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Abstract We consider a system of a very large number of particles of very different sizes, sus-
pended in a carrier fluid. These particles move due to diffusion and superimposed transport
processes, merge to form larger clusters, or fragment into smaller ones.

In the present paper a mathematical model for such processes is derived, consisting of an
infinite quasilinear reaction-diffusion system, coupled to the Navier Stokes equations for the
motion of the suspension. We prove the well-posedness of this problem, derive a positivity

result, and show that the total mass of the suspended particles is conserved.

1 Introduction

The aim of this paper is to discuss the well-posedness of a mathematical model describing
cluster growth. More precisely, we consider a very large number of particles of very different
sizes, suspended in a carrier fluid. These particles, which are also called clusters, can coagu-
late to form larger particles, or fragment into smaller ones. Moreover, the clusters move due
to diffusion and superimposed transport processes.

We describe this system by means of the particle size distribution function, which is
a density measuring the number of clusters of a given size y at place x and time ¢. Two
situations are considered simultaneously: the discrete case, where each cluster consists of an
integer number of elementary particles, and the continuous case. Accordingly, in the discrete
case the variable y runs through N\ {0}. Here the particle size distribution function has to

satisfy a system of countably many coupled reaction-diffusion equations. In the continuous



case the variable y takes on values in (0,00). Then the particle size distribution function
is described by an integro-differential equation, which can be viewed as an uncountable
reaction-diffusion system. In both cases we also take the motion of the suspension into
account. It is described by the Navier-Stokes equations, coupled to the reaction-diffusion
system.

In recent years the mathematical theory of coagulation-fragmentation processes has made
considerable progress. Many contributions to this field, however, are confined to the discrete
case and to kinetic models, in which neither diffusion nor the motion of the suspension
is taken into account. Such problems were considered, for instance, by M. Aizenman and
T. A. Bak (cf. [AB79]), I. W. Stewart (cf. [Ste89]-[Ste91]), or D. J. McLaughlin, W. Lamb,
and A. C. McBride (cf. [MLM95]-]MLM98]). The first mathematically rigorous treatment
of countable reaction-diffusion systems, describing coagulation-fragmentation processes, is
due to Ph. Bénilan and D. Wrzosek (cf. [BW97]). Further results for such models were
obtained by D. Wrzosek and Ph. Laurengot (cf. [Wrz97] and [LW98a]-[LW99]). Uncountable
reaction-diffusion systems are investigated in the recent paper [Ama00a] by the first author.
There the continuous case is treated simultaneously with the discrete one by considering the
coagulation-fragmentation models as semilinear evolution equations in infinite-dimensional
state spaces. However, as in the other papers mentioned above, the motion of the suspension
is not taken into account.

Although coagulation-fragmentation processes with diffusion have also been considered
in the physical literature, we are not aware of a rigorous derivation of those models. In the
present paper suspensions of particles are viewed as a mixture with countably or uncountably
many components. Then we fall back on basic principles from the classical theory of mixtures
with finitely many components (cf. e.g. [LL66], [dGM84] or [RT95]). This leads to a
(countable or uncountable) quasilinear reaction-diffusion system governing the behaviour of
the particle size distribution function. In order to describe the motion of the suspension, we
assume it to be a Newtonian fluid. Thus, the baricentric velocity of the mixture has to satisfy
the Navier-Stokes equations, coupled to the reaction-diffusion system. This approach is
justified by our subsequent analysis which shows that the model possesses a unique solution,
where the particle size distribution function remains non-negative, and the flow is mass
preserving.

Our paper is organized as follows. In Section 2 we derive the model and formulate the
main results (in a simplified form). Section 3 is devoted to the proof that the principal part
of our system, that is, the diffusion operator in an infinite-dimensional state space, generates
an analytic semigroup. This derivation essentially relies on Fourier multiplier theorems in
vector-valued Besov spaces. Note that an application of such tools in (less difficult) vector-
valued L,-spaces requires an additional geometric assumption on the underlying Banach



space, which is too restrictive for our problem. Having established the generation result,
we show in Section 4 that our model can be formulated as a quasilinear Cauchy problem
of parabolic type. Then existence of a unique maximal solution follows from the general
abstract theory for those equations. Moreover, we derive a regularity result which enables
us to prove conservation of the mass of all suspended particles. Finally, it is shown that the

particle size distribution function remains positive for positive initial values.
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Notations

In this section, we collect several basic notations used throughout the paper.

