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Abstract. We study optimal controls problems with final observation. The

governing parabolic equations or systems involve superlinear nonlinearities and
their solutions may blow up in finite time. Our proof of the existence, regularity

and optimality conditions for an optimal pair is based on uniform a priori

estimates for the approximating solutions. Our conditions on the growth of the
nonlinearity are essentially optimal. In particular, we also solve a longstanding

open problem of J.L. Lions concerning singular systems.

1. Introduction

In his book [21], J.L. Lions studied several optimal control problems governed
by nonlinear parabolic equations of the form

∂ty −∆y = yλ + u, x ∈ Ω, t ∈ [0, T ], (1.1)

where Ω is a bounded domain in Rn, λ ∈ {2, 3}, u = u(x, t) is the control and y =
y(x, t) is the state variable. Equation (1.1) is complemented by suitable boundary
and initial conditions, for example

y = 0 on ∂Ω× (0, T ), y(·, 0) = y0, (1.2)

where y0 ∈ L∞(Ω). If u is regular enough then the state problem (1.1)-(1.2)
possesses a unique strong solution y = y(u) defined on the maximal existence
interval Ju (see Section 2 for the definition of a strong solution). However, even
for smooth controls u, the solution y(u) need not be global – the interval Ju need
not coincide with [0, T ]. In this case, y(u) blows up at the time t(u) := supJu, i.e.
it develops a singularity and leaves its natural regularity class. After blow-up, the
solution either can be continued in a weak sense (the blow-up is incomplete [16])
or such continuation is not possible (the solution blows up completely [9]).

Let Uad denote the set of admissible controls,

UG
ad := {u ∈ Uad : the solution y(u) is global},

and J = J(y, u) be the cost functional. A standard way to solve the optimal control
problem

minimize J(y(u), u) over u ∈ UG
ad (1.3)

is to consider controls uk, k = 1, 2, . . . , such that (J(y(uk), uk)) is a minimizing
sequence for (1.3) and to show that a suitable subsequence of ((y(uk), uk)) converges
to an optimal pair (y(u), u). Assume, for example, that Uad is a (weakly closed)
subset of a reflexive Banach space. If J is coercive with respect to u (or Uad is
bounded) then the sequence (uk) is bounded and we may assume that uk → u in
the weak topology. Similarly, if J is coercive with respect to y (in a suitable space
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of functions defined in Q := Ω× [0, T ]), then the sequence (y(uk)) is bounded and
standard compactness results for the state problem enable us to pass to the limit
in order to find a minimizer for (1.3).

If we consider problems with final observation (where J depends just on u and the
final value y(·, T )), then the coerciveness of J provides a priori estimates for uk and
final values of y(uk). However, such estimates are, in general, not sufficient for the
uniform boundedness of solutions y(uk) on the whole interval [0, T ]. Consequently,
we have to find sufficient conditions on λ and/or other parameters of the problem
which guarantee a priori bounds for global solutions y of (1.1)-(1.2) depending only
on suitable norms of u and y(·, T ).

Let us discuss the question of a priori bounds for problems with final observation
in the particular setting of [21, Section I.10]. Fix N > 0, q ≥ 1, yd ∈ Lq(Ω) and set

J(y, u) :=
∫

Ω

|y(x, T )− yd(x)|q dx+N

∫
Q

u2(x, t) dx dt,

Assume also that Uad ⊂ L2(Q) is closed and convex, and UG
ad 6= ∅. If λ = 2, q = 3

and n ≤ 3 then [21, Theorem I.10.1] and its proof guarantee the required bounds
for the solutions y(uk), hence the existence of an optimal pair (y, u). If, in addition,
n ≤ 2, then optimality conditions for the optimal pair (y, u) were derived in [21,
Theorem I.10.3]. On the other hand, the existence of an optimal pair in the case
λ = 3, q = 4 (or λ = 2, q < 3) and the optimality conditions for n = 3 were left
as open problems, see [21, Remarks I.10.1, I.10.2 and I.10.4]. Our results give, in
particular, positive answers to all those open problems. In fact, we consider an
arbitrary dimension n, exponents q ≥ 2, λ > 1 (where either yλ := |y|λ−1y or
yλ := |y|λ) and controls u ∈ Lr([0, T ], L2(Ω)), r ≥ 2, and find sufficient conditions
on q, λ and r that guarantee the existence of optimal controls and the optimality
conditions (see Section 2 for precise statements of our results).

We also show that many of our conditions are essentially optimal. In particular,
if Uad ⊂ L∞([0, T ], L2(Ω)) then our sufficient conditions on q and λ guaranteeing
the existence of optimal controls have the form

λ <
n+ 2

(n− 2)+
and q ∈

(
(λ− 1)

n

2
,

2n
(n− 4)+

)
,

where a+ := max(a, 0) and a/b+ := ∞ if a > 0 and b ≤ 0. The upper bound for q is
required by the (low) regularity of controls u: it guarantees y(u) ∈ C([0, T ], Lq(Ω))
so that J(y(u), u) is defined. If q < (λ− 1)n/2 or λ > (n+ 2)/(n− 2)+ and n ≤ 10
then we show that problem (1.3) need not be solvable even if the set Uad is a
compact subset of C∞(Ω̄× [0, T ]) and UG

ad 6= ∅, see Remark 3.4. This nonexistence
result is due to the fact that the set UG

ad need not be closed in Uad: if uk ∈ UG
ad,

uk → u ∈ Uad, then the limiting solution y(u) may blow-up at t(u) < T . The
conditions on q show the importance of a good choice of the cost functional in
order to control the equation. On the other hand, if λ > (n+ 2)/(n− 2)+ then (a
strong) solvability of our control problem cannot be guaranteed for any q.

The solvability of (1.3) with Uad, J as above was proved by Imanuvilov [18,
Theorem 2.1] and Fursikov [15, Theorem 4.3] for r = q = 2 and any λ > 1 but
their function y(u) corresponding to the optimal control u need not be a strong
solution in our sense. In fact, the results of [18, 15] also apply to the example of
Remark 3.4(i), where y(u) blows up at t(u) < T (but can be continued in a weak
sense). This lack of regularity causes serious problems in establishing the optimality
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conditions. In order to obtain these conditions, Imanuvilov and Fursikov have to
assume q = 2 ≥ (λ − 1)n/2, see [15, Theorem 5.1]. Note also that the proofs in
[18, 15] substantially use the choice q = 2 hence require λ ≤ 1 + 4/n. In particular,
if n = 3 then their method cannot be used in the case λ = 3, q = 4 mentioned
above.

Our proof of a priori estimates is based on energy and perturbation arguments in
[25, 27]. The same approach can be used for more general problems. For example,
the case of general second-order elliptic operators and/or general nonlinearities
with polynomial growth can be solved by adopting the proofs in [26]. Similarly, if
one considers linear or nonlinear parabolic equations complemented by nonlinear
Neumann boundary conditions of the form ∂νy = yλ or ∂νy = yλ + u then one can
use estimates in [28] and [11].

In this paper we consider two modifications of the model problem (1.1)-(1.2): a
problem with multiplicative control and a problem governed by a parabolic system.

In the case of multiplicative control we replace the state equation (1.1) by

∂ty −∆y = yλ + uy, x ∈ Ω, t ∈ [0, T ], (1.4)

and we prove the required a priori bounds by using the energy and perturbation
arguments mentioned above. This study is motivated by the fact that multiplicative
controls often appear in the literature.

In Section 6 we investigate the existence of optimal controls for problems gov-
erned by the system

∂ty1 −∆y1 = κy1y2 − by1 + u, x ∈ Ω, t ∈ [0, T ],

∂ty2 − d∆y2 = ay1, x ∈ Ω, t ∈ [0, T ],

}
(1.5)

which is complemented by suitable boundary and (nonnegative) initial conditions.
Here d ≥ 0, κ, a > 0 b ∈ R and u is a nonnegative control. System (1.5) (with
d = 0 and u = 0) was derived in [19] as a model for the dynamics of a nuclear
reactor close to a stationary state. The state variables y1 and y2 correspond to the
neutron flux and the temperature, respectively, and the constant κ represents the
temperature feedback (cf. also [29]). Since this system (with d ≥ 0, κ > 0 and
u = 0) possesses an interesting dynamics with possible blow-up in finite time, it
became the object of study of many mathematical papers (see [10], [17], [23], [24],
[31], [32] and the references therein). We consider the case d = κ = 1 and study
the corresponding optimal control problem with final observation. Since the energy
arguments used in the case of equations (1.1) or (1.4) cannot be applied, we use a
different approach to the proof of a priori bounds.

This paper is organized as follows. In Section 2 we formulate our main results
(Theorems 2.3, 2.6, 2.8 and 2.10). Sections 3 and 4 are devoted to the proof
of existence of optimal controls and optimality conditions, respectively, for the
problem governed by the model equation (1.1). Problems governed by (1.4) and
(1.5) are studied in Sections 5 and 6, respectively. In the Appendix we recall, for the
reader’s convenience, from [6] the basic existence, uniqueness and stability results
for semilinear parabolic equations which are the fundament for our investigations.

