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Abstract. We study the existence of optimal controls for problems governed
by semilinear parabolic equations. The nonlinearities in the state equation
need not be monotone and the data need not be regular. In particular, the

control may be any bounded Radon measure. Our examples include problems
with nonlinear boundary conditions and parabolic systems.

1. Introduction

In [8] we developed a general existence and uniqueness theory for semilinear par-
abolic problems involving measures and low regularity data. The proofs were based
on a generalized variation-of-constants formula in suitable extrapolated spaces and
the Banach fixed point theorem. Other papers on this topic mostly use approxima-
tion of singular data by regular ones and, consequently, require a priori estimates
(usually based on maximum principles) for the approximating solutions in order to
solve the original problem. The approach in [8] is much simpler and more flexible.
In particular, it can be easily used for problems with non-monotone nonlinearities
and for systems. In [8] we also established stability estimates and compactness
properties which play an important role in control theory.

It is the purpose of this paper to demonstrate the applicability of the results from
[8] to optimal control problems with low regularity data. We restrict ourselves to
the study of nonlinear model problems where the controls enter linearly. However,
using the full strength of [8], one can also study feedback control problems where
the control depends on the state variable in a nonlinear (and nonlocal) way. This
will be the subject of a forthcoming paper.

Optimal control problems involving measures and low regularity data were stud-
ied before; see, for example, the recent papers [12], [14], [20] and the references
therein. However, those studies are restricted to linear or monotone cases. More-
over, most of them solve the state equation by using the approximation procedure
mentioned above so that the corresponding proofs are rather long and complicated.

Let us describe our results in more detail. In Section 3 we consider state problems
of the form

∂ty +Ay = f(x, t, y,∇y) + uQ, x ∈ Ω, t ∈ [0, T ],

y = 0, x ∈ Γ0, t ∈ [0, T ],

∂νy = g(x, t, y) + uΣ, x ∈ Γ1, t ∈ [0, T ],

y(·, 0) = y0 in Ω,

 (1.1)
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where, throughout this paper it is assumed that

Ω ⊂ Rn is an open bounded set with a smooth boundary Γ, n ≥ 2,
Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are open as well as closed in Γ and disjoint .

Notice that either Γ0 or Γ1 may be empty. We set Q := Ω × J , Σ := Γ × J , and
Σi := Γi × J , i = 0, 1, where J := [0, T ] with T > 0. The operator A is always of
the form

Ay := −∇ · (a∇y),

where

a = [ajk] ∈ C∞(Ω̄,Rn×n) is symmetric and uniformly positive definite.

Furthermore, ∂ν is the derivative with respect to the conormal ν := aν, with ν be-
ing the outer unit normal on Γ. The maps f and g are nonlinear Carathéodory
functions, y0 is a bounded Radon measure in Ω, and the controls uQ and uΣ are
bounded Radon measures in Q and Σ1, respectively.

It should be observed that uQ and uΣ may be singular, e.g., point measures, in
space and in time, whereas in most papers on control problems for parabolic equa-
tions with measures integrability with respect to the time variable is requested, at
least if reasonably regular solutions are considered. An approach to control prob-
lems with measures, completely different from ours, is presented in the book by
Fattorini [13] and generalized by Ahmed (see [1] for a survey and the references
therein). These authors have to impose rather restrictive assumptions on the non-
linearities in order to construct solutions in a very weak setting. In particular, their
methods do not seem to be applicable to the class of problems we treat in this pa-
per. Furthermore, there is a large literature on impulsive evolution equations and
their control (see the survey [1] and the references therein, for example). These
are equations in which jumps may occur at prefixed points on the time axis. By
an obvious choice of uQ and uΣ, such a situation is easily subsumed as a simple
particular case in our general setting.

If f and g satisfy suitable growth conditions, then [8] guarantees the existence of
a unique maximal (weak) solution of (1.1). Denoting by Uad the set of all admissible
controls u = (uQ, uΣ) and, setting

U
G
ad := {u ∈ Uad : the solution y = y(u) of (1.1) exists globally},

we prove an abstract existence theorem for optimal control problems of the form

minimize J
(
y(u), u

)
over u ∈ UGad, (1.2)

where J is the cost functional. This theorem requires (weak) compactness of the set
Uad and lower semicontinuity of J. In addition, in the general case we also require
U
G
ad 6= ∅ and coercivity of J with respect to the state variable y. In the monotone

case (for example, if f(x, t, ξ, η)ξ ≤ 0 and g(x, t, ξ)ξ ≤ 0 for all x, t, ξ, η) all solutions
of (1.1) are global and solutions with bounded data are uniformly bounded so that
these additional assumptions are not needed.

Given u ∈ Uad, the abstract existence theorem in Section 3 requires J(·, u) to be
lower semicontinuous and coercive in a space Y which may depend on the nonlin-
earities f and g, and whose topology is somewhat complicated in the general case.
In addition, there are many possibilities for the choice of Y . For this reason we
consider in Section 4 model cases with power nonlinearities f, g and show how one
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can make simple choices for the space Y and the cost functional J. For example, in
the case of the problem

∂ty −∆y = |y|λ−1y + uQ in Q,

y = 0 on Σ,

y(·, 0) = y0 in Ω,

 (1.3)

where 1 < λ < (n+ 2)/n, a possible choice is Y := Lp(Q) with p ∈ [λ, (n+ 2)/n).
Consequently, the optimal control problem (1.2) governed by (1.3) is solvable if
Uad is (weakly) compact in the space of bounded Radon measures, UGad 6= ∅, and
J(y, u) =

∫
Q
|y|p dx dt, for example. Notice that the restriction λ < (n + 2)/n is

necessary for the solvability of (1.3), see [10]. We also show how this restriction can
be relaxed if uQ is more regular (see Remark 4.7(i)).

Section 5 is devoted to various extensions and modifications. In particular we
show how one can relax the lower semicontinuity and coercivity assumptions on
J (see Example 5.1 and Theorem 5.5, respectively) and the compactness of Uad

(see Example 5.2). In addition, we study several related control problems (e.g.,
maximizing the existence time of the solution y, control via initial data, etc.).

In Section 6 we consider optimal controls for problems governed by the system

∂ty1 −∆y1 = κy1y2 − by1 + u1 + v1y1 in Q,

∂ty2 − d∆y2 = ay1 + u2 in Q,

}
(1.4)

which is complemented by suitable boundary and initial conditions. Here d ≥ 0,
a > 0, κ, b ∈ R, and u1, v1, u2 are controls. System (1.4) (with d = 0 and
u1 = v1 = u2 = 0) was derived in [17] as a model for the dynamics of a nuclear
reactor close to a stationary state. The state variables y1 and y2 correspond to the
neutron flux and the temperature, respectively, and the constant κ represents the
temperature feedback (cf. also [25]). Since this system (with d ≥ 0, κ > 0 and
u1 = v1 = u2 = 0) possesses an interesting dynamics with possible blow-up in finite
time, it became the object of study of many mathematical papers (see [11], [15],
[21], [22], [27], [28] and the references therein). We consider the case d = κ = 1
and assume also that at most one of the controls u1, v1, u2 is non-zero. Imposing
suitable (low) regularity of these controls and lower semicontinuity and coercivity
of the corresponding cost functional we prove the existence of optimal controls (see
Theorems 6.1, 6.2, and 6.3). In the case u2 6= 0 we admit another control acting on
the boundary ∂Ω.

2. Preliminaries

First we introduce some further notation which will be used throughout this
paper. We write a∨ b := max(a, b) and a∧ b := min(a, b) for a, b ∈ R. If p ∈ (1,∞),
then p′ is the dual exponent defined by 1/p + 1/p′ = 1. For X ⊂ Rn we denote
by M(X) and D(X) the space of bounded Radon measures in X and of smooth
functions with compact support in X, respectively. The symbols w and w∗ are used
to denote the weak and weak-star topology, respectively.

We write γ for the trace operator and set

By :=
{

γy on Γ0,

∂νy on Γ1.
(2.1)
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Notice that problem (1.1) can now be written in the form

∂ty +Ay = f(x, t, y,∇y) + uQ in Q,

By = g(x, t, y) + uΣ in Σ,

y(·, 0) = y0 in Ω,

 (2.2)

where g(x, t, y) := 0 for x ∈ Γ0 and uΣ is extended by 0 on Σ0.
Let s ∈ [−2, 2], 1 < q < ∞, and Sq := {−2 + 1/q,−1 + 1/q, 1/q, 1 + 1/q}. We

write W s
q := W s

q (Ω) for the usual Sobolev-Slobodeckii spaces; hence W 0
q = Lq. We

set

W s
q,B :=


{u ∈W s

q ; Bu = 0 }, 1 + 1/q < s ≤ 2,

{u ∈W s
q ; γu = 0 on Γ0 }, 1/q < s < 1 + 1/q,

W s
q , 0 ≤ s < 1/q,

(W−sq′,B)′, −2 ≤ s < 0, s /∈ Sq,

where the dual space (W−sq′,B)′ is determined by means of the standard Lq-duality
pairing.

Consider the problem

∂ty +Ay = f in Q,

By = g on Σ,

y(·, 0) = y0 in Ω,

 (2.3)

where
y0 ∈M(Ω), f ∈M(Q), and g ∈M(Σ) with g = 0 on Σ0.