For z, y € R we put x Ay := min{z,y} and z V y := max{z,y}. The set R" consists
of all symmetric matrices in R"*™.

Let E, Ey, ..., B, be Banach spaces. Then L(Fj,..., E,; Ey) denotes the Banach space
of all m-linear continuous maps from E; X --- X E,, into Ey. If m > 2, elements of
L(Ey, ..., En; Ey) are called multiplications. In the case m = 1 we put L(E1, Ey) := L(E; Ey),
and L(F) := L(E,E). The set {A € L(E\, Ey); A bijective, A™' € L(Ey, F;)} is denoted
by Lis(E1, Ey), and Laut(F) stands for Lis(F, E).

If E; is continuously injected in Ej, we write £y — E,. Moreover, the additional “d”
in < Ey indicates the density of this imbedding. The notation Ey= F; means that
E, — Ey and Ey — E; hold.

An interpolation functor (-, -)4 is said to be admissible, if E; < Ey implies E; < (Eo, E1)
for 6 € (0,1). Note that the standard real interpolation functor (-, -)s, of exponent 8 € (0, 1
and parameter p € [1,00), and the standard complex interpolation functor [, -]¢, 8 € (0,1),
satisfy this condition.

In our paper we employ various spaces §(J, F) of E-valued functions on a perfect in-
terval J C R, where § € {C’“,C’V; keN~ye(0,1)U {1—}}. Here C* stands for k-times
continuously differentiable maps, and C := C°. Furthermore, C” means y-Hélder continuity
if v € (0,1), and Lipschitz continuity if v = 1—.

Let (M, 1) be a measure space and p € [1,00]. Then L,(M, E; uu) is the usual Lebesgue
space of (equivalence classes of) F-valued integrable functions on M. In the case of M = R",
if we use Lebesgue’s measure, then we write L,(R", E). By W;(R", E), we denote the usual
Sobolev-Slobodeckii space of order s > 0 and integrability index p € [1,00]. Let £k € N.
Then BUCF(R", E) consists of all functions in C*¥(R", E) whose derivatives are bounded and



uniformly continuous. It is a Banach space with the norm

ur— ”u”BUCk(R",E) 1= maxj,|<k SUPgern [|0”u(2)||f -

If s € (k,k + 1), then BUC*(R*, E) consists of all u € BUCF(R", E) satisfying

0"u(x) — 0"u
[ullBucs @n,m) = ”uHBUCk(Rn,E) + max sup 10" u(x) Wz < 0.

vI=k sy |z —y|>=*
By B; (R",E), we denote the Besov space of order s € R and integrability indices
p, q € [1, 0] consisting of E-valued distributions on R”. It is known that

W, (R, E) , p € [1,00)

1.1
BUC!(R*,E) ,p=o0 (11)

B,,(R*, E) = {
holds for s € (0,00) \ N.
The letter c is often used to denote an arbitrary constant. If it depends upon additional

parameters, say t, we sometimes indicate this by ¢(t).

2 The model and the main result

We consider a system of a very large number of particles, which are also called clusters.
They are suspended in a carrier fluid filling all R*, where n € N\ {0}. The “size” of a
particle is measured by the variable y, which, according to the concrete physical situation,
takes its values either in ¥ = N = N\ {0} or in Y = (0, 00). In the discrete case, Y = N,
each cluster consists of an integer number of uniform elementary particles, called monomers.
Accordingly, y is proportional to the number of monomers, forming the clusters. In order to
describe situations where the particles are not supposed to be integer multiples of elementary
units, we consider the continuous case, Y = (0,00), as well. Here the size y of a cluster
represents its volume. Note that the use of infinite domains Y is a common and convenient
practice to avoid (a priori given) upper bounds for the particle size.

To obtain a uniform model for both the discrete and the continuous case, which allows a
simultaneous treatment, we introduce the measure space (Y, 1), where u denotes the counting
measure if Y = N, and the Lebesgue measure if Y = (0, c0).

The system is described by the particle size distribution function, u(y) = u(t, z,y), de-
pending on time ¢, spatial variable z € R", and y € Y. Thus, for any domain X C R" and
Yo, Y1 € Y with yo < y;, the integral

/X /y: u(t, ) dp(y) d



gives the total number of clusters of size y € [yo, y1], contained in X at time ¢. Note that in
the discrete case this expression takes the form

/ i u(t,z,y) dz.