2. Main Results

First we introduce some notation which will be used throughout this paper. If
a, b ∈ R then we denote a ∨ b := max(a, b) and a ∧ b := min(a, b). If p ∈ (1,∞)
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then p′ is the dual exponent defined by 1/p + 1/p′ = 1. For X ⊂ Rn we write
D(X) for the space of smooth functions with compact support in X. The symbols
w and w∗ are used to denote the weak and weak-star topology, respectively. By
Ω we mean an open bounded subset of Rn having a smooth boundary Γ. We also
set Q := Ω × J and Σ := Γ × J , where J := [0, T ] with a fixed T > 0. By B we
denote one of the boundary operators γ, ∂ν , where γ is the trace operator and ∂ν

the derivative with respect to ν, the outer unit normal on Γ.
Let s ∈ [−2, 2] and 1 < q < ∞. We write W s

q := W s
q (Ω) for the usual Sobolev-

Slobodeckii spaces; hence W 0
q = Lq(Ω). If B = γ then we set

W s
q,B :=


{
u ∈W s

q ; Bu = 0
}
, 1/q < s ≤ 2,

W s
q , 0 ≤ s < 1/q,

(W−s
q′,B)′, −2 ≤ s < 0, s 6= −1 + 1/q,

where X ′ denotes the dual space to X. If B = ∂ν then

W s
q,B :=


{
u ∈W s

q ; Bu = 0
}
, 1 + 1/q < s ≤ 2,

W s
q , 0 ≤ s < 1 + 1/q,

(W−s
q′,B)′, −2 ≤ s < 0, s 6= −2 + 1/q.

In either case the dual spaces are determined by means of the standard Lq-duality
pairing. We also set Sq := {−2 + 1/q,−1 + 1/q, 1/q, 1 + 1/q}.

Weak and Strong Solutions

Consider the problem

∂ty −∆y = f in Q,
By = 0 on Σ,

y(·, 0) = y0 in Ω,

 (2.1)

where y0 ∈ L1(Ω) and f ∈ L1(Q).

Definition 2.1. Assume that s ∈ [0, 2] \ Sq and 1 < p, q < ∞. A weak Lp(W s
q )-

solution of (2.1) on [0, t], 0 < t ≤ T , is a function y ∈ Lp,loc([0, t),W s
q,B) such

that ∫ t

0

∫
Ω

(−∂tϕ−∆ϕ)y dx dτ =
∫ t

0

∫
Ω

ϕf dx dτ +
∫

Ω

ϕ(0)y0 dx

for any ϕ ∈ D(Ω× [0, t)) satisfying Bϕ = 0 on Γ× [0, t]. It is global if t = T and
y ∈ Lp((0, T ),W s

q,B).

The differential operator C := 1 −∆ defines an isomorphism between W 2
q,B and

Lq(Ω) and this isomorphism admits a unique extension to an isomorphism C = Cs

between W s
q,B and W s−2

q,B for any s ∈ [0, 2] \ Sq (see [1]). Moreover, −A := 1 −
C generates a strongly continuous analytic semigroup {e−tA ; t ≥ 0} on W r

q,B for
r ∈ [−2, s]\Sq, and

(t 7→ e−tAx) ∈ C
(
[0, T ],W r

q,B
)
∩ C

(
(0, T ],W s

q,B
)

(2.2)

with
‖e−tAx‖W s

q,B
≤ ct(r−s)/2 ‖x‖W r

q,B
, 0 < t ≤ T, (2.3)
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for x ∈ W r
q,B (cf. [1, Theorem 5.2] and [2, Theorem V.2.1.3]). Then, provided

1 < q < n/(n − 2) and 0 ≤ s < 2 − n/q′, (the weak form of) problem (2.1) is
equivalent to the abstract evolution equation

ẏ +Ay = f in [0, T ], y(0) = y0, (2.4)

(see [6] for details).

Definition 2.2. A weak Lp(W s
q )-solution y of (2.1) on [0, t] is a strong Lp(W s

q )-
solution if

y ∈W 1
r,loc([0, t),W

s−2
q,B ) ∩ Lr,loc([0, t),W s

q,B)

for some r > 1 and (2.4) is satisfied a.e. in [0, t]. If, in addition, y ∈ Cρ([0, t),W s
q,B)

for some ρ ∈ [0, 1) then y is called strong Cρ(W s
q )-solution.

A Model Problem

Now we are ready to formulate the main results of this paper. First consider the
optimal control problem (1.3) for the model state equation

∂ty −∆y = |y|λ−1y + u in Q,
By = 0 on Σ,

y(·, 0) = y0 in Ω,

 (2.5)

where B ∈ {γ, ∂ν}. As already announced in the introduction, instead of the opera-
tor −∆ and the model nonlinearity |y|λ−1y we could handle a general second-order
elliptic operator A and a general superlinear function f(x, y) satisfying suitable
growth conditions (see [26] for details).

In the following theorem we consider cost functionals J which depend on the
final value of y and which satisfy the coercivity condition

J(y, u) ≥ c1‖y(·, T )‖Lq(Ω) − c2, (2.6)

with positive constants c1 and c2.

Theorem 2.3. Let

1 < λ <
n+ 2

(n− 2)+
, (2.7)

q ∈
(
(λ− 1)

n

2
,

2n
(n− 4)+

)
and q ≥ 2. (2.8)

Suppose that r ≥ 2 satisfies
1
r
< 1− n

4
+

n

2q
(2.9)

and

r >
λ+ 1
λ

λn− (n+ 4)
n+ 2− λ(n− 2)

− 2
λ
. (2.10)

Assume that y0 ∈ W 2
q,B and Uad is a weakly compact subset of Lr(J, L2(Ω)). If

u ∈ Uad then (2.5) has a unique strong Lrλ(L2λ)-solution defined on the maximal
existence interval Ju.

Assume UG
ad 6= ∅. Let (2.6) be true and assume that J can be written in the

form J(y, u) = JT (y(·, T ), u) , where JT : Lq(Ω) × (Lr(J, L2(Ω)), w) → R is lower
semicontinuous. Then the optimal control problem (1.3) governed by (2.5) has a
solution.
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Remarks 2.4. (i) Theorem 2.3 remains true if we replace the nonlinearity |y|λ−1y
with |y|λ, see Remark 3.3.

(ii) Let λ, q, r satisfy (2.7)–(2.10), y0 ∈W 2
q,B,

J(y, u) :=
∫

Ω

|y(x, T )− yd(x)|q dx+N

∫ T

0

(∫
Ω

u2(x, t) dx
)r/2

dt, (2.11)

where yd ∈ Lq(Ω), N ≥ 0, and let Uad ⊂ Lr(J, L2(Ω)) be closed, convex and
bounded. Then all assumptions of Theorem 2.3 are satisfied provided UG

ad 6= ∅. In
addition, if N > 0 then Uad need not be bounded (we can replace the set Uad in
problem (1.3) with Ũad := Uad∩BR, where BR is a large closed ball in Lr(J, L2(Ω))).

(iii) If r = 2 then conditions (2.7)–(2.10) in Theorem 2.3 read

1 < λ <
3n+ 8

(3n− 4)+
, q ∈

(
(λ− 1)

n

2
,

2n
(n− 2)+

)
and q ≥ 2.

In particular, if n ≤ 3 then we may choose λ = 3 and q = 4 (cf. the open problems
of J.L. Lions mentioned above). �

Example 2.5. Let λ, q, r, y0, J,Uad be as in Remark 2.4(ii). Assume |y0| ≤ C0 for
some C0 ≥ 0 and {u ∈ L∞(Q) ; |u| ≤ Cλ

0 } ⊂ Uad. Then UG
ad 6= ∅, hence the optimal

control problem (1.3) has a solution. In fact, the solution ỹ of the linear problem

∂tỹ −∆ỹ = 0 in Q,
Bỹ = 0 on Σ,

ỹ(·, 0) = y0 in Ω,


satisfies |ỹ| ≤ C0 by the maximum principle, thus u := −|ỹ|λ−1ỹ ∈ UG

ad (the function
y := ỹ is a global solution of (2.5)).

Optimality Conditions

In order to obtain the optimality conditions, we restrict ourselves to the case
r = 2 and we also fix

J(y, u) :=
∫

Ω

|y(x, T )− yd(x)|q dx+N

∫
Q

u2(x, t) dx dt, (2.12)

where q > 1, yd ∈ Lq(Ω) and N ≥ 0 are given. This particular choice of r and J
corresponds to the setting of J.L. Lions in [21].

Theorem 2.6. Let the assumptions of Theorem 2.3 be fulfilled and let, moreover,
r = 2, Uad be convex and J be as in (2.12). If (y, u) is an optimal pair for problem
(1.3) governed by (2.5) and p is the solution of

−∂tp−∆p = λ|y|λ−1p in Q,

Bp = 0 on Σ,

p(·, T ) = q|y(·, T )− yd|q−2(y(·, T )− yd) in Ω,

 (2.13)

then ∫
Q

(p+ 2Nu)(v − u) dx dt ≥ 0 for all v ∈ Uad.
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Remarks 2.7. (a) The existence of an optimal pair (y, u) in Theorem 2.6 is
guaranteed by Theorem 2.3. The solvability of (2.13) follows from Lemma 4.1 and
Remark 4.2 below.