Assume that s ∈ [0, 2] \ Sq and 1 < p, q < ∞. We recall from [8, p. 1059] that
a weak Lp(W s

q ) solution of (2.3) on [0, t], where 0 < t ≤ T , is a function
y ∈ Lp,loc([0, t),W s

q,B) such that∫ t

0

∫
Ω

(−∂tϕ+Aϕ)y dx dt =
∫

Ω×[0,t]

ϕdf +
∫

Γ×[0,t]

ϕdg +
∫

Ω

ϕ(0) dy0 (2.4)

for each ϕ ∈ D(Ω × [0, t)) satisfying Bϕ = 0 on Γ × [0, t]. It is global if t = T

and y ∈ Lp((0, T ),W s
q,B). Notice that, taking f̂ := f + y0 ⊗ δ0 instead of f , we can

assume y0 = 0.
Suppose that k ∈ N, q, p1, p2, . . . , pk ∈ (1,∞) and s1, s2, . . . , sk ∈ [0, 2] \ Sq. Set

~p := (p1, p2, . . . , pk) and ~s := (s1, s2, . . . , sk). We say that y is a weak L~p(W~s
q )

solution of (2.3) on [0, t] if it is a weak Lpi(W
si
q ) solution of (2.3) on [0, t] for each

i = 1, 2, . . . , k.
The differential operator C := 1 +A defines an isomorphism between W 2

q,B and
Lq and this isomorphism admits a unique extension to an isomorphism Cs between
W s
q,B and W s−2

q,B for any s ∈ [0, 2] \ Sq (see [2]). Moreover, −A := 1− Cs generates
a strongly continuous analytic semigroup {e−tA ; t ≥ 0} on W r

q,B for r in [−2, s]\
Sq, and

(t 7→ e−tAx) ∈ C
(
[0, T ],W r

q,B
)
∩ C

(
(0, T ],W s

q,B
)

(2.5)

with
‖e−tAx‖W s

q,B
≤ ct(r−s)/2 ‖x‖W r

q,B
, 0 < t ≤ T, (2.6)
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for x ∈ W r
q,B (cf. [2, Theorem 5.2] and [3, Theorem V.2.1.3]). Then, provided

1 < q < n/(n − 2) and 0 ≤ s < 2 − n/q′, (the weak form of) problem (2.3) is
equivalent to the abstract evolution equation

ẏ +Ay = F in [0, T ], y(0) = y0, (2.7)

with F := f + γ′g, where

γ′ : W s−1−1/q
q (Γ)→W s−2

q,B , s < 1 + 1/q,

is the dual of the trace operator from W 2−s
q′,B into W 1+1/q−s

q′ (Γ) (see [8] for details).
A weak Lp(W s

q ) solution y of (2.3) on [0, t] is a strong Lp(W s
q ) solution if

y ∈W 1
r,loc([0, t),W s−2

q,B ) ∩ Lr,loc([0, t),W s
q,B)

for some r > 1 and (2.7) is satisfied a.e. in [0, t]. If, in addition, y ∈ Cρ([0, t),W s
q,B)

for some ρ ∈ [0, 1) then y is called strong Cρ(W s
q ) solution. Similarly as above

we define strong L~p(W~s
q ) or C~ρ(W~s

q ) solutions.
Let X ∈ {Q,Σ1}. We write ϕ ∈ Car1(X×Rm,R) if ϕ : X × Rm → R is a Cara-

théodory function such that ϕ(x, t, ·) is continuously differentiable for a.a. (x, t) in
X. Let r ≥ 1 and λj ∈ (1,∞) for j = 0, 1, . . . , 4. Assume that

f ∈ Car1
(
Q× (R× Rn),R

)
, g ∈ Car1(Σ1 × R,R)

satisfy the growth conditions

f0 := f(·, ·, 0, 0) ∈ Lr(J, L1);

|∂ξf(x, t, ξ, η)| ≤ C
(
1 + |ξ|λ0−1 + |η|λ1−1

)
,

|∂ηf(x, t, ξ, η)| ≤ C
(
1 + |ξ|λ2−1 + |η|λ3−1

)
for (x, t, ξ, η) ∈ Ω× J × R× Rn

(2.8)

and
g0 := g(·, ·, 0) ∈ Lr

(
J, L1(Γ1)

)
;

|∂ξg(y, t, ξ)| ≤ C
(
1 + |ξ|λ4−1

)
for (y, t, ξ) ∈ Γ1 × J × R.

(2.9)

Let
(µQ, νΣ) ∈M(Q)×M(Σ1) if r = 1,

(µQ, νΣ) ∈ Lr(J,M(Ω)×M(Γ1)) if r > 1,
(2.10)

and

y0 ∈M(Ω) if r = 1, y0 ∈W 2−2/r
q0,B for some q0 > 1 if r > 1. (2.11)

Define numbers λij := λij(n, r) for j = 0, 1, . . . , 4 and i = 0, 2 by

λi0
(
2 + (n− 2)r

)
= i+ rn, λi1

(
2 + (n− 1)r

)
= i+ r(n+ 1),

λi2
(
2 + (n− 2)r

)
= i+ r(n− 1), λi3

(
2 + (n− 1)r

)
= i+ rn,

λi4
(
2 + (n− 2)r

)
= i+ r(n− 1),

(2.12)

and assume that
λj < λ2

j , 0 ≤ j ≤ 4. (2.13)

Observe that λ2
j > λ0

j and λ2
j > 1 ∨ λ1

j for 0 ≤ j ≤ 4, where

λ1
0 := 1 if n = 2, r = 1, λ1

0 := n/(n− 1) otherwise,

λ1
1 := (n+ 1)/n, λ1

2 := λ1
3 := 1, λ1

4 := 1/(n− 1).
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Therefore, increasing λj if necessary, we can assume that

λj > 1 ∨ λ0
j ∨ λ1

j , 0 ≤ j ≤ 4. (2.14)

Set ~λ := (λ0, λ1, . . . , λ4).
Proposition 2.1. Under the assumptions above there exists q∗ > 1 with the fol-
lowing property: if q ∈ (1, q∗], then there exist sj ∈ [0, 2 − n/q′), 0 ≤ j ≤ 4, such
that (1.1) has a unique maximal Lr~λ(W~s

q ) solution u, which is strong if r > 1.

Proof. We set

d0 :=
1
λ0
, d1 :=

n+ 1
λ1n

− 1
n
, d2 :=

1
λ2n′

, d3 :=
1
λ3
− 1
n
, d4 :=

1
λ4n′

,

and assume that we are not in the special case n = 2, r = 1. The hypothesis
λj > λ1

j guarantees that the inequalities 1/n + dj < 1, 0 ≤ j ≤ 4, are satisfied.
Hence we can fix q∗ > 1 such that 1/q∗ ≥ 1/n+dj , 0 ≤ j ≤ 4, and q∗ ≤ q0 if r > 1.
Now, fixing q ∈ (1, q∗], we can choose sj such that the square brackets in [8, (6.7)]
vanish, that is,

s0 :=
n

q
− n

λ0
, s1 :=

n

q
+ 1− n+ 1

λ1
,

s2 :=
n

q
− n− 1

λ2
, s3 :=

n

q
+ 1− n

λ3
, s4 :=

n

q
− n− 1

λ4
.

The assumptions λj > λ0
j guarantee that 2/r > 2− n/q′ − sj .

In the special case n = 2, r = 1, we replace the condition 1/q∗ ≥ 1/n+ d0 above
with 1/q∗ > 3/2− 1/λ0 and we set s0 := 1.

Now the assertion follows from [8, Theorem 6.1], Theorems A.5, and A.6 (also
cf. [8, Remark 6.2(a)]). �

Remark 2.2. The solution u in Proposition 2.1 depends Lipschitz continuously
on f , µQ, g and µΣ in suitable topologies, see Theorems A.5, A.6 and/or [8] for
details. In particular, if u = (uQ, uΣ) ∈ M(Q) ×M(Σ1) and the solution y(u) of
(1.1) is global then there exists ε > 0 such that the solution y(ũ) is global for each
ũ ∈M(Q)×M(Σ1) with ‖ũ− u‖M(Q)×M(Σ1) < ε. In addition,

‖y(ũ)− y(u)‖Y ≤ c‖ũ− u‖M(Q)×M(Σ1), (2.15)

where Y = Lr~λ(J,W~s
q,B) :=

⋂4
j=1 Lrλj (J,W

sj
q,B), and the constants c, ε depend only

on ‖y(u)‖Y . Finally, if f = 0 and g = 0 then the solution y(u) of the (linear)
problem (1.1) is global and satisfies

‖y(u)‖Lp(J,W s
q,B) ≤ c‖u‖M(Q)×M(Σ1) (2.16)

for any q ∈ (1, n/(n− 2)), s ∈ [0, 2− n/q′) and p ∈ (1, 2/(s+ n/q′)), see [6]. �

We close this section with a few comments concerning the identification of the
spaceM(Q)×M(Σ1) withM(Q∪Σ1). With (uQ, uΣ) ∈M(Q)×M(Σ1), we can
associate the measure u ∈M(Q ∪ Σ1) defined by∫

Q∪Σ1

ϕdu =
∫
Q∪Σ1

ϕdu0
Q +

∫
Σ1

γϕ duΣ, ϕ ∈ C0(Q ∪ Σ1), (2.17)

where u0
Q is the trivial extension of uQ (cf. [8, Remark 4.2(b)]). The map

J :M(Q)×M(Σ1)→M(Q ∪ Σ1), (uQ, uΣ) 7→ u (2.18)
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is linear, injective and continuous. On the other hand, if we take any bounded
Radon measure u ∈M(Q∪Σ1), then the completion of its restrictions to the Borel
σ-algebras of Q and Σ1 define bounded Radon measures uQ and uΣ in M(Q) and
M(Σ1) respectively. Obviously, u = J (uQ, uΣ). Hence J is a linear isomorphism
and this enables us to identify the spaceM(Q)×M(Σ1) withM(Q∪Σ1). Notice
also that (2.4) with t = T is equivalent to∫

Q

(−∂tϕ+Aϕ)y dx dt =
∫
Q∪Σ1

ϕdF +
∫

Ω

ϕ(0)dy0

where F = J (f, g) (or F = f+γ′g if we consider f and g as elements ofM(J,W σ−2
q,B )

and M(J,W σ−1−1/q
q (Γ1)) with σ < 2− n/q′, respectively).