X Y=Y%o

The basic artifice, which we use to treat the suspension of clusters, consists of considering
the whole configuration as a mixture of infinitely many fluids. The components of this
mixture are the “fluids of type y”, containing all particles of a given size y € Y, as well as
the carrier fluid, labelled by y = 0. For a uniform description we set Yy := {0} UY and
define a measure dy on Y| by setting

/Y F(y)dy := F(0) + /Y F(y)du(y)

for each continuous function F' with compact support in Yj.
Let o(t, z,y) be the density of the fluid of type y € Y; at time ¢ and place x. We assume
that there exists a positive constant 7 such that

ot,z,y) =nyu(t,z,y),t >0, 2R, yeY. (2.1)

This means homogeneity of the suspension in the sense that the mass of each cluster is
proportional to its size. Moreover, we assume the total density of the mixture to be constant:
there exits a p > 0 such that

/Y o(t,z,y) dy = o(t, ,0) +/ o(t,z,y) du(y) = o (2.2)

Y

holds for ¢t > 0 and x € R". This means that the mixture, considered as a whole, is
incompressible.
Let &(t, z,y) denote the velocity of the fluid of type y € Y. Then,

— ]' —
it ) = /Y olt, 2, 9) 3(t, 2, y) dy
0

is the baricentric velocity of the mixture at time ¢t > 0 and place x € R".

Remark Hereafter we refrain from indicating dependencies on (¢, z) € [0, 00) x R", except

where this may cause confusion.

Conservation of mass

To obtain the equations governing the behaviour of the particle size distribution function,

we fall back on arguments originally used for mixtures with a finite number of components



(cf. e.g. [LL66], [dGM84], or [RT95]). Accordingly, m(t,z,y) denotes the mass production
density of the fluid of type y € Y, at time ¢ and place x. We assume the condition

m(y) dy = m(0) + /Y m(y) du(y) = 0 (2.3)

Yo

to be satisfied, which means that the total mass of the mixture is conserved at each moment
t > 0 and at each position z € R".
Due to standard arguments (cf. [dGM84] or [Ser59]), the continuity equation

dso(y) + div[o(y) &(y)] = m(y) (2.4)

holds for each y € Y;. We now integrate (2.4) over Yj. In view of the hypotheses (2.2) and
(2.3), this yields
divi' =0. (2.5)

For each fluid of type y € Y, the diffusive fluz j(t,z,y) with respect to the baricentric
velocity is defined as j(y) := o(y) [@(y) — 7]. Inserting this into (2.4) and using (2.5) we
obtain

dio(y) +divj(y) + 7 - grad o(y) = m(y) , y € Y. (2.6)
Since (2.2) implies

0(0) = 0— /Y o(y) d(y),

it suffices to study system (2.6) for y € Y. Thus, taking (2.1) into consideration, we arrive
at 1 1
Ouly) + divj(y) + 7 gradu(y) = oy )y EY. (2.7)

Finally, the diffusive flux 7 and the mass production density m remain to be specified.
For that purpose, we now make some constitutive assumptions.
The diffusive flux jis supposed to be given by

7)== —a(u,y) grad o(y) — /Y b(u, 3, y') grad oy') du(y) -

= —nya(u,y)gradu(y) — 7 / b(u,y,y") gradu(y') v' du(y’)
Y

for y € Y, where a and b also depend, of course, on the spatial variable z € R". We assume
that the “principal diffusion coefficient” a is positive, and dominates the “cross diffusion
coefficient” b in a way that will be specified later (cf. Definition 3.10).

The mass production density m is supposed to be of the form

m(t,z,y) == ny [cp(u)(t, z,y) + fo(u)(t, 2,y)] ,y €Y, (2.9)



where ¢, and fy are reaction terms, describing the kinetic behaviour of the clusters due to
coagulation and fragmentation, respectively.

First we consider the coagulation term. It is defined as

cy(u)(y) == % /0 y Yy -y, y)uly—y) u(y') duy’) 210

~ u(y) /Y b,y uly) duly) Ly e,

where we set u({0}) = 0 if u denotes the counting measure on Y. The coagulation kernel
¥(z,y,y') describes the rate of coalescence of clusters of sizes y and y' at place z. This

motivates the hypothesis

0 <(z,y,y)=v(,y,y) ,zeR", y,y €Y. (2.11)

The first integral on the right hand side of (2.10) expresses the fact that a particle of size y
comes into being if two clusters of sizes y — ¢’ and y' merge, where the factor 1/2 ensures
that each combination is counted only once. Here we neglect simultaneous coalescence of
more than two particles. The last term in (2.10) says that a cluster of size y disappears
from the fluid of type y by merging into another one. Since coagulation does not produce or

destroy mass, we ought to have

/Yczp(U)(x,y)y du(y) =0 , z e R".