(b) As in Remark 2.4(ii), in Theorem 2.6 we can allow Uad to be any closed
convex subset of L2(Q) if N > 0. �

Multiplicative Controls

Next we consider the optimal control problem (1.3) governed by the equation

∂ty −∆y = |y|λ−1y + uy in Q,
By = 0 on Σ,

y(·, 0) = y0 in Ω,

 (2.14)

where B ∈ {γ, ∂ν}.

Theorem 2.8. Let (2.6), (2.7) and (2.8) be satisfied, y0 ∈ W 2
q,B, Uad ⊂ L∞(Q)

be w∗-sequentially compact and UG
ad 6= ∅. Assume that J can be written in the form

J(y, u) = JT (y(·, T ), u) , where JT : Lq(Ω)×(L∞(Q), w∗) → R is sequentially lower
semicontinuous. Then problem (1.3) governed by (2.14) has a solution.

Remark 2.9. Similarly as in Remark 2.4(ii) and Example 2.5, all assumptions
of Theorem 2.8 concerning Uad and J are satisfied if, for example, |y0| ≤ C0,
D1 ≥ Cλ−1

0 , D2 ≥ 0, N ≥ 0,

Uad = {u ∈ L∞(Q) : −D1 ≤ u ≤ D2}

and

J(y, u) =
∫

Ω

|y(x, T )− yd(x)|q dx+N‖u‖L∞(Q).

Again, we may take D1 = ∞ and/or D2 = ∞ if N > 0. �

Control of Systems

Finally, let us formulate our result concerning the parabolic system

∂ty1 −∆y1 = y1y2 − by1 + u in Q,
∂ty2 −∆y2 = ay1 in Q,
By1 = By2 = 0 on Σ,

y1(·, 0) = y0
1 in Ω,

y2(·, 0) = y0
2 in Ω,


(2.15)

where a > 0, b ∈ R, B ∈ {γ, ∂ν},

y0
1 , y

0
2 ≥ 0, y0

1 , y
0
2 ∈ C2(Ω̄), By0

1 = By0
2 = 0, (2.16)

u ∈ Lr(J, L+
z (Ω)), r, z > 1,

1
r

+
n

2z
< 1. (2.17)

As usual, Lr(J, L+
z (Ω)) is the set of positive functions in Lr(J, Lz(Ω)). The regu-

larity assumption (2.17) guarantees that (2.15) possesses a unique strong solution
(defined on the maximal existence interval Ju) and this solution is Hölder continu-
ous both in x and t.
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Theorem 2.10. Consider problem (2.15) with a > 0, b ∈ R. Let (2.16), (2.17)
be satisfied, where either B = ∂ν and n ≤ 3 or B = γ and n ≤ 2. Assume that
Uad is a compact set in Lr(J, L+

z (Ω)), UG
ad 6= ∅, and J can be written in the form

J(y, u) = JT (y1(T ), u), where

JT : Lq(Ω)× Lr(J, L+
z (Ω)) → R is lower semicontinuous,

q ∈ [1,∞] and J(y, u) ≥ c1‖y1(T )‖Lq(Ω) − c2. Then the optimal control problem
(1.3) governed by (2.15) has a solution.

Remark 2.11. As above, we can easily find examples of Uad and J satisfying the
compactness and lower semicontinuity assumptions in Theorem 2.10. The assump-
tion UG

ad 6= ∅ is satisfied if, for example, B = γ, b ≥ 0, 0 ∈ Uad and y0
1 , y

0
2 are

small enough (e.g. in L∞(Ω)). This is due to the fact that in this case, zero is an
asymptotically stable equilibrium of (2.15) with u = 0. If B = ∂ν , y0

1 = y0
2 = 0 and

0 ∈ Uad then obviously 0 ∈ UG
ad. �

3. Solvability of the Model Problem

Proof of Theorem 2.3. Set s := 0, q := 2λ and p := rλ. Since r ≥ 2 and 1 < λ <
n+2

(n−2)+
, there exists σ /∈ Sq satisfying

2
rλ′

< σ <
2
r
∧

(
2− n

2λ′
)
.

Now Theorem A.1 guarantees the existence of a unique Lrλ(L2λ)-solution y of
(2.5) defined on the maximal existence interval Ju. Fixing u ∈ UG

ad, this solution
is global and |y|λ ∈ Lr(J, L2(Ω)). The Sobolev maximal regularity for (2.5), [2,
Theorem III.4.10.2] and interpolation theorems in [4] (also see [3, Theorem 3])
imply

y ∈W 1
r (J, L2(Ω))∩Lr(J,W 2

2,B) ↪→ C(J,W 1
2,B)∩C(J,W z

q,B)∩Lrλ(J, L2λ(Ω)) (3.1)

for any

z < 2− n

2
+
n

q
− 2
r
,

where the embedding into C(J,W z
q,B) ∩ Lrλ(J, L2λ(Ω)) is compact.

Let (yk, uk) be a minimizing sequence for problem (1.3). We may assume uk → u
weakly in Lr(J, L2(Ω)) and ‖uk‖Lr(J,L2(Ω)) ≤ Cr. Part (a) of the proof of [6,
Theorem 1.1] shows that there exists t0 > 0 independent of k such that

yk are uniformly bounded in Lrλ([0, t0], L2λ(Ω)). (3.2)

Set uk(x, t) := 0 for t ∈ (T, 2T ] and consider problem (2.5) with J replaced by
[0, 2T ]. This problem possesses a unique Lrλ(L2λ)-solution ỹk defined on the max-
imal existence interval Jỹk

⊂ [0, 2T ]. The function wk(t) := ỹk(T + t) is the
Lrλ(L2λ)-solution of (2.5) with u ≡ 0, initial condition wk(0) = yk(T ) and the
maximal existence interval Jwk

⊂ [0, T ]. The boundedness of J(yk, uk) implies a
bound for yk(T ) in Lq(Ω) and the well posedness of (2.5) in Lq(Ω), guaranteed by
Lemma 3.1 below, shows the existence of t1 > 0 such that [0, t1] ⊂ Jwk

for any k.
Consequently, all solutions yk can be continued on the interval [T, T + t1]. Now
Lemma 3.2 below implies ‖yk(τ)‖Lq(Ω) ≤ Cq for any τ ∈ [0, T ].

Let τ∗ = τ∗(Cr, Cq) be from Lemma 3.1. Fixing δ ∈ (0, t0 ∧ τ∗) and using the
last statement of Lemma 3.1 for wk(t) := yk(τ + t), t ∈ [0, τ∗], τ ∈ [t0− δ, T − τ∗],
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we get a uniform bound for yk in Lrλ([t0, T ], L2λ(Ω)). This bound and (3.2) show
the boundedness of |yk|λ−1yk in Lr(J, L2(Ω)). As in (3.1), we get that the sequence
(|yk|λ−1yk) is compact in Lr(J, L2(Ω)) and (yk(T )) is compact in Lq(Ω). Now it is
easy to pass to the limit to get a solution of (1.3). �

Let λ, q be as in Theorem 2.3 and let r ≥ 2 satisfy (2.9). These assumptions
guarantee that there exists s /∈ Sq such that

0∨
(n
q
− n
λ

)
∨

[n
q
− 1
λ

(
2+

n

q

)]
< s <

2
λ
∧

(
2+

n

q
− n

2
− 2
r

)
∧

[ 1
λ

(
2+

n

q

)
− 2
r
− n

2
+2

]
.

(3.3)

Lemma 3.1. Let λ, q be as in Theorem 2.3 and let r ≥ 2 satisfy (2.9). As-
sume u ∈ Lr(J, L2(Ω)). Then problem (2.5) is well posed in Lq(Ω). More pre-
cisely, if the norm of u in Lr(J, L2(Ω)) is bounded by a constant Cr, y0 ∈ Lq(Ω),
‖y0‖Lq(Ω) ≤ Cq, and s satisfies (3.3), then there exists τ∗ = τ∗(Cr, Cq) > 0 and a
unique solution

y ∈ C([0, τ∗], Lq(Ω)) ∩ C((0, τ∗],W s
q,B). (3.4)

In addition, this solution satisfies

‖y(t)‖Lq(Ω) + ts/2‖y(t)‖W s
q,B

≤ C, t ∈ (0, τ∗], (3.5)

where C depends only on s, Cr, Cq (and q, r, λ,Ω). If q̂ ≥ q satisfies

q̂ <
2n

(n− 4)+
and

1
r
< 1− n

4
+

n

2q̂
(3.6)

then
y ∈ C((0, τ∗], Lq̂(Ω)) (3.7)

and
‖y(t)‖Lq̂(Ω) ≤ C(δ, q̂, Cr, Cq), t ∈ [δ, τ∗], δ ∈ (0, τ∗). (3.8)

Finally,
y ∈ C([δ, τ∗],W 1

2,B(Ω)) ∩ Lrλ([δ, τ∗], L2λ(Ω)) (3.9)

for any δ > 0 and the norm of y in this space can be bounded by C(δ, Cr, Cq).

