurface Mσ in Ω is the part of an (n− 1)-dimensional ellipsoid, an (n− 1)-
dimensional hyperboloid, or an (n− 1)-dimensional spherical cone without vertex,
respectively, lying in Ω. Hence the transition surface M(u) of Corollary 5.13 can
deform continuously from a hypersurface of one of the preceding types to another
one, disappear, and reappear in course of the evolution, depending on the value
of z(u).

By imposing further restrictions we can prove that (5.31) is globally solvable.
Henceforth, J̇ := J \{0}.

Theorem 5.14. Let assumption (5.27) be satisfied and suppose that α0,σ = 0 and
0 ≤ α1,σ ≤ α <∞ for σ ∈ Σ. Also suppose that (5.30) is true and that vol(Mσ) ≤ ω
for σ ∈ Σ and some finite constant ω. Finally, suppose that a ∈ L∞,loc(R+, L∞) and

(u0, ~µ ) ∈W 1−n/λ′
λ × L∞,loc(R+, ~M)

with a ≤ 0 and (u0, ~µ ) ≥ 0. Then (5.31) has a unique global positive C(Lλ)-
solution.

Proof. Fix r ∈ (1,∞) such that λ < λ∗(n, r,∞) and r > 2
/

(1− n/λ′). Set s := 0
and ρ := 0 and fix σ ∈ (2/r, 1− n/λ′). Also put q := λ.

Corollary 5.13 implies that (5.31) has a unique maximal positive C(Lλ)-solution,
denoted by u∗. Assume J∗ := J(u∗) = [0, T ) with T <∞. Put µ∗Ω := µΩ + αδS(u∗)
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and note that

|〈αδM(u∗(t)), ϕ〉| ≤ α
∫
M(u∗(t))

|ϕ| d volM(u∗(t)) ≤ αω ‖ϕ‖∞

for ϕ ∈ C0(Ω) implies µ∗Ω ∈ L∞(JT ,M). Set ~µ∗ := (µ∗Ω, µΓ) ∈ L∞(JT , ~M) and con-
sider the linear problem

v̇ +Av = χ(~µ∗), 0 < t < T, v(0) = u0.

Since χ(~µ∗) ∈ L∞(JT ,W σ−2
q,B ) by (4.15), [5, Proposition 2(iii)] implies that v belongs

to C(JT , Lλ). Moreover, v ≥ 0.

Put
ν∗ := χ(~µ∗)− F (u∗)− χ(~µ )− α1(u∗)δS(u∗)

and note that ν∗ ∈ L∞,loc(J∗,W σ−2
λ,B ) and ν∗ ≥ 0, thanks to a ≤ 0 and u∗ ≥ 0. Also

note that

(v − u∗)· +A(v − u∗) = ν∗ on J̇∗, (v − u∗)(0) = 0.

Consequently, 0 ≤ u∗ ≤ v on J∗. From this it follows that u∗ ∈ L∞(JT , Lλ). Thus
u∗ solves the linear problem

ẇ +Aw = F (u∗) + χ(~µ ) + α1(u∗)δS(u∗) on J̇∗, w(0) = u0,

whose right-hand side belongs to L∞(JT ,W σ−2
λ,B ). Thus we infer, once more from

[5, Proposition 2(iii)], that u∗ ∈ C(JT , Lλ). But this contradicts the maximality
of J∗. Consequently, J(u∗) = R

+. �

The assumption that vol(Mσ) ≤ ω <∞ for σ ∈ Σ is satisfied, for example, if Ω is
bounded and Mσ is given by (5.32).

Remarks 5.15. (a) It is clear that problem (5.28) can be generalized to include
several transmission surfaces S1(u), . . . , Sm(u), which, in particular, are allowed to
intersect.

(b) The solutions guaranteed above are in fact Cρ(Lλ)-solutions for sufficiently
small ρ (depending on the value of λ). Moreover, they depend continuously on
the data.

(c) Suppose that 1 < λ < (n+ 2)/(n+ 1) and replace the assumption on z in
(5.27) by z ∈ C1−(Lλ,loc(R+, Lλ),Σ

)
and z has the Volterra property. Then (5.28)

has for each
(u0, ~µ ) ∈M−1 ×Mloc(R+, ~Msing)

a unique maximal Lλ(Lλ)-solution.

Proof. This follows from Theorem 5.1 with ν :=∞, r := 1, s := 0, and q := λ by
arguing as in the proof of Proposition 5.12. �

Typical examples for such z are given by

z(u) := ϕ
(∫ t

0

∫
Ω0

u dx
)
, z(u) := ϕ

(∫ t

0

∫
Ω0

|u|β dx
)
,

where ϕ ∈ C1−(R,Σ), Ω0 is a nonempty bounded open subset of Ω, and 1 ≤ β ≤ λ.
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Examples: Moving Point Sources

Now we consider another extreme situation where ~µ is a measure being supported
on finitely many points moving in dependence of the solution u. More precisely, we
consider the following problem:

∂tu+Au = f(x, t, u) +∇ · ~f(x, t, u)

+
∑k
i=0δxi(u) ⊗ ϕi + µΩ in Ω× (0,∞),

u = µ0 on Γ0 × (0,∞),

∂νu =
∑k
i=0δyi(u) ⊗ ψi + µ1 on Γ1 × (0,∞),

u(·, 0) = u0 on Ω.


(5.33)

In analogy to (5.27) we assume

• 1 < λ < n/(n− 1);

•
(
xi(·), yi(·)

)
∈ C1−

b (Lλ,Ω× Γ1) and
(ϕi, ψi) ∈ L∞,loc(R+,R× R) for 0 ≤ i ≤ k.

 (5.34)

Problem (5.33) can be viewed as a diffusion (heat, etc.) problem with point sources
whose locations move in relation to the solution u, more precisely, to the average
densities of u if

(
xi(·), yi(·)

)
are defined analogously to (5.29).

Proposition 5.16. Let assumptions (5.18) and (5.34) be valid. Then problem
(5.33) has for each (u0, ~µ ) satisfying (5.20) a unique maximal C(Lλ)-solution. It
is positive if (u0, ~µ ) ≥ 0 and (ϕi, ψi) ≥ 0 for 0 ≤ i ≤ k.

Proof. Fix z ∈
{
xi(·), yi(·) ; 0 ≤ i ≤ k

}
and put M := Ω if z = xi, and M := Γ1 if

z = yi. Then

|δz(u) − δz(v)|M−1(M) ≤ c sup
w∈C1

0 (M)
‖w‖1,∞≤1

∣∣〈δz(u) − δz(v), w〉C(M)

∣∣
≤ c sup

w∈C1
0 (M)

‖w‖1,∞≤1

∣∣w(z(u)
)
− w

(
z(v)

)∣∣ ≤ c |z(u)− z(v)|

for u, v ∈ Lλ, as follows from the mean value theorem (in local coordinates). From
this and from assumption (5.34) we infer, setting

(µ̃Ω, µ̃1) :=
( k∑
i=0

δxi(·) ⊗ ϕi,
k∑
i=0

δyi(·) ⊗ ψi
)
∈ L∞,loc

(
R

+,M×M(Γ1)
)
,

that

(µ̃Ω, µ̃1) ∈ C1−
b

(
C(R+, Lλ), L∞,loc

(
R

+,M−1 ×M−1(Γ1)
))
.

Now the assertion follows once more from Theorem 5.1 the proof of Proposition 5.9,
and Corollray 5.4. �

Remarks 5.17. (a) Observations analogous to Remarks 5.15(b) and (c) hold in
this case also.
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(b) Sometimes we can replace the nonlocal operators (xi, yi), 0 ≤ i ≤ k, by local
ones. To see this we consider the model problem

∂tu−∆u =
∑k
i=0δxi(u) ⊗ ϕi in Ω× (0,∞),

u = 0 on Γ× (0,∞),

u(·, 0) = u0 on Ω,

 (5.35)

where

xi(u) := Xi

(
u(x∗0, ·), . . . , u(x∗m, ·)

)
, 0 ≤ i ≤ k,

and x∗0, . . . , x
∗
m are given points in Ω. More precisely, let K be a compact sub-

set of Ω with x∗j /∈ K and assume that Xi ∈ C1−(Rm+1,K) for 0 ≤ i ≤ k. Given
points y0, . . . , ym, z0, . . . , zm ∈ K, let v, resp. w, be the solution on [0, T ] of (5.35)
with xi(u) replaced by yi, resp. zi, for 0 ≤ i ≤ k. Then v and w are solutions
of the homogeneous heat equation in (Ω\K)× [0, T ]. Hence they are smooth on
(Ω\K)× [0, T ], provided u0 is appropriately smooth. Furthermore, standard inte-
rior regularity estimates yield

‖v(t)− w(t)‖Cρ(Ωε) ≤ c ‖v − w‖C([0,T ],W s
q,B), (5.36)

where Ωε is a compact ε-neighborhood of {x∗0, . . . , x∗m} in Ω\K. Now it is clear
how to modify the proof of Remark 2.4(a) by incorporating condition (5.36) in the
definition of the space in which Banach’s fixed point theorem is applied in order to
get the assertion. Details are left to the reader.

(c) Similarly as for (5.31), it is not difficult to give sufficient conditions for (5.33)
to be globally solvable. For example, this is the case if (5.34) is satisfied, f ≤ 0,
~f = 0, and u0, ~µ, and the (ϕj , ψj) are positive.

Proof. This follows analogously to the proof of Theorem 5.14. �

6. Measure Data

Now we apply our general results to the case where we have homogeneous Dirich-
let data and measures in Ω and on the Neumann boundary. In this case we can
allow nonlinear gradient dependence. More precisely, we consider the problem

∂tu+Au = f(x, t, u,∇u) + µΩ(u) in Ω× R+,

u = 0 on Γ0 × R+,

∂νu = g(x, t, u) + µ1(u) on Γ1 × R+.

 (6.1)

The General Theorem

We suppose throughout that

• sj ∈ [1, 2− n/q′), λj ∈ (1,∞) for 0 ≤ j ≤ 4;
• 1 ≤ r < 2

/
(2− n/q′ − sj) for 0 ≤ j ≤ 4;

• ν0, ν1 ∈ (n/2,∞], ν2, ν3 ∈ (n,∞], ν4 ∈ (n− 1,∞].

 (6.2)
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We also assume that

• f ∈ Car1
(
(Ω× R+)× (R× Rn),R

)
with

f0 := f(·, ·, 0, 0) ∈ Lr,loc(R+, L1 + Lq);
• κ : R+ → R

+ is increasing, βj ∈ Lνj for 0 ≤ j ≤ 3;

• |∂3f(x, t, ξ, η)| ≤ κ(t)
(
1 + β0(x) |ξ|λ0−1 + β1(x) |η|λ1−1

)
,

|∂4f(x, t, ξ, η)| ≤ κ(t)
(
1 + β2(x) |ξ|λ2−1 + β3(x) |η|λ3−1

)
for (x, t, ξ, η) ∈ Ω× R+ × R× Rn


(6.3)

and

• g ∈ Car1
(
(Γ1 × R+)× R,R

)
with

g0 := g(·, ·, 0) ∈ Lr,loc

(
R

+, L1(Γ1)
)
;

• β4 ∈ Lν4(Γ1) and

|∂3g(y, t, ξ)| ≤ κ(t)
(
1 + β4(y) |ξ|λ4−1

)
for (y, t, ξ) ∈ Γ1 × R+ × R.

 (6.4)

As for the measures µΩ and µ1, we suppose, using the notations of Section 15 with
~λ := (λ0, . . . , λ4) and ~s := (s0, . . . , s4), that either

• r = 1;

• (µΩ, µ1) ∈ C1−
b

(
X~s
~λ,q
,Mloc

(
R

+,M×M(Γ1)
))
,

and it has the Volterra property

 (6.5)

or

• r > 1, (n+ 1)/q + 2/r /∈ {1, 2};
• (µΩ, µ1) = (hΩ + u0 ⊗ δ0, h1) with

(hΩ, h1) ∈ C1−
b

(
X~s
r~λ,q

, Lr,loc

(
R

+,M×M(Γ1)
))
,

and it has the Volterra property;

• u0 ∈W 2−n/q′−2/r
q,B .


(6.6)

We define numbers λ∗j := λ∗j (n, r, νj) by

λ∗0
(
2 + (n− 2)r

)
= 2 + rn/ν′0, λ∗1

(
2 + (n− 1)r

)
= 2 + rn/ν′1 + r,

λ∗2
(
2 + (n− 2)r

)
= 2 + rn/ν′2 − r, λ∗3

(
2 + (n− 1)r

)
= 2 + rn/ν′3,

λ∗4
(
2 + (n− 2)r

)
= 2 + r(n− 1)/ν′4.

Observe that the restrictions for the νj of (6.2) guarantee that λ∗j > 1 for 0 ≤ j ≤ 4.

The following theorem is the analogue to Theorem 5.1 for the present situation.



38 H. AMANN AND P. QUITTNER

Theorem 6.1. Let assumptions (6.2)–(6.4) and either (6.5) or (6.6) be satisfied.
Also suppose that

0 ≤ r

2 + (n− 2)r

[ n
ν′0
− λ0

(n
q
− s0

)]
< λ∗0 − λ0,

0 ≤ r

2 + (n− 1)r

[ n
ν′1

+ 1− λ1

(n
q
− s1 + 1

)]
< λ∗1 − λ1,

0 ≤ r

2 + (n− 2)r

[ n
ν′2
− 1− λ2

(n
q
− s2

)]
< λ∗2 − λ2,

0 ≤ r

2 + (n− 1)r

[ n
ν′3
− λ3

(n
q
− s3 + 1

)]
< λ∗3 − λ3,

0 ≤ r

2 + (n− 2)r

[n− 1
ν′4
− λ4

(n
q
− s4

)]
< λ∗4 − λ4.



(6.7)

If Ω is unbounded then assume, moreover, that

λ0/q ≥ s0/n+ 1/ν′0, λ1/q ≥ s1/n+ 1/ν′1,

λ2/q ≥ (s2 − 1)/n+ 1/ν′2, λ3/q ≥ (s3 − 1)/n+ 1/ν′3.
(6.8)

Then (6.1) has a unique maximal Lr~λ(W~s
q )-solution u, which is strong if r > 1. It

depends Lipschitz continuously on f , µΩ, g, and µ1.

Proof. The strict inequalities of conditions (6.7) are equivalent to

rλj(sj − 2 + n/q′ + 2/r) < 2, 0 ≤ j ≤ 4.

Thus we can fix σ ∈ (max sj , 2− n/q′) with σ − 2/r ∈ Iq such that

rλj < 2
/

(sj − σ + 2/r), 0 ≤ j ≤ 4. (6.9)

From the inequalities on the left of (6.7), (6.8), and Propositions 15.6 and 15.7 we
infer, thanks to (6.3) and (6.4), that

(F,G) ∈ C1−
b

(
X~s
r~λ,q

, Lr,loc

(
R

+, (L1 + Lq)× L1(Γ1)
)
,

where F and G possess the Volterra property, of course. Thus, setting

µ := F + γ′1G+ µΩ + γ′1µ1,

it follows from (6.5), (6.6), (4.6), (4.8), (4.9), Remarks 4.2(b) and 4.3(a) that

µ ∈ C1−
b

(
X~s
~λ,q
,Mloc(R+,W σ−2

q,B )
)

if r = 1, and
µ− u0 ⊗ δ0 ∈ C1−

b (X~s
r~λ,q

, Xσ−2
r,q ), r > 1.

Now the assertion is a consequence of Theorem 4.4, (6.9), Theorems 3.2 and 3.3,
and Remark 2.4(d). �

Remarks 6.2. (a) Suppose that q ∈
(
1, n/(n− 1)

)
, λj ∈ (1, λ∗j ), and r ∈ [1,∞),

as well as νj ∈ (1,∞], satisfying the restrictions of (6.2), are given. Put

d0 :=
1

λ0ν′0
, d1 :=

1
λ1

( 1
ν′1

+
1
n

)
− 1
n
, d2 :=

1
λ2

( 1
ν′2
− 1
n

)
,

d3 :=
1

λ3ν′3
− 1
n
, d4 :=

1
λ4ν′4n

′ ,
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and define d∗j for j = 0, . . . , 4 by replacing λj in the definition of dj by λ∗j . Sup-
pose that

1/q ≥ 1/n+ dj , 0 ≤ j ≤ 4. (6.10)

Then there exist sj ∈ [1, 2− n/q′) for 0 ≤ j ≤ 4 such that all squared brackets in
(6.7) vanish. Hence (6.7) and (6.8) are satisfied for this choice of s0, . . . , s4.

