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Abstract. It is shown, in particular, that Lp-realizations of general elliptic systems on R™
or on compact manifolds without boundaries possess bounded imaginary powers, provided
rather mild regularity conditions are satisfied. In addition, there are given some new per-
turbation theorems for operators possessing a bounded Hoo-calculus.

0. Introduction. It is the main purpose of this paper to prove — under mild
regularity assumptions — that L,-realizations of elliptic differential operators act-
ing on vector valued functions over R or on sections of vector bundles over com-
pact manifolds without boundaries possess bounded imaginary powers. In fact, we
shall prove a more general result guaranteeing that, given any elliptic operator A
with a sufficiently large zero order term such that the spectrum of its principal
symbol is contained in a sector of the form Sy, := {2z € C; |argz| < 6y } U {0} for

some 6 € [0,7), and given any bounded holomorphic function f : §9 — C for some
6 € (6o, ), we can define a bounded linear operator f(A) on L,, and an estimate
of the form

If(Allecr,) < ellflls

is valid, provided p > 0 is sufficiently large. This means that elliptic operators pos-
sess a bounded Hy,-calculus in the sense of McIntosh [16]. Choosing, in particular,
f(2) := 2* for t € R, it follows that A possesses bounded imaginary powers (cf. Sec-
tion 2 below for more precise statements).

There are two main reasons for our interest in this problem. First, it is known
(cf. [22], [24]) that the complex interpolation spaces [E, D(A)], coincide with the
domains of the fractional powers A? for 0 < § < 1, provided A is a densely defined
linear operator on the Banach space E possessing bounded imaginary powers. Sec-
ond, by a result of Dore and Venni [10], the fact that A possesses bounded imaginary
powers is intimately connected with ‘maximal regularity results’ for abstract evo-
lution equations of the form @ + Au = f(t). Both these results are of great use in

the functional analytic approach to quasilinear parabolic evolution equations and,
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in particular, in applications of this theory to quasilinear parabolic systems. In
this context it is important that we can handle elliptic operators whose coefficients
possess little regularity only (cf. [2]).

Complex powers of elliptic operators on compact manifolds without boundaries
have first been studied by Seeley [20] (also cf. [23] and the references given there).
In [22] Seeley proved that L,-realizations of elliptic boundary value problems possess
bounded imaginary powers (also see [21] for some corrections). This latter result
has been extended in [9] to guarantee a bounded Hy-calculus. All these authors
work in the C'*-category.

In [19] it has been shown that a scalar second order elliptic operator on R™
possesses bounded imaginary powers, provided the top-order coefficients are Holder
continuous and asymptotically constant. In addition, these authors also consider the
case of the Dirichlet problem on a bounded domain. Their approach relies on a gen-
eral perturbation theorem and on commutator estimates. By means of an abstract
result of Coifman and Weiss [4] it is possible to prove that second order elliptic
operators under the usual coercive boundary conditions possess bounded imaginary
powers in L, under rather weak regularity assumptions for the coeflicients. How-
ever, this method is restricted to second order operators and it does not give the
optimal estimate as far as the angle 0 is concerned. Estimates which are (almost)
optimal in this sense are, however, important for applying the Dore-Venni theorem.

Our approach is completely different and closer, in spirit, to Seeley’s original
proof, since it relies on the theory of pseudo differential operators. As we are in-
terested in weak regularity assumptions we have to deal with pseudo differential
operators with nonsmooth symbols depending, in addition, upon parameters. For
this we appropriately modify the technique of symbol smoothing of Kumano-go and
Nagase [12].

The main results of this paper concerning elliptic systems are contained in Sec-
tions 9 and 10 below. In Section 9 we deal with elliptic systems on all of R”, where
we generalize considerably the corresponding results of [19]. Observe that in the
latter section we also prove a generation theorem for analytic semigroups which
seems to be new in the given generality. In particular, it suffices that the top-order
coefficients are uniformly continuous without any additional conditions at infinity.
In order to guarantee that our elliptic operators possess a bounded H,-calculus we
have to require that the top-order coeflicients satisfy a suitable Dini condition. This
is trivially true if they are uniformly Holder continuous. In Section 10 we prove the
corresponding results for elliptic systems on compact manifolds without boundaries.

Our approach extends to more general elliptic pseudo differential operators,
whose symbols belong to the classes used in this paper. This is of interest since it
is known that, in general, an elliptic pseudo differential operator can have bounded
imaginary powers without possessing a bounded H,-calculus. However, since this
paper is already rather long and technical, we do not include this generalization.
We also do not consider the case of elliptic boundary value problems. This problem
will be dealt with elsewhere.

Lastly, it should be pointed out that the question remains if general elliptic
operators possess a bounded Hq,-calculus (or bounded imaginary powers) under
the same weak regularity hypotheses for the top-order coefficients which guarantee
the resolvent estimates.



3

Notations and Conventions Throughout this paper vector spaces are over C, in
general. If E and F' are Banach spaces, L(E, F) is the Banach space of all bounded
linear operators from E to F, and L(E) := L(E, E). We denote by Lis(E, F) the
open subset of all isomorphisms in L(E, F), and Laut(E) := Lis(E,E). If E is a
vector subspace of F' such that the natural inclusion z — x belongs to L(E, F'), that
is, if E is continuously injected in F', we write E — F. If in addition, E is dense
in F, this is denoted by E L p. Lastly, £ = F means that £ — F and F — E so
that E and F' coincide, except for equivalent norms.

Given a nonempty subset M of some vector space, M := M\{0}. We often
write [...] for {x € X ; ...}, where ... stand for definitions and relations, pro-
vided it is clear from the context which set X is being considered. For example,
[largz| < 9] :={z € C; |argz| < ¥ }. If Ais a linear operator in E, we denote its
domain by dom(A), its resolvent set by p(A4), and its spectrum by o (A).

We denote by ¢ various constants which may differ from occurrence to occurrence
but are always independent of the free variables of a given formula. If ¢ depends on
additional constants a, 3, ..., we sometimes indicate this by writing c(a, 3, ...).

1. Operators of Positive Type. In this section we prove some simple qual-
itative estimates and perturbation results for operators of positive type. It is the
main purpose of these considerations to show that the bounds do not depend upon
the particular operators but only upon two constants appearing in the resolvent
estimate. This fact will be crucial in later sections.

Let E be a Banach space. Given K > 1 and 9 € [0, 7), a linear operator A in E
is said to be of type (K,), in symbols:

AeP(K,9) =P(E;K,9),
if it is densely defined, if
Sy :=[|argz| <I9U{0} C p(—A),

and if
A+PDIA+A<E, XeSs. (1.1)

Put
PW) == P(E;Y) := | P(K,9)

K>1

and note that, trivially
P(K,9) Cc P(L,6) , 1<K<L, 0<6<d<m7. (1.2)
We say that A is of positive type if it belongs to
P :=P(E):=P(E;0) .

Suppose that K > 1 and 0 < ¢ < 7, and that A € P(K,9). Given \g € Sy and
A € C satisfying
A =2o| < (1+1]X])/(2K) , (1.3)
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it follows from A+ A = (Ao + A)(1+ (A — Xo)(Ao + A) 1) that A € p(—A) and
2K

_ _1q-1 -
IO+ < [T+ =20) o + A7 [0 +A)7HI < T ol
2K 14 o[+ M=ol _ 2K O _L)_2K+1 (1.4)
mREPY 1+ Aol 1+ 2K/ 14\
Let 9 1
= .
I =9+ — /\arcsmﬁ (1.5)
and note that
p(=4)> |J [IA= ol < [Mol/(2K)] 5 S, -
A0 ESy
Hence it follows from (1.4) that
P(K,9) C P(2K + 1,9k) . (1.6)

In particular, P(K,0) C P(2K + 1,arcsin(1/(2K))). Thus, in the following, we al-
ways assume without loss of generality that ¢ € (0, ).

The following lemma shows that P is stable under suitable additive perturbations.
Here and in the following,

Sw*:1+@w_”ﬂﬂggfrﬁ—lv O<d<r,

where O(t) :== 1 for t > 0, and O(¢) := 0 for ¢ < 0.
Lemma 1.1. Suppose that A € P(K,9) for some K > 1 and ¥ € (0,7).
(i) If B is a linear operator in E satisfying dom(B) D dom(A) and
IBO+A) Y <p<1, A€ Sy, (1.7)
then A+ B e P((1-3)"'K,9).
(i) p+ A€ P(Ks(¥),9) for p>0.
Proof. (i) It follows from (1.7) that 14+ B(\ + A)~! € Laut(E) and
IL+BA+4)" [ <a-8"".
Thus we deduce from
A+ A+B=[1+BA\+A4) "[(A+4) (1.8)
that Sy C p(—(A + B)) and
IO +A+B) I <A=B) IA+A) T,  AeS,.

Now the assertion is obvious.

(ii) This is a consequence of the fact that A € Sy implies |\ 4+ u| > |\ sin(w — )
if7/2<¥<mand [A+pl >[Aif0<d<7/2.0



Remarks 1.2.
(a) Let A € P(K,9) for some K >1 and ¥ € (0, 7). Put

By == By (A) == (dom(A), || A-])) -

Then E; is a Banach space such that E; i) Ey := E. Since
AN+A) P =1-AA+ A4,
it follows that (A 4+ A)~! € L(Ey, E;) and that
A+ A) e ey <1+K,  XeSy. (1.9)

Hence Lemma 1.1 implies A + B € P((1 — 8) ' K,9), provided B € L(Ey, Eq)
and ||B]| < 8/(1 + K).

(b) Suppose that a € [0,1) and let §, be an exact interpolation functor of expo-
nent «, if & > 0 (e.g., [3] or [24]). Put E, := E4(A) := Fu(Eo, Ey) if a > 0.
Then E; — E, < Eog, and (1.1) and (1.9) imply

IO+ A) Mlee) <A+ KA+, AeSy.  (110)
Suppose that B € L(E,, Eg). Then
IBO+u+ A7 < A+ K) B+ A+u)o",  A€Sy, u>0.