Proof. The proof of the first part is an easy modification of [8, Theorem 4.1]. In
fact, let X be the Banach space of all functions

y ∈ C([0, τ∗], Lq(Ω)) ∩ C((0, τ∗],W s
q,B)

for which
‖y‖X := sup

t∈(0,τ∗]

(‖y(t)‖Lq(Ω) + ts/2‖y(t)‖W s
q,B

) <∞.

Then it is sufficient to use the Banach fixed point theorem for the mapping

Ky(t) = e−Aty0 +
∫ t

0

e−A(t−τ)(|y(τ)|λ−1y(τ) + u(τ)) dτ

in a large closed ball B of X with radius R, where A is as in (2.4). For example,
assume that y ∈ B and denote by ‖ · ‖s the norm in W s

q,B. Fixing s satisfying (3.3)
there exists

z ∈ (1, q] such that λ
(n
q
− s

)
∨ λ

(2
r

+
n

2
− 2

)
<
n

z
< 2 +

n

q
− sλ. (3.10)
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Choose σ1 ∈ (sλ, 2 + n/q − n/z) and σ2 ∈ (s + 2/r, 2 + n/q − n/2), σ1, σ2 /∈ Sq.
Then we have Lz(Ω) ↪→ W σ1−2

q,B and L2(Ω) ↪→ W σ2−2
q,B , hence it follows from (2.3)

that

ts/2‖Ky(t)‖s ≤ C(Cq) + Cts/2

∫ t

0

(t− τ)(σ1−s)/2−1‖|y(τ)|λ−1y(τ)‖σ1−2 dτ

+ Cts/2

∫ t

0

(t− τ)(σ2−s)/2−1‖u(τ)‖σ2−2 dτ

≤ C(Cq) + Cts/2

∫ t

0

(t− τ)(σ1−s)/2−1‖y(τ)‖λ
s dτ

+ Cts/2

∫ t

0

(t− τ)(σ2−s)/2−1‖u(τ)‖L2(Ω) dτ

≤ C(Cq) + CRλts/2

∫ t

0

(t− τ)(σ1−s)/2−1τ−sλ/2 dτ

+ CCrt
s/2

(∫ t

0

(t− τ)r′[(σ2−s)/2−1] dτ
)1/r′

,

which shows ts/2‖Ky(t)‖s < R/2 if R = R(Cq) is large enough and t = t(R,Cr) is
small enough. Similar arguments show the same bound for ‖Ky(t)‖Lq(Ω) and the
fact that K is a contraction. Obviously, the fixed point of K is a solution of our
problem. Uniqueness of this solution in the class (3.4) can be proved in the same
way as in [7, pp. 295–296].

We have W s
q,B ↪→ Lq1(Ω) whenever n/q1 > n/q− s. Due to the upper bound for

s in (3.3), q1 is restricted by the conditions

n

q1
> −2 +

2
r

+
n

2
and

n

q1
>
n

q
− ε(q), (3.11)

where

ε(q) :=
2
λ

+
n

λq
+ 2− 2

r
− n

2
> 0.

Let q̂ ≥ q satisfy (3.6). If n/q̂ > n/q − ε(q) then W s
q,B ↪→ Lq̂(Ω) since the second

inequality in (3.6) guarantees that the first condition in (3.11) is satisfied with
q1 = q̂. Consequently, (3.7) and (3.8) follow from (3.4) and (3.5). If n/q̂ ≤ n/q−ε(q)
then we fix q1 > q satisfying (3.11) (this is possible due to (2.9)). Now the first part
of the Lemma with q replaced by q1 (and t = 0 replaced by t = δ1, where δ1 > 0 is
small) implies y ∈ C((δ1, τ∗],W s1

q1,B). Similarly as above, W s1
q1,B ↪→ Lq2(Ω), where

n

q2
> −2 +

2
r

+
n

2
and

n

q2
>

n

q1
− ε(q1).

Repeating this bootstrapping argument finitely many times, we obtain (3.7) and
(3.8).

It remains to prove (3.9) and the corresponding bound. Fix δ ∈ (0, τ∗) and set
t0 := δ/2, J0 := [t0, τ∗] and J∗ := [δ, τ∗]. Taking R > 1 large and q̂ close to its
upper bound, we have q̂ > λ and |y|λ ∈ LR(J0, Lq̂/λ(Ω)). Set f1 := |y|λ−1y and
f2 := u. Writing y = y1 + y2 + y3, where Byi = 0, i = 1, 2, 3, and
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∂ty1 −∆y1 = f1 in Ω× J0, y1(t0) = 0,

∂ty2 −∆y2 = f2 in Ω× J0, y1(t0) = 0,

∂ty3 −∆y3 = 0 in Ω× J0, y1(t0) = y(t0),

 (3.12)

the maximal Sobolev regularity implies

y1 ∈W 1
R(J0, Lq̂/λ(Ω)) ∩ LR(J0,W

2
q̂/λ,B) ↪→ C(J0,W

1
2,B)

since we can take q̂ > 2λn/(n + 2) and R arbitrarily large. Similar arguments
guarantee y2 ∈ C(J0,W

1
2,B) and y3 ∈ C(J∗,W 1

2,B), hence y ∈ C(J∗,W 1
2,B) (and the

corresponding estimate in this space is valid).
Choose k > 1 such that q̂ > (λ − 1/k)n/2 and fix m ∈ N such that kmq̂ > 2λ.

Choose also R > rλm+1. Set ti := δ/2 + iδ/(2m + 2), Ji := [ti, τ∗] and q̂i := kiq̂,
i = 1, 2, . . . ,m. Notice that y2, y3 ∈ Lrλ(J1, L2λ(Ω)) and W 2

q̂/λ,B ↪→ Lq̂1(Ω), hence
y1 ∈ LR(J1, Lq̂1(Ω)). Consequently, |y|λ can be written in the form

|y|λ = f̃1 + f̃2, f̃1 ∈ LR/λ(J1, Lq̂1/λ(Ω)), f̃2 ∈ Lr(J1, L2(Ω)).

Writing y = ỹ1 + ỹ2 + ỹ3, where Bỹi = 0, i = 1, 2, 3, and ỹ1, ỹ2, ỹ3 satisfy (3.12)
with f1, f2, J0, t0 replaced by f̃1, f̃2, J1, t1, respectively, we obtain as above ỹ2, ỹ3 ∈
Lrλ(J2, L2λ(Ω)) and ỹ1 ∈ LR/λ(J2, Lq̂2(Ω)). Repeating this argument m times we
get

y ∈ Lrλ(J∗, L2λ(Ω)) + LR/λm(J∗, Lq̂m
(Ω)) = Lrλ(J∗, L2λ(Ω))

(and the corresponding estimates), which concludes the proof. �

Lemma 3.2. Let λ, q, r be as in Theorem 2.3. Let t1 > 0, u ∈ Lr([0, T +
t1], L2(Ω)) and let its norm in this space be bounded by a positive constant Cr.
Assume that y is a global solution of (2.5) (with J replaced by [0, T + t1]) and
y0 ∈ W 2

q (Ω), ‖y0‖W 2
q (Ω) ≤ Cq. Then there exists a constant C = C(Cr, Cq, t1)

such that ‖y(t)‖Lq(Ω) ≤ C for any t ∈ [0, T ].

Proof. The proof is a modification of the proof of the main result in [25] (cf. also
[26] and [27, the proof of Theorem 5.1]).

All our constants (and bounds) in this proof may change from line to line and
may depend on Cr, Cq, t1. First we deduce from Lemma 3.1 and the beginning of
the proof of Theorem 2.3 that y ∈ C([0, T + t1],W 1

2,B) and there exists τ > 0 such
that

y is bounded in C([0, τ ], Lq(Ω)) by a constant C = C(Cq, Cr). (3.13)

Denote

V (t) =
1
2

∫
Ω

|∇y(x, t)|2 dx− 1
λ+ 1

∫
Ω

|y(x, t)|λ+1 dx.

If u is smooth then

V ′(t) = −
∫

Ω

(∂ty)2 dx+
∫

Ω

u∂ty dx ≤
1
2

∫
Ω

u2 dx− 1
2

∫
Ω

(∂ty)2 dx,

hence

V (τ2)− V (τ1) ≤ C − 1
2

∫ τ2

τ1

∫
Ω

(∂ty)2 dx dt. (3.14)

Now let u be general. Approximating u by smooth functions uk we see that (3.14)
remains true for any u ∈ Lr([0, T + t1], L2(Ω)).
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We will show that V (t) is bounded for t ∈ [0, T ]. The upper estimate for V (t)
follows immediately from (3.14). To prove the lower estimate we assume on the
contrary that V (t0) ≤ −(C +K) for some t0 ∈ [0, T ], where C is from (3.14) and
K � 1. Then (3.14) guarantees V (t) ≤ −K for all t ≥ t0. Multiplying the equation
in (2.5) by y and integrating over Ω we obtain

1
2
d

dt

∫
Ω

y2 dx = −2V (t) + c1

∫
Ω

|y|λ+1 dx+
∫

Ω

uy dx

≥ K + c2

(∫
Ω

y2 dx
)(λ+1)/2

− C2

∫
Ω

u2 dx,

(3.15)

where the inequality is true for all t ≥ t0. Denote Y (t) =
∫ t

t0

∫
Ω
y2 dx dt. Then

integrating estimate (3.15) we get

Y ′ ≥ c3Y
(λ+1)/2 + 2K(t− t0)− C3.