It is easy to see that 1/n+ d∗j < 1 for 0 ≤ j ≤ 4, unless

j = 0, n = 2, r = 1, ν0 =∞. (6.11)

As a consequence of Remark 15.3, in all cases, except for (6.11), we can assume
that 1/n+ dj < 1 so that (6.10) is satisfied for q sufficiently close to 1. If (6.11) is
true then a choice of q close to 1 and s0 := 1 guarantee (6.7), (6.8) as well.

Proof. First note that

{ 1/q − s/n ; 1 ≤ s < 2− n/q′ } = (1− 2/n, 1/q − 1/n]

and that the squared brackets in (6.7) vanish iff 1/q − sj/n = dj for all j. Since it
is easily verified that dj > d∗j ≥ 1− 2/n, the assertion follows. �

(b) Suppose that

r > 2
/

(2− n/q′ − sj), 0 ≤ 2ρ < 2− n/q′ − sj − 2/r

for 0 ≤ j ≤ 4. Replace X~s
r~λ,q

in (6.5) and (6.6) by Cρ
(
R

+,
⋂4
j=0W

sj
q,B
)
. Then prob-

lem (6.1) has a unique maximal Cρ
(⋂4

j=0W
sj
q

)
-solution, provided the hypotheses

of Theorem 6.1 are satisfied.

Proof. The proof of Theorem 6.1 applies in this case also, with the modification
that Theorem 3.4 is invoked. �

(c) Of course, if g = 0 then ~λ and ~s have to be replaced by ~λ := (λ0, . . . , λ3) and
~s := (s0, . . . , s3), respectively. Similarly, if f is independent of u (or of ∇u, respec-
tively) then (λ0, λ1, λ2) and (s0, s1, s2) (respectively, (λ1, λ2, λ3) and (s1, s2, s3))
have to be omitted in the definition of ~λ and ~s, respectively. �

A Comparison result

Problem (6.1) possesses a comparison theorem as well, being analogous the one
for (4.26).

Theorem 6.3. Let the assumptions of Theorem 6.1 be true and suppose that σ,
belonging to (max sj , 2− n/q′) ∩ Iq, satisfies σ − 2/r ∈ Iq and (6.9). Also assume
that u and v belong to Lr~λ,loc(J,W~s

q ) and µ∗0 ∈Mloc

(
J,M(Γ0)

)
is such that there

exists a unique w0 ∈ L1,loc(J,W 1
q ) satisfying

∂tw0 +Aw0 = 0 in Ω× J̇ ,

γw0 = µ∗0 on Γ0 × J̇ ,

∂νw0 = 0 on Γ1 × J̇ ,
w0(·, 0) = 0 on Ω.


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Finally, assume that there is

(u∗, ~µ∗) ∈

{
{0} ×M

(
J, (M+ Lq)× {0} ×M(Γ1)

)
, r = 1,

W
σ−2/r
q,B × Lr

(
J, (M+ Lq)× {0} ×M(Γ1)

)
, r > 1,

(6.12)

and
∂t(u− v) +A(u− v) = F (u)− F (v) + µ∗Ω in Ω× J̇ ,

γ(u− v) = µ∗0 on Γ0 × J̇ ,

∂ν(u− v) = G(u)−G(v) + µ∗1 on Γ1 × J̇ ,
(u− v)(·, 0) = u∗ on Ω.


Then (u∗, µ∗Ω, µ

∗
0, µ
∗
1) ≥ 0 implies u ≥ v.

Proof. Note that

~µ(u, v) :=
(
F (u)− F (v), 0, G(u)−G(v)

)
∈ Lr,loc

(
J, (L1 + Lq)× {0} × L1(Γ1)

)
.

Hence
(
u∗, µ(u, v) + ~µ∗

)
satisfy (6.12). Consequently, there exists a unique Lr(W 1

q )-
solution w1 of the linear problem

∂tw +Aw = F (u)− F (v) + µ∗Ω in Ω× J̇ ,

γw = 0 on Γ0 × J̇ ,

∂νw = G(u)−G(v) + µ∗1 on Γ1 × J̇ ,
w(·, 0) = u∗ on Ω.


Clearly, u− v = w0 + w1, and µ∗0 ≥ 0 implies w0 ≥ 0. Thus it suffices to prove the
assertion if µ∗0 = 0. In this case an obvious modification of the proof of Theorem 5.3
implies the assertion. �

Corollary 6.4. Let the hypotheses of Theorem 6.1 be satisfied. If (f0, g0, µΩ, µ1)
is positive then the solution of (6.1) is positive as well.

We leave it to the reader to formulate and prove a “sub- and supersolution
theorem” analogous to Theorem 5.5.

Model Problems

In order to simplify Theorem 6.1 we restrict ourselves to the case where f and g
are uniformly bounded with respect to x and t (so that νj =∞). More precisely,
we first suppose that r = 1 and that the numbers λ0, . . . , λ4 > 1 satisfy

λ0 < 1 + 2/n, λ1 < 1 + 2/(n+ 1),

λ2 < 1 + 1/n, λ3 < 1 + 1/(n+ 1), λ4 < 1 + 1/n.

}
(6.13)

Moreover, denoting, as usual, by κ a positive increasing function on R+ and assum-
ing that f and g are C1-Carathéodory functions, we suppose that

|∂3f(x, t, ξ, η)| ≤ κ(t)
(
1 + |ξ|λ0−1 + |η|λ1−1

)
,

|∂4f(x, t, ξ, η)| ≤ κ(t)
(
1 + |ξ|λ2−1 + |η|λ3−1

)
,

|∂3g(y, t, ξ| ≤ κ(t)
(
1 + |ξ|λ4−1

)
 (6.14)

for x ∈ Ω, y ∈ Γ1, t ∈ R+, and (ξ, η) ∈ R× Rn, and, for simplicity, that(
f(·, ·, 0, 0), g(·, ·, 0)

)
= (0, 0). (6.15)
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Proposition 6.5. Let (6.13)–(6.15) be true. Then there exist q ∈
(
1, n/(n− 1)

)
and sj ∈ [1, 2− n/q′) for 0 ≤ j ≤ 4 such that

∂tu+Au = f(x, t, u,∇u) + µΩ in Ω× R+,

u = 0 on Γ0 × R+,

∂νu = g(x, t, u) + µ1 on Γ1 × R+

 (6.16)

has for each
(µΩ, µ1) ∈Mloc

(
R

+,M×M(Γ1)
)

a unique maximal L~λ(W~s
q )-solution u, and u ≥ 0 if (µΩ, µ1) ≥ 0.

Proof. This follows from Theorem 6.1, Remark 6.2(a), and Corollary 6.4. �

Setting µΩ := u0 ⊗ δ0 with u0 ∈M, and µ1 := 0, Proposition 6.5 guarantees the
unique solvability of

∂tu−∆u = f(x, t, u,∇u) in Ω× (0,∞),

u = 0 on Γ0 × (0,∞),

∂νu = g(x, t, u) on Γ1 × (0,∞),

u(·, 0) = u0 on Ω.


This particular case, and subcases thereof like

∂tu−∆u = u |u|λ−1 in Ω× (0,∞),

u = 0 on Γ× (0,∞),

u(·, 0) = u0 on Ω,


were studied by many authors (see [18], [10], [11], [12], [7], [8],[26], for example),
and the corresponding growth conditions for functions f and g coincide with ours.
From [18] it follows that the condition λ0 < 1 + 2/n in (6.13) is optimal. The results
of [11] and [12] show that λ3 ≤ 1 + 1/(n+ 1) is necessary for the unique solvability
if Ω = R

n and u0 ∈ L1(Rn). On the other hand, if one deals with particular nonlin-
earities then the growth conditions mentioned above need not be optimal: see [9],
where the authors consider nonnegative solutions of

∂tu−∆u = −~a · ∇(uq)− up +Mδ0 ⊗ δ0 in Rn × R+,

where ~a is a constant vector, p, q > 1, and M > 0 (cf. also Theorem 7.7).
Having concentrated on the case r = 1 we now consider the other extreme,

namely r →∞.

Proposition 6.6. Suppose that the λj > 1 satisfy

λ0 < 1 + 2/(n− 2), λ1 < 1 + 2/(n− 1),

λ2 < 1 + 1/(n− 2), λ3 < 1 + 1/(n− 1), λ4 < 1 + 1/(n− 2)

}
(6.17)

and that (6.14) and (6.15) hold. Then there exist q ∈
(
1, n/(n− 1)

)
and sj, belong-

ing to [1, 2− n/q′) for 0 ≤ j ≤ 4, such that (6.16) has for each(
u0, (µΩ, µ1)

)
∈W 2

q,B × L∞,loc

(
R

+,M×M(Γ1)
)
.

a unique maximal C(W~s
q )-solution u satisfying u(0) = u0. Furthermore, u is non-

negative if
(
u0, (µΩ, µ1)

)
≥ 0.
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Proof. Since λ∗j (n, r,∞) tends towards the upper bound for λj in (6.17) as r →∞,
we can fix r so large that λj < λ∗j (n, r,∞) for 0 ≤ j ≤ 4. Thus we deduce from Re-
mark 6.2(a) that we can find q ∈

(
1, n/(n− 1)

)
and sj ∈ [1, 2− n/q′) for 0 ≤ j ≤ 4

such that (6.7) and (6.8) are satisfied. By increasing r further, if necessary, we can
also assume that r > 2

/
(2− n/q′ − sj) for 0 ≤ j ≤ 4. Now the assertion follows

from Remark 6.2(b) and (the corresponding extension of) Corollary 6.4. �

Note that u is, in fact, a Cρ(W 1
q )-solution of (6.16) for a sufficiently small ρ > 0.

We recall that, in Propositions 6.5 and 6.6, the assumption that (µΩ, µ1) be
independent of u has been made for simplicity only.

7. Integrable Data

Now we consider initial boundary value problems with integrable data. For
simplicity, we restrict our considerations to

∂tu+Au = f(x, t, u) in Ω× (0,∞),

Bu = 0 on Γ× (0,∞),

u(·, 0) = u0 on Ω.

 (7.1)

The General Theorem

We suppose that

• 1 < q <∞, q ∨ (n/2) < ν ≤ ∞, 1 ≤ r <∞, 1 < λ <∞;
• n/q + 2/r > 2;
• κ : R+ → R

+ is increasing, β ∈ Lν ;

• f ∈ Car1
(
(Ω× R+)× R,R

)
with f0 := f(·, ·, 0) ∈ Lr,loc(R+, Lq);

• |∂3f(x, t, ξ)| ≤ κ(t)
(
1 + β(x) |ξ|λ−1

)
for (x, t, ξ) ∈ Ω× R+ × R.


(7.2)

In this case the following existence and uniqueness theorem is valid, where we put

λ• := λ•(q, n, r, ν) :=
n/q + 2/r − n/ν
n/q + 2/r − 2

= 1 +
2− n/ν

n/q + 2/r − 2
.

Theorem 7.1. Suppose that (7.2) is satisfied and

2/r′ < s < 2 ∧ (n/q), s, 2/r′ /∈ {1/q, 1 + 1/q}. (7.3)

Also assume that

0 ≤ n

n/q + 2/r − 2

[(1
q
− 1
ν

)
− λ
(1
q
− s

n

)]
< λ• − λ. (7.4)

If Ω is unbounded then assume, in addition, that

λ

q
≥ s

n
+

1
q
− 1
ν
. (7.5)

Then (7.1) has for each u0 ∈W 2/r′

q,B a unique maximal Lrλ(W s
q )-solution.

Proof. One verifies that the strict inequality in (7.4) is equivalent to

rλ(s− 2 + 2/r) < 2.
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Moreover, (7.3) implies s− 2 + 2/r > 0. Hence we can fix σ ∈ (s, 2) with σ − 2/r
belonging to Iq if r > 1, such that

p := rλ < 2
/

(s− σ + 2/r).

Proposition 15.4 (with κ := q), the left inequality in (7.4), and (7.5) guarantee that

f \ ∈ C1−
b

(
Lrλ,loc(R+,W s

q,B), Lr,loc(R+, Lq)
)
.

Thus, setting µ(u) := f \(u) + u0 ⊗ δ0, the assertion follows from Theorems 3.2
and 3.3. �

Henceforth, we find it convenient to use the following notation: b := a+ (or
b := a−), where a ∈ R, means that b > a (or b < a) and |a− b| is sufficiently small.

Remarks 7.2. (a) Suppose that q, r, λ < λ•, and ν satisfy the assumptions of
(7.2) and

1
q
<
λ

n

(n
q

+
2
r
− 2
)

+
1
ν
.

Then there exists s ∈
(
2/r′, 2 ∧ (n/q)

)
such that λ(1/q − s/n) = 1/q − 1/ν. Hence

condition (7.4) is satisfied for this choice of s.

Proof. Observe that{
1/q − s/n ; 2/r′ < s < 2 ∧ (n/q)

}
=
(
(1/q − 2/n)+, (1/q + 2/rn− 2/n)

)
.

Since
(1/q − 1/ν)/λ > (1/q − 1/ν)

/
λ• ≥ (1/q − 2/n)+,

the assertion follows. �

(b) Clearly, λ•(q, n, r, ν) is an increasing function of r and ν, and

1 < λ•(q, n, 1, ν) = 1 + (2/n− 1/ν)q ≤ 1 + 2q/n = λ•(q, n, 1,∞)

and

λ•(q, n,∞, ν) = 1 + (2− n/ν)
/

(n/q − 2) ≤ 1 + 2q/(n− 2q) = λ•(q, n,∞,∞).

(c) Suppose that λ = 1+, ν =∞, and

r < ρ <
qr(n+ 2)

r(n− 2q) + 2q
, (7.6)

with ρ ≥ q if Ω is unbounded. Then the solution u belongs to Lρ(Ω × JT ) for
T ∈ J(u).

Proof. Put σ := 2− and s := 2(1 + 1/ρ− 1/r)− and apply Theorem 3.2 with p := ρ
to obtain a unique maximal Lρ(W s

q )-solution. Since W s
q,B ↪→ Lρ, the assertion

follows. �

(d) If r(n− 2q) ≥ nq then the upper bound for ρ in (7.6) is not greater than r
(which is the lower bound for ρ). In this case

u ∈ Lp(J,W 2−

q,B ) ↪→ Lp̃(Ω× J), p̃ :=
( nq

n− 2q

)−
,

by choosing p =: r+.
(e) If r = 1 then we can add µΩ ∈Mloc(R+, Lq) to the right-hand side of the

first equation in (7.1). Moreover, µΩ may also depend nonlinearly on u. �
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The exponent appearing on the right-hand side of (7.6) is well-known in the
linear theory. An analogous regularity result is also known in the quasilinear case
(for equations involving the p-Laplacian and a linear right-hand side, for example);
see [15, Introduction and Theorem 1.3].

A Comparison Principle

Similarly as in the preceding sections, we can prove a comparison principle
for (7.1).

Theorem 7.3. Let the hypotheses of Theorem 7.1 be satisfied. Suppose that u, v
belong to Lrλ,loc(J,W s

q,B) and satisfy

∂t(u− v) +A(u− v) = F (u)− F (v) + f∗ in Ω× (0,∞),

B(u− v) = 0 on Γ× (0,∞),

(u− v)(·, 0) = u∗ on Ω,


where

(u∗, f∗) ∈W 2/r′

q,B × Lr,loc(J, Lq).

If (u∗, f∗) ≥ 0 then u ≥ v.

Proof. This follows once more from Theorem 19.4 by the arguments of the proof of
Theorem 5.3. �

Corollary 7.4. Let the hypotheses of Theorem 7.1 be satisfied. If (u0, f0) ≥ 0 then
the solution is positive.

For simplicity, we restricted our considerations to the case where B(u− v) = 0.
Similarly as in Theorem 6.3, this assumption can be replaced by B(u− v) = g∗,
provided g∗ satisfies appropriate regularity conditions. Details are left to the reader.

It is also clear that we can formulate and prove an analogue to Theorem 5.5. We
leave this to the reader as well.

Model Problems

Theorem 7.1 applies, in particular, to the model problem on Rn

∂tu−∆u = V (x) |u|λ−1 u+ f0(x, t) in Rn × (0,∞),

u(·, 0) = 0 on Rn.

}
(7.7)

Our next result shows that in this case the growth restriction (7.4) for λ is optimal,
in general (except, possibly, for the equality sign).

In the following theorem and its proof we denote by 1ρ the characteristic function
of Bρ := {x ∈ Rn ; |x| < ρ }, and 1 := 11.