This can actually be verified, provided the map (y,y’) — y ¥ (y,y’) u(y) u(y’) is integrable
with respect to u ® u.
The fragmentation term fy, is given by

o)) = [ 606/, ute) duty') - # / Cotny) v duy)  (212)

for y € Y, where the first integral describes the generation of clusters of size y by fragmen-
tation of particles of larger size. We assume that the fragmentation rate ¢(z,y’, y) satisfies

0<é(z,y,y) ,z€R", (v,y) € Y2:={(2,2) €Y 0<2<2}. (2.13)

The second term on the right hand side of (2.12) guarantees the disappearance of clusters
of size y by splitting into smaller ones. Note that (2.12) describes multiple fragmentation.
As in the case of coagulation, fragmentation does not create or annihilate mass. In fact, the

identity
/ fo(w)(z,y)ydu(y) =0 , 2z €R",
Y

can easily be verified, if the map (y,y') — y é(v', v) u(y’) is integrable with respect to p® p.
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The motion of the mixture

In order to describe the baricentric velocity of the suspension, we assume the mixture to be

a Newtonian fluid. Consequently, ¢ has to satisfy the Navier-Stokes equations
O+ (7-grad) 7 —v AT = —p ' gradp+ f (2.14)

with pressure p, constant wviscosity v > 0, and specific external force field f acting on the

mixture. Here f is given by

—

1 S
f(ta .T) T E/);O Q(tvxay) go(t,aﬁ,y) dy:

where @(y) = @(t,z,y) denotes the density of the specific external force field acting on the
fluid of type y € Y. From (2.1) and (2.2) we infer that

-

F=Flu) = [1—% / u(y)ydu(m] g0+ [ u)dt)vant).  @15)

0

Formulation of the problem and the main result

Summarizing (2.5), (2.7)-(2.9), and (2.14), we can now formulate the following initial value

problem.

Problem 2.1 Let the reaction terms ¢y, fy, and the external force field fbe given by (2.10),
(2.12), and (2.15), respectively.

Then we search for functions u: J XR*" XY - R v: JXR* >R, andp: J XR* - R
on a time interval J = [0,T) with T € (0, oc], satisfying the equations

Oyu(y) — div [a(u) gradu] (y) + 7 grad u(y) = cy(u)(y) + fo(w)(y) , y €Y,
O — v AT+ (V- grad) ¥ = f(u) — o 'gradp,

divi = 0,
in J x R", as well as the initial conditions
uw(0,,y) =uo(-,y) ,y €Y and ¥(0,-) =7, inR",

where
1

[a(w) v](y) :== a(w)(y) v(y) + ; /Y b(w)(y,y") v(y) y" du(y). (2.16)

In Section 4 this model is investigated analytically. Our results, obtained there, are
summarized in the following theorem. Note that, for simplicity’s sake, this formulation is
confined to smooth data; to the most important case of diffusion operators with vanishing

cross diffusion coefficient b; and to the (practically relevant) spatial dimensions n € {2, 3}.
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Theorem 2.2 Let n € {2,3}, and assume that the mappings

a:RXR'XY — RV ¢p:R*"xY2—R, ¢:R"xYZ —R,

ym

J:R*"x Yy —R", u:R*" XY — R, % :R*xY —R",

are bounded smooth functions satisfying the following conditions.
(C) €-allmy)€>alél’ ,(eER, 2R, yeY, L €R.
(Cq) The coagulation kernel and the fragmentation rate fulfil (2.11) and (2.13), respectively.

Moreover, there is a constant ¢ > 0 such that
1 ! ! ! i
Y

(C3) The density @(-,0) of the specific external force field acting on the carrier fluid is
compactly supported in R".