In the subsequent sections we will often work with elements u ∈ M(Q ∪ Σ1),
where M(Q ∪ Σ1) is endowed with the w∗-topology. In this case, we have to be
careful in distinguishing between the couple (uQ, uΣ) and u = J (uQ, uΣ). In fact,
if uQ,k = δ(xk,t), where xk ∈ Ω with xk → x ∈ Γ1 and t ∈ J , and if uΣ,k = 0 then

(uQ,k, uΣ,k)→ (0, 0) in (M(Q), w∗)× (M(Σ1), w∗),

J (uQ,k, uΣ,k)→ δ(x,t) in (M(Q ∪ Σ1), w∗).

Finally, each u ∈M(Q∪Σ1) and uΣ ∈M(Σ1) will be identified with the trivial
extension u0 ∈M(Q̄) and u0

Σ ∈M(Σ), respectively.

3. Abstract existence result

In this section we prove existence results for optimal control problems governed
by the state equation (1.1). Examples of cost functionals satisfying our abstract
assumptions will be given in the subsequent section.

We fix r ≥ 1 and assume (2.8)-(2.14). We also fix q > 1 and sj ∈ [0, 2 − n/q′),
0 ≤ j ≤ 4, as in Proposition 2.1 and set

Y := Lr~λ(J,W~s
q,B) =

4⋂
j=0

Lrλj (J,W
sj
q,B). (3.1)

Finally, we use the identification of M(Q)×M(Σ1) with M(Q ∪ Σ1), see (2.18).
First consider the case r = 1. Let

M :=M(Q ∪ Σ1) (3.2)

be endowed either with the strong topology or the w∗-topology. We assume that

Uad ⊂M is sequentially compact (3.3)

and
J : Y ×M→ R is sequentially lower semicontinuous. (3.4)

Given u = (uQ, uΣ) ∈ M, Proposition 2.1 guarantees that problem (1.1) possesses
a unique maximal Lr~λ(W~s

q ) solution y = y(u). Set

U
G
ad := {u ∈ Uad : y(u) is global}.

We also assume either

f(x, t, ξ, η)ξ ≤ 0 and g(x, t, ξ)ξ ≤ 0 for all x, t, ξ, η, (3.5)

and
f is independent of the gradient variable η, (3.6)
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or
U
G
ad 6= ∅ (3.7)

and
lim

‖y‖Y→∞
J(y, u) = +∞, uniformly w.r.t. u ∈ Uad. (3.8)

Then we have the following theorem.
Theorem 3.1. Let r = 1. Given the above assumptions, the optimal control prob-
lem (1.2), governed by (1.1), has a solution.

Proof. We know that (1.1) possesses a unique maximal weak Lr~λ(W~s
q ) solution

y = y(u) for any u = (uQ, uΣ) ∈ Uad. In addition (see Remark 2.2), if u1 ∈ UGad

then y(u1) ∈ Y and there exist ε, c > 0, depending only on ‖y(u1)‖Y , with the
following property: if u2 ∈ Uad, ‖u1 − u2‖M(Q∪Σ1) ≤ ε then u2 ∈ UGad and

‖y(u1)− y(u2)‖Y ≤ c‖u1 − u2‖M(Q∪Σ1). (3.9)

First assume that M is endowed with the strong topology and (3.7), (3.8) are
true. Let uk ∈ UGad be such that J(y(uk), uk) → inf. Thanks to (3.3), we may
assume uk → u in M. Hypothesis (3.8) implies the boundedness of yk := y(uk) in
Y , i.e.,

‖yk‖Y < R for some R > 0 and all k.
This estimate and (3.9) show u ∈ UGad and yk → y(u) in Y . Now we infer from (3.4)
that (y(u), u) is an optimal pair for problem (1.2).

Next assume (3.5), (3.6) instead of (3.7), (3.8). We will show that UGad = Uad

and
‖y(u)‖Y ≤ C(1 + ‖û‖M), u ∈ Uad, (3.10)

where û := |u| + |y0 ⊗ δ0|. Then the rest of the proof is the same as in the non-
monotone case.

Let z = z(u) be the solution of

∂tz +Az = |uQ| in Q,

Bz = |uΣ| on Σ,

z(·, 0) = |y0| in Ω.

 (3.11)

Due to [6, Theorem 4, Corollary 3 and Proposition 3], z is global, nonnegative and

‖z‖Z ≤ C‖û‖M, u ∈ Uad, (3.12)

with Z := L~p(J,W ~σ
q,B)), where

~p = (p0, p1) ∈ (1,∞)2, ~σ = (σ0, σ1) ∈ ([2− n/q′) \ Sq)2

can be chosen in such a way that Lp0(J,W σ0
q,B) is embedded into Lλ0(J, Lλ0) and the

space of traces of functions in Lp1(J,W σ1
q,B) into Lλ4(J, Lλ4(Γ)) (cf. (2.16)). Setting

F (w) := f(·, ·, w) and G(w) := g(·, ·, w), we see that z − y := z(u)− y(u) satisfies

∂t(z − y) +A(z − y) = F (z)− F (y) + u∗Q, x ∈ Ω, t ∈ Ju,
B(z − y) = G(z)−G(y) + u∗Σ, x ∈ Γ, t ∈ Ju,

(z − y)(·, 0) = |y0| − y0 ≥ 0,


where

u∗Q := −F (z) + |uQ| − uQ ≥ 0, u∗Σ := −G(z) + |uΣ| − uΣ ≥ 0
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and Ju denotes the maximal existence interval of y(u). Consequently, [8, Theorem
6.3] guarantees z ≥ y in Ju. Analogous arguments show z ≥ −y, hence |y| ≤ z.
Thus (2.8), (2.9), and (3.12) imply

‖F (y)‖M(Qu) + ‖G(y)‖M(Σu) ≤ C(1 + ‖û‖M),

where Qu := Ω× Ju and Σu := Σ1 × Ju. This estimate guarantees that the right-
hand side of (1.1) is bounded in M(Qu ∪ Σu) by C(1 + ‖û‖M). Hence [6] implies
u ∈ UGad and (3.10).

Now assume that M is endowed with the w∗-topology. Then we can assume
uk → u in (M(Q∪Σ1), w∗). As above, the boundedness of the sequence (y(uk)) in
Y follows either from the coercivity of J (in the general non-monotone case) or from
the comparison with the corresponding linear problem (3.11) and the boundedness
of uk in M(Q ∪ Σ1) (if (3.5), (3.6) are true). Let

F = (ϕ,ψ) ∈ (M(Q),M(Σ1)) .=M(Q ∪ Σ1).

Due to [8, Proposition 17.1], the solution operator S : M(Q ∪ Σ1) → Y : F 7→ y
for the linear problem

∂ty +Ay = ϕ in Q,

By = ψ on Σ,

y(·, 0) = y0,

 (3.13)

is compact. Problem (1.1) can be written in the form (3.13) with

F = F (y, u) :=
(
f(·, ·, y,∇y) + uQ, g(·, ·, y) + uΣ

)
.

Since the set {F (yk, uk) : k = 1, 2, . . . } is bounded in M(Q ∪ Σ1), the sequence
yk = SF (yk, uk) is precompact in Y and we may assume yk → y in Y . Now it
is easy to pass to the limit in the weak formulation of (1.1) in order to show that
(y, u) is an optimal pair. �

Now consider the case r > 1. Similarly as above, we identify M×M(Γ1) with
M(Ω ∪ Γ1) and assume that

M := Lr(J,M(Ω ∪ Γ1)) (3.14)

is endowed either with the strong topology or the w∗-topology in the dual space to
Lr′(J,C0(Ω∪Γ1)). Then then we can repeat word by word the proof of Theorem 3.1
in order to prove the following theorem.
Theorem 3.2. Theorem 3.1 remains true if we replace the assumptions r = 1 and
(3.2) with r > 1 and (3.14), respectively.
Remark 3.3. Let us show that assumption (3.6) in the above theorems can be
removed if the data are more regular. Consider the case r = 1 (Theorem 3.1), the
case r > 1 is similar. We will sketch the proof of the following:

Fix ρ > 1 and assume that (2.10)-(2.11) are satisfied with r = ρ and (2.12)-(2.13)
hold with r = 1. Notice that then (2.12)-(2.13) are true with r = ρ as well. Let Y
be defined by (3.1) with r = 1 and M by (3.14) with r = ρ. Assume (3.3), (3.4)
and (3.5). Then the optimal control problem (1.2) has a solution.