Theorem 7.5. Set Ω := R
n and let ν, r ∈ [1,∞) and q ∈ (1,∞) be fixed such that

ν > q ∨ (n/2) and n/q + 2/r > 2. Put ` := (n/ν)−, α := (n/q)−, and β := (1/r)−,
and define V ∈ Lν and f0 ∈ Lr,loc(R+, Lq) by

V (x) := |x|−` 1(x), f0(x, t) := |x|−α 1(x)t−β , (x, t) ∈ Rn × (0,∞).

If
λ > λ•(q, n, r, ν) (7.8)
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then, given any T > 0, problem (7.7) does not possess any nonnegative weak solution
u ∈ L1,loc(Ω× JT ) satisfying V uλ ∈ L1,loc(Ω× JT ) and the comparison principle of
Remark 2.4(e).

Proof. Set ψ(x) := |x|−α 1(x) and ϕ(t) := t−β . Let u ∈ L1,loc(Ω× JT ) be a non-
negative weak solution of (7.7) possessing the stated properties for some T > 0.
We can assume that T < 1. Due to the comparison principle, we have u ≥ w ∨ v,
where w is the solution of (7.7) with V ≡ 0, and v := u− w is a solution of

vt −∆v = V uλ on Ω× JT .
Denote by et∆ the heat (Gauß-Weierstraß) semigroup in Rn. Then

(es∆ψ)(x) ≥
∫
√
s/2<|y|<

√
s

(4πs)−n/2 e−|x−y|
2/4s |y|−α dy ≥ c s−α/2 (7.9)

for |x| <
√
s < 1.

Let |x| <
√
t/2 and t < T . Then, using (7.9), we obtain

u(x, t) ≥ w(x, t) =
∫ t

0

(
e(t−s)∆ψ

)
(x)ϕ(s) ds

≥
∫ t−|x|2

0

c(t− s)−α/2s−β ds

= c t1−α/2−β
∫ 1−|x|2/t

0

(1− θ)−α/2θ−β dθ

≥ c t1−α/2−β ,
hence

u(x, t) ≥ c t−z if |x| <
√
t/2, t < T, (7.10)

where z := α/2 + β − 1 satisfies

z > (1− `/2)
/

(λ− 1), (7.11)

due to (7.8) and the choice of `, α, and β.
Now assume that (7.10) is true for some z satisfying (7.11). Then, assuming

|x| <
√
t and t < T , we obtain

u(x, t) ≥ v(x, t) =
∫ t

0

(
e(t−s)∆V (·)uλ(·, s)

)
(x) ds

≥ c
∫ t

0

(
e(t−s)∆

[
| · |−` s−λz1√

s/2

])
(x) ds

≥ c
∫ t

0

s−λz
∫
√
s/2<|y|<

√
s/2

4π(t− s)−n/2e−|x−y|
2/4(t−s) |y|−` dy ds

≥ c
∫ t/2

t/4

s−λz−`/2 ds ≥ c t1−λz−`/2,

hence (7.10) is satisfied with z̃ := λz + `/2− 1. Due to (7.11) we find z̃ > z, and
an obvious bootstrapping argument proves (7.10) for any z > 0. This contradicts
u ∈ L1,loc(Rn × JT ) and concludes the proof. �

By using similar estimates as in [23], an obvious modification of the above proof
gives a similar result if Ω is bounded.
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Remark 7.6. Above we have restricted ourselves to the most interesting case where
n/q + 2/r > 2. If n/q + 2/r ≤ 2 and s > 2/r′ then s > n/q so that W s

q embeds in
C0(Ω). Hence in this case problem (7.1) is uniquely solvable for any function f ,
satisfying the hypotheses of (7.2), without any further restriction on λ > 1. Details
are left to the reader. �

Special cases of the bound λ•(q, n, r, ν) appear in many papers (see, for example,
[28, Corollary A] for the case q = 1 and r =∞, [10] for q = 1 and r = ν =∞, and
[27], [18], [17] if r = 1 and ν =∞). In many of those papers borderline cases
are studied as well (also see [16, Section 6] for r =∞, q = n/2, λ = 2, and
V (x) = |x|−2).

Given additional structural conditions, it is sometimes possible to relax the
growth restriction for f . We illustrate this by a model problem where, for sim-
plicity, we choose an easy setting.

Theorem 7.7. Let Ω be bounded and suppose that 1 < r <∞ with 2/r′ 6= 1/q,

λ
(n
q

+
2
r
− 2
)
< n+ 2, λ

(1
q
− 2
n

)
< 1. (7.12)

Then, given f0 ∈ Lr,loc(R+, Lq) and u0 ∈W 2/r′

q,γ ,

∂tu−∆u = −|u|λ−1 u+ f0 in Ω× (0,∞),

u = 0 on Γ× (0,∞),

u(·, 0) = u0 on Ω

 (7.13)

has a unique global weak solution.

Proof. Fix T > 0 and put J := JT . Let w be the solution of

∂tw −∆w = |f0| in Ω× J,
w = 0 on Γ× J,

w(·, 0) = |u0| on Ω.

 (7.14)

It follows from Remarks 7.2(c) and (d) and (7.12) and (7.14) that wλ ∈ Ls(Q) for
some s = 1+, where Q := Ω× J .

Let (u0
k) be a bounded sequence in W 2/z′

z,γ for some z = 1+ with z > s such that
|u0
k| ≤ |u0| and u0

k → u0 in Lq. Also suppose that (f0,k) is a sequence in L∞(Q)
satisfying |f0,k| ≤ |f0| and f0,k → f0 in Lr(J, Lq). Let uk be the solution of (7.13)
and wk be the solution of (7.14), respectively, with (u0, f0) replaced by (u0

k, f0,k).
It is well-known that uk is well-defined, and the classical comparison principle
implies |uk| ≤ wk, whereas wk ≤ w follows from Theorem 7.3, for example. Thus the
sequence (|uk|λ) is bounded in Ls(Q). Consequently, (uk) is bounded in W 2,1

s (Q) by
classical regularity theory (e.g., [21, Theorem IV.9.1]). Since W 2,1

s (Q) is compactly
embedded in L1(Q), we can assume, by passing to a subsequence, that uk → u a.e.
and in L1(Q). Since (|uk|λ) is bounded in Ls(Q) and |uk|λ−1 uk → |u|λ−1 u a.e.,
it follows that |uk|λ−1 uk → |u|λ−1 u weakly in Ls(Q) (e.g., [20, Theorem 13.44]).
Thus, passing to the limit in the weak formulation for the solution uk, we obtain a
weak solution of (7.13). Uniqueness follows by the arguments of [18, Lemma 3]. �

Observe that condition (7.12) is weaker than λ < λ•(q, n, r,∞).
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Let x0 ∈ Ω and set f0 := δx0 ⊗ v with v ∈ Lr(J). Assuming also that u0 belongs
to Lnr′/(nr′−2), problem (7.13) is studied in [19], where the main assumption is
equivalent to (7.12) with q = 1 (see (A2) and the last sentence in Remark 2.2
of [19], where γ, q, and N play the rôle of λ, r, and n, respectively).

8. Higher Order Problems

The abstract results are also applicable to semilinear parabolic equations of order
greater than two. For illustration we consider a simple model problem and leave it
to the reader to prove more general results along the lines of the preceding sections.

We denote by Diu the vector of all spatial derivatives of u of order i and set
D0u := u. Then we consider

∂tu+ ∆2u =
∑3
i=0ai |D

iu|λi + µΩ in Ω× (0,∞),

u = ∂νu = 0 on Γ× (0,∞),

}
(8.1)

where µΩ ∈Mloc

(
R

+,M(Ω)
)
, ai ∈ L∞, and

1 < λi < (n+ 4)/(n+ i), 0 ≤ i ≤ 3. (8.2)

We put

W s
q,B :=


{u ∈W s

q ; γu = ∂νu = 0 }, 1 + 1/q < s ≤ 4,

{u ∈W s
q ; γu = 0 }, 1/q < s < 1 + 1/q

W s
q , 0 ≤ s < 1/q.

We also fix
q := 1+ and σ := 4− with σ < 4− n/q′ (8.3)

and
si := (4/λi)− with σ − si > 4/λ′i (8.4)

for 0 ≤ i ≤ 3. Then ~λ := (λ0, . . . , λ3) and ~s := (s0, . . . , s3).

Theorem 8.1. Given the above hypotheses, problem (8.1) has a unique maximal
L~λ(W~s

q )-solution.

Proof. Set E0 := Lq and E1 := W 4
q,B. Also define a linear operator A0 in E0 by

A0u := ∆2u for u ∈W 4
q,B. Then −A0 generates a strongly continuous analytic

semigroup on E0, and D(A0) .= E1. Denote by
[

(Eξ, Aξ) ; −1 ≤ ξ ≤ 1
]

the inter-
polation extrapolation scale generated by (E0, A0) and the interpolation functors

(·, ·)θ :=

{
[·, ·]θ, θ ∈ {1/4, 1/2, 3/4},
(·, ·)θ,q else.

Then it follows that Eξ
.= W 4ξ

q,B for 4ξ /∈ Z+ 1/q, where W−sq,B := (W s
q′,B)′ by means

of the Lq-duality pairing 〈·, ·〉. From this, (8.3), and Sobolev’s embedding theorem
we deduce that M(Ω) ↪→W σ−4

q,B .

Set X := L~λ(J,W~s
q,B) and Y := L1(J, Lq). Since (8.2)–(8.4) imply the inequality

1/λ0q ≥ 1/q − s0/n it follows that W s0
q,B ↪→ Lλ0q. Thus we find that∥∥a0 |u|λ0−1 |v|
∥∥
Y
≤ c ‖u‖λ0−1

X ‖v‖X .
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Analogous estimates hold for ai |u|λi−1 |v| for 1 ≤ i ≤ 3, as may be verified by the
reader. Using this, we infer, by means of the proof of Proposition 15.4, that F ,
defined by

F (u) :=
3∑
i=0

ai |Diu|λj ,

belongs to C1−(L~λ,loc(R+,W~s
q,B), L1,loc(R+, Lq)

)
. Since F is a local map it satisfies

the Volterra property. Now an obvious modification of the proof of Theorem 3.2
gives the assertion. Details are left to the reader. �

Part 3. Systems

In this part we discuss extensions of the preceding results to systems. First we
present an abstract theorem for semilinear parabolic evolution equations with a
diagonal principal part. This theorem is then applied to parabolic initial boundary
value problems for which the different components of the solution vector do not
possess the same regularity. In the last section we describe the modifications which
are needed to handle strongly coupled systems.

9. Abstract Systems

We suppose that

m ∈ N\{0}, and for each j ∈ {1, . . . ,m}
• Ej,0 is a reflexive Banach space;
• Aj,0 is the negative infinitesimal generator of a

strongly continuous analytic semigroup on Ej,0;
•
[

(Ej,ξ, Aj,ξ) ; −1 ≤ ξ ≤ 1
]

is the interpolation extrapolation
scale generated by (Ej,0, Aj,0) and a fixed choice of
admissible interpolation functors (·, ·)j,θ, 0 < θ < 1;

• 0 ≤ αj < βj < 1;
• there exists an admissible interpolation functor
{·, ·}j,βj−αj of exponent βj − αj such that

Ej,βj−1
.= {Ej,αj−1, Ej,αj}j,βj−αj .



(9.1)

Then we put
Aj := Aj,αj−1, 1 ≤ j ≤ m.

We also assume that
• 0 ≤ m0 ≤ m1 ≤ m;
• 1 < pj < 1/(αj − βj + 1) for 1 ≤ j ≤ m0;
• 1 < rj < 1/(βj − αj) and 1 ≤ pj < 1

/
(αj − βj + 1/rj)

for m0 + 1 ≤ j ≤ m1;
• 1/(βj − αj) < rj <∞ and ρj ∈ [0, βj − αj − 1/rj)

for m1 + 1 ≤ j ≤ m.


(9.2)

Given a perfect subinterval J of [0,T] containing 0, we put

X loc(J) :=
m1∏
j=1

Lpj ,loc(J,Ej,αj )×
m∏

j=m1+1

Cρj (J,Ej,αj )
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and

X(J) :=
m1∏
j=1

Lpj (J,Ej,αj )×
m∏

j=m1+1

BUCρj (J,Ej,αj ).

For u ∈X(J) we write

u = (v,w), v := (u1, . . . , um0), w := (um0+1, . . . , um)

and

A := [B,C], B := diag[A1, . . . , Am0 ], C := diag[Am0+1, . . . , Am].

Then we assume that
• µ ∈ C1−

b

(
X
(
[0,T]

)
,
∏m0
j=1M

(
[0,T], Ej,βj−1

))
;

• f ∈ C1−
b

(
X
(
[0,T]

)
,
∏m
j=m0+1Lrj

(
(0,T), Ej,βj−1

))
;

• µ and f possess the Volterra property;

• w0 ∈
∏m
j=m0+1Ej,βj−1/rj ,

 (9.3)

and consider the system
v̇ +Bv = µ(v,w) in [0,T],

ẇ +Cw = f(v,w) in (0,T],

w(0) = w0.

 (9.4)

Setting µ(u) :=
(
µ(u),f(u) +w0 ⊗ δ0

)
, we can rewrite (9.4) as

u̇+Au = µ(u) on [0,T].

We also set

Eξ :=
m∏
j=1

Ej,ξj , E]
ξ :=

m∏
j=1

E]j,ξj

for ξ = (ξ1, . . . , ξm) ∈ [−1, 1]m as well as

〈ϕ,u〉α :=
m∑
j=1

〈ϕj , uj〉αj , (ϕ,u) ∈ E]
−α ×Eα.

Moreover, A>j := A]j,−αj for 1 ≤ j ≤ m and

A> := diag[A>1 , . . . , A
>
m] ∈ L(E]

1−α,E
]
−α).

Then u is said to be an X-solution of (9.4) on J , provided u ∈X loc(J∗) and∫
J

〈−ϕ̇+A>ϕ,u〉α dt =
∫
J

ϕ dµ(u)

for every ϕ ∈ Cc(J∗,E]
1−α) ∩ C1(J∗,E]

−α).
Now we can formulate the following existence, uniqueness, and continuity theo-

rem for system (9.4).

Theorem 9.1. Let assumptions (9.1)–(9.3) be satisfied. Then problem (9.4) has a
unique maximal X-solution, u := u(µ,f ,w0), satisfying

uj ∈ Lrj ,loc(J∗, Ej,αj ) ∩W 1
rj ,loc(J∗, Ej,αj−1), m0 + 1 ≤ j ≤ m.

If u ∈X
(
J(u)

)
then u is global. The map sending (µ,f ,w0) into u(µ,f ,w0) is

Lipschitz continuous from the spaces occurring in (9.3) into X
(
[0,T]

)
.
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The proof of this theorem is also postponed to the end of Section 14.
Clearly, the Lipschitz continuity of the solution u(·, ·, ·) is to be understood in

the sense made precise in Theorems 1.1, 2.1, and 2.3, respectively.

10. Weakly Coupled Parabolic Systems

It is the purpose of this section to show how Theorem 9.1 can be applied to
concrete situations. For this we restrict ourselves to second order systems, for
simplicity.

Henceforth, (A,B) is said to be a strongly uniformly elliptic boundary
value problem whenever (P0) is satisfied and A and B are given by (P1) and
(P2), respectively. Of course, if (A1,B1) and (A2,B2) are two such problems then
each one can have its own boundary decomposition, that is, Γ = Γ1,0 ∪ Γ1,1 and
Γ = Γ2,0 ∪ Γ2,1, with Γ1,0 6= Γ2,0, in general.

We suppose that
• 0 ≤ m0 ≤ m1 ≤ m;
• (Aj ,Bj) is a strongly uniformly elliptic boundary value problem

for 1 ≤ j ≤ m;
• 1 < qj <∞, sj , σj ∈ Iqj with 0 ≤ sj < σj < 2 for 1 ≤ j ≤ m;
• 1 ≤ pj < 2/(sj − σj + 2) for 1 ≤ j ≤ m0;
• 1 < rj < 2/(σj − sj) with σj − 2/rj ∈ Iqj and

1 ≤ pj < 2
/

(sj − σj + 2/rj) for m0 + 1 ≤ j ≤ m1;
• 2/(σj − sj) < rj <∞ and 0 ≤ 2pj < σj − sj − 2/rj

for m1 + 1 ≤ j ≤ m.