Let K ≥ 10C3/t1. Integrating the inequality Y ′ ≥ 2K(t− t0)−C3 on [t0, t0 + t1/2]
we obtain

Y (t0 + t1/2) ≥ K
t21
4
− C3

t1
2
≥ K

t21
5
.

We also have

Y ′ ≥ c3Y
(λ+1)/2 for t ≥ t0 +

t1
2
.

Since the solution of the equation Z ′(t) = c3Z
(λ+1)/2(t) for t ≥ 0, Z(0) = Kt21/5,

blows up at t < t1/2 if K is large enough, the function Y (t) ≥ Z(t−t0−t1/2) blows
up at some t < T + t1 which yields a contradiction. Hence K has to be bounded
by a constant depending only on c3, C3, t1 and λ. Consequently, V is bounded on
[0, T ] and (3.14) provides a bound for y in the space W 1

2 ([0, T ], L2(Ω)).
If λ < 1 + 4/n then Lemma 3.1 with q replaced by q̃ := 2 and q̂ replaced by q

guarantees a bound for y in L∞([τ, T ], Lq(Ω)) which (together with (3.13)) implies
the assertion.

Let λ ≥ 1 + 4/n. Since y is bounded in W 1
2 ([0, T ], L2(Ω)) ↪→ L∞([0, T ], L2(Ω)),

we have ∫ T

0

‖uy‖z
L1(Ω) dt ≤ C

∫ T

0

‖u‖z
L2(Ω) dt ≤ C, z ≤ r.

Using this bound and the boundedness of V on [0, T ], we obtain from the equality
in (3.15) ∫ T

0

‖y(t)‖z(λ+1)
Lλ+1(Ω) dt ≤ C

(
1 +

∫ T

0

‖∂ty(t)y(t)‖z
L1(Ω) dt

)
.

In particular, if z = 2 then this estimate, the bound for y in W 1
2 ([0, T ], L2(Ω)) and

‖∂ty(t)y(t)‖L1(Ω) ≤ ‖∂ty(t)‖L2(Ω)‖y(t)‖L2(Ω) ≤ C‖∂ty‖L2(Ω)

guarantee a uniform bound for y in

Xz := Lz(λ+1)([0, T ], Lλ+1(Ω)).

Interpolating between the bound of y in Xz and in W 1
2 ([0, T ], L2(Ω)) yields a bound

in L∞([0, T ], Lm(Ω)) provided

m < λ+ 1− λ− 1
z + 1

(3.16)
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(cf. [25, (12)]). If r > 2 then we will use the bootstrapping procedure in [25] in
order to get these estimates for some z > 2. Replacing u by y, p by λ, q by z, q̃
by z̃, and λ by m in [25], denoting

λ1 := (λ+ 1)/λ, θ :=
λ+ 1
λ− 1

m− 2
m

, β :=
2

(1− θ)z̃
,

and assuming the estimate in Xz for some z ≥ 2, we get for z̃ > z∫ T

0

‖y(t)‖z̃(λ+1)
Lλ+1(Ω) dt ≤ C

(
1 +

∫ T

0

‖∂ty(t)y(t)‖z̃
L1(Ω) dt

)
≤ C

(
1 +

∫ T

0

‖∂ty(t)‖z̃
Lm′ (Ω) dt

)
≤ C

(
1 +

∫ T

0

‖∂ty(t)‖θz̃
Lλ1 (Ω)‖∂ty(t)‖(1−θ)z̃

L2(Ω) dt
)

≤ C
(
1 +

(∫ T

0

‖∂ty(t)‖θβ′z̃
Lλ1 (Ω) dt

)1/β′)
≤ C

(
1 +

(∫ T

0

‖y(t)‖θβ′z̃λ
Lλ+1(Ω) dt

)1/β′)
,

provided z̃ ≤ r and
u ∈ Lθβ′z̃(J, Lλ1(Ω)). (3.17)

Recall from [25] that the bootstrap condition θβ′ ≤ λ1 is satisfied if m is chosen
close to its upper bound and z̃ is close to z. For such m and z̃, one can even check
that θβ′ < (λ+1)r/(λr+2) provided z̃ < r. Consequently, θβ′z̃∨ z̃ < r (and (3.17)
is true) whenever z̃ < (λr + 2)/(λ+ 1). Hence, we obtain a bound for y in Xz for
any

z < (λr + 2)/(λ+ 1). (3.18)

Recall that this guarantees a bound in L∞([0, T ], Lm(Ω)) for any m satisfying
(3.16). Using (2.10) we can find z satisfying (3.18) and m ∈ ((λ − 1)n/2, q] such
that (3.16) is true. Now we can use Lemma 3.1 with q replaced by m and q̂ replaced
by q to get a bound for y in L∞([τ, T ], Lq(Ω)) which (together with (3.13)) concludes
the proof. �

Remark 3.3. We announced in Remark 2.4(i) that Theorem 2.3 remains true if we
replace the nonlinearity |y|λ−1y with |y|λ. Let us sketch the proof of this statement.

Since y satisfies
∂ty −∆y = |y|λ + u ≥ u in Q,

the parabolic maximum principle implies y ≥ yL, where yL is the solution of the
linear problem

∂tyL −∆yL = u in Q,
ByL = 0 on Σ,

yL(·, 0) = y0 in Ω.


Using the same arguments as in (3.1) we see that yL ∈ Lrλ(J, L2λ(Ω)) and that the
norm of yL in this space can be bounded by the norm of u in Lr(J, L2(Ω)) and a
suitable norm of y0. Notice that

|y|λ = |y|λ−1y + 2|y−|λ−1y−,
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where y− := −min(0, y) is bounded above by |yL|, hence 2|y−|λ−1y− is bounded in
Lr(J, L2(Ω)). Consequently, replacing u with ũ := u + 2|y−|λ−1y−, we can repeat
word by word the proof of Theorem 2.3. �

Optimality of the Growth Bounds

Remarks 3.4. (i) Consider problem (2.5) with Ω being the unit ball in Rn, n ≥ 3,
B = γ and λ > (n+ 2)/(n− 2)+. If n > 10 then assume also

λ < 1 + 4
n− 4 + 2

√
n− 1

(n− 2)(n− 10)
. (3.19)

Choose a smooth radial, radially decreasing function ψ : Ω̄ → R+ satisfying
ψ(0) > 0 and ψ(x) = 0 for x ∈ Γ and denote by wα the (classical) solution of
(2.5) with u = 0 and y0 = αψ, α ≥ 0. We deduce from [22] and an obvious
modification of [20] that there exists α∗ > 0 with the following property: if α < α∗

then wα(t) exists for all t ∈ R+ and wα(t) → 0 as t → ∞; if α > α∗ then this
solution blows up in finite time completely.

From now on fix y0 = α∗ψ. Let yk be the solution of (2.5) with u = 0 and the
nonlinearity yλ replaced by min(yλ, k), k = 1, 2, . . . Then yk are globally defined
classical solutions, yk+1 ≥ yk. Set y∗(t) = limk→∞ yk(t). The results in [22] and [16]
guarantee that y∗ ∈ Lp,loc([0,∞), Lp(Ω)) is a weak solution solution of (2.5) with
u = 0 and there exists T ∗ ∈ (0,∞) such that y∗ is a classical solution on (0, T ∗)
but it blows up at t = T ∗ in the L∞(Ω)-norm. In particular, wα∗ = y∗|[0,T∗).
Next [12] shows that y∗ is a classical solution for all t except for finitely many
points T0 = T ∗ < T1 < · · · < Tk. Choose T > T ∗ such that T 6= Tj for any j
and let yd(x) := y∗(x, T ). Choose also 0 < t1 < t2 < T ∗ and a smooth function
U : Ω̄× [0, T ] → [0,∞) with support KU ⊂ Ω× [t1, t2], KU 6= ∅, and denote by y∗β
the solution of (2.5) with u = βU and y0 = α∗ψ.

Since y∗ > 0 in KU and y∗−β → y∗ uniformly in KU as β → 0+, fixing b > 0
small we have |y∗−b|λ−1y∗−b − bU ≥ 0 in KU . Consequently, the maximum principle
implies y∗−b ≥ 0. Choose β ∈ (0, b]. Since y∗(t2)− y∗−β(t2) belongs to the interior of
the positive cone in C1(Ω̄) and wα(t2) → wα∗(t2) = y∗(t2) in C1(Ω̄) as α → α∗−,
there exists α < α∗ such that y∗−β(t2) ≤ wα(t2). Now the maximum principle
implies y∗−β(t) ≤ wα(t) for any t ≥ t2 and y∗−β ≥ y∗−b ≥ 0 for any t ≥ 0, hence y∗−β

is a global nonnegative classical solution. On the other hand, if β ≥ 0 then y∗β ≥ y∗,
hence y∗β blows up at finite time Tβ ≤ T ∗ in the L∞(Ω)-norm and, consequently, in
Lq(Ω)-norm for any q > n(λ− 1)/2 (cf. [14], [30]).