If0<9<7/2 then A+ p| > u, and |+ p| > psin(r —9) if 7/2 <9 < 7.
Hence, given 3 € (0,1), we see that ||[B(A\ + u + A)~!|| < B < 1, provided

[((1 + I;) ||B||)1/<1—a) ~ 1st) |

where ¢t :=t V0 for t € R. Thus Lemma 1.1 implies

B2 po =

p+A+BeP((1-8)"1Ks®),9)

for > po. O

2. H,-Calculus and Perturbation Theorems. This section is the center-
piece of the abstract part of this paper. First we review some basic facts about
the Hoo-calculus as introduced by McIntosh (cf. [16]; for other approaches we refer
to [5], [6]). Then we prove some perturbation theorems for operators possessing a
bounded H,-calculus.

Given ¥ € (0,7), we denote by Hx (9) the Banach algebra of all bounded holo-

morphic functions f: S;_y — C, equipped with the supremum norm. We also write
H(9) for the set of all g € H,,(9) such that there exist ¢ > 0 and s > 0 with

clz|® 9
l9(2)| < TMQS ) 2 €Sr v . (2.1)



Let K >1 and 9 € (0,7), and denote by I' := I'(K,9) the negatively oriented
boundary of Sy, U [|z] <1/(2K)]. Also put —T :=[-X €T] so that —T is the
positively oriented boundary of Sr_g, N [|z| > 1/(2K)]. Then, given 4 € P(K,¥)
and g € H(¥), it follows from (1.3)—(1.6) that

g(A) = —— [ g=N O+ A)Ldr = /_Fg(/\)()\—A)*ld)\ (2.2)

T 2w Jr T omi
is a well-defined element of L(E). By Cauchy’s theorem, I' can be replaced by
['(Ky,9) for any K; > K. Put h(z) := z(1 + 2)~2 and let
-1 .
fA) = [WA)]  (fR)A), feHx®), AeP(K9).

It has been shown by McIntosh [16] that f(A) is a well-defined linear operator in E
and that this definition is consistent with the earlier one for f € H(¢). In fact,
the definition of f(A) can even be extended to encompass unbounded holomorphic
functions, and the resulting ‘holomorphic function calculus’ is uniquely determined
by the requirement fo(A) = idg and f1(A) = Aif fo = 1 and fi = idc. In particular,

f(A)y=A" for AeP and f(\)=\"', teR,

where A# are the well-known ‘fractional powers’ of A (e.g., [13], [14], [15], [24]).
Note that, in general, f(A) is not bounded, even if f € H,(¥).

Given M > 1 and ¥ € (0, 7), we say that A has a bounded H,-calculus and write
A€ Ho(M,9) :=Heo(E; M,9)

provided A € P(9) and f(A) € L(E) with

If(Allesy <Mfll »  f € Ho(Y) - (2.3)
Moreover,

Hoo(9) 1= Hoo(E; V) := | ] Hoo(M,9) .

M>1
Note that
AeHo(M,9) = A < M  teR, (2.4)
thanks to R
|\ = etaTEA < e(m=Ot AeESr 9, teER.

Hence an operator of positive type has bounded imaginary powers if it possesses a
bounded H,-calculus. It is known that the converse is not true.

The following lemma shows that in order to prove (2.3) it suffices to establish
that estimate for g € H(¢}). Thus in deriving estimates for g(A) we can deal with
absolutely convergent Dunford-Taylor type integrals, which greatly simplifies our
problem.
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Lemma 2.1. There exists k > 1 such that the following is true: if A € P(9) and
there is M > 1 such that

lg(A)lleey < Mligllee > 9 € HO) , (2.5)

then A € Hoo(kM, V).
Proof. Following [9] we pick g € H () satisfying [ g(t) dt/t =1 and put

J o .
9;(2) = / g(tz)dt/t z2€8_9, jeEN.
1/j

Then g; € H(¥9) and there exists & such that ||g;]|eo < & for j € N. Moreover, it is
easily seen that g; — 1 as j — oo, uniformly on each one of the sets

[e<|z|<1/en Sy, O<e<l. (2.6)

Thus, given f € Hyo(V), it follows that f; := fg; € H(¥¥), that ||fjllcc < &|[flls,
and that f; — f as j — oo, uniformly on each one of the sets (2.6). Since, thanks
to (2.5),

15Dl < Mfille < MIfllo »  JEN,
we deduce from [16] that f(A) € L(E) and ||f(A4)|[zr) < &M ||fllo- O
On the basis of this lemma it is now easy to establish a number of important

perturbation theorems. Throughout the remainder of this section k denotes a fixed
constant satisfying the assertion of Lemma 2.1.

Lemma 2.2. Let F' be a Banach space, let A and B be densely defined linear oper-
ators in E and in F, respectively, and let C € L(E,F) and D € L(F, E). Suppose
that Sy C p(—A) N p(—B) and

A+B)t=CA+A)7'D, XeSy. (2.7)

Also suppose that A € P(E; K,9). Then
(i) B € P(F; Ky,9) with Ky := ||C||||D|| K.
(i) If A € Hoo(E; M, V) then B € Hoo(F; M1,9) with My := &||C||||D|| M.
Proof. (i) Obvious.
(i) If A€ Hool(E;M,9), it follows that (2.5) is true. From (2.2) and (2.7) we
see that
g(B) i/rg(—A)C(,\ +A)'Dd\=Cg(A)D, g€ H(®).

= 2
Hence ||g(B)|lz(z) < IC|I|D|| M ||g]|,, for g € H(¥9). Now the assertion is a conse-
quence of Lemma 2.1. O
Observe that Lemma 2.2 implies, in particular, that P(9) and H, () are invari-

ant under similarity transformations.

Next we prove a simple ‘splitting lemma’ which will greatly simplify our proofs
that a given operator of positive type has a bounded H,-calculus.
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Lemma 2.3. Suppose that A € P(K,9) and
A+A)"P=RN) +50), NeT :=T(K,9), (2.8)
and put Rg(AN) := g(—A)R(A) for A €T and g € H(¥Y). Also suppose that
Ry, S € Ly (T, ds, L(E))
and
IR llz, < Miglloe » g€ H@), (2.9)

ds denoting the ‘arc-length measure’. Then A € Hoo (k(M + ||S][1,),9).
Proof. It follows from (2.2) and (2.8) that

9(A4) = %M/FRL,()\) d\ + %/Fg(—)\)S()\) d\, geH(®¥).

Thus we infer from (2.9) that ||g(A)|lzz) < (M +|S||L,) llgll, for g € H(¥), and
Lemma 2.1 implies the assertion. O

As a first application of this splitting lemma we show that Hoo (1) is invariant
under suitable ‘lower order perturbations’.

Theorem 2.4. Suppose that A € P(K,¥) N Hoo(M,¥) and 0< < 1. Fir K1 > K
and put R(\) := (A+ A) L and T :=T((1 — B) 1K1,9). Let B be a linear operator
in E satisfying

(i) dom(B) D dom(A);

(ii) IBR(VI| < B <1 for A € Sy;

(iii) [|RBR||p,(r,ds,c(E)) < 0 < 00.

Then A+ B € Hoo (k(M + (1 = B)710),9).

Proof. Lemma 1.1 implies A + B € P((1 — 8)7'K, ). From (1.8) we deduce that
A+ A+ B)"t =R(\) + S(A) for A € T, where S := —RBR[1 + BR] . Hence (ii)
and (iii) imply

S e Li(T,ds,L(E)) and |[|S|l,, <(1-p8)""to.
Now the assertion follows from Lemma 2.3 and the fact that I'( K, ) can be replaced
by ['((1—8)"*Ky,9). O

Corollary 2.5. Suppose that A € P(K,9) N Hoo (M, 9). Then, given v > 0, there
erists N such that

u+ A€ H(N,I), 0<u<v.
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Proof. Fix p; > 0 and put A; := ;3 + A. Then Lemma 1.1 implies A; € P(K;,9)
with K7 := Ks(¥). Suppose that Ay € Hoo(M1,9) for some M; > 1. Note that this
is true if yuy = 0.

Assume that 0 < u <1/(6K;) =:v1, put B:=pulp and Ri(A) := (A + A4;)7L,
and let T'; := I'(2K1,9). Then (1.3) and (1.4) imply ||R1(\)|| < 3K1(1 + |A|)~! for
A €Ty. Hence B satisfies (i)—(iii) of Theorem 2.4 with §:=1/2 and o := 2K, p,
where p is the L;(T';,ds)-norm of (1 + |-|)~2. Thus, thanks to Theorem 2.4,

/"L+/~'L1+A:/“L+Al EHOO(M2719) )

where M, := k(M7 + 20). Now the assertion follows by induction starting with
p1 := 0, since v can be reached in finitely many steps of length at most v4. O

The following perturbation theorem will be of particular importance in applica-
tions. Here we again use the notations of Remark 1.2(b).

Theorem 2.6. Suppose that A € P(K,9) N Heo (M, 9). Also suppose that o € [0,1)
and that §, is an exact interpolation functor of exponent «, if a > 0. Lastly, let
B € L(E,, Eo) and put

pa = [(5Ks@) 1BIN" Y 1]

Then there exists a constant N > 1 such that ug + A+ B € Hoo(N, V).

Proof. Suppose first that 3 := 4K ||B|| < 1. Then, letting R()\) := (A + A)7!, we
deduce from (1.3)—(1.5), similarly as in (1.9) and (1.10), that

L+ D IRl 5y <AK,  A€T:=T((1- ) 'K,0) .
Hence ||BR(\)|| < 4K ||B||=8 < 1for A e TUSy and

IRQV)BRMW)I| < 16572 || Bl (1 + [A])* 2

for A € I'. Now Theorem 2.4 implies A+ B € Hoo(N,9) for some N > 1. Since
s(19) > 1, this proves the assertion if ug = 0.