(10.1)

Then we put

Xs
p,q,loc(J) :=

m1∏
j=1

Lpj ,loc(J,W sj
qj ,Bj )×

m∏
j=m1+1

Cpj (J,W sj
qj ,Bj )

and assume that

• µj ∈ C1−
b

(
Xs
p,q,loc(R+),Mloc(R+,W

σj−2
qj ,Bj )

)
for 1 ≤ j ≤ m0;

• (u0
j , fj) ∈W

σj−2/rj
qj ,Bj × C1−

b

(
Xs
p,q,loc(R+), Lrj ,loc(R+,W

σj−2
qj ,Bj )

)
for m0 + 1 ≤ j ≤ m;

• µj and fk possess the Volterra property.

 (10.2)

We denote by Aj the W σj−2
qj ,Bj -realization of (Aj ,Bj), that is, Aj is the unique ex-

tension in L(W σj
qj ,Bj ,W

σj−2
qj ,Bj ) of Aj |W 2

qj ,Bj . Then we consider the problem

u̇j +Ajuj = µj(u1, . . . , um) on R+, 1 ≤ j ≤ m0,

u̇j +Ajuj

uj(0)

= fj(u1, . . . , um) on (0,∞),

= u0
j

}
m0 + 1 ≤ j ≤ m.

 (10.3)

Put 2αj := σj and 2βj := sj for 1 ≤ j ≤ m and set

Ej,ξ := W 2ξ
qj ,Bj , ξ ∈ Iqj , 1 ≤ j ≤ m.

Then it follows that (9.2) is satisfied with ρj = pj and X(J) = Xs
p,q(J), where

this space has the obvious meaning. Thus assumption (10.2) implies (9.3), and it
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follows that (10.3) is a particular instance of (9.4). Hence it is clear what is meant
by an Xs

p,q-solution of (10.3).

Theorem 10.1. Given assumptions (10.1) and (10.2), problem (10.3) possesses a
unique maximal Xs

p,q-solution u. If u ∈Xs
p,q

(
J(u) ∩ [0, T ]

)
for every T > 0 then

u is global. Moreover, u depends Lipschitz continuously on the data.

Proof. This is a consequence of the preceding observations and Theorem 9.1. �

It is clear that Remarks 3.5 possess appropriate extensions to system (10.3).

A Model Problem

As an illustration for Theorem 10.1 we consider the following model problem:

∂tu1 +A1u1

∂tu2 +A2u2

= g1(x, u2)µ

= g2(x, u1, u2)

}
in Ω× (0,∞),

Bjuj = 0 on Γ× (0,∞),

uj(·, 0) = u0
j on Ω

 (10.4)

for j = 1, 2. Here we assume that
• Ω is bounded and n ∈ {2, 3};
• (Aj ,Bj) is a strongly uniformly elliptic boundary value problem

for j = 1, 2;
• n− 1 < r <∞ and µ ∈ Lr,loc(R+,M);

• g1 ∈ C0,1(Ω× R,R), g2 ∈ Car1(Ω× R2,R);
• 1 < λ < 2r

/(
2 + (n− 2)r

)
;

• κ : R+ → R
+ is increasing and |∂2g2(x, ξ, η)| ≤ c (|η|)(1 + |ξ|λ−1)

for x ∈ Ω and ξ, η ∈ R.


(10.5)

Note that r > n− 1 and n ∈ {2, 3} guarantee that the upper bound for λ is larger
than 1.

In general, u1 will not be continuous in the variable x ∈ Ω, due to the singular
right-hand side of the first equation of (10.4). On the other hand, in order that
g1(x, u2)µ be well-defined, u2 has to be continuous in x. Thus we will look for
solutions in

Lp1(J,W s1
q1,B1

)× C(J,W s2
q2,B2

)

for appropriate values of p1, qj , and sj such that s2 > n/q2, which guarantees that
C(J,W s2

q2,B2
) ↪→ C

(
J,C(Ω)

)
. For this reason we need a growth restriction for the

nonlinearity with respect to the u1-variable, whereas no such assumption has to be
imposed with respect to the u2-variable.

Theorem 10.2. Let (10.5) be satisfied. Suppose that 1 < q1 < n/(n− 2), fix s1

such that
n/q1 + 2/r − 2/λ < s1 < 2− n+ n/q1, (10.6)

and q2 ∈ (1,∞) with
1/q2 ≥ λ(1/q1 − s1/n). (10.7)

Also fix s2 and ρ with

n/q2 < s2 < 2− 2λ/r, 0 ≤ 2ρ < 2− s2 − 2λ/r. (10.8)
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Finally, suppose that

2− 2/r /∈ N+ 1/q1, 2− 2λ/r /∈ N+ 1/q2. (10.9)

Then problem (10.4) has for each

u0 := (u0
1, u

0
2) ∈W 2−2/r

q1,B1
×W 2−2λ/r

q2,B2
(10.10)

a unique maximal Lr(W s1
q1 )× Cρ(W s2

q2 )-solution u(·,u0), and u(·,u0) is indepen-
dent of the particular choice of sj, qj, and ρ. If

sup
t∈J(u)∩[0,T ]

‖u2(t,u0)‖∞ <∞ for every T > 0, (10.11)

then J(u) = R
+.

Proof. First we observe that the upper bound for λ in (10.5) implies that we can
find s1 satisfying (10.6). From this it follows that we can choose q2 ∈ (1,∞) sat-
isfying (10.7). Thanks to the upper bound for λ we also see that condition (10.8)
can be satisfied if 1/q2 is close to its lower bound in (10.7). Clearly, (10.9) can be
satisfied as well.

Put s := (s1, s2), q := (q1, q2), and p := (r, ρ) so that

Xs
p,q,loc(J) = Lr,loc(J,W s1

q1,B1
)× Cρ(J,W s2

q2,B2
).

Given T > 0, it follows from (10.7), (10.8), and Lemma 4.1 that

Xs
p,q(JT ) ↪→ Lr(JT , Lλq2)× C

(
JT , C(Ω)

)
=: Yr,q2(JT ). (10.12)

Set
f(u) =

(
f1(u), f2(u)

)
:=
(
g\1(u2)µ, g\2(u1, u2)

)
.

It is easily verified that

f1 ∈ C1−
b

(
Yr,q2(JT ), Lr(JT ,M)

)
, T > 0. (10.13)

An obvious modification of the proof of Proposition 15.4 shows that

f2 ∈ C1−
b

(
Yr,q2(JT ), Lr/λ(JT , Lq2)

)
, T > 0. (10.14)

Fix σj with s1 < σ1 < 2− n/q′1 and s2 < σ2 < 2− 2λ/r as well as σ1 − 2/r ∈ Iq1 ,
σ2 − 2λ/r ∈ Iq2 , r < 2/(σ1 − s1), and 2ρ < σ2 − s2 − 2λ/r. Then we infer from
Lemma 4.1 and (10.12)–(10.14) that

f ∈ C1−
b

(
Xs
p,q(JT ), Lr(JT ,W σ1−2

q1,B1
)× Lr/λ(JT ,W σ2−2

q2,B2
)
)
, T > 0.

Note that 1 < r < 2
/

(s1 − σ1 + 2/r) and r/λ > 2/(σ2 − s2). Thus assumptions
(10.1) and (10.2) are satisfied with (m0,m1,m) := (0, 1, 2) and (r1, r2) := (r, r/λ),
and Theorem 10.1 guarantees that problem (10.4) possesses a unique maximal
Xs
p,q-solution, u(·,u0), whenever u0 satisfies (10.10). Remarks 3.5(a) and (b)

imply that u(·,u0) is independent of the particular choice of s and q.
Let (10.11) be satisfied. Then

h1 := g\1
(
u2(·,u0)

)
µ ∈ Lr

(
J(u) ∩ JT ,M

)
, T > 0,

and u1(·,u0) satisfies the equation

v̇ +A1v = h1(t), t ∈ J(u) ∩ JT , v(0) = u0
1.

Hence
u1(·,u0) ∈ Lr

(
J(u) ∩ JT ,W s1

q1,B1

)
, T > 0,
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by [5, Theorem 4], for example. From this we infer, by the above arguments, that

h2 := g\1
(
u1(·,u0), u2(·,u0)

)
∈ Lr/λ

(
J(u) ∩ JT , Lq2

)
, T > 0.

Thus, since u2(·,u0) solves the linear problem

ẇ +A2w = h2(t), t ∈ J(u) ∩ JT , w(0) = u0
2,

we infer from from [5, Proposition 2(iii)] that

u2(·,u0) ∈ BUCρ
(
J(u) ∩ JT ,W s2

q2,B2

)
.

Hence it follows from Theorem 10.1 that u(·,u0) is a global solution. �

Remarks 10.3. (a) The preceding theorem remains valid if we assume instead of
(10.10) that

u0 ∈W (s1−2/r)+

q1,B1
×W (s2−2λ/r)+

q2,B2
.

Proof. This follows from the above proof and from Theorem 10.1. �

(b) It is clear that, by invoking Theorem 9.1, we can also handle systems where
the orders of the differential operators differ from component to component of the
solution vector. �

A system similar to (10.4) has been studied in [22], where it is assumed that µ is
independent of t.

11. Strongly Coupled Systems

In this section we briefly indicate the modifications for Part 2 which are necessary
to deal with strongly coupled systems.

We assume that N is a positive integer and interpret all distributions as having
values in RN . Thus W s

q := W s
q (Ω,RN ) etc. Then we suppose that

(α,A) ∈ BUC∞(Ω,Rn×n × RN×N ), (11.1)

and α = [αjk] is symmetric and uniformly positive definite, and that there exists
ε > 0 such that

σ
(
A(x)

)
⊂ { z ∈ C ; Re z ≥ ε }, x ∈ Ω,

where σ(·) denotes the spectrum. Then we set

ajk := Aαjk ∈ BUC∞(Ω,RN×N ), 1 ≤ j, k ≤ n,
and, using the summation convention with j and k running from 1 to n,

Au := −∂j(ajk∂ku), u ∈ D(Ω).

We also define the “conormal derivative” by

∂νu := νjγ(ajk∂ku), u ∈ D(Ω),

and set

Bu :=
{

γu on Γ0,

∂νu on Γ1.
(11.2)

Then (A,B) is a normally elliptic boundary value system (in separated divergence
from, using the terminology of [2]).

We write a> for the transposed of the matrix a ∈ RN×N . Then we put

A]v := −∂j(a>jk∂kv), ∂]νv := νjγ(a>jk∂kv)
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for v ∈ D(Ω) and define B] by replacing ∂ν in (11.2) by ∂]ν , so that (A],B]) is the
elliptic boundary value system formally dual to (A,B).

The spaces W s
q,B are now defined in analogy to (3.2), except that

W s
q,B := (W−s

q′,B])
′, s ∈ Iq ∩ [−2, 0).

We set E]0 := Lq′ and denote by A]0 the Lq′ -realization of (A],B]), given by

dom(A]0) := W 2
q′,B] , A]0v := A]v.

Then parts (i) and (ii) of Lemma 3.1 remain valid with the modification that
A′0 = A]0 (cf. [2]).

Assuming again (3.4) and defining A by (3.5), a (weak) Lp(W s
q )-solution of

(3.6) on J is now an element u ∈ Lp,loc(J∗,W s
q,B) satisfying∫

J

〈−∂tv +A]v, u〉 dt =
∫
J

v dµ(u), v ∈ D(J∗,DB]),

where DB] :=
{
v ∈ D(Ω) ; B]v = 0

}
, of course.

Theorem 11.1. Given the above hypotheses and modifications, all results of Sec-
tion 3 remain valid if A is induced by a normally elliptic boundary value problem.

Proof. This is obvious from the validity of the analogue to Lemma 3.1. �

Remarks 11.2. (a) Clearly, the Dirichlet from a of (A,B) is now defined by

a(w, z) := 〈∂jw, ajk∂kz〉, w, z ∈ D(Ω).

(b) It is also obvious that Theorem 10.1 remains valid if it is supposed that
(Aj ,Bj) be a normally elliptic boundary value system for 1 ≤ j ≤ m whose dimen-
sion may depend on j, of course.

(c) The regularity hypothesis (11.1) has been imposed for convenience only.
Everything said above remains true if

(α,A) ∈ BUC1(Ω,Rn×n × RN×N )

and Γ is a C2-submanifold of Rn, provided DB] is replaced by W 2−s
q′,B] .

(d) Of course, Theorem 10.1 can also be applied if (Aj ,Bj) are suitable strongly
coupled elliptic boundary value systems of higher order. �

Part 4. Proofs of the Abstract Theorems

In this part we furnish the proofs for the general theorems presented in Part 1
and in Section 9.

We assume throughout that assumptions (A0) and (A1) are satisfied. For ab-
breviation, given a perfect subinterval J of [0,T] containing 0, we put

C
1
c

(
J∗, (Eγ−1, Eγ)

)
:= Cc(J∗, Eγ) ∩ C1(J∗, Eγ−1).

We also set
MT :=M

(
[0, T ], Eβ−1

)
, 0 < T ≤ T,

and recall that JT := [0, T ].
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12. Gluing of Solutions

First we consider the linear case where µ is independent of u and show that
solutions of

u̇+Au = µ, (12.1)

defined on adjoining intervals, can be pieced together to yield a solution on the
union of these intervals. Since there is no (explicit) initial value in (12.1) this is not
immediately clear.

For concise and precise formulations we introduce some further notation. Let I
be a nonempty compact interval and s ∈ R. Denote by τs the right translation of
functions, that is,

τs : EI → EI+s, ϕ 7→ ϕ(· − s).
Then we define the right translation of measures

τs : M(I, Eβ−1)→M(I + s,Eβ−1), µ 7→ τsµ (12.2)

by
〈τsµ, ϕ〉C(I+s,E]1−β) := 〈µ, τ−sϕ〉C(I,E]1−β), ϕ ∈ C(I + s,E]1−β).

It is obvious that (12.2) is a linear bijective isometry with (τs)−1 = τ−s.

Suppose that Ij := [0, sj ] for sj > 0 and j = 0, 1 and set I := I0 ∪ (s0 + I1).
Given q ∈ [1,∞] and vj ∈ Lq(Ij , Eα) for j = 0, 1, we define v0 ⊕ v1 ∈ Lq(I, Eα) by

v0 ⊕ v1 := v0 ⊕s0 v1 :=
{

v0 on I0,

τs0v1 on I1 + s0.

Below we often simply write µ for µ | [0, S] if 0 < S < T and µ ∈MT , if no confusion
seems likely.

Assume that 0 < T ≤ T and µ ∈MT , and let (1.4) be satisfied. Then [5, Theo-
rem 4] guarantees that (12.1) possesses a unique global weak L1(Eα)-solution, u(µ),
and

u(µ) ∈
⋂

1≤p<1/(α−β+1)

Lp
(
(0, T ), Eα

)
. (12.3)

Moreover, from [5, Corollary 2] we know that u(µ) has a well-defined trace, u(µ)(T ),
in Eβ−1, and that the map(

µ 7→ u(µ)(T )
)
∈ L(MT , Eβ−1)

is well-defined and uniformly bounded with respect to T ∈ (0,T].

Now we are ready for the proof of the following “gluing lemma”.

Lemma 12.1. Let (1.4) be satisfied and suppose that 0 < S < T ≤ T and µ ∈MT .
Denote by u0 the weak L1(Eα)-solution of (12.1) on JS. Set

mT−S
(
µ, u0(S)

)
:= τ−S

(
µ
∣∣ [S, T ]

)
+
(
u0(S)− µ({S})

)
⊗ δ0 ∈MT−S

and let u1 be the weak L1(Eα)-solution of

u̇+Au = mT−S
(
µ, u0(S)

)
on JT−S .

Then u0 ⊕ u1 is the weak L1(Eα)-solution of (12.1) on JT .
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Proof. Suppose that v ∈ C1
c

(
[0, T ), (E]−α, E

]
1−α)

)
. Then∫

JT

〈
(−∂ +A>)v, u0 ⊕ u1

〉
α
dt

=
∫
JS

〈
(−∂ +A>)v, u0

〉
α
dt+

∫
JT−S

〈
(−∂ +A>)τ−Sv, u1

〉
α
dt.

(12.4)

Proposition 1 of [5] and (12.3) imply∫
JS

〈
(−∂ +A>)v, u0

〉
α
dt = 〈µ, v〉C(JS ,E

]
1−β) −

〈
v(S), u0(S)

〉
β−1

(12.5)

and∫
JT−S

〈
(−∂ +A>)τ−Sv, u1

〉
α
dt =

〈
mT−S(µ, u0(S)), τ−Sv

〉
C(JT−S ,E

]
1−β)

= 〈µ, v〉C([S,T ],E]1−β) +
〈
v(S), u0(S)− µ({S})

〉
β−1

.