(C4) The initial particle size distribution x — ug(z,-) has a compact support in the space
E = Li(Y; (1 + y) du(y)). Moreover, uy(z,y) > 0 holds for x € R* and almost all
y € Y. The initial baricentric velocity Uy of the suspension is divergence free and

compactly supported.
Then problem 2.1, considered for the diffusion coefficient
[a(w)v](y) : z+— a(w,z,y)v(z,y),
possesses a unique solution (u, ¥, p) with

ue C'(J, W, (R, E)n W (R", B)) N C(J, W, (R", E) N Wi **(R", E))
7€ C'(J, L,(R",R")) N C(J,W.(R*,R")),

pEC’(J,W;(R",R)) and /p(t,x)dx:O,tEJ,

n

where 0 < s < 1 and p > n/s, on a mazimal time interval J = [0,T). The particle size

distribution function has the property
u(t,z,y)>0,teJ,z€R", aayeY.
Moreover, the total mass of the suspended particles,
Mm(t) = n/n/yw,:v,y)ydu(y)dx, (2.17)

is conserved, i.e. IM(t) = M(0), t € J.



For the proof we refer to Section 4. Existence of a unique maximal solution and conservation
of mass follow from Theorems 4.7 and 4.13, respectively. Note that both of these statements
include the case of a non-vanishing cross diffusion coefficient b, dominated by a. Positivity

of the particle size distribution function is shown in Theorem 4.16.

Remark 2.3 Theorem 2.2 remains valid for time dependent functions a, ¥, ¢, g, provided
these dependencies are sufficiently smooth, and assumptions (C;)-(C3) of Theorem 2.2 hold

uniformly with respect to ¢ (cf. Remark 4.8).

3 Differential operators with operator-valued coeffcients
In this section we consider the differential operator
Ay i u— {z — —div]a(z) grad u(x)]} (3.1)

for functions u : R* — FE, where E denotes some Banach space. Our aim is to specify
conditions on o = (a;) : R* — L(E"), which ensure that —A, generates an analytic
semigroup of bounded linear operators on B;;,q(R”,E).

This is done in two steps. Using a Fourier multiplier theorem, we first obtain a generation
result for the special case of spatially constant o € L(E™). By means of a localization
procedure, combined with perturbation arguments, this statement can be extended to the
general case of variable coefficients.

Remark 3.1 Throughout the remainder of this paper, we work in various spaces, §(R", F),
of E-valued distributions on R". In order to simplify the notation of these spaces, the
specification (R", E) shall be omitted, if no misunderstandings seem likely. So, for example,
we often write B,  instead of B, (R", E).

3.1 Preliminaries

In the following discussion we provide the basic concepts and technical tools, needed in the
sequel. Throughout this section E, Ey, ..., £, are Banach spaces.

Let E; <% Ey. Then H(Ey, Ey) denotes the set of A € L(E;, Ey) such that —A generates
an analytic semigroup {e’tA;t > 0} in L(FEy).

Moreover, the class A € H(F1, Fy; k,w) with kK > 1 and w > 0 consists of all operators
A € L(Ey, Ey) which satisfy w + A € Lis(Ey, Ey) and

- A+ Ak
< I * <k,u€ E\{0}, ReA>w. (3.2)
— Aullz, + flullz — 1 N

Observe that H(E, Ey) = | J{H(E1, Ey; k,w); & > 1,w > 0} (cf. [Ama95,1.1.2.2 Theorem)).
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Remark 3.2 Condition (3.2) can be weakened as follows.
If there are constants k > 1, w > 0 such that A € L(E1, Ey) satisfies w+.A € Lis(E1, Ey)

and one of the estimates
(Alullg, < £ l(A+ A)ullg, or ulls, < &[I(A+ A)ullg, , v € By, Red > w,
then A € H(E1, Ey) (cf. [Ama95, 1.1.2.1 Remark (a)]).

The following useful perturbation result for the class #(E, Ey) is proven in [Ama95, 1.1.3.1
Theorem)].

Lemma 3.3 Let A € H(E1, Eo; k,w), and assume that B € L(E1, Ey) satisfies

1Bullg, < & llulle, +cllullz, » ue B,

for somee € (0,1/k) and ¢ > 0. Then we have A+B € H(E\, Eg; ki, wi) with w, := wV(c/e)

and Kk, = K/(1 — Ke).

Let (-,-)p be an admissible interpolation functor, and define Ey := (Ey, E1)y for 6 € (0,1).

Then the following statement can be shown.

Corollary 3.4 Assume that A € H(E1, Ey) and B € L(FEy, Ey) for a given 6 € [0,1). Then
A+ B e H(E, Ey).
ProoOF. Using Young’s inequality, we see that the estimate

1Bullz, < cllullz, < ellully,’ lullz, < € llulls, + c() lulls, , u € B,

holds for each € > 0. Thus, our assertion follows from Lemma 3.3. O

Next we consider pointwise multiplications in Besov spaces.