Suppose now that p := pup > 0 and put 8 :=4/5and T :=T((1 — 8) ' K5(¥),9).
Also let Ag := pu+ A and Ro(A) := (A + Ap)~!. Then (1.4) implies

2K +1 _ 3Ks(V)

Ro( M| < <

., Ael. (2.10)

Moreover, from ARo(A) =1 — (A + p)Ro(A) and (2.10) it follows that
[AR,(N)|| < 142K +1 < 4Ks(¥) , Ael. (2.11)

Thus, by interpolation, ||Ro(\)||z(ky,5.) < 4Ks(9)(1+ p)*~! = B/||B|| for A €T,
so that ||BRy(N)|| < 8 < 1for A € I' U Sy. Lemma 1.1(ii) implies 4y € P(Ks(9),9).
Hence we deduce from (1.4) that (14 |A])||Ro(N)|| < 3Ks(9) for A € T'. Thus we
infer from (2.11) and interpolation that

IRo(\)BRoW)|| < [4Ks(d)]” Bl (1 +A)* 2, AeT.
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Now Theorem 2.4 and Corollary 2.5 entail Ay + B =pup + A+ B € Hoo(¥). O

Suppose that A € P(E) and §, is a real interpolation functor (-,-)q,, for some
a € (0,1) and p € [1,00]. Then it has been shown by Dore [8] that A possesses a
bounded H,-calculus on E,.

3. Approximation-Perturbations. In this section we prove a rather technical
perturbation result, namely Proposition 3.2 below, which will, however, be most
useful in ‘patching together’ differential operators on manifolds from their local
representations.

Let E := (E;) be afinite or infinite sequence of Banach spaces. If z := (z;) € [[ E;
then put

1/q
Tl 1<a<os,
lele ) = { (s lleall,)
Supj ||$]||E'J ) qg=0o0.

Then, given ¢ € [1, o],

((E) = ({z € [LE;; l12lle,m) <0} II-lleyr))
is a Banach space. If F := (F}) is a second finite or infinite sequence of Banach
spaces over the same index set, L(E, F) := (L(E;, F})).

Given A = (4,) € {«(L(E,F)), put Az := (A;z;) for & = (z;) € E. Then it is
obvious that

A€ L(Ly(E), y(F)) (3.1)
and that
WAl zee, (B),e,F)) < NNl (c(E,FY) (3.2)
for 1 < g < 00. Moreover, if
Aj E,CiS(E]',F]‘) , j=0,1,2,... s (33)
it follows that A is bijective and
A ly = (Aj_lyj) , =(y;) € F. (3.4)
Thus
AT € L(Ly(F), L(E)) , 1<g< o0, (3.5)

by the open mapping theorem.
In the following, we write E — F if E; — F; for each j and

i =(i;) € lo (L(E,F)) ,
where i;: E; < Fj is the natural injection. If, in addition, E; <4 F; for each j, we
write E <5 F. Tt is easily verified that
E—F = [((E)—={(F), 1<¢< 0, (3.6)

and
ESF = ((B)S(F), 1<q¢<oo. (3.7)
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Lemma 3.1. Let K,M > 1 and ¥ € (0,7) be given constants. Suppose that E i) F
and A € o (L(E,F)).

(i) If A; € P(Fj; K,V) for each j then A € P((,(F); K,9) for 1 < ¢ < 0o

(ii) If, in addition, A; € Hoo(Fy; M, V) for each j then A € Hoo (€q(F); M, 9) for
1<qg< o and some k > 1.

Proof. It follows from (3.1) and (3.7) that A is densely defined. Now (i) is an easy
consequence of (3.3)—(3.5). The same formulas easily imply that g(A)z = (g(4;)z;)
for z € F and g € H(9). Now (ii) follows from (3.2) and Lemma 2.1. O

Let E be a Banach space and suppose that
¢E,j € L(Ej,E) and vp,; € L(E, E)) (3.8)
satisfy
Z‘foE,wa,j =1g  in Ly(E), (3.9)
J

where L;(E) is the vector space L(E) equipped with its strong topology. Put

TEZ = Z(PE,]'-T]' , z=(z;) €E, (3.10)
J

and
rgx = (YE;2) , z€E. (3.11)

Note that, thanks to (3.9),
TETCE = lE . (3.12)

If there exists g € [1, 00] such that
rg € L((,(E),E) and r§ € L(E,((E)) (3.13)

then (E, (pE,j), (¢E,])) is said to be an {;-approximation system for E.

We denote by [+, -], 0 < a < 1, the complex interpolation functor of exponent a,
and put [X,Y]o := X and [X,Y]; :=Y whenever (X,Y) is an interpolation couple
of Banach spaces. We also put

[E,F]a = ([EJ,F]]a)
and recall that [E, F], = [F, E];_,. Also note that
[€4(E), ((F)] =€, ([E, Fla) , 1<g< o0, (3.14)

(e.g., Theorem 1.18.1 in [24]).
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We introduce now the following assumption:

(i) E and F are Banach spaces with £ Ny

(i) 1<g<oo, and (E,(¢r,;),(¥r,;)) and (F,(pr;), (¢r,;)) are
{,-approximation systems for E and F', respectively, such that

ESF, ¢p;Corj, and dg; C ¥p,.
(i) A€ L(E,F)and A= (A)) € b (L(E, F)).
(iv) 0<a<1andBE€L(E,Fla,{,(F)) such that
YrA=Aje;+ B;,
where B;x := (Bz); for j =0,1,2,....
(v) Cj € L([E;, Fj)a, F) such that App; = ¢r;A; + Cj.
Moreover, letting
Cz =3 ,Ciz;, z = (z;) € [E,Fl,,
it follows that C' € L({,([E,F].),F). )

(3.15)

Then we can prove the following ‘approximation-perturbation’ result.

Proposition 3.2. Let (3.15) be satisfied and let K, M > 1 and 9 € (0, 7). Suppose
that A; € P(F}; K,9) N Lis(E;, F}) and ||A]4_1||L(F].7Ej) < K for each j. Then there
are constants N > 1 and p > 0 such that

() p+A€PF;N,I)NLS(E,F) and||p+ Allcm,ry + (1 + A) 7 Hlermy) < N
(i) p+A€H(F;N,9) if Aj € Hoo(Fj; M, 0) for each j.

Proof. It follows from (3.15(ii)) that r7 D rg and r% D r%. Hence we can omit the
indices in the following. Then we deduce from (3.13) that

r € L([t(E), (,(F)] ,,[E. Fla) -

Thus
Br e £([€q(E),£q(F)]a,€q(F)) . (3.16)

Suppose that A; € P(F;; K,9) N Lis(E;, F;) for each j. Then it follows from
(3.1), (3.5), and Lemma 3.1 that

A € Lis((y(E), (,(F)) NP (L, (F); K,9) . (3.17)

Hence, letting
us = (4K ||Brl)"/* - 1] s) ,

we deduce from Remark 1.2(b) that
pB + A+ Br € P(((F); 2K s(9),9) . (3.18)
Consequently, (3.13) implies

LA+ pg):=r(A\+up+A+Br)"'° € L(F,E) , A€ Sy . (3.19)
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Note that, thanks to (3.15(iv)) and (3.12),
r’A+up+A)=N+pug+A)r°+B=(A+up+A+ Br)rc. (3.20)
Hence it follows that
LA+pg)A+pp+A) =r=1g, A€ Sy . (3.21)

From (3.14) and (3.15(v)) we deduce that C' € L([(,(E),{,(F)] ,
to (3.13), r°C € L([Ly(E), Ly(F)] ,,Lq(F)). Consequently, letting

F). Thus, thanks

po = K [ Ol 1] s0) .

we infer from (3.17) and Remark 1.2(b) that
At pc+A+1r°C € Lis((,(E), L,(F)) , AeSy.
Hence, thanks to (3.13),
R+ pc) ==rA+pc+A+r°Cl 'r° € L(F,E) , A€ Sy. (3.22)
Observe that (3.15(v)) and (3.12) imply
A+pc+Ar=rA+puc+A) +C=r(A\+puc+A+r°C) .

Thus
AN+ pc+ARN+puc)=rr°=1p, AESy. (3.23)

Put po := pp V pc. Then we infer from (3.19)-(3.23) that Sy C p(—(uo + A4)) and
A+ po + A~ =LA+ po) = RO+ po) A€E Sy .
If A; € P(F;; K,9) N Hoo(Fy; M, ¥) for each j, Lemma 3.1 guarantees that
A € Hoo (Lg(F); kM, )

for some k > 1. Consequently, from (3.16), (3.17), and Theorem 2.6 we infer the
existence of N > 1 and p > po such that p + A + Br € Hoo ((4(F); N, 9). Note that
(3.12) and (3.20) imply (u + A)~' = r(u + A + Br)~!r¢. Hence the assertions follow
from Lemma 2.2. O

4. Finite-Dimensional Spectral Estimates. In this section we derive some
easy technical estimates related to the spectrum of a matrix. In addition, we in-
troduce spaces of uniformly continuous functions whose continuity is dominated by
a given modulus of continuity. The results of this section will be needed in later
sections to obtain uniform estimates on which we can base perturbation arguments.

Throughout the remainder of this paper we denote by H := (H,|-|) a finite-
dimensional Banach space, and N := dim H.
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Lemma 4.1. There exists a positive constant cy such that

o™ < exclal ™ r N

for all v >0 and all a € L(H) satisfying o(a) C [|z| > r].
Proof. This follows, for example, from Cramer’s rule (e.g., I.(4.12) in [11]). O

As an easy consequence of Lemma 4.1 we obtain the following quantitative form
of the well-known upper semicontinuity of the spectrum.

Lemma 4.2. Suppose that r, M € R* and put
K:=cy@M+1)" "N and §:=(1A1/K)/2.
Then, given a,aq € L(H) satisfying |ag| < M and |a — ag| < 9, it follows that

o(a) C [dist(z,0(a0)) <] .