(12.6)

Note that

〈µ, v〉C(JT ,E
]
1−β) =

∫
JT

v dµ =
∫
JS

v dµ+
∫

[S,T ]

v dµ−
〈
v(S), µ({S})

〉
β−1

= 〈µ, v〉C(JS ,E
]
1−β) + 〈µ, v〉C([S,T ],E]1−β) −

〈
v(S), µ({S})

〉
β−1

(12.7)

for all v ∈ C1
c

(
[0, T ), (E]−α, E

]
1−α)

)
. Consequently, we deduce from (12.4)–(12.7)

that∫
JT

〈
(−∂ +A>)v, u0 ⊕ u1

〉
α
dt = 〈µ, v〉C(JT ,E

]
1−β), v ∈ C1

c

(
[0, T ), (E]−α, E

]
1−α)

)
.

Hence u0 ⊕ u1 is the unique weak L1(Eα)-solution of (12.1) on JT . �

13. Proof of Theorems 1.1 and 1.2

Assume that E is a Banach space and that F ↪→ L1,loc(JT, E). Then we write
Volt(F,MT ) for the set of all maps µ : F →MT possessing the Volterra property.
Recall that this means that, given T ∈ (0,T] and u ∈ F ,

µ(u) |JT = µ
(
(u |JT )⊕ 0

)∣∣JT .
We also set

Lq,T,γ := Lq(JT , Eγ), ‖ · ‖q,T,γ := ‖ · ‖Lq,T,γ
for 0 < T ≤ T and −1 ≤ γ ≤ 1 and recall that BE is the open unit ball in E.

We denote by MT (λ, ω) the set of all µ ∈ Volt(Lp,T,α,MT ) satisfying

‖µ(0)‖MT
≤ ω, ‖µ(u)−µ(v)‖MT

≤ λ(R) ‖u−v‖p,T,α, u, v ∈ RB̄p,T,α, (13.1)

for each R > 0. Note that⋃
λ,ω

MT (λ, ω) = C1−
b ∩Volt(Lp,T,α,MT ). (13.2)

Henceforth, c denotes positive constants whose values may differ from occurrence
to occurrence, but they are always independent of all free variables of a given
situation.
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Proof of Theorem 1.1

Choose λ and ω such that µ ∈ MT := MT(λ, ω) and fix R0 > 0. Thanks to (13.2),
this is possible. Also put BT := Bp,T,α, ‖ · ‖T := ‖ · ‖p,T,α, and

qT,R(ν) := sup
v∈RB̄T

‖ν(v)‖MT
, ν ∈ C1−

b (Lp,T,α,MT ).

(a) Given v ∈ R0B̄T, the linear problem u̇+Au = µ(v) possesses a unique weak
Lp(Eα)-solution u

(
µ(v)

)
on JT. From [5, Corollary 3], the Volterra property, and

(13.1) we infer that∥∥u(µ(v)
)∥∥
τ
≤ cτε,

∥∥u(µ(v)
)
− u
(
µ(w)

)∥∥
τ
≤ cτε ‖v − w‖τ

for v, w ∈ R0B̄T, τ ∈ J̇T, and µ ∈ MT, where ε := β − α− 1/p′. Since ε > 0, we
find T0 ∈ J̇T such that∥∥u(µ(v)

)∥∥
T0
≤ R0,

∥∥u(µ(v)
)
− u
(
µ(w)

)∥∥
T0
≤ 1

2
‖v − w‖T0 (13.3)

for v, w ∈ R0B̄T and µ ∈ MT.
Put ϕµ(v) := u

(
µ(v ⊕ 0)

)
for v ∈ R0B̄T0 . Since

Lp,T0,α → Lp,T,α, v 7→ v ⊕ 0 (13.4)

is a linear isometry, it follows from (13.3) that ϕµ is for each µ ∈ MT a contraction
mapping R0B̄T0 into itself. Hence Banach’s fixed point theorem guarantees the
existence of a unique u0(µ) ∈ R0B̄T0 satisfying u0(µ) = ϕµ

(
u0(µ)

)
. It is clear that

u0(µ) is a weak Lp(Eα)-solution of (EV) on JT0 , and the only one in R0B̄T0 .
(b) Suppose that ν ∈ MT(λ, ω) and u(ν) is a solution of u̇+Au = ν(u) on JT

for some T ∈ (0,T). Fix R ≥ ‖u(ν)‖T and set T1 := T− T . Consider the map

NT1(ν) : Lp,T1,α →MT1 , v 7→ mT1

(
ν
(
u(ν)⊕T v

)
, u(ν)(T )

)
,

where mT1 has been defined in Lemma 12.1. Note that∥∥τ−T (ν(u(ν)⊕ 0
)∣∣ [T,T]

)∥∥
MT1

≤ ω +Rλ(R)

and ∥∥τ−T ((ν(u(ν)⊕ v
)
− ν
(
u(ν)⊕ w

))∣∣ [T,T]
)∥∥
MT1

≤ λ(R+R′) ‖v − w‖T1

for all v, w ∈ R′B̄T1 . From u(ν) = u
(
ν
(
u(ν)

))
and [5, Corollary 3] we infer that

there exists κ ≥ 1 such that

‖u(ν)(T )‖β−1 ≤ κ
∥∥ν(u(ν)

)∥∥
MT
≤ κ

(
ω +Rλ(R)

)
.

Thus, setting
ω1(R) := 3κ

(
ω +Rλ(R)

)
, λ1(R) := λ(R+ ·)

it follows that ω1(R) ≥ ω and λ1(R) ≥ λ as well as

NT1(ν) ∈ MT1

(
λ1(R), ω1(R)

)
.

Note that λ1(R) and ω1(R) are independent of T ∈ J̊T.
(c) Assume T0 < T and put T := T0 and R := R0 in (b). Then it follows from (a)

and (b) that there exists T1 ∈ J̇T−T0 such that u̇+Au = NT−T0(µ)(u) has for each
µ ∈ MT(λ, ω) a unique weak Lp(Eα)-solution u1,µ on JT1 belonging to R0B̄T1 .
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Set u1(µ) := u0(µ)⊕ u1,µ. Then Lemma 12.1 and (12.3) guarantee that u1(µ) is
a weak Lp(Eα)-solution of u̇+Au = µ(u) on JT0+T1 lying in 2R0B̄T0+T1 , and the
only one coinciding on JT0 with u0(µ).

(d) Suppose that 0 < T < T and u ∈ Lp,T,α is a weak Lp(Eα)-solution of (EV)
on JT . Then we can apply the extension procedure of step (c) to u to obtain
a uniquely determined extension to a weak Lp(Eα)-solution u on JS for some
S ∈ (T,T], and u belongs to Lp,S,α.

(e) Let u and v be weak Lp(Eα)-solutions of (EV) on JT . Choose R0 > 0 such
that ‖u‖p,T,α ∨ ‖v‖p,T,α < R0. Then step (a) guarantees that there exists T0 ∈ J̇T
such that u and v coincide on JT0 . Let T ∗ ∈ JT be the supremum of all T0 ∈ J̇T for
which u = v on JT0 , and suppose that T ∗ < T . Since u |JT∗ belongs to Lp,T∗,α, we
can apply step (d) to obtain a unique extension of u |JT∗ to a weak Lp(Eα)-solution
on JS , where T ∗ < S ≤ T . Thus u |JS = v |JS , contradicting the maximality of T ∗.
Hence u = v. This shows that there is at most one maximal solution of (EV).

(f) An obvious argument, based on step (d), now guarantees the existence of a
unique maximal solution u := u(µ) of (EV). Moreover, J(u) = JT if u belongs to
Lp
(
J(u), Eα

)
since, otherwise, the extension procedure of step (c) would lead to a

contradiction. This proves Theorem 1.1. �

Proof of Theorem 1.2

For ε > 0 we set

U(ε) :=
{
ν̃ ∈ MT(λ, ω) ; sup

‖v‖p,T,α≤R
‖(ν̃ − µ)(v)‖MT

≤ ε
}
.

(a) Fix T ∈ J
(
u(µ)

) ∖
{0} such that T < sup

(
J
(
u(µ)

))
if u is not global. Also fix

R > ‖u(µ)‖T =: R∗. Set R0 := (R−R∗)/2 as well as λ1 := λ1(R) and ω1 := ω1(R).
We infer from (a) of the preceding proof that we can find T0 > 0 and m ∈ N satisfy-
ing mT0 = T such that u̇+Au = ν(u) has for each ν ∈ MT0(λ1, ω1) a unique weak
Lp(Eα)-solution on JT0 belonging to R0B̄T0 . We also deduce from (13.3) that

‖u(ν)− u(ν̃)‖T0 ≤
∥∥u(ν(u(ν)

))
− u
(
ν
(
u(ν̃)

))∥∥
T0

+
∥∥u(ν(u(ν̃)

))
− u
(
ν̃
(
u(ν̃)

))∥∥
T0

≤ 1
2
‖u(ν)− u(ν̃)‖T0 +

∥∥u(ν(u(ν̃)
))
− u
(
ν̃
(
u(ν̃)

))∥∥
T0

for ν, ν̃ ∈ MT0(λ1, ω1). Thus u(ν), u(ν̃) ∈ R0B̄T0 and [5, Corollary 3] imply the
existence of c1 > 0 such that

‖u(ν)− u(ν̃)‖T0 ≤ c1qT,R(ν − ν̃), ν, ν̃ ∈ MT(λ1, ω1). (13.5)

Hence there is ε1 > 0 with

‖u(ν)‖T0 ≤ ‖u(µ)‖T0 + c1qT,R(ν − µ) ≤ R∗ +R0 =: R1 < R (13.6)

for ν ∈ U(ε1), and (13.5) is true for ν, ν̃ ∈ U(ε1) as well.

(b) Suppose that m ≥ 2. It follows from (b) of the preceding proof that

NT−T0(ν) ∈ MT−T0(λ1, ω1), ν ∈ U(ε1). (13.7)
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Furthermore, (13.5) and (13.6) imply∥∥τ−T0

([
ν
(
u(ν)⊕ v

)
− ν̃
(
u(ν̃)⊕ v

)]∣∣ [T0,T]
)∥∥
MT−T0

≤
∥∥ν(u(ν)⊕ v

)
− ν
(
u(ν̃)⊕ v

)∥∥
MT

+
∥∥(ν − ν̃)

(
u(ν̃)⊕ v

)∥∥
MT

≤ λ(R) ‖u(ν)− u(ν̃)‖T0 + qT,R(ν − ν̃)

≤
(
λ(R)c1 + 1

)
qT,R(ν − ν̃)

for v ∈ R0B̄T−T0 and ν, ν̃ ∈ U(ε1). Similarly,

‖u(ν)(T0)− u(ν̃)(T0)‖β−1 ≤ κ
∥∥ν(u(ν)

)
− ν̃
(
u(ν̃)

)
‖MT0

≤ κ
∥∥ν(u(ν)

)
− ν
(
u(ν̃)

)
‖MT0

+ κqT,R(ν − ν̃)

≤ κλ(R) ‖u(ν)− u(ν̃)‖T0 + κqT,R(ν − ν̃)

≤ κ
(
c1λ(R) + 1

)
qT,R(ν − ν̃)

for ν, ν̃ ∈ U(ε1). From this we infer that there exists κ1 > 0 such that

qT−T0,R0

(
NT−T0(ν)− NT−T0(ν̃)

)
≤ κ1qT,R(ν − ν̃), ν, ν̃ ∈ U(ε1). (13.8)

Thanks to (13.7) we can apply the arguments of (a) to

u̇+Au = NT−T0(ν)(u) (13.9)

for ν ∈ U(ε1). Thus we find a unique weak Lp(Eα)-solution u1,ν of (13.9) belonging
to R0B̄T0 . From (13.8) and the analogue of (13.5) we deduce that

‖u1,ν − u1,ν̃‖T0 ≤ c1κ1qT,R(ν − ν̃), ν, ν̃ ∈ U(ε1). (13.10)

Since
u(ν) |J2T0 = u(ν) |JT0 ⊕ u1,ν

we see from (13.5) and (13.10) that, setting c2 := c1(1 + κ1),

‖u(ν)− u(ν̃)‖2T0 ≤ c2qT,R(ν − ν̃), ν, ν̃ ∈ U(ε1).

Hence there exists ε2 ∈ (0, ε1] such that

‖u(ν)‖2T0 ≤ ‖u(µ)‖2T0 + c2qT,R(ν − µ) ≤ R∗ +R0 = R1 < R

for ν ∈ U(ε2).
(c) Suppose that 2 ≤ j ≤ m− 1 and put Tj := jT0. Also suppose that it has

already been shown that there exists εj ∈ (0, εj−1] such that J
(
u(ν)

)
⊃ JTj and

u(ν) ∈ R1B̄Tj for ν ∈ U(εj). Then it follows from (b) of the preceding proof and
the arguments used in (b) that

NT−Tj (ν) ∈ MT−Tj (λ1, ω1), ν ∈ U(εj)

and that there exists cj > 0 such that

qT−Tj ,R0

(
NT−Tj (ν)− NT−Tj (ν̃)

)
≤ κjqT,R(ν − ν̃), ν, ν̃ ∈ U(εj).

Thus, similarly as in (b), we find that J
(
u(ν)

)
⊃ JTj+1 and that there exist con-

stants cj+1 > 0 and εj+1 ∈ (0, εj ] with

‖u(ν)− u(ν̃)‖Tj+1 ≤ cj+1qT,R(ν − ν̃), ν, ν̃ ∈ U(εj)

and
‖u(ν)‖Tj+1 ≤ ‖u(µ)‖Tj+1 + cj+1qT,R(ν − µ) ≤ R∗ +R0 = R1 < R

for ν ∈ U(εj+1). This implies that we can proceed inductively so that we obtain
the assertion for j = m− 1. �
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14. The Case of Strong Solutions

In this section we prove the remaining abstract theorems of Part 1. For this we
denote by Φr,T (λ, ω) the set of all f ∈ Volt(Lp,T,α, Lr,T,β−1) satisfying

‖f(0)‖r,T,β−1 ≤ ω, ‖f(u)− f(v)‖r,T,β−1 ≤ λ(R) ‖u− v‖p,T,α (14.1)

for all u, v ∈ RB̄p,T,α and R > 0. Hence⋃
λ,ω

Φr,T (λ, ω) = C1−
b ∩Volt(Lp,T,α, Lr,T,β−1). (14.2)

We also set Bs := BEs .

Proof of Theorem 2.1

Thanks to (14.2) we can find λ and ω such that (x, f) ∈ YT := ωB̄β−1/r × ΦT,
where ΦT := Φr,T(λ, ω). We can also assume that γ is close to β; more precisely,
p < 1/(α− γ + 1/r).

(a) Fix R0 > 0. Then, given v ∈ XR0,T := R0B̄p,T,α, we denote by u0

(
x, f(v)

)
the unique strong Lr(Eγ)-solution of the linear Cauchy problem

u̇+Au = f(v) in J̇T, u(0) = x,

whose existence is guaranteed by Theorem 5 of [5].
Similarly as in part (a) of the proof of Theorem 1.1, we see, by invoking Proposi-

tion 2(ii) of [5], the Volterra property, and (14.1), that there exists T0 ∈ J̇T such that∥∥u0

(
x, f(v)

)∥∥
p,T0,α

≤ R0,
∥∥u0

(
x, f(v)

)
− u0

(
x, f(w)

)∥∥
p,T0,α

≤ 1
2
‖v − w‖p,T0,α

for v, w ∈ XR0,T and (x, f) ∈ YT. Thus, setting

ϕ(x,f)(v) := u
(
x, f(v ⊕ 0)

)
= Ux+ U ?

(
f(v ⊕ 0)

)
, v ∈ XR0,T0 ,

we infer from (13.4) and the contraction mapping principle that for each (x, f) ∈ YT

there exists a unique fixed point u0(x, f) of ϕ(x,f) in XR0,T0 . Fixing (x, f) and
setting u0 := u0(x, f), the Volterra property implies

u0 = Ux+ U ? f(u0) on JT0 . (14.3)

Thus, thanks to Theorem 5 of [5], u0 is a strong Lr(Eγ)-solution of (2.2), and the
only one belonging to XR0,T0 .

(b) Suppose that T1 := T− T0 > 0. From u0(x, f) ∈ XR0,T0 and f ∈ ΦT we in-
fer that ∥∥f(u0(x, f)

)∥∥
r,T0,β−1

≤ c, (x, f) ∈ YT.