Let Uad = {βU ; β ∈ [−b, b]}. Fix q > n(λ − 1)/2 and set J(y, u) =
∫
Ω
|y(T ) −

yd|q dx. The above arguments show that y∗β is a global L∞(Lq)-solution of (2.5) if
and only if β < 0. Moreover, β 7→ J(y∗β , βU) is decreasing on [−b, 0). Hence the
optimal control problem (1.3) does not have a solution with y ∈ L∞(J, Lq(Ω)).

(ii) Consider problem (2.5) with Ω being the unit ball in Rn, B = γ and let
1 ≤ q < (λ−1)n/2. Then there exists a smooth radial positive function y0 such that
the solution y of (2.5) with u = 0 blows up at t = T in the L∞-norm and satisfies
∂ty ≥ 0, yd := y(·, T ) ∈ Lq(Ω) (see [14]). Let U be a smooth nonnegative function
with support K ⊂ {(x, t) ; |x| < 1/2}, K 6= ∅, and uc := cU . Then there exists
ε > 0 such that the solution y of (2.5) with u replaced by u−ε remains positive.
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Let Uad = {uc ; c ∈ [−ε, 0]} and

J(y, u) =
∣∣∣ ∫

Ω

|y(x, T )|q dx−
∫

Ω

yq
d dx

∣∣∣.
Then (y(u−1/k), u−1/k), k ≥ k0, is obviously a minimizing sequence for the control
problem (1.3) but y(u0) is not a (classical) global solution of (2.5). �

4. Proof of the Optimality Conditions

We start with the following technical lemma concerning linear problems.

Lemma 4.1. Suppose that β > 2 ∨ (n + 2)/2 and 2 ≤ q < 2n/(n − 2)+. Given
a ∈ Lβ(Q), u ∈ L2(Q) and y0 ∈ Lq′(Ω), problem

∂ty −∆y = ay + u in Q,

By = 0 on Σ,

y(·, 0) = y0 in Ω,

 (4.1)

has a unique solution

y ∈ C([0, T ], Lq′(Ω)) ∩ C((0, T ], Lq(Ω)) ∩ L2(Q).

The map

Lβ(Q)× L2(Q)× Lq′(Ω) → L2(Q)× Lq(Ω), (a, u, y0) 7→ (y, y(T )),

is analytic and bounded on bounded sets.

Proof. (i) Writing (4.1) in the abstract form

ẏ +Ay = ay + u in (0, T ], y(0) = y0,

and denoting U(t) := e−tA, we see that we have to prove the unique solvability of

y = U ∗ (ay) + U ∗ u+ Uy0 (4.2)

in appropriate spaces.
(ii) Fix s ∈ [0, 1) \ {1/q′} such that q ≤ 2n/(n − 2s)+. Then W s

q′,B ↪→ L2(Ω).
Hence we infer from (2.3) (with q replaced by q′ and r := 0) that

‖U(t)y0‖L2(Ω) ≤ c‖U(t)y0‖W s
q′,B

≤ ct−s/2‖y0‖Lq′ (Ω), 0 < t ≤ T.

Since s < 1 it follows that

(y0 7→ Uy0) ∈ L
(
Lq′(Ω), L2((0, T ), L2(Ω))

)
= L

(
Lq′(Ω), L2(Q)

)
,

where L(X,Y ) denotes the space of continuous linear operators from X to Y .
(iii) It is easy to see that

(u 7→ U ∗ u) ∈ L(L2(Q)).

(iv) Put 1/r := 1/β + 1/2 < 1 and note that

Lr(Ω) ↪→W−2+γ
2,B if 1/2 ≥ 1/r + (γ − 2)/n,

that is, if 0 ≤ γ ≤ 2− n/β.
(v) For m ∈ R we write L2,m(Q) for L2(Q) endowed with the equivalent norm

y 7→
(∫ T

0

e−2mt‖y(t)‖2L2(Ω) dt
)1/2

.
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From (iv), Hölder’s inequality, and (2.3) (with q = 2 and r := γ − 2) we infer that

‖U ∗ (ay)(t)‖L2(Ω) ≤ c

∫ t

0

(t− τ)γ/2−1‖a(τ)‖Lβ(Ω)‖y(τ)‖L2(Ω) dτ

= cemt

∫ t

0

(t− τ)γ/2−1e−m(t−τ)‖a(τ)‖Lβ(Ω)e
−mτ‖y(τ)‖L2(Ω) dτ.

Thus, by Young’s inequality for convolutions (cf. the proof of [5, Lemma 3]), fol-
lowed by Hölder’s inequality,

‖U ∗ (ay)‖L2,m(Q) ≤ cI(m)
(∫ T

0

(
‖a(τ)‖Lβ(Ω)e

−mτ‖y(τ)‖L2(Ω)

)r
dτ

)1/r

≤ cI(m)‖a‖Lβ(Q)‖y‖L2,m(Q),

where

I(m) :=
(∫ T

0

t(γ/2−1)β′e−β′mt dt
)1/β′

,

provided γ > 2/β. Such a choice is possible by (iv), thanks to 2/β < 2− n/β.
(vi) For a ∈ Lβ(Q) set Ta(y) := U ∗ (ay). Then (v) implies

(a 7→ Ta) ∈ L
(
Lβ(Q),L(L2,m(Q))

)
and

‖Ta‖L(L2,m(Q)) ≤ cI(m)‖a‖Lβ(Q).

Note that, by Lebesgue’s theorem, I(m) → 0 as m→∞. Thus, given R > 0, there
exists m := mR > 0 such that ‖Ta‖L(L2,m(Q)) ≤ 1/2 for all a ∈ Lβ(Q) satisfying
‖a‖Lβ(Q) ≤ R. Consequently, 1 − Ta has a bounded inverse on L2,m(Q), and the
map a 7→ (1− Ta)−1 is analytic for ‖a‖Lβ(Q) ≤ R. Hence, by (4.2),

y = (1− Ta)−1(U ∗ u+ Uy0) ∈ L2(Q)

for ‖a‖Lβ(Q) ≤ R, thanks to (ii) and (iii), and the map

Lβ(Q)× L2(Q)× Lq′(Ω) → L2(Q), (a, u, y0) 7→ y

is analytic and bounded on bounded sets.
(vii) Let

q′ ≤ q1 ≤ 2 ≤ q2 ≤ q with
1
n
>

1
q1
− 1
q2
.

Choose s such that
1 + n

(1
2
− 1
q1

)
> s > n

(1
2
− 1
q2

)
. (4.3)

Then there exists ξ ∈ (1/2, 1) such that 2− 2ξ + n(1/2− 1/q1) > s. This choice of
s, ξ guarantees

W s
2,B ↪→ Lq2(Ω) (4.4)

and
Lq1(Ω) ↪→W s−2+2ξ

2,B . (4.5)

(viii) Let q1, q2, s, ξ be as in (vii). For m ∈ R we denote by C1−ξ,m((0, T ], Lq2(Ω))
the Banach space of all v ∈ C((0, T ], Lq2(Ω)) such that sup0<t≤T t

1−ξ‖v(t)‖Lq2 (Ω) <
∞, endowed with the norm

‖v‖C1−ξ,m
:= sup

0<t≤T
t1−ξe−mt‖v(t)‖Lq2 (Ω).
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It is an easy consequence of (2.3), (4.4) and (4.5) that

(y0 7→ Uy0) ∈ L(Lq1(Ω), C1−ξ,m((0, T ], Lq2(Ω)).

(ix) Let q1, q2, s, ξ be as in (vii). Using (2.3) we get

‖U ∗ u(t)‖Lq2 (Ω) ≤ c‖U ∗ u(t)‖W s
2,B

≤ c

∫ t

0

(t− τ)−s/2‖u(τ)‖L2(Ω) dτ

≤ ct(1−s)/2‖u‖L2(Q) ≤ c‖u‖L2(Q)

for 0 < t ≤ T . In particular,

(u 7→ U ∗ u) ∈ L
(
L2(Q), C1−ξ,m((0, T ], Lq2(Ω))

)
.

(x) Let q1, q2, s, ξ be as in (vii) such that s satisfies also

2− n+ 2
β

> s− n
(1

2
− 1
q2

)
.

Then there exists η > 1/β such that

2− n

β
− 2η > s− n

(1
2
− 1
q2

)
.

Hence
Lr(Ω) ↪→W s−2+2η

2,B , (4.6)

where 1/r := 1/β + 1/q2. With this choice it follows that

e−mt‖U ∗ (ay)(t)‖Lq2 (Ω) ≤ ce−mt‖U ∗ (ay)(t)‖W s
2,B

≤ ce−mt

∫ t

0

(t− τ)η−1‖a(τ)‖Lβ(Ω)‖y(τ)‖Lq2 (Ω) dτ

≤ c

∫ t

0

(t− τ)η−1τ ξ−1e−m(t−τ)‖a(τ)‖Lβ(Ω) dτ ‖y‖C1−ξ,m

for 0 < t ≤ T . Thus, by Hölder’s inequality,

t1−ξe−mt‖U ∗ (ay)(t)‖Lq2 (Ω) ≤ cK(t,m)‖a‖Lβ(Q)‖y‖C1−ξ,m
,

where

K(m, t) := t1−ξ
(∫ t

0

(t− τ)(η−1)β′τ (ξ−1)β′e−β′m(t−τ) dτ
)1/β′

= tη−1/β
(∫ 1

0

(1− σ)(η−1)β′σ(ξ−1)β′e−β′mt(1−σ) dσ
)1/β′

.