Proof. Suppose that |\| > M + 1. Then |a|] < |ag|+|a —ag] < M +d< M +1
shows that A € p(a). Thus assume that [A\| < M + 1 and dist(), o(ag)) > r. Then
Lemma 4.1 implies that |[(A — ag) | < K. Consequently,

(a0 — )\ —a0) | < 0K <1/2,
which guarantees that 1 + (ap — a)(A — ao)~! € Laut(H). Hence we deduce from
A—a= [1 + (ap — a)(\ — ao)_l] (A —ag)

that A — a € Laut(H), that is, A € p(a). O

Of course, the precise form of the constants K and § is of no particular impor-
tance. What is important, however, is the fact that these constants depend upon r
and M only and not upon the individual operators a and ag.

Let w: RY — RT be a modulus of continuity, that is, an increasing function
which is continuous at 0 and vanishes there, is positive elsewhere, and satisfies
w(2t) < cw(t) for t > 0. Notice that these assumptions imply that for every posi-
tive ¢; there exists a positive ¢y so that w(cit) < cow(t) for ¢ > 0. Then we define
the w-seminorm [a], of a: R — L(H) by

la(z) ~ a(y)]

mreintRid

[a]e := sup {

We denote by
BUC(w) := BUC(R", L(H);w)

the Banach space of all a € BUC (R™, L(H)) satisfying

llallc(w) = llalloo + [alw < o0,
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where BUC (R™, L(H)) is the Banach space of all bounded and uniformly continu-
ous functions from R™ to L(H) equipped with the maximum norm ||-||s. Of course,
if w(t) = t# for some p € (0,1) and all ¢ > 0, we write ||-||c» and BUC” for || ||c(w)
and BUC(w), respectively. Note that BUC(R™, Laut(H);w) is the open subset
of BUC(w) consisting of all ¢ € BUC(w) such that a(x) € Laut(H) for each z € R™.

Given a smooth function 1 on R*, we put 9. (z) := e ™ (¢~1x) for ¢ > 0 and
x € R™. We fix now such a function ¢ which, in addition, is nonnegative, has support
in the unit ball, and satisfies [ pdz = 1. Then {¢. ; € > 0} is a mollifier.

Using these notations we can prove an invertibility result for mollified £(H)-
valued maps.

Lemma 4.3. Suppose that o, M € R* and w is a modulus of continuity. Then
there exist constants ¢ and k such that, given any

a € BUC(R", Laut(H );w)

satisfying
lalloo + la™ loo < M and [a) < &, (4.1)

it follows that . x a € C>(R"™, Laut(H)) and

”(995*0’)_1“00507 O0<e<eg.

Proof. Note that
pe xa(z) —a(z) = / e(y)[alz — ey) — a(x)] dy
ly|<1

implies
e * a = alloo < w(e)ale < w(eo)lalw (4.2)

for 0 < e < &o. From (4.1) we deduce that o(a(z)) C [|2| > 1/M] for z € R". Hence
(4.1), (4.2), and Lemma 4.2 guarantee the existence of k such that [a],, < k implies

o(pe xa(x)) C [|2| > 1/(M +1)], zeR*, 0<e<eg.

Now the assertion follows from (4.1) and Lemma 4.1. O

5. Estimates for Symbols. Below we derive technical estimates for matrix-
valued symbols, that is, functions from R” x R¥ to L(H), which are positively
homogeneous in the ‘Fourier variable’ £ € R¥ and possess only little regularity in
the ‘space variable’ z € R™. We use a variant of the technique of ‘symbol smoothing’
introduced by Kumano-go and Nagase in [12] and subsequently applied by Nagase
in many papers dealing with boundedness properties of pseudo differential operators
with non-regular symbols. By a simple trick the results of this section will be applied
in Sections 7 and 8 below to the case of parameter-dependent symbols.
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Let n, ¢ € N be fixed and put k := n + £. Denote by ¢ := (&, n) the general point
of RF = R" x R and put
¢=C/Kl,  CERY,

where |-| is the euclidean norm.

We fix now m, K € R* and a modulus of continuity w. Then we assume that
a:R" x R — L(H)
has the following properties:
e a(-,¢) € BUC(w) for ¢ € R* ;

e a(z,-) is positively homogeneous of degree m for z € R ;

e a(z,-,n) € C"*(R",L(H)) for (z,n) € R" x R and (5.1)
al-, M|leo < K, e Rk .
max 97Ol K,
Then, given § € (0,1), we put
ad('ac) =Pl * a('a() ) (€ Rk > (52)

where ¢ is the function introduced in Section 4.

Lemma 5.1. There exists a constant ¢ such that, given any a: R* x RF — L(H)
satisfying conditions (5.1), it follows that

1020¢a’ (-, )lleo < K |71 CeRE
for || V8] <n+2.
Proof. Given ¢ > 0, it is obvious that
Pp. = 1P (8Pyp). . (5.3)
On the other hand,
Oepe = —ne~ e —e %Y A Djp(e7 )

= =< (ng- + (X,27050).) =7 (p1)- - o4
Note that 1 is smooth on R™ and has its support in the unit ball.
Now, letting € := |-|~° and observing
9 |C7 =08 ||, (eR*, 1<j<n, (5:5)
it follows that
6§ja‘5 = ((,91)|.|—5 *xaj+ @ -s xOga,
where a; := —da|-|72 & for 1 < j < n. Note that a; and ¢, a are positively homo-

geneous of degree m — 1 in (.

Given a € N* with |a| <n + 2, by induction it is easily verified that O (). -5 * a)
is a finite linear combination of terms of the form .5 * b, where ¢ is a smooth
function on R” with support in the unit ball, and where b: R* x R¥ — L(H) is
such that b(x, ) is positively homogeneous of degree m — |a| and

lIb(, C)lloo < K.

Since the coefficients of these linear combinations are independent of a, the assertion
follows. O
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Lemma 5.2. There exists a constant ¢ such that, given any a: R* x RF — L(H)
satisfying conditions (5.1) and

Juac sup |22 [a(a, ©) — a(y, O] | < Ku(lz —y) (5.6)

for x,y € R™, it follows that
9g a(-, Q) = a’( O] |, < ecKw (¢ g™, e R,
for |a| <m+2.

Proof. Let ¢ := |-|7%. Then

bz, ) = alz, ) — (. ) = / o) [ale,) — a(z —y,)] dy

implies
084w, = X (3) [ 080 )0 alw. ) = alo =y, )] dy
BLla

From (5.3) and (5.4) it follows by induction that 8? ©e s a finite linear combination

of terms of the form e~ 1Bley),, where 9 is smooth on R” with support in the unit ball
and e: RF — R is positively homogeneous of degree zero and bounded on || = 1.
Thus agb is a finite linear combination of terms of the form

P [ pw)ag P la, ) — alw— |7y, )] dy - (5.7

ly|<1

Since 85‘_5 a(z,-) is positively homogeneous of degree m — |a| + |3] for € R™, we
deduce from (5.6) that (5.7) can be estimated by

cKw(|¢]7%) ¢

forx € R® and ( € R*. Now the assertion is obvious. O

By combining Lemmas 5.1 and 5.2 with Lemma 4.3 we can prove the following
estimates.

Lemma 5.3. Suppose that oo, m, K, K_; € Rt and that w is a modulus of conti-
nuity. Then there exist constants k and ¢ such that, given any

a: R* x R¥ = £(H)
satisfying conditions (5.1), (5.6), a(x,¢) € Laut(H) for (x,¢) € R* x R* and

sup, la™ ()0 < K1, (5.8)
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and

sup [a(-,¢)], <
<=1

it follows that a® : R* x R¥ — Laut(H) and

(i) 10208 (a?) (-, Olloo < g™ HIET ol VB <n+2,
(i) 08 ((a = a®)@)™) (- Q| o < ewllc] ™) [¢I7 ol <n+2,
(i) [|og[0fadl(@) ] Q) <l o+ 1Bl <n+2,
@) [logfa = (@) TGO < ewlle Py g™ ol <n+2,

for |¢| > oo.

Proof. Suppose that
beCnt? (R* x R™, Laut(H)) .

Then, given a, 8 € N* with |a| V |8] < n + 2, it is easily verified that 950¢b~" can
be represented as a finite linear combination of terms of the form

~H05 O bbb (5 A b)b T

where oy +---+a, =a and By + --- + B, = B with a;, 8; € N*. Hence (i) follows
from Lemmas 4.3 and 5.1.

Thanks to Leibniz’ rule,

o¢ [(a—a’)(a®)™'] = Z (:)Og(a - a5)a§“7(a‘5)—1

¥<a

Hence (ii) is a consequence of (i) and Lemma 5.2.

Again by Leibniz’ rule,

¢ [0fadda®) ™) = > ()M adlag ()" .

r<a

Therefore we infer (iii) from (i) and the fact that aﬁ 4 is positively homogeneous
of degree m — |B| — || in ¢ € R*.
Lastly, note that
a~! = (&%)~ = a1 (d® = a)(a®)~!
and that a~! is positively homogeneous of degree —m in ¢ € R*. Thus assertion (iv)
is an easy consequence of Leibniz’ rule and (ii). O

We fix now 6, € [0,7) and suppose that

b: RY — L(H)
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has the following properties:

e ) is positively homogeneous of degree m ;
e b(,n) € C"2(R",L(H)) for n € R ;

o o(b(¢*)) C Sy, for ( € R ; (5.9)
2b(Q)| + sup b 1O < K .
* max, sup [B(O]+ sup (O] <

We also suppose that 6y < § < 7 and that there exists € > 0 such that
g: 8= C (5.10)
is holomorphic and satisfies
|2|°g(z2) =0 as z— o0 in Sy . (5.11)
Let ¥ ;=7 — 0 and T := T'(K,9) and put

a(®)(©) : L (=N (,\+b(g))‘1dA , CeRF. (5.12)

o 21 T

The following lemma implies, in particular, that g(b)(¢) € L(H) is well-defined.