Hence [5, Proposition 2(i)] guarantees that

‖u0(x, f)‖
W

1
r,T0,γ

≤ c, (x, f) ∈ YT, (14.4)

where
W

1
r,T,γ := Lr

(
(0, T ), Eγ

)
∩W 1

r

(
(0, T ), Eγ−1

)
.

Choose β1 6= 1/r and γ1 satisfying

γ > β1 > γ1 > γ − 1/r′, γ1 > α, , p < 1/(α− γ1 + 1/r).

Set (X0, X1) := (Eγ−1, Eγ) and θ := β1 − γ + 1/r′. Then [4, Lemma 1.1] implies

(X0, X1)θ,1 ↪→ Eβ1−1/r. (14.5)
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Also pick s satisfying 1/r < s < γ − β1 + 1/r = 1− θ. Then we deduce from [5,
Theorem 3] and (14.5) that

W
1
r,T0,γ ↪→ C(JT0 , Eβ1−1/r). (14.6)

It follows from (14.4) and (14.6) that there exists ω1 such that

‖u0(x, f)(T0)‖β1−1/r ≤ ω1, (x, f) ∈ YT. (14.7)

Set
f̃x(v) := τ−T0f

(
u0(x, f)⊕ v

)
, v ∈ LT1 , (x, f) ∈ YT.

Then f ∈ ΦT and u0(x, f) ∈ XR0,T0 imply that we can choose ω1 such that∥∥f̃x(0)
∥∥
r,T1,β1−1

≤ ω1, (x, f) ∈ YT. (14.8)

Similarly, we find that∥∥f̃x(v)− f̃x(w)
∥∥
r,T1,β1−1

≤ λ(R0 +R) ‖v − w‖p,T1,α, v, w ∈ XR,T1 , (14.9)

for R > 0 and (x, f) ∈ YT.
Put λ1 := λ(R0 + ·). Then it follows from (14.7)–(14.9) that(

u0(x, f)(T0), f̃x
)
∈ ω1B̄β1−1/r × Φr,T1(λ1, ω1), (x, f) ∈ YT. (14.10)

Since α < γ1 < β1 < β and r < 1/(β − α) < 1/(β1 − α), we deduce from (14.10)
and step (a) that there exists T1 ∈ J̇T1 such that the Cauchy problem

u̇+Au = f̃x(u) in J̇T1 , u(0) = u0(x, f)(T0)

has for each (x, f) ∈ YT a unique strong Lr(Eγ1)-solution v(x, f) on JT1 belonging
to XR0,T1 . Fixing (x, f) and setting u0 := u0(x, f) and v := v(x, f), the Volterra
property implies

v = Uu0(T0) + U ? f̃x(v) on JT1 (14.11)

(cf. Remark 2.4(f)). Observe that Eγ−1 ↪→ Eγ1−1 and U ⊃ Uγ1−1 ⊃ Uγ−1, where
Us is the semigroup generated by −As on Es for s ∈ R. Hence we can interpret
(14.3) as an equation in Eγ1−1. Since (14.11) is also an equation in Eγ1−1 we obtain
by inserting u0(T0) = U(T0)x+ U ? f(u0)(T0) in (14.11) that

v(s) = U(s)U(T0)x+
∫ T0

0

U(s)U(T0 − τ)f(u0)(τ) dτ +
∫ s

0

U(s− τ)f̃x(v)(τ) dτ

for s ∈ JT1 , thanks to the Volterra property of f . Thus, by using the Volterra
property once more, we find for T0 ≤ t ≤ T0 + T1

v(t− T0) = U(t)x+
∫ T0

0

U(t− τ)f(u0)(τ) dτ +
∫ t−T0

0

U(t− T0 − τ)f̃x(v)(τ) dτ

= U(t)x+
∫ T0

0

U(t− τ)f(u0 ⊕ v)(τ) dτ +
∫ t

T0

U(t− s)f(u0 ⊕ v)(s) ds

= U(t)x+ U ? f(u0 ⊕ v)(t).

Set u1(x, f) := u0(x, f)⊕ v(x, f) for (x, f) ∈ YT. Then u1(x, f) ∈ X2R0,T0+T1 and
the preceding considerations show that

u1(x, f) = Ux+ U ? f
(
u1(x, f)

)
on JT0+T1 ,
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where this equality holds in Eγ1−1. Thanks to f ∈ ΦT and u1(x, f) ∈ X2R0,T0+T1 ,
we deduce that ∥∥f(u1(x, f)

)∥∥
r,T0+T1,β−1

≤ c, (x, f) ∈ YT.

Hence we infer from [5, Proposition 2(i)] that

‖u1(x, f)‖
W

1
r,T0+T1,γ

≤ c, (x, f) ∈ YT,

and that u1(x, f) is a strong Lr(Eγ)-solution of (2.2) on JT0+T1 lying in X2R0,T0+T1 ,
and the only one coinciding on JT0 with u0(x, f).

(c) Now the assertions follow by the arguments of steps (d)–(f) of the proof of
Theorem 1.1. �

Proof of Theorem 2.2

By invoking [5, Proposition 2(ii)] instead of [5, Corollary 3] it is easily verified
that the arguments of the proof of Theorem 1.2 yield the assertion in this case
also. �

Proof of Theorem 2.3

The reader may easily check that the proofs of Theorems 2.1 and 2.2 remain true
if the spaces Lp(J,Eα) are everywhere replaced by BUCρ(J,Eα).

For example, denoting by ‖ · ‖ρ,T the norm in BUCρ(JT , Eα), one obtains the
second inequality in (13.3) from the estimate∥∥u(x, f(v)

)
− u
(
x, f(w)

)∥∥
ρ,T
≤ T ρ

′−ρ ∥∥u(x, f(v)
)
− u
(
x, f(w)

)∥∥
ρ′,T

≤ c T ρ
′−ρ ‖f(v)− f(w)‖r,T,β−1

≤ c T ρ
′−ρ ‖v − w‖ρ,T ≤

1
2
‖v − w‖ρ,T ,

where ρ < ρ′ < β − α− 1/r and T is small enough (cf. [5, Proposition 2(iii)]). No-
tice also that [5, Theorem 3] implies W1

r

(
J, (Eγ−1, Eγ)

)
↪→ BUCρ(J,Eα) if γ is

close to β. �

Proof of Remarks 2.4

(a) The stated conditions are obviously necessary. Since u = U ? µ(u) (cf. [5])
and u = Uu0 + U ? f(u), respectively, it follows from Corollary 1 and Proposi-
tion 2(i) of [5] that they are sufficient as well. �

(b) It is easily verified that the continuation arguments of the proofs of these
theorems allow to construct a solution on [0,T]. �

(c) Since u := u(x, f) ∈W1
r,loc

(
J(u), (Eγ−1, Eγ)

)
for α ≤ γ < β it follows from

(2.1) that u ∈ C
(
J(u), (E0, E1)1/r′,r

)
for α ≤ γ < β. Now the assertion is a conse-

quence of the embedding (E0, E1)ξ,r ↪→ Eη for η < ξ. �

(d) The assertions concerning Theorems 1.1 and 1.2 follow from the obvious fact
that the linear problem u̇+Au = µ has for each µ ∈MT a unique solution belong-
ing to L~p,T,~α, and that [5, Corollary 3] remains valid if Lp,T,α is replaced by L~p,T,~α
and ε by min

{
1/pj − 1/(αj − β + 1) ; j = 0, 1, . . . ,m

}
. Similar arguments imply

the other assertions. �
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(e) This follows from [5, Proposition 3] and the construction of the solution in
the proof of Theorem 1.1. �

Proof of Theorem 9.1

It should be clear by now how obvious adaptions of the preceding proofs yield
the asserted results. �

Appendix

In this appendix we first derive the mapping properties of Nemytskii operators
which we used in Sections 5–8. Then we present extensions of the results of [5]
to the case of nonautonomous principal parts. They are needed for the proof of
the positivity theorem which we used in Part 2. In addition, we include some
compactness results for solutions of linear evolution equations involving measures
and low regularity data. They are required for applying the existence and continuity
results of this paper to control problems.

15. Nemytskii Operators

In this section we derive sufficient conditions for the validity of (4.5) in the cases
where F and G are Nemytskii operators possessing little regularity only.

Lemma 15.1. Suppose that

0 ≤ t < n/q, 1 ≤ r ≤ p <∞, 1 ≤ κ ≤ q.
Put 1/π := 1/r − 1/p. Then the following maps are bilinear and continuous, uni-
formly with respect to T > 0:

(i) Lπ(JT , L∞)× Lp(JT ,W t
q )→ Lr(JT , Lq), (a, u) 7→ au;

(ii) Lπ(JT , Lν) × Lp(JT ,W t
q )→ Lr(JT , Lκ), (a, u) 7→ au,

if 1/κ− 1/q ≤ 1/ν ≤ 1/κ− 1/q + t/n, where the lower bound can be re-
placed by 0 if Ω is bounded.

(iii) Lπ
(
JT , Lτ (Γ1)

)
× Lp(JT ,W t

q )→ Lr
(
JT , Lκ(Γ1)

)
, (a, u) 7→ aγ1u,

provided t > 1/q and 1/τ ≤ 1/κ− (n/q − t)
/

(n− 1).

Proof. (i) and (ii) follow immediately from Hölder’s inequality and Lemma 4.1.
(iii) is obtained by similar arguments, using the trace theorem in addition. �

We denote by | · |ξ,p and | · |ξ,p,Γ the norm in W ξ
p and W ξ

p (Γ), respectively, where
| · |p := | · |0,p and | · |p,Γ := | · |0,p,Γ
Lemma 15.2. Suppose that t0, t1 ∈ [0, n/q), 1 ≤ r ≤ p <∞, 1 ≤ κ ≤ q, and ν0,
ν1, π0, and π1 belong to [1,∞]. Also suppose that 1 < λ <∞ and

1
π0

=
1
r
− 1
p
,

1
π1

=
1
r
− λ

p
,

1
κ
− 1
q
≤ 1
ν0
≤ 1
κ
− 1
q

+
t1
n

(15.1)

as well as
(λ− 1)

(1
q
− t0
n

)
≤ 1
ν0
− 1
ν1
≤ λ− 1

q
, (15.2)

where the last upper bound can be omitted if Ω is bounded.
Finally, assume that

m0 ∈ Lπ0(JT , Lν0 + L∞), m1 ∈ Lπ1(JT , Lν1), (15.3)
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and a ∈ Car
(
(Ω× JT )× R,R

)
satisfies

|a(·, ·, ξ)| ≤ m0 +m1 |ξ|λ−1, ξ ∈ R. (15.4)

Then (u, v) 7→ a\(u)v maps Lp(JT ,W t0
q ×W t1

q ) into Lr(JT , Lκ + Lq), and

‖a\(u)v‖Lr(JT ,Lκ+Lq) ≤ c
(
1 + ‖u‖λ−1

Lp(JT ,W
t0
q )

)
‖v‖

Lp(JT ,W
t1
q )
.

Proof. Define a1 ∈ Car
(
(Ω× JT )× R,R

)
by a1(·, ·, ξ) := m1 |ξ|λ−1. Then, given

u ∈W t0
q , Hölder’s inequality implies

|a\1(u)(t)|ν0 ≤ |m1(·, t)|ν1

∣∣|u(t)|λ−1
∣∣
ρ

= |m0(·, t)|ν1 |u(t)|λ−1
(λ−1)ρ,

where 1/ρ := 1/ν0 − 1/ν1. If (λ− 1)ρ < 1, which can occur if Ω is bounded, then we
deduce from Hölder’s inequality, applied to u(t) · 1, that |u(t)|λ−1

(λ−1)ρ ≤ c |u(t)|λ−1
1 .

Hence it follows from (15.2) and Sobolev’s embedding theorem that

|a\1(u)(t)|ν0 ≤ c |m1(·, t)|ν1 |u(t)|λ−1
t0,q , t ∈ JT .

Thus, by applying Hölder’s inequality once more,

‖a\1(u)‖Lπ0 (JT ,Lν0 ) ≤ c ‖m1‖Lπ1 (JT ,Lν1 ) ‖u‖λ−1

Lp(JT ,W
t0
q )
,

thanks to
1
π1

=
1
r
− λ

p
=

1
π0
− λ− 1

p
.

Now we infer from Lemma 15.1 and the last condition in (15.1) that

‖a\1(u)v‖Lr(JT ,Lκ) ≤ c ‖u‖λ−1

Lp(JT ,W
t0
q )
‖v‖

Lp(JT ,W
t1
q )

for (u, v) ∈ Lp(JT ,W t0
q ×W t1

q ). Hence the assertion is a consequence of (15.3),
(15.4), and Lemma 15.1. �

Remark 15.3. If π1 =∞ then we can assume, by increasing λ if necessary, that
the first inequality in (15.2) is an equality.

Proof. Suppose that λ < λ. Then π0 = rλ′ > rλ′ =: π0. Furthermore, ν1 > ν0 im-
plies Lν1 ↪→ Lν0 + L∞, by Hölder’s inequality. Thus, since |ξ|λ−1 ≤ 1 + |ξ|λ−1 for
ξ ∈ R, it follows that

m0 +m1 |ξ|λ−1 ≤ m0 +m1 |ξ|λ−1,

where m0 := m0 +m1 ∈ Lπ0(JT , Lν0 + L∞). Now the assertion is obvious. �

First we consider Nemytskii operators depending on u only.

Proposition 15.4. Suppose that 0 < s < n/q and 1 ≤ r <∞. Also suppose that
κ ∈ [1, q], ν ∈ (1,∞], and λ ∈ (1,∞) with

λ
(1
q
− s

n

)
≤ 1
κ
− 1
ν
,

λ

q
≥ s

n
+

1
κ
− 1
ν
,

where the lower bound for λ/q is to be omitted if Ω is bounded. Let

f ∈ Car1
(
(Ω× R+)× R,R

)
satisfy

f(·, ·, 0) ∈ Lr,loc(R+, Lκ + Lq). (15.5)
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Put 1/ν0 := 1/κ− 1/q + s/n and assume that there are

m0 ∈ Lrλ′,loc(R+, Lν0 + L∞), m1 ∈ L∞,loc(R+, Lν)

such that
|∂3f(·, ·, ξ)| ≤ m0 +m1 |ξ|λ−1, ξ ∈ R.

Then
f \ ∈ C1−

b

(
Lrλ,loc(R+,W s

q ), Lr,loc(R+, Lκ + Lq)
)
.

Proof. By the mean-value theorem,

f(·, ·, ξ)− f(·, ·, η) =
∫ 1

0

∂3f
(
·, ·, τξ + (1− τ)η

)
(ξ − η) dτ

for ξ, η ∈ R. From this we infer that

f \(u)− f \(v) =
∫ 1

0

(∂3f)\
(
τu+ (1− τ)v

)
(u− v) dτ.

Hence, setting a := (∂3f)\, it follows from Lemma 15.2 (with p := λr, π0 := rλ′,
π1 :=∞, ν1 := ν, and t0 := t1 := s) that, given T > 0,

‖f \(u)− f \(v)‖Lr(JT ,Lκ+Lq) ≤ c
(
1 + ‖u‖λ−1 + ‖v‖λ−1

)
‖u− v‖

for u, v ∈ Lp(JT ,W s
q ), where ‖ · ‖ denotes the norm in that space. Thus the asser-

tion is implied by (15.5). �

Remark 15.5. It should be observed that Proposition 15.4 is true for 1 < q <∞,
that is, without restriction (4.1). �

Next consider Nemytskii operators depending on u and ∇u. For ~p := (p0, . . . , pk)
and ~s := (s0, . . . , sk) put

L~p,loc(J,W~s
q ) :=

k⋂
j=0

Lpj (J,W
sj
q ).

Proposition 15.6. Suppose that sj ∈ [0, n/q) for j ∈ {0, . . . , 3} with sj ≥ 1 if
j ≥ 1. Also suppose that κ ∈ [1, q], νj ∈ (1,∞], and λj ∈ (1,∞) satisfy

λ0

(1
q
− s0

n

)
≤ 1
κ
− 1
ν0
,

λ0

q
≥ s0

n
+

1
κ
− 1
ν0
,

λ1

(1
q
− s1 − 1

n

)
≤ 1
κ
− 1
ν1

+
1
n
,

λ1

q
≥ s1

n
+

1
κ
− 1
ν1
,

λ2

(1
q
− s2

n

)
≤ 1
κ
− 1
ν2
− 1
n
,

λ2

q
≥ s2 − 1

n
+

1
κ
− 1
ν2
,

λ3

(1
q
− s3 − 1

n

)
≤ 1
κ
− 1
ν3
,

λ3

q
≥ s3 − 1

n
+

1
κ
− 1
ν3
,


(15.6)

where the second column in (15.6) is to be omitted if Ω is bounded. Set t1,j := sj
for j = 0, 1, and t1,j := sj − 1 for j = 2, 3, and put

1/ν0,j := t1,j/n+ 1/κ− 1/q, 0 ≤ j ≤ 3.