Fix any δ ∈ (0, T ). Then K(t,m) → 0 as m→∞ by Lebesgue’s theorem, uniformly
with respect to t ∈ [δ, T ]. If 0 < t ≤ δ then

K(t,m) ≤ cδη−1/β .

Thus, given R > 0, it follows that we can fix m > 0 such that

‖Ta‖L(C1−ξ,m((0,T ],Lq2 (Ω))) ≤ 1/2

for all a ∈ Lβ(Q) satisfying ‖a‖Lβ(Q) < R. Now we infer from (viii) and (ix) that

y = (1− Ta)−1(U ∗ u+ Uy0) ∈ C1−ξ,m((0, T ], Lq2(Ω))

for y0 ∈ Lq1(Ω), ‖a‖Lβ(Q) < R and that the map

Lβ(Q)× L2(Q)× Lq1(Ω) → C1−ξ,m((0, T ], Lq2(Ω)), (a, u, y0) 7→ y
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is analytic and bounded on bounded sets. Using this property for the couple
(q1, q2) := (q′, 2) and, subsequently, for (q1, q2) := (2, q), we see that the map

Lβ(Q)× L2(Q)× Lq′(Ω) → Lq(Ω), (a, u, y0) 7→ y(T )

is analytic and bounded on bounded sets. This concludes the proof. �

Remark 4.2. Lemma 4.1 guarantees the solvability of (2.13): notice that r = 2
and (2.9) imply q < 2n/(n − 2)+, that a := λ|y|λ−1 ∈ Lβ(Q) for some β >
2∨ (n+2)/2 due to y ∈ L2λ(Q) and λ < (n+2)/(n−2)+, and that p(·, T ) ∈ Lq′(Ω)

due to y(·, T ) ∈ Lq(Ω). �

Proof of Theorem 2.6. Choose v ∈ Uad, µ ∈ [0, 1] and let yµ be the solution of
(2.5) with u replaced by u+µ(v−u). If µ is small enough, say µ ≤ µ0, then due to
the stability estimates in Theorem A.1 and the regularity results in Theorem 2.3,
the solution yµ is global and satisfies

‖yµ − y‖L2λ(Q) + ‖yµ(·, T )− y(·, T )‖Lq(Ω) ≤ Cµ‖v − u‖L2(Q). (4.7)

Assume µ ≤ µ0 and set zµ := (yµ − y)/µ. Then zµ solves the problem

∂tzµ −∆zµ = aµzµ + (v − u), x ∈ Ω, t ∈ J,
Bzµ = 0, x ∈ Γ, t ∈ J,

zµ(·, 0) = 0,

 (4.8)

where aµ := λ
∫ 1

0
|y + θ(yµ − y)|λ−1 dθ. Let z be the solution of

∂tz −∆z = az + (v − u), x ∈ Ω, t ∈ J,
Bz = 0, x ∈ Γ, t ∈ J,

z(·, 0) = 0,


where a := λ|y|λ−1. Set β := 2λ/(λ − 1). Since aµ → a in Lβ(Q) as µ → 0,
Lemma 4.1 implies

zµ(·, T ) → z(·, T ) in Lq(Ω). (4.9)
Set

I1(µ) :=
∫

Ω

|yµ(·, T )− y∗|q dx, I2(µ) := N

∫
Q

(u+ µ(v − u))2 dx dt.

The mapping Lq(Ω) → R : ϕ 7→
∫
Ω
|ϕ− y∗|q dx is convex. Hence

q

∫
Ω

|y(·, T )− y∗|q−2(y(·, T )− y∗)zµ(·, T ) dx ≤ I1(µ)− I1(0)
µ

≤ q

∫
Ω

|yµ(·, T )− y∗|q−2(yµ(·, T )− y∗)zµ(·, T ) dx.

Since (4.7) implies

|yµ(·, T )− y∗|q−2(yµ(·, T )− y∗) → |y(·, T )− y∗|q−2(y(·, T )− y∗)

in Lq′(Ω) and (4.9) is true, we see that I1 is right differentiable at 0 and I ′1(0+) =∫
Ω
p(·, T )z(·, T ) dx. We have also I ′2(0) = 2N

∫
Q
u(v − u) dx dt and

(I1 + I2)(µ) = J(yµ, u+ µ(v − u)) ≥ J(y, u) = (I1 + I2)(0),

hence ∫
Ω

p(·, T )z(·, T ) dx+ 2N
∫

Q

u(v − u) dx dt ≥ 0.
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Consequently, it is sufficient to show that∫
Ω

p(·, T )z(·, T ) dx =
∫

Q

p(v − u) dx dt.

Let ϕk ∈ D(Ω) be such that ϕk → p(·, T ) in Lq′(Ω) and ak ∈ D(Q) be such that
ak → a in Lβ(Q). Let pk be the solution of (2.13) with a = λ|y|λ−1 replaced by ak

and the final condition replaced by pk(·, T ) = ϕk. Then pk is smooth and pk → p
in L2(Q) due to Lemma 4.1. Notice that z ∈ L2λ(Q) due to Theorem A.1 (cf. the
beginning of the proof of Theorem 2.3), hence az ∈ L2(Q) and the maximal Sobolev
regularity implies ∂tz,∆z ∈ L2(Q). We have∫

Q

pk(v − u) dx dt =
∫

Q

pk(∂tz −∆z − az) dx dt

=
∫

Q

(−∂tpk −∆pk − apk)z dx dt+
∫

Ω

ϕkz(·, T ) dx

=
∫

Q

(ak − a)pkz dx dt+
∫

Ω

ϕkz(·, T ) dx→
∫

Ω

p(·, T )z(·, T ) dx,

since pk stay bounded in L2(Q) due to Lemma 4.1. Now∫
Q

pk(v − u) dx dt→
∫

Q

p(v − u) dx dt

concludes the proof. �

5. The Case of a Multiplicative Control

Proof of Theorem 2.8. The proof is almost the same as in Theorem 2.3 (but the
solutions y are more regular now). The only nontrivial modification is required in
the estimate of the function V and the L2(Q)-norm of ∂ty in the proof of Lemma 3.2.

Hence, assume y ∈ C([0, T + t1],W 1
2,B) is a solution of (2.14), where t1 > 0

is fixed. Since Uad is bounded in L∞(Q), there exists a constant M such that
‖u‖L∞(Q) ≤ M for all u ∈ Uad. Let V be defined as in the proof of Lemma 3.2.
Then

V ′(t) = −
∫

Ω

(∂ty)2(t) dx+
∫

Ω

uy∂ty(t) dx

≤ M2

2

∫
Ω

y2(t) dx− 1
2

∫
Ω

(∂ty)2(t) dx.
(5.1)

Let τ < 1, τ ≤ T + t1 and t ∈ [0, τ ]. Denoting C0 :=
∫
Ω
y2(x, 0) dx, we have∫

Ω

y2(t) dx = C0 + 2
∫ t

0

∫
Ω

y∂ty dx dt ≤ C0 +
∫ τ

0

∫
Ω

y2 dx dt+
∫ τ

0

∫
Ω

(∂ty)2 dx dt.

Integrating this estimate over t ∈ [0, τ ], we get∫ τ

0

∫
Ω

y2 dx dt ≤ C0τ + τ

∫ τ

0

∫
Ω

y2 dx dt+ τ

∫ τ

0

∫
Ω

(∂ty)2 dx dt,

hence ∫ τ

0

∫
Ω

y2 dx dt ≤ C0τ

1− τ
+

τ

1− τ

∫ τ

0

∫
Ω

(∂ty)2 dx dt. (5.2)
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Let τ1 ∈ (0, 1) be defined by τ1
1−τ1

M2 = 1
2 and τ ∈ [0, τ1] (enlarging M we may

assume τ1 ≤ T + t1). Then integrating (5.1) and using (5.2) we arrive at

V (τ)− V (0) ≤ C0

4
− 1

4

∫ τ

0

∫
Ω

(∂ty)2 dx dt, τ ∈ [0, τ1]. (5.3)

This estimate guarantees V (t) ≤ V (0) + C0/4 on [0, τ1].
Fix δ ∈ (0, t1 ∧ τ1) and assume V (t0) � −1 for some t0 ∈ [0, τ1 − δ]. Then (5.3)

implies V (t) ≤ −K � −1 for all t ∈ [τ1 − δ, τ1]. As in (3.15) we have
1
2
d

dt

∫
Ω

y2 dx = −2V (t) + c1

∫
Ω

|y|λ+1 dx+
∫

Ω

uy2 dx

≥ K + c2

(∫
Ω

y2 dx
)(λ+1)/2

for any t ∈ [τ1−δ, τ1]. In the same way as in the proof of Lemma 3.2, this inequality
yields a contradiction if K = K(λ, c2, δ) is large enough. Consequently,

V (t) ≥ −C for all t ∈ [0, τ1 − δ]. (5.4)

Now (5.3) implies
∫ τ1−δ

0

∫
Ω
(∂ty)2 dx dt ≤ C, hence

∫
Ω
y2(t) dx ≤ C for t belonging

to [0, τ1 − δ]. In particular,
∫
Ω
y2(τ1 − δ) dx ≤ C1, where C1 does not depend on u.