Lemma 5.4. Suppose that m, K € Rt and 0 <6y <0 < n. Then there erists a
constant ¢ such that, given b: R¥ — L(H) satisfying (5.9), and given a holomorphic
function g satisfying (5.10) and (5.11) for some € > 0, it follows that

g(b)(-,m) € C"T*(R™, L(H)) (5.13)
and
¢ 16gg(0)(Q)] < esup{ lg(N)| 5 A € Spn [|2] > [¢™/(2K)] } (5.14)

for ¢ € R* and |a| <n +2.
Proof. Observe that

o(=0(Q)) == o (b(¢")) . CERF. (5.15)
Also note that, thanks to (5.9),
a(=b(¢*)) C [|arg2| > 7 — 6] N[1/K < |z| < K] . (5.16)
Let X be the positively oriented boundary of
[argz| > 9] N[1/CK) < || <K, R>K+1,
and put ¥ := Xk 14. Then (5.16) implies the existence of p := p(K, ) > 0 such that

o(A+b(¢Y) Cllzl > p], AeT, (eRF.
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Hence we deduce from Lemma 4.1 and from (5.9) the existence of a constant ¢
such that . )
[(A+0b(¢) | <c, AEY, (CeERF, (5.17)

for all b under consideration.

Given t > 0, let t¥ be the curve obtained from ¥ by the dilatation A — tA. Then
|¢|™ T is a positively oriented contour which, thanks to (5.15), contains o (—b(¢))
in its interior. Hence

1

GO =57 [, 9O Q) Tdh,  CeRF, (518

is well-defined.

Let (o € R* be fixed. The upper semicontinuity of the spectrum implies the
existence of a neighborhood U of ¢y in R* such that |¢o|™ T contains o'(=b(¢)) for
each ¢ € U in its interior. Thus, thanks to Cauchy’s theorem, we can replace |¢|™ 2
by the fixed contour |{o|™ T as long as ¢ € U. From this we easily deduce that

GO € C (R L(H) ,  ne e,
and that .
RO =57 [ o002 (+0(0) "

for ¢ € R* x R and |a| < n + 2.

Recall that 9g (A +b) ™' = ca(A,)(A +b) ", where c, is a finite linear combina-
tion of terms of the form

(A +b) " 1(9Eb)(A +b) 1(B7b) - - (A + b) (D) (5.19)

with 8+ v+ --- + 0 = a. From the positive homogeneity of b it follows that

1

A+Q) 7 =1 (™ A+ T, CeRE,

and, in turn, that c4(\,¢) = [¢|” lod ca(|¢)™ N, ¢*) for ¢ € R*. Thus

1

<[ eGB)(¢) = 5~

o1 Ve ¢ (A b(¢7)
for ¢ € R*. Now we infer from (5.9), (5.17), and (5.19) that

<1102 G®) ()] < esup{|gN)] 5 A€ Sg 1 [[2] > [¢™ /(2] }
for ¢ € R¥ and |a| <n +2.

Fix ¢ € [-7+ 6,7 — 0] and put d(t,() := [t|™ ¥ + b(¢) for (¢,¢) € (R x RF).
From (5.9) we deduce the existence of a constant r := r(K, ) > 0 such that

o(d(t,Q) Cllel 2r], [t +[¢*=1
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Hence Lemma 4.1 and the fact that d is positively homogeneous of degree m
guarantee

(A +0(0) [ <eD@+IA)T . JagA<m—6, CERF.  (5.20)

Thanks to Cauchy’s theorem we can replace the contour ¥ in (5.18) by g for
any R > K + 1. Thus, letting R — oo, we infer from (5.11), (5.18), and (5.20) that
G(b)(¢) = g(b)(¢) for ¢ € RF. This proves the lemma. O

6. Pseudo Differential Operators. Let a € C(R™ x R*, £L(H)) such that a(z, )
is polynomially bounded for each & € R". Then we define the pseudo differential

operator
Op(a): S(R*,H) —» BC(R",H)

with symbol a by
Op(ayu(z) == (2m)™ / ¢ @a(a,E)aE)dE, s ER,

where 4 denotes the Fourier transform of v and S(R", H) is the Schwartz space of
rapidly decreasing smooth H-valued functions on R™.

In order to guarantee that Op(a) extends to a continuous linear map of L,(R", H)
into itself for 1 < p < 0o, we introduce the following symbol classes. Suppose that
0 €[0,1) and put

n:=[n/2]+1,

where [t] is the integer part of ¢ € R*. Then S; is the set of all
a € C™*(R" x R", L(H))

satisfying
lalls, = ma sup (€)1 =071 023¢al., e < o0
18]<m

where (£) := (1 4+ [¢]?)1/2 for ¢ € R*. We equip S5 with the norm |[|-||s, so that it
becomes a Banach space.

Let w be a modulus of continuity satisfying the Dini condition
1
t
/ w dt < oo . (6.1)
o ¢

Then we denote by Ss(w) the set of all a € CO™! (R x R™, L(H)) such that

x|
llalls;w) ;= max sup

la|<n+1gecrn w((é‘)—é) ”aga('vg)”oo < .

We give this space the norm ||-||s;(.) so that it becomes a Banach space too.

The introduction of these multiplier spaces is justified by the following
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Theorem 6.1. Suppose that 1 < p < co and put L, := L,(R", H). Also suppose
that w satisfies (6.1). Then

Op € L(Ss, L(Ly)) N L(Ss(w), L(Ly)) -

Proof. The assertion for the symbol class S5 follows from the results and techniques
in [18] and [25]. As for the symbol class Ss(w), we refer to [17] and [18]. O

7. Homogeneous Elliptic Operators on R". It is the main purpose of this
section to prove that an elliptic operator on R", acting on vector valued functions,
that is, an elliptic system on R™, is an operator of positive type, provided the symbol
does not contain (—o0,0) in its spectrum and the coefficients are nearly constant
(matrices). These results are of auxiliary nature and will be used in subsequent
sections.

We fix now m € N and p € (1, o) arbitrarily. Given s € R, we denote by
W, = (W (R™, H), ||-ls.»)
the usual Sobolev-Slobodeckii spaces of order s of H-valued functions on R™. We

also put D; := —19; for 1 < j <n.

By a differential operator on R™ we mean a linear differential operator of order m,

A= )" a.D*, (7.1)

la|<m

with £(H)-valued coefficients
aq: R* = L(H) , aeN, Jal<m.
We associate with A its principal symbol
Ar(z,6) = Z aq(T)E* (z,6) e R" x R™ .
la|=m
Then, given M > 0 and 6y € [0, 7], we say A is uniformly (M, 6;)-elliptic if
max |laq|lee < M (7.2)

|a]=m
and
o(Ar(2,6) C Sy and |[Ar(z,6)] ' |<M, zeR', [f|=1. (7.3)

Throughout the remainder of this section we assume that
w is a modulus of continuity,
aq € BUC(w) = BUC(R", L(H);w) , la] =m (7.4)
and a, =0 for |a] < m,
that is, A= Z|a\:m aoD® is homogeneous of degree m. Note that, given any
b€ BUC(R™,L(H)), there exists a modulus of continuity w such that b € BUC(w).
Given 6 € (6o, 7) and ¢ € [-7 + 6,7 — 0], put
ay(z,¢) = p|" e +|o|™ + Ax(2,6) .  (:=(&n) R =R xR, (7.5)

where we write 1 := (p, o) for the general point of R2.
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Lemma 7.1. Let A be uniformly (M, 6)-elliptic. There are constants K := K (M)
and K_1 := K_1(M,0) such that the maps ay: R* x R* — L(H) satisfy condi-
tion (5.1) and (5.8), uniformly with respect to || < m— 6.

Proof. The validity of (5.1) is obvious. To prove (5.8) observe that
o(Ax(2,8) C Sgo NIz > [€["/M],  (2,6) €ER" xR" .
This implies the existence of a constant r := r(M) > 0 such that
o(as(@,0)) C [|2] > rsin(0 — b))

forz € R, [¢| = 1, and [¢)| < 7 — 6. Hence ay, : R* x R¥ = Laut(H) and Lemma 4.1
guarantees the existence of K_; := K_1(M,0) such that (5.8) is true, uniformly with
respect to || <7 —0. 0

We consider now first the case of constant coefficients a, € L(H) and prove the
following basic

Lemma 7.2. Let M, € R* and 0 € (6y,7) be fized. Then there exist constants c
and K > 1 such that p+ A € P(Ly; K, —0) and

e+ Allcowm L,y + 1O+ g+ A7 e, wey <c, ANE Sxyg, (7.6)

P

for all homogeneous (M, 0q)-elliptic operators A with constant coefficients.

Proof. If A has constant coefficients, its principal symbol and, consequently, a, are
independent of = € R". Hence afﬁ = ay and we deduce from Lemmas 7.1 and 5.3(i)
that

ogay Ol <elg ™™, Jal<om, (g2 utm, (7.7)

uniformly with respect to |¢)| < m — 6. Note that
C1* > (1l +1o1*) v (lo]* + 1€1) (7.8)

and that

AAa)E) < (P +oD)?<(Avo)E), EeR', o>0. (79
Thus, letting X := |p|™ €'¥ and ¢ := p'/™, we deduce from (7.7)—(7.9) that

@O+ p+ Ac(©) [ <+, fal<2m, A€ S,
where ¢ depends upon M, u, and 6 only. Observe that this implies
A+u+A)teS

and that there exists ¢ := ¢(M, u, 8) such that

[N+ p4+A) s, e+ MDY, AES,g.
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Thus, since
A+ pu+A=0pA+ p+ Ar)

and since A has constant coefficients, it is an easy consequence of Theorem 6.1
(or Mikhlin’s multiplier theorem, of course) that there exists K := K (M, u,0) > 1
with p+ A€ P(K,7 —6).

It is obvious that A € L(W,", L,) and that its norm is bounded by a constant
depending on M only.