Let f ∈ Car1
(
(Ω× R+)× R× Rn,R

)
satisfy

f(·, ·, 0, 0) ∈ Lr,loc(R+, Lκ + Lq) (15.7)
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for some r ∈ [1,∞), and assume that there are

mj ∈ L∞,loc(R+, Lν0,j + L∞), mj ∈ L∞,loc(R+, Lνj ), 0 ≤ j ≤ 3,

such that
|∂3f(·, ·, ξ, η)| ≤ m3 +m0 |ξ|λ0−1 +m1 |η|λ1−1,

|∂4f(·, ·, ξ, η)| ≤ m4 +m2 |ξ|λ2−1 +m3 |η|λ3−1

for (ξ, η) ∈ R× Rn. Then, setting F (u) := f \(u,∇u),

F ∈ C1−
b

(
Lr~λ,loc(R+,W~s

q ), Lr,loc(R+, Lκ + Lq)
)
.

Proof. Fix T > 0 and set

aj(·, ·, ξ) := mj +mj |ξ|λj−1, ak(·, ·, η) := mk |η|λk−1, j = 0, 2, k = 1, 3,

for ξ ∈ R and η ∈ Rn. Also set t0,j := sj for j = 0, 2, and t0,j := sj − 1 for j = 1, 3.
Then (15.6) is equivalent to

(λj − 1)
(1
q
− t0,j

n

)
≤ 1
ν0,j
− 1
νj
≤ λj − 1

q
, 0 ≤ j ≤ 3.

Also put π0,j := rλ′j and π1,j :=∞ for 0 ≤ j ≤ 3. Then

mj ∈ Lπ0,j (JT , Lν0,j + L∞), mj ∈ Lπ1,j (JT , Lνj ), 0 ≤ j ≤ 3.

Since ∂k ∈ L(W s
q ,W

s−1
q ) for s ≥ 1 and 1 ≤ k ≤ n, we easily infer from Lemma 15.2

(which is obviously also true if ξ ∈ R is replaced by η ∈ Rn) that (∂3f)\(u,∇u)v
and (∂4f)\(u,∇u)∇v belong to Lr(JT , Lκ + Lq) and can be estimated by c(B) ‖v‖
for u in a given bounded subset B of Lr~λ(JT ,W~s

q ) and v ∈ Lr~λ(JT ,W~s
q ), where

‖ · ‖ is the norm in that space.
From the mean-value theorem we infer that

F (u)− F (v) =
∫ 1

0

{
(∂3f)\

(
[u, v](τ)

)
(u− v) + (∂4f)\

(
[u, v](τ)

)
(∇u−∇v)

}
dτ,

where
[u, v](τ) := τ(u,∇u) + (1− τ)(v,∇v), 0 ≤ τ ≤ 1.

Thus, thanks to (15.7), the assertion follows. �

Finally, we investigate Nemytskii operators on Γ1.

Proposition 15.7. Suppose that 1/q < s < n/q and 1 ≤ r <∞. Also assume that
κ ∈ [1, q], ν ∈ (1,∞], and λ ∈ (1,∞) satisfy

λ
(n
q
− s
)
≤ (n− 1)

( 1
κ
− 1
ν

)
(15.8)

and that
0 ≤ 1

ρ
≤ 1
κ
− 1
n− 1

(n
q
− s
)
. (15.9)

Assume that g ∈ Car1
(
(Γ1 × R+)× R,R

)
is such that

g(·, ·, 0) ∈ Lr,loc

(
R

+, Lκ(Γ1)
)
, (15.10)

and there are

m0 ∈ Lrλ′,loc

(
R

+, Lρ(Γ1)
)
, m1 ∈ L∞,loc

(
R

+, Lν(Γ1)
)

(15.11)

satisfying
|∂3g(·, ·, ξ)| ≤ m0 +m1 |ξ|λ−1, ξ ∈ R. (15.12)
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Then, setting G := g\ ◦ γ,

G ∈ C1−
b

(
Lrλ,loc(R+,W s

q ), Lr,loc

(
R

+, Lκ(Γ1)
))
.

Proof. Recall that γ1 ∈ L
(
W s
q ,W

s−1/q
q (Γ1)

)
. Hence, given u ∈ Lrλ(JT ,W s

q,B) for
some T > 0 and setting 1/ν̃ := 1/τ − 1/ν for 1 ≤ τ ≤ ν, Lemma 4.1(iv) implies∣∣m1(t) |γ1u(t)|λ−1

∣∣
τ,Γ1
≤ |m1(t)|ν,Γ1 |γ1u(t)|λ−1

(λ−1)ν̃,Γ1
≤ c |m1(t)|ν,Γ1 |u(t)|λ−1

s,q

for t ∈ JT , provided
1
τ
− 1
ν

=
1
ν̃
≥ λ− 1
n− 1

(n
q
− s
)
. (15.13)

Hence, by Hölder’s inequality,∥∥m1 |γ1u|λ−1
∥∥
Lrλ′ (JT ,Lτ (Γ1))

≤ c ‖m1‖L∞(JT ,Lν(Γ1)) ‖u‖λ−1
Lrλ(JT ,W s

q ). (15.14)

From (15.8) we infer that we can find τ satisfying (15.13) and
1
τ
≤ 1
κ
− 1
n− 1

(n
q
− s
)
.

Thus Lemma 15.1(iii) with t := s and p := rλ, guarantees that∥∥m1 |γ1u|λ−1 γ1v
∥∥
Lr(JT ,Lκ(Γ1))

≤ c ‖u‖λ−1 ‖v‖

for u, v ∈ Lrλ(JT ,W s
q,B), where ‖ · ‖ denotes the norm of that space.

Similarly, (15.9), Lemma 4.1(iv), and Hölder’s inequality imply

‖m0γ1v‖Lr(JT ,Lκ(Γ1)) ≤ ‖m0‖Lrλ′ (JT ,Lρ(Γ1)) ‖v‖ (15.15)

for v ∈ Lrλ(JT ,W s
q,B).

By the mean-value theorem

G(u)−G(v) =
∫ 1

0

∂3g
\
(
τγ1u+ (1− τ)γ1v

)
dτ (γ1u− γ1v).

Thus we deduce from (15.11), (15.12), (15.14), and (15.15) that, given a bounded
subset B of Lrλ(JT ,W s

q,B),

‖G(u)−G(v)‖Lr(JT ,Lκ(Γ1)) ≤ c(B) ‖u− v‖
for u, v ∈ B. Now the assertion follows from (15.10). �

Observe that, being local operators, the nonlinear maps of Propositions 15.4–15.7
trivially possess the Volterra property.

16. Nonautonomous Equations

Throughout this section we suppose that hypotheses (A0) are satisfied. More-

over, given Banach spaces X0 and X1 satisfying X1
d
↪→ X0, we denote by H(X1, X0)

the set of all B ∈ L(X1, X0) such that −B, considered as a linear operator in X0

with domain X1, generates a strongly continuous analytic semigroup, usually de-
noted by { e−tB ; t ≥ 0 }, on X0.

We denote by
[

(Eξ, Aξ) ; −1 ≤ ξ ≤ 1
]

the interpolation extrapolation scale gen-
erated by (E0, A0) and a fixed choice of admissible interpolation functors (·, ·)θ,
0 < θ < 1. Then we suppose that

A ∈ Cρ
(
[0,T],H(Eα, Eα−1)

)
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for some ρ ∈ (0, 1).
It should be observed that now the map A is independent of the operator A0. The

latter is employed for constructing the interpolation extrapolation scale of which
some of the spaces Eξ are used only.

Setting 4∗T :=
{

(t, τ) ; 0 ≤ τ < t ≤ T
}

, it is known [3, Corollary II.4.4.2] that
there exists a unique parabolic evolution operator

U ∈ C
(
4∗T,L(Eα−1, Eα)

)
∩ C

(
4T,Ls(Eα−1)

)
,

where 4T is the closure of 4∗T in R2, and Ls(Eα−1) is the space L(Eα−1) endowed
with the strong operator topology.

It is not difficult to see that

A> := A]−α ∈ Cρ
(
[0,T],H(E]1−α, E

]
−α)
)
.

Thus, given T ∈ (0,T], there exists unique parabolic evolution operator U ]T for(
t 7→ A>(T − t)

)
∈ Cρ

(
JT ,H(E]1−α, E

]
−α)
)
.

Put
VT (t, τ) := U ]T (T − τ, T − t), (t, τ) ∈ 4T ,

and

U ? f(t) :=
∫ t

0

U(t, τ)f(τ) dτ, 0 ≤ t ≤ T, f ∈ L1((0,T), Eα−1),

as well as

VT ~ g(t) :=
∫ T

t

V (τ, t)g(τ) dτ, 0 ≤ t ≤ T, g ∈ L1((0, T ), E]−α).

Lemma 16.1. Suppose that

1 < p < 1/(α− β + 1).

Then, setting ε := β − α− 1/p′,

T−εVT~ ∈ L
(
Lp′(JT , E

]
−α), C(JT , E

]
1−β)

)
(16.1)

T-uniformly, that is, these linear operators are bounded independently of T ∈ (0,T].

Proof. Let X0 and X1 be Banach spaces such that X1 ↪→ X0 and suppose that
B ∈ Cρ

(
JT ,H(X1, X0)

)
for some T ∈ J̇T and some ρ ∈ (0, 1). Let UB be the par-

abolic evolution operator for B. Then (cf. [3, Theorem II.5.1.1])

‖UB(t, τ)‖L(Xj) + (t− τ) ‖UB(t, τ)‖L(X0,X1) ≤ c, 0 ≤ τ < t ≤ T, j = 0, 1.

This is the analogue for the nonautonomous case to formula (23) in [5]. Thus, by
arguing as in [5], we see that [5, Lemma 1(i)] holds for UB . Now we apply this to
(X0, X1) := (E]−α, E

]
1−α) and B :=

(
t 7→ A>(T − t)

)
to obtain the assertion. �

From (16.1) we infer that

[VT~]′ ∈ L
(
M(JT , Eβ−1), Lp(JT , Eα)

)
. (16.2)

The proof of [5, Lemma 6] remains valid in this case also to show that

[VT~]′f = U ? f, f ∈ L1(JT , Eβ−1).

Moreover, (16.2) is independent of T in the sense that

[VS~]′
∣∣M([0, T ], Eβ−1

)
= [VT~]′, 0 < T < S ≤ T.
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It is also independent of p ∈
(
1, 1/(α− β + 1)

)
in the obvious sense, thanks to

Lp(JT , Eβ−1) ↪→ Lq(JT , Eβ−1) for 1 ≤ q < p. For this reason we put

U? := [VT~]′.

Then Lemma 16.1 implies

T−εU? ∈ L
(
M
(
[0, T ], Eβ−1

)
, Lp

(
(0, T ), Eα

))
T-uniformly.

Lemma 16.2. Corollary 2 and Proposition 1 of [5] remain valid in the nonauton-
omous case.

Proof. It is not difficult to verify that the trace theorem, that is, Corollary 2 of [5],
remains valid.

To show that also Proposition 1 continues to hold, we have to modify its proof
(cf. [5, Proposition 1]) by observing that now w := (−∂ +A>)v is no longer infin-
itely smooth but belongs to Cρ(JT , E

]
−α). By invoking [3, Theorem II.1.2.1 and

Proposition V.2..5.2] we find again that

v = V (T, ·)v(T ) + VT ~ w.

Now the remainder of the proof of [5, Proposition 1] gives the assertion. �

Observe that now (12.1) is nonautonomous, usually written as

u̇+A(t)u = µ on [0,T]. (16.3)

It is now clear that the proof of [5, Theorem 4] remains valid to show that, given
T ∈ (0,T] and µ ∈M

(
[0, T ], Eβ−1

)
, problem (16.3) has a unique weak L1(Eα)-

solution u(µ), namely u(µ) = U ? µ, and

u(µ) ∈
⋂

1≤p<1/(α−β+1)

Lp
(
(0, T ), Eα

)
.

Suppose that E0 is an ordered Banach space. Then A is said to be resolvent positive
if A(t) has this property for each t ∈ [0,T].

Proposition 16.3. Let E0 be an ordered Banach space and suppose that A is
resolvent positive. If µ is positive then u(µ) is positive as well.

Proof. Theorem V.2.7.2 in [3] guarantees that A> is also resolvent positive. Hence
we infer from [3, Theorems II.6.4.1 and II.6.4.2] that VT is positive for 0 < T ≤ T.
Now the proof of [5, Proposition 3] applies to show that µ ≥ 0 implies U ? µ ≥ 0. �

17. Compactness

We continue to presuppose the hypotheses of the preceding section. Furthermore,
given Banach spaces X and Y , we denote by K(X,Y ) the space of all compact linear
maps from X into Y .

Proposition 17.1. Suppose that A0 has a compact resolvent and assumption (1.4)
is satisfied. Then

(∂ +A)−1 ∈ K
(
M
(
[0,T], Eβ−1

)
, Lp

(
(0,T), Eα

))
.
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Proof. Since (∂ +A)−1 = U? = [VT~]′, it suffices to prove that

VT~ ∈ K
(
Lp′
(
(0,T), E]−α

)
, C
(
[0,T], E]1−β

))
.

Fix p in
(
1, 1/(α− β + 1)

)
and β1 in (α, β) satisfying p < 1/(α− β1 + 1), and set

ε1 := β1 − α− 1/p′. Then (16.1) holds with β and ε replaced by β1 and ε1, respec-
tively. From this and an obvious translation of the independent variable we deduce
that, setting V := VT,∥∥∥∫ t

s

V (τ, s)g(τ) dτ
∥∥∥
E]1−β

≤ c(t− s)ε1 ‖g‖Lp′ (JT,E
]
−α) (17.1)

for 0 ≤ s < t ≤ T. We also observe that

V (τ, s) = V (t, s)V (τ, t), 0 ≤ s < t ≤ τ ≤ T, (17.2)

and, given any g ∈ E]1−β , that V (t, s)g → g in E]1−β as t− s→ 0+. Indeed, this
follows by interpolation, thanks to (1.4), from the strong continuity of V on E]−α
and E]1−α (cf. [3, Theorems II.4.4.1 and V.2.5.3]). Consequently, if (yk) is a con-
verging sequence in E]1−β then(

V (tk, sk)− 1
)
yk → 0 in E]1−β as tk − sk → 0+. (17.3)

Now let M be a bounded subset of Lp′(JT, E
]
−α). Then (16.1) (with β1 and ε1)

implies the boundedness of V ~M in C(JT, E
]
1−β1

). By [3, Theorem V.1.5.1] the
embedding E]1−β1

↪→ E]1−β is compact. Hence, by the Arzéla-Ascoli theorem, it
suffices to show that the set V ~M is equicontinuous in C(JT , E

]
1−β).

Assume to the contrary that there exist 0 ≤ sk < tk ≤ T and gk ∈M such that
tk − sk → 0 and

‖V ~ gk(sk)− V ~ gk(tk)‖E]1−β ≥ c > 0, k ∈ N. (17.4)

Since the sequence
(
V ~ gk(tk)

)
is bounded in E]1−β1

we can assume that it is
convergent in E]1−β . Consequently,

‖V ~ gk(sk)− V ~ gk(tk)‖E]1−β

≤
∥∥∥∫ tk

sk

V (τ, sk)gk(τ) dτ
∥∥∥
E]1−β

+
∥∥(V (tk, sk)− 1

)
V ~ gk(tk)

∥∥
E]1−β

≤ c(tk − sk)ε1 + o(1)

as k →∞, thanks to (17.1)–(17.3). But this contradicts (17.4) and proves the
assertion. �

Suppose that 1 ≤ r <∞ and α ≤ γ < β. Given (x, f) ∈ Eβ−1/r × Lr(JT, Eβ−1),
set u(x, f) := u(f + x⊗ δ0). Then it is not difficult to verify that the proof of [5,
Theorem 5] carries over to the present situation. Hence(

(x, f) 7→ u(x, f)
)
∈ L

(
Eβ−1/r × Lr(JT, Eβ−1),W1

r

(
JT, (Eγ−1, Eγ)

))
. (17.5)

Denoting by γ0 the trace operator at t = 0, we also write (∂ +A, γ0)−1 for the
map (17.5) since u(x, f) solves the nonautonomous initial value problem

u̇+A(t)u = f(t), 0 < t ≤ T, u(u) = x. (17.6)

Now we can prove the analogue of Proposition 17.1 for strong solutions of (17.6).
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Proposition 17.2. Suppose that A0 has a compact resolvent.
(i) If 1 < r < 1/(β − α) and 1 ≤ p < 1

/
(α− β + 1/r) then

(∂ +A, γ0)−1 ∈ K
(
Eβ−1/r × Lr

(
(0,T), Eβ−1

)
, Lp

(
(0,T), Eα

))
.