In order to prove this statement, we just need to make the following modifications
in the proof of Theorem 3.1:
1. Instead of estimate (3.12) we obtain

‖z‖C(J,L1) ≤ C‖û‖M̂, (3.15)
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where û := (u, y0) and M̂ :=M×W 2−2/ρ
q0,B (recall that M = Lρ(J,M(Ω ∪ Γ1))).

2. We set F (w) := f(·, ·, w,∇w).
3. Fixing t̃ ∈ J and setting ũ(·, t) := u(·, t−t̃), ỹ(·, t) := y(·, t−t̃) (cf. [8, Section 12]),
the function ỹ is a maximal solution of (1.1) with u, y0 and J replaced with ũ, y(t̃)
and [0, T − t̃], respectively. Since

‖y(t̃)‖M(Ω) ≤ ‖y(t̃)‖L1 ≤ ‖z(t̃)‖L1 ≤ C‖û‖M̂
due to |y| ≤ z and (3.15), the local existence proof in [8, the proof of Theorem 1.1]
guarantees that there exist ε, C > 0 (depending on ‖û‖M̂ only) such that ỹ exists
on J̃ := [0, ε ∧ (T − t̃)] and satisfies ‖ỹ‖L~λ(J̃,W~s

q,B) ≤ C. This shows that y is global
and its norm in Y is bounded by a constant depending on ‖û‖M̂ only.

Notice that in the above statement it would be sufficient to assume (2.11) with
r = 1 only. Then we just need to estimate y(u) on [0, ε] and replace (3.15) with the
estimate ‖z‖C([ε,T ],L1) ≤ C

(
ε, ‖(u, y0)‖M×M(Ω)

)
. �

Remark 3.4. Theorem A.5 guarantees a stronger version of the stability estimates
(3.9). In fact, the norm in M(Q ∪ Σ1) in (3.9) can be replaced by the weaker one
in M(J,W σ−2

q,B ) for suitable σ < 2 − n/q′. This fact will be used in Example 5.2
below. �

Remark 3.5. In all our considerations in this section we can replace the space
Y by any other function space for which the existence, stability and compactness
results for (1.1) remain true. �

4. Examples

Power nonlinearity and linear boundary conditions

We begin with the following model state equation

∂ty −∆y = κ|y|λ−1y + uQ, in Q,

By = uΣ, on Σ,

y(·, 0) = y0 in Ω,

 (4.1)

where
κ ∈ R, y0 ∈M(Ω), 1 < λ < (n+ 2)/n, (4.2)

and u := (uQ, uΣ) ∈ M(Q̄) is the control with uΣ = 0 on Σ0. Let p ∈ [λ, 1 + 2/n).
Then choosing k = 1, s1 = 0, q = p and σ1 ∈ (2− 2/p, 2− n/p′) \ Sq, Theorem A.5
and Lemma A.7 show that problem (4.1) possesses a unique maximal weak Lp(Lp)
solution y = y(u).

Let M := M(Q ∪ Σ1) be endowed either with the strong topology or the w∗-
topology and Y := Lp(Q). The following theorem is a consequence of Theorem 3.1
and Remark 3.5.
Theorem 4.1. Assume (4.2) and let M and Y be defined as above. Assume also
(3.3) and (3.4), and either κ ≤ 0 or (3.7) and (3.8). Then control problem (1.2),
governed by (4.1), has a solution.
Remark 4.2. (Unbounded sets of admissible controls) It is easily seen that given
yd ∈ Lp(Q), the cost functionals

J(u) :=
∫

Ω

|y − yd|p dx dt



CONTROL PROBLEMS 11

and
J(u) :=

∫
Ω

|y − yd|p dx dt+ ‖u‖M(Q̄) (4.3)

satisfy all assumptions in Theorem 4.1. If J is defined by (4.3) and M is endowed
with the w∗-topology, then we can take Uad to be any closed convex subset of M
(for example, Uad :=M(Q) if B = γ). This follows from the fact that J is coercive
with respect to u ∈ M so that, in the optimal control problem (1.2), the set Uad

can be replaced with Ũad := {u ∈ Uad : ‖u‖M(Q̄) ≤ R}, where R > 0 is large
enough. �

Remark 4.3. (Existence of global solutions) Let κ > 0, y0 ∈ L∞, and

{u ∈ L∞(Q) : |u| ≤ ‖y0‖λL∞} ⊂ Uad.

Then one can easily prove that (3.7) is true (see [9, Example 2.5] for details). In
particular, if B = γ and Uad =M(Q), and J is defined by (4.3), then the optimal
control problem (1.2) governed by (4.1) is solvable. �

Remark 4.4. If p = λ and the set M is endowed with the strong topology, then
Theorem 4.1 is true for unbounded domains as well. �

Remark 4.5. If we replace in (4.1) the nonlinearity |y|λ−1y with the function|∇y|λ,
and if 1 < λ < (n + 2)/(n + 1), then we can repeat the considerations leading to
Theorem 4.1. More precisely, set Y := Lp(J,W 1

p,B) with λ ≤ p < (n + 2)/(n + 1)
and M :=M(Q ∪Σ1). Then (1.2) has a solution provided (4.2), (3.3), (3.4), (3.7)
and (3.8) are true. �

Remark 4.6. (Weakly sequentially compact control sets) Consider problem (4.1)
with κ, y0, and λ satisfying (4.2). Let Φ ⊂ M(J) and M ⊂ M(Ω ∪ Γ1) be w∗-
sequentially compact. Set Uad = M ⊗ Φ and let M := M(Q ∪ Σ1) be endowed
with the w∗-topology. Then Uad is sequentially compact inM. If (3.4) is true (and
(3.7), (3.8) are satisfied if κ > 0) then Theorem 4.1 guarantees the solvability of
(1.2).

Let K ⊂ Ω̄ be compact, K \ Γ0 6= ∅. Denote MX := {δx ; x ∈ X} and set

M :=

{
MK\Γ0 ∪ {0} if K ∩ Γ0 6= ∅,
MK otherwise.

Then M is sequentially compact in (M(Ω ∪ Γ1), w∗). In fact, if xk ∈ K with
xk → x, then δxk → δx in (M(Ω ∪ Γ1), w∗) provided xk and x belong to Ω ∪ Γ1. If
xk ∈ Ω ∪ Γ1 and x ∈ Γ0, then δxk → 0 in (M(Ω ∪ Γ1), w∗). Notice that M is not
compact in M(Ω ∪ Γ1) if K \ Γ0 is infinite. �

Relaxing growth restrictions

Remarks 4.7. (i) The growth in Theorem 4.1 can be weakened or even removed if
we assume more regularity on the control u and the initial data y0. If, for example,
we consider problem (4.1) with u ∈ Lr(J,M(Ω̄)), r > 1, and y0 ∈ W

2−n/λ′−2/r
λ,B

then the condition for λ in (4.2) can be replaced with

1 < λ <
rn+ 2

2 + (n− 2)r
(4.4)

(cf. (2.13) and the definition of λ2
0). More precisely, hypothesis (4.4) and Theo-

rem A.6 guarantee the unique solvability and stability estimates for solutions of
(4.1) in a suitable space Y (in Y = Lrλ(J, Lλ), for example). If we adapt the
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assumptions on Uad and J to this new space Y , then we also get the solvability of
the corresponding optimal control problem.

Similarly, if we consider problem (4.1) with u ∈ Lr(J, Lz(M)), where M is a
smooth d-dimensional manifold in Ω or Γ, and d, r, z ≥ 1, then the condition for λ
in (4.2) may be replaced by

1 < λ <
2/r + d/z + n− d

(2/r + d/z + n− d− 2)
. (4.5)

The solvability of (4.1) follows from Theorem A.6 with the choice k = 1, s1 = s,
σ1 = σ, q > 1, where s, σ, q satisfy

s, σ /∈ Sq, 0 ≤ s < σ < 2 and σ − 2/r /∈ Sq,

σ − s < 2
r
, p := rλ <

2
s− σ + 2/r

, (4.6)

2− σ − n

q′
> − d

z′
s ≥ n

q
− n

λz0
, where z0 :=

n

d/z + n− d
∈ [1, z]. (4.7)

In fact, the abstract formulation of problem (4.1) is

ẏ +Ay = κ|y|λ−1y + γ′Mu in J, y(0) = y0,

where A is as in (2.7) and γM is the trace operator corresponding to the manifold M .
Now (4.7) guarantees

W s
q,B ↪→ Lλz0 , Lz0 ↪→W σ−2

q,B and Lz(M) ↪→W σ−2+(n−d)/q′

q (M),

hence γ′M : Lz(M)→W σ−2
q,B is continuous and the mapping

Lrλ(J,W s
q,B)→ Lr(J,W σ−2

q,B ), y 7→ κ|y|λ−1y + γ′Mu

is Lipschitz continuous. In order to see that the conditions in (4.6)–(4.7) can be
satisfied, let us write them in the form

s ≥ n

q
− 1
λ

(d
z

+ n− d
)
, σ < 2− n

q′
+
d

z′
,

2
r
> σ − s > 2

rλ′

and notice that the difference between the upper bound for σ and the lower bound
for s is greater than 2/(rλ′), due to (4.5).

Note that if u ∈ Lr(J, Lz) with r, z > 1 then our solutions belong to the space
Lrλ(J, Lzλ). However, if κ > 0 then it is sufficient to assume the coercivity of J in
Lα(Q) with α > λ; see the proof of [19, Theorem I.5.1], for example.