We infer from (7.7), (7.9), and Leibniz’ rule that
©glora,tOll<e,  lal<om, [zpt™, WlI<T-6.
From this and Theorem 6.1 (or again by Mikhlin’s theorem) it follows that
10— 2™ 20+ u+ A Moy Sey AESas,

where ¢ := ¢(M, p1,0). Since (1 — A)™/2 € Lis(W*, Ly), we see that (7.6) is true. O
It is now easy to prove the main result of this section, namely

Proposition 7.3. Suppose that M, € Rt and 6 € (8o, 7). Then there exist con-
stants ¢, K > 1 and B > 0 such that, given any homogeneous uniformly (M,0q)-
elliptic operator A with coefficients in BUC (R",ﬁ(H)) and satisfying

max ||aa — aa(y)|le < B (7.10)

|a|=m
for some y € R™, it follows that p+ A € P(Ly; K, m—0) and

e+ Allcowe ) + 1+ A", wmy <c. (7.11)

P

Proof. Write A = A(y) + B, where

Aly) = Y aaly)D*

loe|=m

and note that B € L(W,", L) with ||B|| < max|q|=m [|@a — @a(¥)|lco- Now the first
part of the assertion follows from Lemmas 7.2 and 1.1.

It is clear that u+.A4 € L(W,", L,) with an estimate for its norm depending
upon M only. If 8 is chosen so small that ||B(,u + Ay < 1/2, it follows
from (1.8) that

-1
A P

1+ A e,y <20+ AG) o, w -

Thus (7.11) is also a consequence of Lemma 7.2. O

We will remove the smallness condition (7.10) and admit lower order terms in
Section 9 below.
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8. Bounded H,-Calculus Under Smallness Conditions. By requiring a
little more regularity for the coefficients of the differential operator A considered
in the preceding section we shall now show that u + 4 has a bounded H,-calculus

for any p > 0. These results are again of auxiliary character.

We fix now two moduli of continuity w; satisfying
1
i(t
/ Wit gy o oo j=1,2.
0 t

We also fix M, € Rt and 0 < 8y < 6 < 7. Then we denote by

A= Z ao,D®

la|l=m
an arbitrary uniformly (M, 6p)-elliptic operator with coefficients
aq € BUC(wiwe) , la] =m .

Note that wiws is a modulus of continuity too.

Lemma 8.1. There are constants K > 1 and B,k € R* such that

p+AePEK,x—0)

and
A+pu+AP=RN+S0N), ANeT :=T(K,m—6),
where
R(\) = Op((A+p+A0)™)
and
S € Ll(l",ds,L(Lp)) ,
provided

max [lag — aa(y)|lo < B
lal=m
for some y € R* and

max [ag)wiws < K -
lal=m

(8.1)

Proof. Put 6 := (6o +6)/2 and define ay : R* x R* — L(H) for || < 7 — 61 by
(7.5). Let 6 € (0,1) be fixed and define aj, by (5.2). It follows from Lemmas 7.1

(with € replaced by #;) and 5.3 that there exists x > 0 such that (8.8) implies

aly: R* x R* = Laut(H) [p| <7 -6,

and that the estimates (i)—(iv) of Lemma 5.3 are valid, uniformly with respect to

|| <7 —6; and with w replaced by wiws.
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Given = (p,0) € R? and |¢| < m — 6y, it is easily verified that
m m -1
(IpI™e™ + o™ + A)0p([ag, (-, m)] " )u

=u+ Op(b¢(7 ) 77))“ + Op(rT/J(v ) 77))“

for u € S, where by, := (ay — af)[ag]™" and
1 _
Ty = Z E@?ad,Dg[afb] L
0<|B|<m

Given op € (0,1], we deduce from Lemma 5.3(ii) the existence of a constant c¢
such that

1< 108by (-, Olloo < cwnrwa(¢7%), ol <27, [¢|>00, [¥|<7m—061,

where, of course, ¢ := (£,7) € R* x R? = R¥. Hence (7.8) and (7.9) imply

() *leor (052 (€) ) 11986 (- Olleo < exon(lm|~*)

for £ € R™ and n = (p,0) € R? with o > 09, and for || < 7 — 6. Define a modulus
of continuity &; by @1 () := wi (g °t). Then it follows that by(-,-,n) € S5(@1) and

166 (s m)lls5 (@) < cwn(lml =) (8.10)

for n = (p,0) € R? with ¢ > 0y, and for |[¢| < 7 — 6;.
Similarly, putting dg := (1 — §)/2, we infer from Lemma 5.3(iii) that

08y (L Olloe < cl¢™HTV2 L el <2m, (> 00, W] <T—6 .

Thus, letting wq(t) := t for t > 0, we see from (7.8) and (7.9) that ry (-, -, 1) € S5, (wo)
and

—(1-6
I (o)l ooy < cln =7 (8.11)
for n = (p,0) € R? with o > 0y, and for [¢| <7 — 6.
Proposition 7.3 guarantees the existence of § > 0 and Ky > 1 such that
,u/2+.A S P(K’o,ﬂ' —91) ,

provided (8.7) is satisfied. Thus, thanks to (1.2) and Lemma 1.1(ii), we can find
K > K, such that (8.4) is true, that

u/2+AeP(K,m—60) C P(K,m—8), (8.12)

and that

[largz| < (m —0)k ] U [|2| <1/(2K)] C —p/2+ Sr—p, - (8.13)
Hence I' + /2 C Sy_g,, where I' :=T'(K,7 — 6). Thus (8.12) and the trivial de-
composition A + /2 + p/2+ A=A+ p+ A imply

A+ MDA+ p+A) e, <c,  AeT, (8.14)
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thanks to the fact that

|A| sin 6y if 0<bi<7/2,
21 > 1
'“’“‘/'—{w ir/2< 0 <. (8:15)

Given X\ € T, it follows from (8.13) that there exists a unique pair (r,%) with
r >0 and |¢| < m — 6; satisfying

A+ p/2=|p|" eV . (8.16)

Thus, letting
o:=00:= (/2™ ,  n:=(p0), (8.17)
it follows from (8.10) and Theorem 6.1 that

Ti(A) = Op(by(-,~m) € L(Lp) ,  AET,
and that
1T Mlleq,) < e ([N + /2™ + (/22" %) . xer,  (818)
thanks to the fact that wy and @; satisfy the Dini condition (6.1). Similarly, (8.11)

implies
To(A) := Op(ry(-,-,m)) € L(Ly) , AeT,
and
IToWlleqryy < [N+ p/2P™ + (u/2)2m]) 7% xer. (819

Finally, let
-1
R(\) = Op([af/)(-, -,17)] ) , el , (8.20)

where A and 7 satisfy (8.16) and (8.17). Then we infer from (8.9) that
A+p+ARN) =1+T1(N) +T2(N) Ael.
Thus, putting
S ===+ p+ AN + (V) , el
we obtain (8.5). From (8.14), (8.15), (8.18), and (8.19) it follows that
ISMlery < L+ AT @ ((L+ AN T™) + (14 [A)~C=0/Cm] - (8.21)

for A € T', where Wa(t) := wa(at) for a suitable a := a(u,d) > 0. Note that

oo~ —6/m 1
/ ot ) g = @/ w2lt) gt < oo (8.22)
am/s t 0 Jo

Hence (8.21) implies (8.6). O

After these preparations we can prove that p+ A € Hoo(Lp; ™ — 0) if (8.7) and
(8.8) are satisfied.
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Proposition 8.2. Suppose that (8.7) and (8.8) are satisfied. Then there are con-
stants N > 1 and 3,k € RT such that p+ A € Hoo(Ly; N,m —6).

Proof. The assertion follows from Lemmas 2.3 and 8.1, provided we show that

< H(r—-90). 2
L(Lp)—CHQHOO’ geH(r—-90) (8.23)

H/g(—)\)R()\) d,\H

r

Define n = (p,0) and 9 by (8.16) and (8.17) for A € " and put
r(ve,€) = [a)(z,6m)] T, (@& €R" xR, Ael,

Then, thanks to (8.20) and Theorem 6.1, the estimate (8.23) is valid, provided we
can show that

[(m) r—)/Fg(—)\)r()\,$,§) X\ =: hy(z,6)| €S,

for some 7 € [0,1) and the norm can be estimated by ¢||gl|, for g € H(m — 6).

Recall that § has been fixed arbitrarily in (0,1). Thus we can assume that
0 < 1/m. Then we deduce from Lemma 5.3(i) and from (7.8), (7.9), and (8.15) that

(&) =71V 8208 T (, - )l < e[g| T (gylel=r 2

(8.24)
Se(L+ A m

for NeT', 1<|o|<27m, 1<|f| <A, and d <7 < 1/7.
From (7.5) and (5.3) we easily infer that

102a3,(, Qllee < el g™, CERE,
for 1 <|B| <m and |[¢p| <7 — 0. Hence (cf. the proof of Lemma 5.3(i))

192 (a3, ) M|, < elel ™R el/ieh™

for |(| > op and 1 < |B] £ 7, and for |¢| < 7 — 6. This implies, thanks to (7.8), (7.9),
and (8.15), the estimate

(©P1BEr (A, ©)llso < c|ITTEOTTIE (1) 1)

(8.25)
<1+ AT r—/m
for \eT, 1<|B]<m,and § <7 < 1/7. Note that (8.24) and (8.25) entail
sup (€)1 =TH|0708 e (- )l <cllgllo ol <2, 1< (B <T,

EER™

for g € H(m — ¢). Hence it remains to estimate 0g'hy(-,§) for |a| < 27m.
Put . )
ri(\,€) = [ay(2,6m] " — [ay (@, € m)]
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Then it follows from Lemma 5.3(iv) and (7.8), (7.9), and (8.15) that

(©)'* 1981 (A, Olloo < {1+ [A) (1 + ]A)~/™)

for |a| < 27 and A € T, where Wy has been defined in (8.21). From this and (8.22)
we infer that

sup (£)/*
£ER™

o / g0 | <elllg

for |a| < 2m and g € H(m — 6). Thus, thanks to (7.5), (8.16), and (8.17), it remains
to prove that

sup (&)
£ER™

o[ [ =Nt nt A 0) D] <elole 620

for |o| < 2m and g € H(7 — 6).
Let
b(z,&,t) = |t|™ + Ar(2,€) , (z,6,) e R" xR* xR,

and note that the bracket in (8.26) equals 27i g (b(z, -, -)) (-, u'/™), where we use the
notation (5.12). Thus (8.26) is a consequence of Lemmas 7.1 and 5.4. O

9. Elliptic Operators on R”. In this section we consider general elliptic systems
on R™ and prove the fundamental resolvent estimates and the existence of a bounded
H,-calculus under weak continuity conditions for the coefficients.