(ii) If 1/(β − α) < r <∞ and 0 ≤ ρ < β − α− 1/r then

(∂ +A, γ0)−1 ∈ K
(
Eβ−1/r × Lr

(
(0,T), Eβ−1

)
, Cρ

(
[0,T], Eα

))
.

Proof. In case (i) fix γ ∈ (α, β) such that p < 1
/

(α− γ + 1/r). In case (ii) choose
γ ∈ (α, β) such that 1/(γ − α) < r and ρ < γ − α− 1/r. Then the assertions follows
from (17.5) and [5, Theorem 3]. �

18. A Perturbation Theorem

In this section we prove a general perturbation theorem for generators of analytic
semigroups. It is the basis for the proof of the positivity result of the next section.

Theorem 18.1. Let X0 and X1 be Banach spaces such that X1
d
↪→ X0 and suppose

that Xθ = {X0, X1}θ for some θ ∈ (0, 1) and some interpolation functor {·, ·}θ of
exponent θ. If A ∈ H(X1, X0) and B ∈ L(X1, Xθ) then A + B ∈ H(X1, X0). Fur-
thermore, given r > 0, there exists ω > 0 such that { z ∈ C ; Re z ≥ ω } belongs to
the resolvent set of −(A + B) for B ∈ Br := rBL(X1,Xθ), and the map

Br → L(X0, X1), B 7→ (λ+ A + B)−1 (18.1)

is analytic for each λ with Reλ ≥ ω.

Proof. Since A ∈ H(E1, E0) there exist ω0 > 0 and M ≥ 1 such that the half-plane
{ z ∈ C ; Re z ≥ ω0 } belongs to the resolvent set of −A, and

R(λ) := (λ+ A)−1 ∈ L(X0, X1)

with

‖R(λ)‖L(Xj ,Xk) ≤M |λ|k−j−1, Reλ ≥ ω0, j, k ∈ {0, 1}, j ≤ k, (18.2)

(cf. [3, Section I.1.2]). Thus, by interpolation,

‖R(λ)‖L(Xθ,X1) ≤ κM |λ|θ−1, Reλ ≥ ω0,

for some κ > 0. Consequently, for k ≥ 2,∥∥(BR(λ)
)k∥∥
L(X0)

≤ c
∥∥(BR(λ)

)k∥∥
L(X0,Xθ)

≤ c ‖BR(λ)‖k−1
L(Xθ) ‖BR(λ)‖L(X0,Xθ)

≤ c
(
r ‖R(λ)‖L(Xθ,X1)

)k−1
r ‖R(λ)‖L(X0,X1)

≤ c rM
(
rκM |λ|θ−1

)k−1

for Reλ ≥ ω0 and B ∈ Br. Thus there exists ω := ω(r) ≥ ω0 with rκM |λ|θ−1 ≤ 1/2
for Reλ ≥ ω. Hence

D(λ) :=
∞∑
k=2

(−1)k
(
BR(λ)

)k ∈ L(X0)

and
‖D(λ)‖L(X0) ≤ c rM, Reλ ≥ ω.
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It is easily verified that(
1 + BR(λ)

)(
1− BR(λ) +D(λ)

)
= 1 =

(
1− BR(λ) +D(λ)

)(
1 + BR(λ)

)
for Reλ ≥ ω. Thus 1 + BR(λ) is invertible and(

1 + BR(λ)
)−1 = 1− BR(λ) +D(λ) ∈ L(X0)

with ∥∥(1 + BR(λ)
)−1∥∥

L(X0)
≤ 1 + 2c rM =: M1(r) (18.3)

for Reλ ≥ ω and B ∈ Br. Now λ+ A + B =
(
1 + BR(λ)

)
(λ+ A) implies

(λ+ A + B)−1 = R(λ)
(
1 + BR(λ)

)−1
, Reλ ≥ ω, (18.4)

and we infer from (18.2) and (18.3) that

‖(λ+ A + B)−1‖L(X0,Xk) ≤MM1(r) |λ|k−1, Reλ ≥ ω, B ∈ Br.

Thanks to [3, Remark I.1.2.1(a)], this proves that A + B ∈ H(X1, X0). Further-
more, given λ with Reλ ≥ ω, the analyticity of the map

L(X1, Xθ)→ L(X0), B 7→ 1 + BR(λ),

the analyticity of the inversion map C 7→ C−1, (18.3), and (18.4) imply the analyt-
icity of (18.1). �

19. Positivity

In this last section we presuppose hypotheses (P0)–(P2) and use the notations
of Part 2. Furthermore, given a Banach space X0, we denote by H(X0) the set
of negative generators of strongly continuous analytic semigroups on X0. Conse-

quently, H(X1, X0) = H(X0) ∩ L(X1, X0) if X1
d
↪→ X0. If X0 is an ordered Banach

space then H+(X0) is the set of all resolvent positive operators in H(X0), and
H+(X1, X0) := H(X1, X0) ∩H+(X0).

Lower Order Perturbations of Elliptic Generators

Lemma 19.1. Suppose that

(~a,~c, a0, b) ∈ (L∞)n × (C1
0 )n × L∞ × C1(Γ1) (19.1)

and define (A∗,B∗) by

A∗u := Au+ ~a · ∇u−∇ · (~cu) + a0u, B∗u := Bu+ bγu, (19.2)

where b |Γ0 := 0. Let A∗0 be the E0-realization of (A∗,B∗). Then A∗0 ∈ H+(E0).

Proof. It is known that A∗ ∈ H(E0), and (λ+A∗)−1 ∈ L(Lp,W 2
p ) for p ∈ (1,∞)

and every sufficiently large λ > 0. Fix any λ ≥ |a0|∞ + |∇ · ~c |∞ belonging to the
resolvent set of −A∗. Then, given f ∈ D+ := { v ∈ D ; v ≥ 0 }, it follows that
u := (λ+A∗)−1f ∈W 2

p for p > n. Thus we infer from [1, Theorem 6.1], by observ-
ing that the proof given there remains valid under conditions (19.1), that u ≥ 0,
provided Ω is bounded. If Ω is unbounded then we obtain u ≥ 0 by using, in ad-
dition, the arguments of the proof of Lemma 3.1(iii). Since D+ is dense in the
positive cone of E0, the assertion follows. �
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For B ∈ L(Eα, Eβ−1), we denote by B0 the restriction of B onto E0, considered
as a linear operator in E0, that is, B0 is the E0-realization of B. We write[ (

Eξ(A0 +B0), (A0 +B0)ξ
)

; −1 ≤ ξ ≤ 1
]

for the interpolation extrapolation scale generated by (E0, A0 +B0) and the inter-
polation functors (3.3), if A0 +B0 ∈ H(E0). We also set

Hα,β :=
{
B ∈ L(Eα, Eβ−1) ; A0 +B0 ∈ H+(E0),

Eξ(A0 +B0) .= Eξ for ξ ∈ {α, β − 1}
}
,

and Hα,β is the closure of Hα,β in L(Eα, Eβ−1). Observe that Theorem 18.1 implies
A+B ∈ H(Eα, Eα−1) for B ∈ L(Eα, Eβ−1), hence for B ∈ Hα,β .

Now we suppose that

• s ∈ [0, 2− n/q′) ∩ Iq, ν0, ν1, ρ ∈ [1,∞);

• 1
q′
≤ 1
ν0
≤ 1
q′

+
s

n
;

• 1
q′
≤ 1
ν1
≤ 1
q′

+
s− 1
n

if s ≥ 1;

• 0 ≤ 1
ρ
≤ 1− 1

n− 1

(n
q
− s
)

if s > 1/q;


(19.3)

where the lower bounds for 1/ν0 and 1/ν1 are to be replaced by 0 if Ω is bounded.
For abbreviation, we set L(ν,∞) := Lν + L∞ for ν ∈ [1,∞). Then

B :=


{0} × (Lν0)n × L(ν0,∞) × {0}, 0 ≤ s < 1− n/q′,
{0} × {0} × L(ν0,∞) × {0}, 1− n/q′ ≤ s < 1/q,

{0} × {0} × L(ν0,∞) × Lρ(Γ1), 1/q < s < 1,

(L(ν1,∞))n × {0} × L(ν0,∞) × Lρ(Γ1), 1 ≤ s < 2− n/q′.

Given b := (~a,~c, a0, b) ∈ B, we define B := B(b) by

〈v,Bw〉 := 〈v,~a · ∇w + a0w〉+ 〈∇v,~cw〉+ 〈γv, bγw〉Γ1

for (v, w) ∈ DB ×W s
q,B.

Recall that 2α = s and 2β = σ.

Lemma 19.2. Suppose that

s < σ <

{
1− n/q′ if s < 1− n/q′,
2− n/q′ otherwise.

(19.4)

Then B(b) ∈ L(Eα, Eβ−1) for b ∈ B and
(
b 7→ B(b)

)
∈ L

(
B,L(Eα, Eβ−1)

)
.

Proof. It is an easy consequence of (19.3), Lemma 4.1, and Hölder’s inequality that

W 2−σ
q′,B ×W

s
q,B → R, (v, w) 7→

〈
v,B(b)w

〉
is a well-defined continuous bilinear form depending continuously on b ∈ B. Since
W 2−σ
q′,B ×W s

q,B = E]1−β × Eα, the assertion follows. �

Lemma 19.3. Let assumptions (19.3) and (19.4) be satisfied. Then B(b) ∈ Hα,β
for b ∈ B.
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Proof. Let b ∈ B be given. Since C1
0 × C1(Γ1) is dense in Lν0 × Lρ(Γ1) there exist

bj ∈ (L∞)n × (C1
0 )n × L∞ × C1(Γ1), j ∈ N,

such that bj → b in B. Define (A∗j ,B∗j ) as in Lemma 19.1, but with (~a,~c, a0, b) re-
placed by bj . Then that lemma guarantees that A∗0,j , the E0-realization of (A∗j ,B∗j ),
belongs to H+(E0). Observe that, thanks to ~cj |Γ = 0, the formally dual problem(
(A∗j )], (B∗j )]

)
satisfies (B∗j )] = B∗j (cf. [2, Section 7]). Since B∗j = B if b = bj = 0 it

follows from (3.2) that

Eξ(A∗0,j) = Eξ, ξ ∈ {α, β − 1}, j ∈ N, (19.5)

provided we choose bj such that bj = 0 if b = 0, which we do. (Note that E1(A∗0,j)
is different from E1, in general.)

Lemma 19.2 implies Bj := B(bj) ∈ L(Eα, Eβ−1). Furthermore, it follows from
(19.5) thatA∗α,j , the Eα-realization ofA∗0,j , is given byA+Bj (cf. [2, Theorem 8.3]).
This proves that Bj ∈ Hα,β . Now the assertion follows from Lemma 19.2. �

The Generalized Maximum Principle

Now we fix any T > 0, set J := [0, T ], and introduce the following assumption:

• 1 ≤ r <∞ with σ − 2/r ∈ Iq;

• 1
π

:=
{

1/r − 1/p if r ≤ p < 2
/

(s− σ + 2/r),
1/r if r > 2/(σ − s);

• 0 ≤ 2p < σ − s− 2/r if r > 2/(σ − s);
• b = (~a,~c, a0, b) ∈ Lπ(J,B).


(19.6)

We also set

Mq :=

{
~Msing, 0 ≤ s < 1− n/q′,

(M+ Lq)× {0} ×M(Γ1), 1− n/q′ ≤ s < 2− n/q′.

Finally, we put

Mr,q,σ := Mr,q,σ(J) :=

{
{0} ×M(J,Mq), r = 1,

W
σ−2/r
q,B × Lr(J,Mq), r > 1.

Then, given (u0, ~µ ) ∈Mr,q,σ, we consider the nonautonomous linear problem

∂tu+A∗(t)u = µΩ + u0 ⊗ δ0 in Ω× J,
B∗(t)u = µΓ on Γ× J,

}
(19.7)

where
(
A∗(t),B∗(t)

)
is defined by (19.2).

After these preparations we can prove the main result of this section, the fol-
lowing generalized maximum principle. Although the above hypotheses seem to be
rather technical, they are precisely the ones one arrives at by linearizing problems
(4.23) and (4.26).

Theorem 19.4. Let assumptions (19.6) be satisfied and suppose that (u0, ~µ ) be-
longs to Mr,q,σ. Then problem (19.7) has a unique Xs

p,q-solution on J . It is positive
if (u0, ~µ ) ≥ 0.
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Proof. Given b ∈ Lπ(J,B), define B(b) point-wise, that is, B(b)(t) := B
(
b(t)

)
for

t ∈ J . Lemma 19.2 easily implies that B(b) ∈ Lπ
(
J,L(Eα, Eβ−1)

)
and(

b 7→ B(b)
)
∈ L

(
Lπ(J,B), Lπ

(
J,L(Eα, Eβ−1)

))
. (19.8)

Set
µ(u) := −B(b)u+ χ̃(~µ ) + u0 ⊗ δ0, u ∈ Xs

p,q(J),

where

χ̃(~µ ) :=

{
χsing(0, ~µ ) if s < 1− n/q′,

χ(0, ~µ ) otherwise.

Then it follows from (19.8), Lemma 15.1(iii), the assumptions on (u0, ~µ ), (4.15),
(4.22), and Remark 4.3(a) that

µ ∈ C1−
b

(
Xs
p,q(J),M(J,Eα−1)

)
if r = 1,

and
µ ∈ C1−

b

(
Xs
p,q(J), Lr(J,Eα−1)

)
otherwise.

Furthermore, Theorems 4.4 and 4.5 guarantee that u ∈ Xs
p,q(J) is an Xs

p,q-solution
of (19.7) on J iff it is such a solution of u̇+Au = µ(u) on J . Hence the asserted
unique global solvability of (19.7) is a consequence of Theorems 3.2–3.4 and Re-
mark 2.4(b).

Let b ∈ Lπ(J,B) be fixed. Then there exists a sequence (bj) in C1(J,B) con-
verging in Lπ(J,B) towards b. Set Bj := B(bj) for j ∈ N, and B := B(b). Then
we infer from (19.8) that Bj → B in Lπ

(
J,L(Eα, Eβ−1)

)
. Also define µj by replac-

ing B in the definition of µ by Bj . It is an obvious consequence of Lemma 15.1(iii)
that µj → µ in C1−

b

(
Xs
p,q(J),M(J,Eα−1)

)
, resp. in C1−

b

(
Xs
p,q(J), Lr(J,Eα−1)

)
,

uniformly on bounded subsets of Xs
p,q. Hence the continuity assertions of The-

orems 3.2–3.4 imply that uj → u in Xs
p,q(J), where uj is the Xs

p,q-solution of (19.7)
with b replaced by bj . Consequently, uj ≥ 0 for all j ∈ N implies u ≥ 0. Hence it
suffices to prove the positivity assertion for the case that b = (~a,~c, a0, b) ∈ C1(J,B).
It is an obvious consequence of Lemma 19.2 that this implies

B ∈ C1
(
J,L(Eα, Eβ−1)

)
. (19.9)

Thus let (19.9) be satisfied. Then we infer from Theorem 18.1 that(
t 7→ A(t) := A+B(t)

)
∈ C1

(
J,H(Eα, Eα−1)

)
.

Furthermore, Lemma 19.3 shows that A(t) is resolvent positive for each t ∈ J . Now
we deduce from Proposition 16.3 that the nonautonomous problem

v̇ +A(t)v = χ̃(~µ ) + u0 ⊗ δ0, t ∈ J, (19.10)

has a unique weak L1(Eα)-solution u, and that it is positive if χ̃(~µ ) + u0 ⊗ δ0 ≥ 0.
Note that, thanks to Remark 4.3(b), the latter inequality is satisfied if (u0, ~µ ) ≥ 0.
Thus u ≥ 0 if (u0, ~µ ) ≥ 0. Clearly, (19.10) coincides with the weak formulation
of (19.7). Thus the unique Xs

p,q-solution u of (19.7) on J is a weak L1(Eα)-
solution of (19.10). Consequently, u = u by uniqueness, which shows that u ≥ 0 if
(u0, ~µ ) ≥ 0. This proves everything. �
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