Notice also that if 2/r + d/z < d + 2 − n then the solution y is Hölder con-
tinuous and we can replace u by uf(y), for example, where f : R → R is Lip-
schitz continuous. In fact, in this case we can choose s close to 0, q > n/s and
σ ∈ (s+2/r, 2−n+d−d/z), so that y ∈ Cρ(Q̄) for some ρ > 0 due to Theorem A.6.

(ii) If we consider monotone nonlinearities (κ < 0) and we are interested only
in the unique solvability of the state problem then conditions (4.4) and (4.5) can
be still weakened, see [8, Theorem 7.7] or [12], [20]. However, the solvability of the
optimal control problem seems to require some additional assumptions on λ (cf. [20,
Remark 3.1]). �
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Example of Droniou and Raymond

Example 4.8. In [12] the authors study problem (4.1) with κ = −1, and u
in Uad = {δx} ⊗ Φ, where x ∈ Ω is fixed and Φ is a closed convex subset of
Lr(J) for some r > 1. As mentioned in Remarks 4.7, the regularity of u and the
monotonicity of the nonlinearity allow them to weaken the growth condition. Their
cost functional J is of the form

J(y, δx ⊗ ϕ) =
∫

Ω

|y(T )− yd|q dx+ β

∫ T

0

|ϕ|r dt, 1 < q <
n

2/r + n− 2
,

where β ≥ 0. If Φ is unbounded, then one has to assume β > 0. This enables one
to set Uad := δx⊗ (Φ∩Bc), where Bc denotes a large ball in Lr(J), cf. Remark 4.2.

Assume y0 ∈W 2−n/λ′−2/r
λ,B ∩W σ−2/r

q,B for some σ ∈ (2/r, 2−n/q′) (this regularity
assumption can be relaxed). Let M := M(Ω ∪ Γ1) be equipped with the w∗-
topology, and let M ⊂M be sequentially compact. Let Φ and J be as above, and
put Uad := M ⊗Φ. Let us show that, assuming (4.4), we can easily solve this more
general problem and, in some cases, we can also allow κ > 0.

Theorem A.6 guarantees the existence of a unique maximal strong Lrλ(Lλ) so-
lution y(u) of (4.1). In addition, if y = y(u) is global then considering (4.1) as a
linear problem with the right-hand side in Lr(J,M(Ω ∪ Γ1)), Theorem A.6 guar-
antees y ∈ C(J, Lq) and

y ∈ Lr(J,W σ̃
q,B) ∩W 1

r (J,W σ̃−2
q,B ) for any σ̃ < σ. (4.8)

In particular, J(y(u), u) is well defined for any u ∈ UGad.
Let (yk, uk) be a minimizing sequence for (1.2). Since Uad is sequentially compact

in (Lr(J,M(Ω ∪ Γ1)), w∗), we may assume uk → u in this space.
First assume κ ≤ 0. Comparison with problem (3.11), with u and z replaced by

uk and zk, respectively, yields, similarly as in (3.12),

‖yk‖Lrλ(J,Lλ) ≤ ‖zk‖Lrλ(J,Lλ) ≤ C(‖uk‖Lr(J,M(Ω̄)) + ‖y0‖
W

2−n/λ′−2/r
λ,B

) ≤ C,

hence fk := |yk|λ−1yk are uniformly bounded in Lr(J, L1). Due to [8, Proposi-
tion 17.2], the sequence (yk) is compact in Lrλ(J, Lλ), so that we may assume
yk → y in Lrλ(J, Lλ). Consequently, fk → f := |y|λ−1y in Lr(J, L1). The func-
tions yk solve the problem∫

Q

(−∂tϕ−∆ϕ)yk dx dt = κ

∫
Q

ϕ|yk|λ−1yk dx dt+
∫
Q∪Σ1

ϕduk +
∫

Ω

ϕ(0)y0 dx

for any ϕ ∈ D(Ω × [0, T )) satisfying Bϕ = 0. Passing to the limit in this identity
we obtain y = y(u). Theorem A.6 guarantees that the sequence (yk) is bounded in
the space appearing in (4.8). Since that space is compactly embedded in C(J, Lq)
if σ̃ is close to σ (cf. [6, Theorem 3]), we may assume yk(T ) → y(T ) in Lq. Now
the weak-star lower semicontinuity of J with respect to u concludes the proof.

If κ > 0 then, in addition to the above hypotheses, we assume

λ ≤ q, y0 ∈ C2(Ω̄), By0 = 0, y0 ≥ 0, ∆y0 + κ(y0)λ ≥ 0,

and that each ϕ ∈ Φ is nondecreasing and nonnegative. First let us show that any
solution y(u) of (4.1) is increasing in time. This is obviously true if u = 0, due to
the classical maximum principle. Now [8, Theorem 6.3] guarantees y(u) ≥ y(0),
hence, in particular, y(u)(·, t) ≥ y0 for any t ∈ J . Using [8, Theorem 6.3] for the
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solution y(u) and z(x, t) := y(u)(x, t+τ), τ > 0, we obtain y(u)(·, t+τ) ≥ y(u)(·, t)
whenever t, t + τ ∈ J . The boundedness of J(yk, uk) implies a bound for yk(T ) in
Lq and the monotonicity of yk in t gives a uniform bound for yk in L∞(J, Lq). Now
we can proceed as in the case κ ≤ 0. �

Nonlinear boundary conditions

Now consider a model problem with nonlinearities appearing on the boundary,
namely

∂ty −∆y = uQ, in Q,

∂νy = κ|y|λ−1y + uΣ, on Σ,

y(·, 0) = y0 in Ω,

 (4.9)

where

κ ∈ R, y0 ∈M(Ω), 1 < λ < (n+ 1)/n, (4.10)

and u := (uQ, uΣ) ∈ M(Q) × M(Σ) is the control. Set p := λ and fix q in
(1, (n + 1)/n]. Condition (4.10) guarantees that we can choose s, σ ∈ (1/q, 2) \ Sq
such that

s− n

q
≥ −n− 1

λ
, σ < 2− n

q′
and σ − s > 2− 2

λ
.

These conditions imply, in particular, W s−1/q
q (Γ) ↪→ Lλ(Γ) and p < 2/(s− σ + 2).

Consequently, Theorem A.5 and Lemma A.7 guarantee the existence of a unique
maximal Lp(W s

q ) solution y = y(u) of (4.9) and the stability estimates

‖y(u1)− y(u2)‖Lp(J,W s
q,∂ν

) ≤ c‖u1 − u2‖M(Q̄). (4.11)

Notice also that W s
q,B ↪→ Lp̂ for p̂ := pn/(n−1). Repeating word by word the proof

of Theorem 3.1 we see that the following theorem is true.

Theorem 4.9. Let M be the space M(Q̄) endowed either with the strong topology
or the w∗-topology. Assume that

J : Lp(J, Lp̂)× Lp(Σ)×M→ R

is lower semicontinuous and

Uad is sequentially compact in M.

If κ > 0 assume also that UGad 6= ∅ and

J(y, z, u) ≥ c1‖z‖Lp(Σ) − c2. (4.12)

Then the optimal control problem:

minimize J
(
y(u), γy(u), u

)
over u ∈ UGad

has a solution.

Similarly as in Remark 4.7(i), one can weaken the growth condition in Theo-
rem 4.9 if the data are more regular.
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5. Modifications and extensions

Non lower semicontinuous cost functionals

First we consider cost functionals which are not lower semicontinuous in the
topologies mentioned above.
Example 5.1. Assume that K ⊂ Γ is compact and consider the problem

∂ty −∆y = κ|y|λ−1y, in Q,

∂νy = u, on Σ,

y(·, 0) = y0 in Ω,

 (5.1)

where κ ∈ R, 1 < λ < (n+ 2)/n, y0 ∈M(Ω), and

u ∈ Uad := MK ⊗ Φ, MK := {δx ; x ∈ K} and Φ ⊂M(J) is w∗-compact.

Let x0 ∈ Ω̄ \K, zd ∈ R, yd ∈ Lλ(Q) and

J(y, u) = |y(x0, T )− zd|+ C0

∫
Q

|y − yd|λ dx dt,

where C0 ≥ 0, C0 > 0 if κ > 0. Problem (5.1) is a special case of (4.1). Hence it
possesses a unique maximal weak Lλ(Lλ) solution y = y(u). Assuming UGad 6= ∅ if
κ > 0, we will prove that the optimal control problem (1.2) has a solution.

In fact, choosing p ∈ (λ, (n+2)/n), one can repeat the arguments from the proof
of Theorem 3.1 in order to find a sequence (yk, uk) such that uk → u in (M(Q̄), w∗),
yk = y(uk) → y = y(u) in Lp(Q) and J(yk, uk) → inf. Now J(yk, uk) → J(y, u)
follows from the interior regularity of the solutions yk on the complement of the set{

(x, t) ∈ Q ; t = 0 or x ∈ K
}
,

cf. [8, Remark 5.17(b)]. To be more more precise, assume, for simplicity, x0 ∈ Ω.
Then there exists ε > 0 such that the ε-neighbourhood Bε(x0) of x0 is a subset
of Ω. Set Qj := B2−jε(x0) × (T − 2−jT, T ). The interior parabolic Lp-estimates
(see [18, Chapter 7]) imply

‖yk − y‖W 2,1
p/λ

(Q1) ≤ C‖yk − y‖Lp(Q0) → 0.