Let @ := (—1,1)™ be the open unit ball in (R",|-|s) and let {7, ; z € R” } be
the translation group in Lj joc (R",ﬁ(H )), that is,

Tea:=a(- —x) , z€R", a€ Liw(R",L(H)) .
Then, given p € [1,00], the function a € Ly 1oc(R™, L(H)) belongs to L, locally
uniformly if
llallp,unif := sup ”Twa”LP(Q,E(H)) <.
TEZL™
We put
Lpunit(R", £(H)) i= ({@ € Ly joe (R, £(H)) ; lallp,umit < 50 }, [|llpumi)
for 1 < p < co. Note that Ly ynir is a Banach space, and Lo, ynif = Loo- Also note that
Ly (Rn ) E(H)) - Lp,unif(Rn ) 'C(H)) — Lq,unif(Rn ) ‘C(H))

for1<g<p< .
Let € € (0,1] be fixed and let (U;) be an enumeration of the open covering

{(/2)(z/2+Q); z €™}
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of R™ such that j > k implies |z;|o > |Z4|co, Where z; is the center of the cube Uj.
Note that the covering (U;) has finite multiplicity, that is, there exists £ € N such
that no point of R™ is contained in more than ¢ cubes of the sequence (Uj).
Observe that
pi(x) == (2/e)(x — x;) , x€eR",

is a smooth diffeomorphism from U; onto (). Let = be a smooth function with
support in () being equal to one on (1/2)@Q. Then each

m; = (row)(Tpmopn)?) ™, jeN, (9-1)
is smooth, has its support in U;, and
ZTF? =1. (9.2)
J
Let p € [1, 00] be fixed, put
E=E;:=W", F:=F;:=1L,, JEN,

and let E := (E;) and F := (F}). Given X € {E, F}, denote by ¢x ; := ¢x,; the
multiplication operator u — m;u on X.

Lemma 9.1. (X, (¢x;), (¥x,;)) is an {y-approzimation system for X € {E,F}.
Moreover, E < F, og; C ¢rj, and Yi,; CYr;.

Proof. It is easily seen that (3.8) and (3.9) are true and that the second part of
the assertion is valid. Hence it remains to prove (3.13).

Observe that, given a € N*,
10%Tjllo0 < c(c) , JEN.

Thus, thanks to the finite multiplicity of the covering (Uj;), given a € N* and
g € [1,00), there exists a constant ¢ such that

SO )| <X luy @)

and

S (@ mu(@)]? < clu(@))?
J
foru;,u € L, and a.a. x € R™. From this and Leibniz’ rule we infer that, given k € N,

| S, <clull,mwy . w= @) e 6w,
j )

and
()l wry < cllully, uewy,

where W := (Y;) with Y; := W}. Now the assertion is obvious. O
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Corollary 9.2. Suppose that s € RT and 1 < p < oco. Then

wes (3 llmyullz,)? (9.3)
is an equivalent norm for W3 (R", H).
Proof. Let m € N satisfy m > s. Then it follows from Lemma 9.1 that
r € L(((E),E) N L(p(F),F)

and
r¢ e E(E,KP(E)) N E(F7 Z,,(F)) .

Let (-,-)s/m be the complex interpolation functor [, - ]s/m if s € N, and the real
if s € Rt \N. Then it is well-known that

interpolation functor (-,-)s/m,p
(FE)ym=W;, 0<s<m.
Moreover,
(Ep(F),Ep(E))s/m =((F.E)s/m) , 0<s<m,

(e.g., Theorem 1.18.1in [24]. Thus (F, E),/,, = G := (G;) with G; := W for j € N.
Consequently,
reL(6,(G),W;), rel(W;,6(G),

and (3.12) implies that r°r € £(¢,(@)) is a projection onto im(r¢) having ker(r) as
kernel. Hence
0,(G) = im(r°) @ ker(r)

and r€ € Eis(W;, im(rc)). Now the assertion is an obvious consequence of the defi-
nition of r¢. O

We fix now m € N and p € (1,00). Then we put
Do :=n/(m — |af) it m—n/p<lal<m. (9.4)

Then we prove the following continuity theorem for linear differential operators of
‘lower order’.
Lemma 9.3. Suppose that g, > pa for m —n/p < |a] < m and q, = p otherwise,
and that

B:= Y b.D*,

al<m-1

with by € Lg, unit(R™, L(H)). Then B € LW}, Ly) for some s € (m —1,m) and

Bl cw;,L,) < () ofaax l1bacll g i -
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Proof. Choose a smooth function x with support in ) and being constantly equal
to 1 on the support of m. Then define (x;) by replacing in the construction of (7;)
the function 7 by x.

By Sobolev’s imbedding theorem we know that, given || <m —1< s < m,

> (1 _ 3—_M)+ ’ (9.5)

wimel s L,
P n

Y

1 1
P Ta

where the second inequality sign is strict if s = |a| + n/p (e.g., Section 2.8 in [24]).
It is easily seen that we can choose s € (m — 1,m) so that (9.5) is true if we put

1 1 1
— = - o] <m—1. (9.6)
Ta P Ga

Thus, given u € Wy, it follows from the fact that x; equals one on the support of 7,
from (9.5), and from (9.6) that

lImjbaD%ullp = (1700 D (xju)ll < lImllew () Dallg, unie 0% O¢j)llra

< C||7"||eoc(F) ”ba”qa,unif lIxsulls.p

for |a|] <m —1 and j € N. Now the assertion is a consequence of Corollary 9.2. O

After these preparations we can prove the following fundamental resolvent esti-
mates for uniformly (M, 6,)-elliptic operators on R” under rather mild assumptions
on the coefficients.

Theorem 9.4. Suppose that 1 <p<oo, meN, M >0, and 0<6y <8 <,
and let w be a modulus of continuity. Also suppose that g, = p if |a] <m —n/p,
and qo > po otherwise. Then there exist constants ¢, K > 1 and u > 0 such that,
gwen any uniformly (M, 0q)-elliptic operator

A= )" a,D" (9.7)

lae|<m

whose coefficients satisfy

{BUC(R",L’(H);w) if la| =m, (©0.8)
A .
Lg,, unit(R™, L(H)) if o <m -1,
and

. i+ max laalloe) < M (99)

it follows that
p+ A€ P(Ly K,m—60)N Lis(Wy", Ly)

and

e+ Allzwyp .z, + 1+ A Mo, wmy <c.

P
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Proof. Given y € R*, put

re(y) = Yy if [ylo <€,
: ey/|yloo if [ylo > €,

Then 7. is the radial retraction in (R, |-|«) onto the closed e-ball £Q. Hence 7. is
uniformly Lipschitz continuous (cf. Lemma 19.8 in [1]). Put

Qe = Ao (2 + T2,7:(4) loj]=m, jeN.
where z; is the center of U;. Then
aa,j,e € BUC(R™,L(H))
and

e = Gae@)lloo € 5uD_aa(y) = aa(2)] < ( max [aaly )w(viie) (9.10)

ly—zloc<e laj=m

for |a| = m and j € N. Note that each

Aje = Z Gq,j,e D, JjEN,

lae|=m

is a homogeneous uniformly (M, 6g)-elliptic operator whose coefficients belong to
BUC(R™, L(H)).

Let o > 0 be fixed. Then Proposition 7.3 and (9.10) imply the existence of con-
stants ¢, K > 1 and g € (0,1] such that, putting A; := 0 + A;,,

Aj € P(Ly; K,m — 6) N Lis(W", Ly) (9.11)

and
145l w2,y + ”A]‘_l“L(LP,W;”) <c (9.12)

P

for j € N. Note that, having fixed € = ¢¢, the covering (U;) and the functions 7;
are now fixed too.

Let
Ai=0+ Y auD*€ L(E,F) (9.13)

|a]=m

and A := (4;) € {o(L(E,F)). Then
lAllzce,ry VAl o Py <o+ M.
Given u € E,

A(mju) = mjAu + Z Qo Z (g)Da*Bijﬁu . (9.14)

|a|=m B<La
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Put

Bji=—= Y aa Y, (3)D*PmDPu=: > bjaDu= Y x;bjaD%,
|

|=m B<a la|<m—1 |a|<m—1

where x; is smooth with support in U; and equals one on supp(w;). Then it follows
from [E, F)y /n, = W*~" (cf. the proof of Lemma 9.1) that

B := (B]) € ﬁ([E7 F]l/mvgp(F))

with
1Bl < ¢ max llaalloo < cM . (9.15)

Moreover, (9.14) implies
YrjA=Ajp;+B;, jEN, (9.16)

since A(rmj -) = A;(m; - ), thanks to the fact that ao|U; = aq,j,e|U; for j € N.
Let C; := —B; for j € N and note that C; € L([Ej, F}1/m, F). It is easily veri-

fied that
(u — Cu = ZC]"U,]‘) S L(gp([EvF]l/m)7 F)
J

with
IC]| € ¢ max ||ag||ec < cM . (9.17)
|a|=m
Similarly as above, we deduce from (9.14) that Apg,; = ¢r,;A; + C; for j € N. Thus
the assertion follows from (9.11), (9.12), Lemma 9.1, and Proposition 3.2, provided
A is homogeneous of degree m. The general case is now an easy consequence of
Remark 1.2(b) and Lemma 9.3. O

Corollary 9.5. Suppose that 6y < w/2. Then A is the negative infinitesimal gen-
erator of a strongly continuous analytic semigroup on Ly(R", H).