Repeating the estimates above on the interval [τ1−δ, 2τ1−δ] instead of [0, τ1] and
then on [2τ1−2δ, 3τ1−2δ] etc, we obtain the desired bounds for V (t), ‖y(t)‖L2(Ω),
t ∈ J , and ‖∂ty‖L2(Q). �

6. Parabolic Systems

Proof of Theorem 2.10. Let ϕ1 > 0 be an eigenfunction corresponding to the first
eigenvalue µ1 of the problem −∆ϕ = µϕ in Ω, B1ϕ = 0 on Γ. Notice that ϕ1 is
a positive constant if B1 = ∂ν , hence the weighted Lebesgue space L1(Ω, ϕ1(x) dx)
equals L1(Ω) in this case.

We shall prove that
(i) any bound of y1(t) in Lp(Ω, ϕ1(x) dx) or Lp(Ω), p ≥ 1, implies a bound of

y2(t) in the same space;
(ii) the space X := L1(Ω, ϕ1(x) dx)× L1(Ω, ϕ1(x) dx) is a continuation space

for problem (2.15), that is, if the solution y is defined on [0, T ∗], T ∗ > 0, and
‖y(T ∗)‖X ≤M then this solution can be continued for t ∈ [T ∗, T ∗ + τ ], where τ =
τ(M) > 0. In addition, ‖u(t)‖L∞(Ω)×L∞(Ω) ≤ C(δ,M) for any t ∈ [T ∗ + δ, T ∗ + τ ]
and δ > 0;

(iii) all global solutions of problem (2.15) with u bounded in Lr(J, L+
z (Ω)) and

y1(T ) bounded in Lq(Ω) are uniformly bounded in L∞(Q).
Then the conclusion follows similarly as in the proof of Theorem 2.3.
(i) Let u ∈ Uad. Set w := y2

2/2− by2 − ay1. One can easily verify

∂tw −∆w ≤ −au ≤ 0,

hence the comparison principle guarantees w ≤ C in Q, where C does not depend
on u. This estimate implies

y2
2 ≤ C(1 + y1), (6.1)

and the conclusion follows.
(ii) Set z := ay1 + by2. Then

∂tz −∆z = ay1y2 + au ≤ C(1 + z3/2) + au. (6.2)
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Since n < 4 if B = ∂ν and n < 3 if B = γ, the problem ∂tz̃−∆z̃ = C(1+|z̃|3/2)+au,
Bz̃ = 0, is well posed in X1 := L1(Ω, ϕ1(x) dx) due to [30] and [13], respectively.
More precisely, if ‖z̃(0)‖X1 ≤ M then there exists τ = τ(M) > 0 such that the
solution z̃ exists on [0, τ ] and satisfies ‖z̃(t)‖L∞(Ω) ≤ C(δ,M) for any t ∈ [δ, τ ]
and δ > 0. A comparison argument shows that the same estimate is true for the
function z. In particular, the space X is a continuation space for (2.15) in the sense
described above.

(iii) Now assume that u belongs to a bounded set in UG
ad ⊂ Lr(J, L+

z (Ω)) and
y1(T ) is bounded in L1(Ω). The above arguments show that the solution y can be
continued for t ∈ [0, T + τ ], where τ > 0 does not depend on u and u(x, t) := 0 if
t > T . Multiplying the second equation in (2.15) with ϕ1 and using (6.1) we obtain

∂t

∫
Ω

y2ϕ1 dx+ µ1

∫
Ω

y2ϕ1 dx = a

∫
Ω

y1ϕ1 dx ≥ c

∫
Ω

y2
2ϕ1 dx− C

≥ c
(∫

Ω

y2ϕ1 dx
)2

− C

for any t ∈ [0, T + τ ]. Using standard blow-up arguments (cf. the arguments
following (3.15) in the proof of Lemma 3.2), this estimate guarantees a uniform
bound for y2(t), t ∈ [0, T+τ/2], in the weighted space L1(Ω, ϕ1(x) dx). Integrating
the second equation in (2.15) we obtain now∫ T+τ/2

0

∫
Ω

y1ϕ1 dx dt ≤ C. (6.3)

The first equation in (2.15) implies∫
Ω

y1ϕ1 dx
∣∣∣t2
t1

+ (µ1 + b)
∫ t2

t1

∫
Ω

y1ϕ1 dx dt ≥ 0,

hence using (6.3) we deduce∫
Ω

y1(t2)ϕ1 dx ≥
∫

Ω

y1(t1)ϕ1 dx− C (6.4)

for any t1, t2 ∈ [0, T + τ/2], t2 > t1.
Obviously, (6.3) and (6.4) imply a uniform estimate for y1(t), t ∈ J , in the space

L1(Ω, ϕ1(x) dx). Now (i) and (ii) imply uniform bounds for y1, y2 in L∞([δ, T ]×Ω)
for any δ > 0. Since the bounds for y1, y2 in L∞([0, δ] × Ω) for δ > 0 small
enough are guaranteed by the well posedness of (2.15) in L∞(Ω)× L∞(Ω) and the
boundedness of u in Lr(J, Lz(Ω)), the conclusion follows. �

Appendix: The Basic Existence, Uniqueness, and Stability Theorem
for Semilinear Problems

For the reader’s convenience we collect here the main existence, uniqueness and
stability results for strong solutions of the semilinear problem

ẏ +Ay = F (y) in [0, T ], y(0) = y0, (A.1)

where A = As be the isomorphism between W s
q,B and W s−2

q,B mentioned in Section 2.
They follow from [6, Theorems 3.3, 3.4] and [5, Theorems 5, 7(ii)]. Analogous results
are true in the case of systems.



22 H. AMANN AND P. QUITTNER

We write C1−
b (Y,X) for the space of all maps from Y into X which are uniformly

Lipschitz continuous on bounded sets. If X and Y are paces of functions defind on
[0, T ], then F : X → Y is said to possess the Volterra property if, given any u ∈ X
and t ∈ (0, T ), the restriction of F (u) to [0, t] depends on the values of u | [0, t] only.

Theorem A.1. Assume

s, σ /∈ Sq, 0 ≤ s < σ < 2. (A.2)

and suppose that r > 1, r 6= 2/(σ−s), σ−2/r /∈ Sq, y0 ∈ Y 0 := W
σ−2/r

q,B . Denote
Xt := Lr([0, t],W σ−2

q,B ).

If r < 2/(σ − s) fix p ∈ [1, 2/(s− σ + 2/r)) and set Yt := Lp([0, t],W s
q,B),

if r > 2/(σ − s) fix ρ ∈ [0, (σ − s− 2/r)/2) and set Yt := Cρ([0, t],W s
q,B).

Let F ∈ C1−
b (YT , XT ) have the Volterra property. If r < 2/(σ− s) or r > 2/(σ− s)

then (A.1) has a unique strong Lp(W s
q )- or Cρ(W s

q )-solution y(y0, F ), respectively,
defined on the maximal existence interval [0, t(y0, F )). If y(y0, F ) ∈ Yt(y0,F ) or
F (y(y0, F )) ∈ Xt(y0,F ) then y(y0, F ) is global.

The map (y0, F ) 7→ y(y0, F ) is Lipschitz continuous in the following sense: Fix
t < t(y0, F ) (we can take t = t(y0, F ) = T if y(y0, F ) is global). Let ω1 > 0, and
let ω2 : R+ → R+ be an increasing function,

‖y0‖Y 0 + ‖F (0)‖XT
≤ ω1,

‖F (y1)− F (y2)‖XT
≤ ω2(R)‖y1 − y2‖YT

,

}
(A.3)

for any R > 0 and y1, y2 ∈ YT whose norms are bounded by R. Fix R > ‖y(y0, F )‖Yt
.

Then there exist positive constants ε, c (depending only on R, t, ω1, ω2) with the fol-
lowing property: If ỹ0 ∈ Y 0, F̃ ∈ C1−

b (YT , XT ) has the Volterra property, ỹ0 and
F̃ satisfy (A.3) and

‖y0 − ỹ0‖Y 0 + sup
‖y‖YT

≤R

‖(F − F̃ )(y)‖XT
≤ ε,

then t ≤ t(ỹ0, F̃ ), y(ỹ0, F̃ ) ∈ Yt and

‖y(y0, F )− y(ỹ0, F̃ )‖Yt ≤ c
(
‖y0 − ỹ0‖Y 0 + sup

‖y‖YT
≤R

‖(F − F̃ )(y)‖XT

)
.

If y = y(y0, F ) is global then

y ∈ Lr(J,W σ̃
q,B) ∩W 1

r (J,W σ̃−2
q,B ) (A.4)

for any σ̃ < σ, and the norm of y in this space can be estimated by a constant
C = C(‖F (y)‖XT

, ‖y0‖Y 0).
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