Hence yk → y in Lp1(Q1), where the size of p1 > p is restricted by the condition
1/p1 ≥ λ/p − 2/(n + 2), which guarantees W 2,1

p/λ(Q1) ↪→ Lp1(Q1). Repeating this
estimate finitely many times we obtain yk → y in Lpm(Qm) for some m ∈ N and
pm > n/2 + 1. The next iteration gives yk → y in C(Qm+1) and, in particular,
yk(x0, T )→ y(x0, T ). �

Controls supported on submanifolds

Example 5.2. We consider problem (5.1) with n ≥ 2, κ ∈ R, λ > 1, and
y0 ∈ C2(Ω̄). Given a continuous function ψ : [0, 1] → Γ, we define the measure
δ〈ψ〉 ∈M(Γ) by

〈δ〈ψ〉, ϕ〉 :=
∫ 1

0

ϕ(ψ(θ)) dθ, ϕ ∈ C(Γ),

and we consider controls u of the form u = δ〈ψ〉 ⊗ 1. (Notice that δ〈ψ〉 is the Dirac
distribution supported by the image of ψ if ψ ∈ W 1

1 is injective and |ψ′| = 1 a.e.)
One can think of δ〈ψ〉 as a heating wire which should be positioned on Γ in an
optimal way.
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Assume that Ψ ⊂ C([0, 1],Γ) is compact in L1([0, 1],Γ), Uad = {δ〈ψ〉⊗1 ; ψ ∈ Ψ},
U
G
ad 6= ∅. Consider one of the following possibilities

(i) λ < (n+ 2)/n, J(y, u) =
∫
Q
|y − yd|λ dx dt,

(ii) λ < n/(n− 2), J(y, u) = supt∈J
∫

Ω
|y(t)− yd(t)|λ dx,

(iii) λ < n/(n− 2), κ ≤ 0, J(y, u) =
∫

Ω
|y(T )− yd|λ dx,

where yd ∈ Lλ(Q), yd ∈ C(J, Lλ) and yd ∈ Lλ, respectively. We will show that in
any of these three cases, the optimal control problem (1.2) has a solution.

Note that similar problems (with κ = 0) were studied in [16] under more restric-
tive assumptions on the class of functions ψ. Let us also remark that we could also
consider wires ψ whose positions at time t depend on the solution y.

First notice that problem (5.1) can be formulated in the abstract form

ẏ +Ay = κ|y|λ−1y + γ′u in J, y(0) = y0

(cf. (2.7)).
(i) Set p := q := λ, and s := 0, choose σ ∈ (2 − 2/λ, 2 − n/λ′) and fix α < 1

with α ∈ (0, 2 − n/λ′ − σ). Then, given u ∈ Uad, we obtain a unique maximal
Lp(Lp) solution y(u) and this solution satisfies the following stability estimates
(see Theorem A.5 and cf. Remark 3.4): if u1 ∈ UGad then there exist ε, C > 0
depending on ‖y(u1)‖Lp(Q) such that u2 ∈ UGad and

‖y(u1)− y(u2)‖Lp(Q) ≤ C‖γ′(u1 − u2)‖M(J,Wσ−2
q,B ) (5.2)

for any u2 ∈ Uad with ‖γ′(u1 − u2)‖M(J,Wσ−2
q,B ) ≤ ε.

Let (yk, uk) be a minimizing sequence for J, uk = δ〈ψk〉 ⊗ 1. Then ‖yk‖Lp(Q)

stays bounded, due to the coercivity of J, and we may also assume that ψk → ψ in
L1([0, 1],Γ) and a.e. in [0, 1], where ψ ∈ Ψ. Denote u = δ〈ψ〉 ⊗ 1. Then

‖γ′(uk − u)‖M(J,Wσ−2
q,B ) ≤ C‖γ

′(uk − u)‖L∞(J,Wσ−2
q,B ) = C‖γ′(δ〈ψk〉 − δ〈ψ〉)‖Wσ−2

q,B

≤ C‖δ〈ψk〉 − δ〈ψ〉‖Wσ−1−1/q
q (Γ)

≤ C‖δ〈ψk〉 − δ〈ψ〉‖[Cα(Γ)]′

≤ C sup
‖ϕ‖Cα(Γ)≤1

∣∣∣ ∫ 1

0

(
ϕ(ψk(θ))− ϕ(ψ(θ))

)
dθ
∣∣∣

≤ C
∫ 1

0

|ψk(θ)− ψ(θ)|α dθ → 0,

due to the Lebesgue theorem. Consequently, u ∈ UGad and y(uk)→ y(u) in Lp(Q).
Now it is easy to see that (y(u), u) is an optimal pair.

(ii) The proof is the same as in (i); we only have to replace the space of the
solutions Lp(J, Lp) by C(J, Lp) and the space of the right-hand sides M(J,W σ−2

q,B )
by Lr(J,W σ−2

q,B ) with r large enough.
(iii) As in Theorem 3.1, the assumption κ ≤ 0 guarantees an easy a priori bound

for the minimizing sequence (yk, uk), hence the coercivity of J is superfluous and
we can proceed as above. �

Maximizing the existence time

Consider problem (4.1) with Γ1 = ∅. Let (4.2) be true, Uad ⊂M(Q) be compact,
and y(u) denote the solution of (4.1) defined on the maximal existence interval Ju.
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Then the same arguments as in the proof of Theorem 3.1 show that, given C > 0,
the problem

maximize TC := sup{t ∈ J ; ‖y(u)‖Lp(Ω×[0,t]) ≤ C} over u ∈ Uad (5.3)

has a solution. In fact, let uk ∈ Uad, ‖y(uk)‖Lp(Ω×[0,Tk]) ≤ C and Tk → TC .
We may assume uk → u in M(Q). Choose T̃ < TC and set J̃ := [0, T̃ ]. Then
y(uk) are global solutions of (4.1) with J replaced by J̃ and ‖y(uk)‖Lp(Ω×J̃) ≤
C for k large enough. Now the stability estimates (3.9) guarantee J̃ ⊂ Ju and
‖y(u)‖Lp(Ω×J̃) ≤ C. Passing to the limit as T̃ → TC we obtain [0, TC ] ⊂ Ju and
‖y(u)‖Lp(Ω×[0,TC ]) ≤ C.

Control via initial data

Example 5.3. Consider the problem

∂ty −∆y = κ|y|λ−1y in Q,

By = 0 on Σ,

y(·, 0) = y0 in Ω,

 (5.4)

where κ , y0, and λ satisfy (4.2). Now y0 plays the role of the control:

u = y0 ⊗ δ0 ∈ Uad :=M(Ω)⊗ {δ0}

(cf. [19, Section I.12.1]).
First assume that p ∈ [λ, (n+ 2)/n), yd ∈ Lp(Q), and

J(y, u) =
∫
Q

|y − yd|p dx dt+ ‖y0‖M(Ω).

Then Theorem 4.1 and Remark 4.2 guarantee the solvability of (1.2).
Next assume that q > 1 ∨ n(λ− 1)/2, yd ∈ Lq, and

J(y, u) =
∫

Ω

|y(x, T )− yd(x)|q dx+ ‖y0‖M(Ω).

Notice that J is well defined for any global solution y since y is a classical solution of
(5.4) for t > 0. Let (yk, y0

k ⊗ δ0) be a minimizing sequence for problem (1.2). Then
the sequence (y0

k) is bounded inM(Ω) and the solutions yk are global. In addition,
the first part of the proof of [8, Theorem 1.1] guarantees that the restriction of yk
to Qτ := Ω× [0, τ ] is bounded in Lλ(Qτ ) for suitable τ > 0. Consequently, we may
find τk ∈ [τ/3, 2τ/3] such that ‖yk(·, τk)‖Lλ ≤ C1, and we can also assume that
τk → τ∞ as k → ∞. Due to λ > n(λ − 1)/2, problem (5.4) is well posed in Lλ in
the following sense: There exist C2 > 0 and τ̃ ∈ (0, τ/6) such that the solution y
of (5.4) exists for t ≤ 3τ̃ and satisfies ‖y(·, t)‖L∞ ≤ C2 for all t ∈ [τ̃ , 3τ̃ ] whenever
‖y0‖Lλ ≤ C1 (see [26]). Hence, for k large enough, we obtain ‖yk(·, t0)‖L∞ ≤ C2,
where t0 := τ∞ + 2τ̃ ≤ τ . Since yk(·, T ) are uniformly bounded in Lq and (5.4)
is well posed in Lq (in the sense mentioned above), we can continue the solutions
yk on an interval [T, T + δ], where δ > 0 does not depend on k. Now [24] implies
a uniform L∞ bound for yk on Ω × [t0, T ]. Hence the sequence yk is bounded in
Lλ(Q). Due to this bound, the solvability of (1.2) follows exactly as in the proof of
Theorem 3.1. �
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Final observation

We have seen in Examples 4.8 and 5.3 that the coercivity assumption (3.8) can
sometimes be relaxed so that we can consider non-monotone problems with final
observation (where J depends on the control u and the final value of y only). Let
us consider problem (4.1) with B = γ, uΣ = 0 and κ = 1. If uQ ∈ Lr(J, L2) for
some r ≥ 2 and