Although elliptic operators on R™ have been studied by many authors, Theo-
rem 9.4 and Corollary 9.5 seem to be new in this generality. Previous generation
theorems require much stronger ‘conditions at infinity’ for the coefficients (e.g., [19]).
It should also be observed that the resolvent estimates of Theorem 9.4 are uniform
with respect to the class of uniformly (M, 6p)-elliptic operators satisfying (9.9).

In the above theorem w can be an arbitrary modulus of continuity. We restrict
now the class of admissible moduli to be able to prove that u + .4 possesses a
bounded H ,-calculus.

Theorem 9.6. Let the hypotheses of Theorem 9.4 be satisfied and suppose that

1 1/3
/WT(t)dt<oo. (9.18)
0

Then there are constants N > 1 and p > 0 such that
u+ A€ Hoo(Lp; N,m—6)
for each uniformly (M,0y)-elliptic operator A on R™ satisfying (9.7)—(9.9).
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Proof. Let w; := w'/3 for j = 1,2,3. Then

|aa(2) — aa(y)|

w1w2(|x - y|) < w3(|$ - y|)[aa]w

and an easy calculation using the growth properties of the moduli of continuity give

Max [Ga,jelwiws < cws(€) max [aq]w < cMws(e) .
|a]=m la]=m

Hence we can assume that g € (0, 1] has been chosen such that the operators A; sat-
isfy (8.7) and (8.8) for each j, where 8 and k are the constants of Proposition 8.2
and y := x;. Proposition 8.2 guarantees the existence of N > 1 such that

A; € Hoo(Lp;N,m—0),  jEN.

Thus the assertion follows from (9.11)—(9.17), Lemma 9.1, and Proposition 3.2,
provided A is homogeneous of degree m. The general case is then a consequence of
Lemma 9.3 and Theorem 2.6. O

Corollary 9.7. Let the hypotheses of Theorem 9.4 be satisfied and suppose that
(9.18) is true. Then there exist constants p >0 and M > 1 such that

(p + A) e, @@ )y < Mel t>0,

for each uniformly (M,0y)-elliptic operator A on R™ satisfying (9.7)—(9.9).

Observe that condition (9.18) is satisfied if w(t) = ¢” for some p € (0,1), that
is, if the top-order coefficients of .4 are bounded and uniformly Hélder continuous.
Hence Corollary 9.7 extends considerably the corresponding result in [19].

10. Elliptic Operators on Compact Manifolds. In this section we show
that elliptic operators on compact manifolds without boundary, acting on sections
of vector bundles and possessing continuous coefficients, are of positive type. If the
top-order coefficients are Holder continuous, we prove the existence of a bounded
H-calculus.

Let X be a compact n-dimensional C"*-manifold without boundary for some
m €N, and let G := (G, 7, X) be a complex C™-vector bundle over X of rank N
with fiber H. By a trivializing coordinate system (k, x,) for G we mean a chart &
of X with domain X, together with a trivializing map

7N X)) o> Xex H, g~ (7(9), xx(9))

over X, for GG. Given a section u of G, its local representation u, with respect
to (k,Xxx) is defined by

Up 1= X,.gouo;@_1 .
Then, given s € [0,m] and p € (1,00), we denote by W;(X,G) the vector space of
all sections u of G such that

pu, € Wy (k(Xx),H)
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for each C™-function ¢ with compact support in k(X,) C R” and each trivializ-
ing coordinate system (k,xx) for G, where sections coinciding almost everywhere
(cf. Section 16.22.2 in [7]) have been identified. This space is topologized by the
family of seminorms
u = |lpugls,p 5

and L,(X,G) :== W)(X, Q).

Choose a finite atlas £ of trivializing coordinate systems for G and a C™-partition
of unity {7, ; k € 8} on X subordinate to { X,; ; K € £}. Then it is well-known
and easily seen that

1/p

lullo = (3 e o 5 el

KER

is a norm on W, (X, G) inducing the topology and that W, (X, G) is a Banach space
with respect to this norm.

Let
A: W;“(X, G) = L,(X,G)

be a linear differential operator of order m with continuous coefficients and let
Ar: T*(X) = End(G)

be its principal symbol (e.g., Section 23.29 in [7]). Then, given 6y € [0,7), the op-
erator A is fg-elliptic provided

o(Ae(€)) C 8y, €€ TIX)], zeX.

Using these notations we can prove the following
Theorem 10.1. Suppose that A is 8g-elliptic for some 0y € [0,7). Then, given
p € (1,00) and 0 € (6y,7), there exists p > 0 such that

p+ A€ P(Ly(X,G);m — ) N Lis(W(X,G), Ly(X,G)) .

Proof. We can (and will) assume that Q C x(X,) and supp(r, ok~ 1) C Q for
each k € R.

Let (cf. Section 17.13 in [7])

A, = Z Q0D

la|<m

be the local representation of A with respect to the trivializing coordinate sys-
tem (k, xx)- Recall that r; is the radial retraction in (R",||s) onto  and put

Ag = Z (ak,q 01T1)D* .

la|<m
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Note that .
Ag,w(Rn X Sn_l) = Ak (Q X Sn_l)

and that the spectra of the operators Ay (z,£), (z,£) € Q x S*~1, are contained
in a compact subset of 590, thanks to the upper semicontinuity of the spectrum.
Hence there exists M > 1 such that each A% is a uniformly (M, 6)-elliptic lin-
ear differential operator on R™ whose coefficients belong to BUC (R™, L(H)). Thus
Theorem 9.4 guarantees the existence of y > 0 such that

p+ A € P(Ly(R*, H);w — 0) N Lis(W*(R*, H), L,(R", H)) (10.1)

for k € R.

Let
E = W;”(X,G) , F:=Ly,X,G)

and note that E i) F. Also let
E. =W (k' (Xk), H) , Fn:=Ly(s ' (Xs),H) , kK€ER,

and
E = (En)ne.ﬁ ) F .= (Fn)neﬁ )

where we fix an arbitrary enumeration of . Put
VYu(u) := (15 0 6 Nu, , u€ Ly(X,G), KER.

For each k € & choose a C™-function o, on X with support contained in x=(Q)
and such that o,|supp(7x) = 1. Define ¢, : F; — F by

Xk © Px(v) == 0x(V oK), veF.,, KeR.
It is not difficult to verify that
YK € [’(ErmE) N ,C(F,.;,F) )

that
v € L(E,E)NL(F,Fy) ,

Z%% =1.

Since the atlas £ is finite, it is clear that (E, (¢g,x), (¥e,x)) and (F, (¢rk), %))
are {,-approximation systems for E and F, respectively. Thus conditions (i) and (ii)
of (3.15) are satisfied. Moreover, putting A := A and A, := AY (where we mean the
obvious restriction, of course), condition (iii) of (3.15) is satisfied too.

Let

and that

B.u = — Z Gk, Z (g)DO‘*ﬁ(T,i ) ffl)Dﬁu,{ , u€eE.
|a|<m B<a
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Since [E, Fl1/n, = W,;» (X, G) it follows that
B :=(By) € L(IE, Fi/m, t(F)) .

Thanks to (Au), = Aku, and the fact that A.v = A% if v € E, has its support
in @, we see that
YA = Agg + By, KER.

Thus condition (iv) of (3.15) is satisfied.
Lastly, note that [Ap,(v)], = Ax((0x o K71)v) for v € E,; implies

[A‘pff(v)]ﬁ = [WN(AHU)]K + 5»-;” s
where

[U — Cv = Z . Z (g)Da_B(UK o H_I)DBU} € L([Ex, Fil1/m» Fi)

|a|<m B<La

For each k € & choose a C™-function 7, on X with support contained in x=(Q)
and such that &,|supp(o,) = 1. Define ¢, : F, = F by

Xr©Pr(v) :=Gx(vok), vEF,, KER.
Then, letting _
Cy := [ @u(Cuv)] , € L([Ex, Felijm, F)

we find that
Ap, = A + Cy KER.

Hence the last condition of (3.15) is satisfied too. Now the assertion follows from
(10.1) and Proposition 3.2(i). O

Corollary 10.2. If 6y < /2 then —A generates a strongly continuous analytic
semigroup on L,(X, Q).

In order to show that y + 4 has a bounded H,-calculus we have to impose more
regularity. Namely, we suppose that

G is a C™"?-vector bundle . (10.2)
Thus T*(X) is at least a C''-manifold and it makes sense to assume that

there exists € € (0,1) such that

Ay € C5(T*(X),End(G)) . (10.3)

Of course, the definition of Holder continuous sections is similar to the definition of
sections in W given above.

Theorem 10.3. Suppose that A is Og-elliptic for some 6y € [0,7) and that condi-
tions (10.2) and (10.3) are satisfied. Then, given p € (1,00) and 6 € (6y,7), there
exists ;> 0 such that

p+AEH(LyX,G);m—0) .
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Proof. Using the notations of the preceding proof, it follows that the top-order
coefficients of A9 are uniformly e-Hélder continuous on R™. Thus, letting w(t) := t¢
for t > 0, Theorem 9.6 guarantees that p + A, € Hoo(Fi; 7 — 0) for some p > 0 and
each k € R Now the assertion follows from Proposition 3.2 and Theorem 10.1. O

Corollary 10.4. Given the hypotheses of Theorem 10.3, there exist u > 0 and
M > 1 such that

II (e + A)it”l:(L,,(X,G)) < Mefltl teR.

For simplicity, we have restricted our considerations to the case of boundariless
compact manifolds. It is not difficult to extend our results to noncompact manifolds
without boundary which are suitably ‘uniformly regular at infinity’.
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