J(y, u) ≥ c1‖y(·, T )‖Lq − c2 (5.5)
for some q > n(λ − 1)/2, then (assuming suitable lower semicontinuity of J, com-
pactness of Uad, and UGad 6= ∅), [9, Theorem 2.3] provides conditions on λ (depending
on r and n) which guarantee the solvability of the optimal control problem (1.2).
In addition, those conditions are essentially optimal. Unfortunately, the proof of
[9, Theorem 2.3] (and also the a priori bounds used in Example 5.3) are based on
energy estimates which (more or less) require the solution y(·, t) to belong to the
space W 1

2 (Ω). If, for example, x ∈ Ω and uΩ = δx ⊗ 1, then y will not possess this
regularity. However, under some additional assumptions one can still use energy
methods in order to get the necessary bounds. In order to formulate a typical result
of this type, we need the following definition.
Definition 5.4. Let λ ∈ (1, n/(n − 2)). We say that the set M ⊂ M(Ω) is λ-
admissible if there exists cM > 0 with the following property: If u ∈ M then the
elliptic problem

−∆z = |z|λ−1z + u in Ω, z = 0 on Γ, (5.6)

has a solution satisfying ‖z‖Lλ ≤ cM . �

The results of [7] guarantee that a small ball in M(Ω) centered at zero or the
set M := {u ; 0 ≤ u ≤ u0}, where u0 is a positive measure for which (5.6) has a
positive solution, are λ-admissible.
Theorem 5.5. Let Ω ⊂ Rn be smooth and bounded. Consider problem (4.1) with
B = γ, uΣ = 0 and κ = 1. Let

λ < n/(n− 2) and q ∈ (1 ∨ (λ− 1)n/2, n/(n− 2)).

Assume that M ⊂M(Ω) is w∗-sequentially compact and λ-admissible. Let

Uad = M ⊗ {1}, UGad 6= ∅, and y0 ∈W s̃
q,B

with s̃ > 0 ∨ (n/q − n/λ). If J : C(J, Lq) × (Uad, w
∗) → R is sequentially lower

semicontinuous and satisfies (5.5) then problem (1.2) has a solution.

Proof. Fix s ∈ (0 ∨ n/q − n/λ, s̃ ∧ (2 − n/q′)), s /∈ Sq. Then Theorem A.6 (with
σ ∈ (s+2/r, (s̃+2/r)∧(2−n/q′))\Sq and r large enough) guarantees the existence
of ρ > 0 such that (4.1) possesses a unique maximal strong Cρ(W s

q ) solution. In
fact, exactly as in [9, Lemma 3.1] one can show that problem (4.1) is well posed in
Lq in the following sense: If y0 ∈ Lq then there exists τ = τ(‖y0‖Lq ) > 0 such that
the solution exists on the time interval [0, τ ] and belongs to

C([0, τ ], Lq) ∩ C((0, τ ],W s
q,B) ∩ Lp((0, τ),W s

q,B),

provided s ≥ 0 ∨ n/q − n/λ, sλ < 2− n/q′ and ps < 2.
Let (yk, uk) be a minimizing sequence for problem (1.2). Since uk is bounded

in M(Ω), we may assume uk → u in (M(Ω), w∗). The boundedness of J(yk, uk)
implies a bound for yk(T ) in Lq, and the well posedness of (4.1) in Lq, mentioned
above, guarantees that the solution yk(uk) can be continued on some interval [T, T+
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t1], where t1 > 0 does not depend on k. Now a straightforward modification of the a
priori estimates in [23] guarantees a uniform bound for yk in L∞(J, Lλ). Finally, [6,
Proposition 2(iii)] implies a uniform bound for yk in Cρ(J,W s

q,B) and the assertion
follows in the same way as in the proof of [9, Theorem 2.3]. �

6. Problems governed by a parabolic system

As already announced in the introduction, in this section we consider optimal
control problems governed by system (1.4) with κ = d = 1. Recall that (in the
nuclear reactor model derived in [17]) y1 denotes the neutron flux and y2 the tem-
perature.

We first control the neutron flux. Denoting by u and v the controls, we study
the problem

∂ty1 −∆y1 = y1y2 − by1 + u+ vy1, in Q,

∂ty2 −∆y2 = ay1, in Q,

B1y1 = 0, on Σ,
B2y2 = −cy2, on Σ,

y1(·, 0) = y0
1 ,

y2(·, 0) = y0
2 ,


(6.1)

where n ≤ 3, Bi ∈ {γ, ∂ν}, i = 1, 2, a > 0, b, c ∈ R, c = 0 if B2y = γ, and

y0
1 , y

0
2 ∈ C2(Ω̄), B1y

0
1 = 0, B2y

0
2 = −cy0

2 . (6.2)

(These regularity and compatibility conditions on y0
1 , y

0
2 can be considerably re-

laxed.)

The case v = 0

First assume v = 0 and choose

p ∈
(2(n+ 2)

n+ 4
,
n+ 2
n

)
. (6.3)

As we shall see below, problem (6.1) possesses for each u ∈M(Q) a unique maximal
weak Lp(Lp)× Lp′(Lp′) solution (y1(u), y2(u)).
Theorem 6.1. Assume v = 0 and (6.3). Let Uad ⊂M(Q) be compact,

J : Lp(Q)× Lp′(Q)×M(Q)→ R

lower semicontinuous,

J(y1, y2, u) ≥ c1‖y1‖Lp(Q) − c2, (6.4)

and UGad 6= ∅. Then the optimal control problem

minimize J
(
y1(u), y2(u), u

)
over u ∈ UGad (6.5)

has a solution.

Proof. Assumption (6.3) guarantees the existence of σ1 ∈ (0, 2) \ Sp and σ2 in
(0, 2) \ Sp′ satisfying σ2 − 2/p /∈ Sp′ ,

−n > σ1 − 2− n

p
, −n

p
> σ2 − 2− n

p′
, (6.6)
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and
p <

2
2− σ1

, p′ <
2

2/p− σ2
, p <

2
σ2
. (6.7)

In fact, the inequalities in (6.6)–(6.7) are equivalent to

2− 2
p
< σ1 < 2 +

n

p
− n, 4

p
− 2 < σ2 <

(
n+ 2− 2n

p

)
∧ 2
p

and, due to (6.3), the lower bounds for σ1, σ2 in these conditions lie below the
corresponding upper bounds. Now (6.6) guarantees that L1 ↪→ M(Ω) ↪→ W σ1−2

p,B1
,

Lp ↪→W σ2−2
p′,B2

, and the mapping

Lp(J, Lp)× Lp′(J, Lp′)→M(J,W σ1−2
p,B1

)× Lp(J,W σ2−2
p′,B2

),

(y1, y2) 7→ (y1y2 − by1 + u, ay1)

is uniformly Lipschitz continuous on bounded sets. These facts and (6.7) enable us
to use [8, Theorem 10.1] with s1 = s2 = 0, p1 = q1 = p, p2 = q2 = p′, r1 = 1 and
r2 = p, in order to get the existence of a unique maximal weak Lp(Lp) × Lp′(Lp′)
solution y = (y1, y2) of (6.1) for any u ∈ Uad. That theorem also implies the
corresponding stability estimates: given u ∈ UGad, there exist ε, c > 0 depending on
‖y(u)‖Lp(Q)×Lp′ (Q) such that

ũ ∈ UGad and ‖y(u)− y(ũ)‖Lp(Q)×Lp′ (Q) ≤ c‖u− ũ‖M(Q)

for any ũ ∈ Uad satisfying ‖u− ũ‖M(Q) ≤ ε (cf. (3.9)).
The rest of the proof is the same as the corresponding part of the proof of

Theorem 3.1. �

The case u = 0

Now consider the case u = 0 and

v ∈ Lr(J, Lz(M)), r, z > 1,
2
r

+
d

z
< d+ 2− n, (6.8)

where M is a smooth d-dimensional manifold in Ω. Notice that this assumption
requires d ≥ n − 1. We shall see that in this case problem (6.1) possesses for
each v a unique maximal strong solution (y1(v), y2(v)) and this solution belongs to
C(Q̄)× C(Q̄) if it is global.
Theorem 6.2. Assume u = 0 and (6.8). Let Uad ⊂ Lr(J, Lz(M)) be compact,
J : C(Q̄)× C(Q̄)× Lr(J, Lz(M))→ R be lower semicontinuous,

J(y1, y2, v) ≥ c1‖y1‖C(Q̄) − c2 (6.9)

and UQad 6= ∅. Then the optimal control problem

minimize J
(
y1(v), y2(v), v

)
over v ∈ UGad (6.10)

has a solution.

Proof. Assume that q > 1 and σ ∈ (0, 2) \ Sq satisfy

σ − 2/r /∈ Sq and 2− σ − n/q′ > −d/z′.
Then γ′M : Lz(M)→W σ−2

q,B1
is continuous (cf. Remark 4.7(i)). We look for solutions

yi ∈ Cρ([0, t],W s
q,Bi), i = 1, 2, with some ρ ≥ 0 and s ∈ (n/q, σ) \ Sq. Since

W s
q,B ↪→ C(Ω̄) in this case, it is easy to see that the right-hand sides in (6.1)

belong to Lr([0, t],W σ−2
q,Bi ), i = 1, 2. Now the existence of y1, y2 satisfying the
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corresponding stability estimates follows from [8, Theorem 10.1], provided we find
ρ, s, σ satisfying the above conditions and 2ρ < σ − s− 2/r. The existence of such
ρ, s, σ is an easy consequence of (6.8). The rest of the proof is clear. �

Boundary controls

Finally we control the temperature. This problem can be written in the form
∂ty1 −∆y1 = y1y2 − by1, in Q,

∂ty2 −∆y2 = ay1 + uQ, in Q,

B1y1 = 0, on Σ,
B2y2 = −cy2 + uΣ, on Σ,

y1(·, 0) = y0
1 ,

y2(·, 0) = y0
2 ,


(6.11)

where n,B1,B2, a, b, c, y
0
1 , y

0
2 are as above, and

u := (uQ, uΣ) ∈ Lr(J,M(Ω)×M(Γ)) with uΣ = 0 if B2 = γ

is the control. Assume r > n−1 and fix p1 ≥ r′∨r, q1 > n/2. We show that problem
(6.11) possesses for each u a unique maximal (strong) solution (y1(u), y2(u)), and
y1(u) ∈ Lp1(J, Lq1) if it is global.
Theorem 6.3. Assume that Uad ⊂ Lr(J,M×M(Γ)) is compact,

J : Lp1(J, Lq1)× Lr(J,M×M(Γ))→ R

is lower semicontinuous,

J(y1, u) ≥ c1‖y1‖Lp1 (J,Lq1 ) − c2 (6.12)

and UGad 6= ∅. Then the optimal control problem

minimize J
(
y1(u), u

)
over u ∈ UGad (6.13)

has a solution.

Proof. Choose

q2 ∈
(
q′1 ∨

n

2
,

n

n− 2

)
and p2 ∈

(
p′1,

2
2/r − 2 + n/q′2

)
such that

1
p2

+
n

2q2
< 1. (6.14)

Notice that this choice is possible due to q1 > n/2, p1 ≥ r′ and r > 2/(4 − n).
Choose also σ2 ∈ (2/r − 2/p2, 2 − n/q′2) \ Sq2 such that σ − 2/r /∈ Sq2 . Then
uQ + γ′uΣ ∈ Lr(J,W σ2−2

q2,B2
). Let p, q > 1 be defined by

1
p

=
1
p1

+
1
p2
,

1
q

=
1
q1

+
1
q2
.

Denote Jt = [0, t]. Given y1 ∈ Lp1(Jt, Lq1) and y2 ∈ Lp2(Jt, Lq2), we have y1y2 ∈
Lp(Jt, Lq).

Due to (6.14) we may choose σ1 ∈ (0, 2/p) \ Sq1 such that σ1 − 2/p /∈ Sq1 ,

p1 <
2

2/p− σ1
and − n

q
> σ1 − 2− n

q1
.
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Consequently, Lq ↪→W σ1−2
q1,B1

and the map

Lp1(Jt, Lq1)× Lp2(Jt, Lq2)→ Lp(Jt,W σ1−2
q1,B1

) : y1 7→ y1y2 − by1

is Lipschitz continuous. Now [8, Theorem 10.1] (with s1 := s2 := 0, r1 := p and
r2 := r) guarantees the existence of a unique maximal strong Lp1(Lq1)× Lp2(Lq2)
solution y = (y1, y2) of (6.11) satisfying the corresponding stability estimates.

The rest of the proof is the same as in the proof of Theorem 3.1. �

Remarks 6.4. (i) It is clear from the proof of Theorem 6.3 that similar assertion
can be proved also for cost functionals J depending on both y1 and y2.

(ii) If n = 1 then we could work with uQ ∈M(Q) and uΣ ∈M(Σ). This follows
from the proof of Theorem 6.3 and the results in [8].

(iii) As in Theorem 3.1, we could work with the w∗-toplogy instead of the norm
topology in the space of controls. �

Appendix: The Basic Existence, Uniqueness, and Stability Theorem

for Semilinear Problems

For the reader’s convenience we collect here the main existence, uniqueness and
stability results for weak and strong solutions of the semilinear problem

ẏ +Ay = F (y) in [0, T ], y(0) = y0, (A.1)

where A = As = Cs − 1 , with Cs being the isomorphism between W s
q,B and W s−2

q,B
mentioned in Section 2. Analogous results are true in the case of systems.

We write C1−
b (Y,X) for the space of all maps from Y into X which are uniformly

Lipschitz continuous on bounded sets. If X and Y are paces of functions defined
on [0, T ], then F : X → Y is said to possess the Volterra property if, given any
u ∈ X and t ∈ (0, T ), the restriction of F (u) to [0, t] depends on the values of
u | [0, t] only. We fix k ∈ N and set ~p := (p1, p2, . . . pk), ~s := (s1, s2, . . . sk) and
~ρ := (ρ1, ρ2, . . . , ρk).

In the first theorem, we consider weak solutions and assume y0 = 0. The general
case, y0 ∈W σ−2

q,B , can be reduced to this special case by taking F̂ (y) = F (y)+y0⊗δ0.

Theorem A.5. Assume

s1, s2, . . . , sk, σ /∈ Sq, 0 ≤ si < σ < 2, i = 1, 2, . . . , k, (A.2)

and suppose that 1 ≤ pi < 2/(si − σ + 2), i = 1, 2, . . . , k, y0 = 0. Denote

Yt = L~p([0, t],W~s
q,B) :=

k⋂
i=1

Lpi([0, t],W
si
q,B), Xt :=M([0, t],W σ−2

q,B ).

Let F ∈ C1−
b (YT , XT ) have the Volterra property. Then problem (2.3) has a unique

maximal weak L~p(W~s
q ) solution y(F ) defined on the maximal existence interval

[0, t(F )). If y(F ) ∈ Yt(F ) or F (y(F )) ∈ Xt(F ), then y(F ) is global.
The map

F 7→ y(F ) ∈ L~p,loc([0, t(F )),W~s
q,B)

is Lipschitz continuous in the following sense: Set t = t(F ) if y(F ) is global and
fix t < t(F ) otherwise. Let ω1 > 0, and let ω2 : R+ → R

+ be an increasing function
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such that
‖F (0)‖XT ≤ ω1,

‖F (y1)− F (y2)‖XT ≤ ω2(R)‖y1 − y2‖YT ,

}
(A.3)

for any R > 0 and y1, y2 ∈ YT whose norms are bounded by R. Fix R > ‖y(F )‖Yt .
Then there exist positive constants ε, c (depending only on R, t, ω1, ω2) with the
following property: If F̃ ∈ C1−

b (YT , XT ) has the Volterra property, satisfies (A.3)
and

sup
‖y‖YT≤R

‖(F − F̃ )(y)‖XT ≤ ε,

then t ≤ t(F̃ ), y(F̃ ) ∈ Yt and

‖y(F )− y(F̃ )‖Yt ≤ c sup
‖y‖YT≤R

‖(F − F̃ )(y)‖XT .

Proof. See [8, Theorem 3.2, Remark 2.4(d)] and [6, Theorem 7(i)]. �

Theorem A.6. Assume (A.2) and suppose that

r > 1, r 6= 2/(σ − si), i = 1, 2, . . . , k, σ − 2/r /∈ Sq, y0 ∈W σ−2/r
q,B .

Denote Xt := Lr([0, t],W σ−2
q,B ). For any i = 1, 2, . . . , k,

if r < 2/(σ − si) fix pi ∈ [1, 2/(si − σ + 2/r)) and set Y it := Lpi([0, t],W
si
q,B),

if r > 2/(σ − si) fix ρi ∈ [0, (σ − si − 2/r)/2) and set Y it := Cρi([0, t],W si
q,B).

Set Yt :=
⋂k
i=1 Y

i
t . Let F ∈ C1−

b (YT , XT ) have the Volterra property. Then (2.3)
has a unique maximal strong solution y(y0, F ) defined on the maximal existence
interval [0, t(y0, F )), and y(y0, F ) ∈ Yt for any t < t(y0, F )). If y(y0, F ) ∈ Yt(y0,F )

or F (y(y0, F )) ∈ Xt(y0,F ), then y(y0, F ) is global.
The map (y0, F ) 7→ y(y0, F ) is Lipschitz continuous in an analogous sense as in

Theorem A.5 (see [8] for details).
If y = y(y0, F ) is global, then

y ∈ Lr(J,W σ̃
q,B) ∩W 1

r (J,W σ̃−2
q,B ) (A.4)

for any σ̃ < σ, and the norm of y in this space can be estimated by a constant
C = C(‖F (y)‖XT , ‖y0‖

W
σ−2/r
q,B

).

Proof. See [8, Theorems 3.3, 3.4, Remark 2.4(d)] and [6, Theorems 5, 7(ii)]. �

The following lemma guarantees that we can apply the above theorems to prob-
lems with measure valued right-hand sides provided σ < 2− n/q′.
Lemma A.7. Suppose that q > 1 and σ ∈ [0, 2− n/q′) \ Sq. Then

(i) M(Ω) ↪→W σ−2
q,B if B = γ.

(ii) M(Ω̄) ↪→W σ−2
q,B if B = ∂ν .

Proof. See [8, Lemma 4.1(iii)]. �

Notice also that if σ < 2− n/q′ then M(Γ) ↪→ W
σ−1−1/q
q (Γ) so that γ′g is well

defined for g ∈ M(Γ), where γ′ : W σ−1−1/q
q (Γ) → W σ−2

q,B is the dual of the trace

operator γ : W 1+1/q−σ
q′ (Γ)→W 2−σ

q′,B .
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Switzerland

E-mail address: amann@math.unizh.ch

Department of Applied Mathematics and Statistics, Comenius University, SK–84248

Bratislava, Slovakia

E-mail address: quittner@fmph.uniba.sk