Proposition 3.5 For j € {1,...,m}, let p, p;, q, g; € [1,00] and s, s; € (0,00). Moreover,
assume that [(©1, .., om) —> @1 @~ @ o] € L(EY, ..., Ey; E).
Then the following statements are valid.

(S1) The conditions s < min{s;}, 1/p < Z;-n:l 1/p;j, ¢ > max{q;; s; = s}, and

s—n/p< Zs]-<n/pj(51 —n/p;) ifmin{fj —n/p;j} <0
min{s; —n/p;} otherwise
are supposed to be satisfied. Then the pointwise product
(V1 ey V) > [ —> vy (T) @ - - - @ U ()] (3.3)

is m-linear and continuous from [[i_, Byl.q (R", E;) into B (R*, E).
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(Se) If sa="+--=8m>n/p and 0 < s < s1 A se hold, then (3.3) is an m-linear continuous
map BUC* (R, Ey) x [[™, B, (R", E;) — B3, (R", E).

(S3) In the case of m = 2, statement (S3) holds for 0 < sy = s < s;.

PROOF. Our first assertion is a special case of [Ama91, Theorem 4.1]. Using (1.1), statement
(Sz) follows from (S;). For the proof of (S3) we refer to [Ama91, Remark 4.2 (b)]. O

Remark 3.6 For p € [1,00) and s € (0, 1], let W, *(R", E') contain all E-valued distribu-

tions u on R® which have a representation

U= Z|u\§1(_1)|y‘auuu (3.4)

with {u,}, <1 € W, *(R", E)"*'. Equipped with the norm

_ 1/p
U —> ||U||W;s := inf { (ZMg ”uUHgV]}*S(Rn’E)) } ’

where the infimum is taken over all those representations, WP_S(R”, E) is a Banach space.
Assume that [(p1, p2) — @1 ® o] € L(E1, E2; E). Then a pointwise product of a distribu-
tion v € W, '(R*, E1) and a function v € W (R", Ey) can be introduced as follows. Using

the representation (3.4) of u we set

uey = Z‘U|Sl(_1)|y|auwy ,
where w, € L,(R", E) is given by

u,(z) e v(x) vl =1

w, (z) :Z{ () @ 0() + 3y g un(2) @ O0(z) V| =0

It is easily verified that this definition does not depend on the representation (3.4) of u.

Moreover,
[(u,v) — uev] € LW, (R, Ey), W, (R", Ex); W, ' (R", E)),

and u e v coincides with the usual pointwise product if v and v are smooth.

For p € [1,00), we now introduce the Banach space

1/p
6(E) = { (1) € B 1wl o) = [Syanlusly] < o0}
The following interpolation result is a special case of [Tri78, 1.18.1 Theorem].

Lemma 3.7 Let Ey — Ey. Then ({,(Ey), p(E1))op="4,((Ey, E1)gp) holds for p € [1,00)
and 0 € (0,1).
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3.2 Spatially constant coefficients

In the following, we consider the differential operator A,, given by (3.1), for spatially con-

stant o € L(E™). Our aim is to formulate conditions on «, which guarantee that
Ay = —divoaograd = — 37, - i 05

lies in H(BS+2 B; ) for p,q € [1,00) and s € R. We first introduce the symbol

pq
A, R* — E(E) , f — f . a§ = ZZ]‘:I fzfj Q5
of A, and define the following subset of L(E™).

Definition 3.8 Let M > 1 be given. Then EW(E; M) = (M) denotes the class of all
a € L(E™) whose symbols a, satisfy the condition

{AeC; ReA >0} Cp(—aq(€)) , £€S™ 1 i={z eR"; [z =1},
(where p(—a,(§)) is the resolvent set of —a,(£)), and
1+ AD ][+ aa(g))—1||£(E) <M ,ReX>0,&e 8"
We now are able to prove a generation result for A, with constant « € EU(M).

Proposition 3.9 Assume that p, g € [1,00) and s € R. Then, for given M > 1 and w > 0,

there exists a constant k = k(M,w) such that

Ay = —divo aograd € H(B;?, B} i k,w)
holds for all oo € EU(E; M) with ||| c(amy < M.
PROOF. Since £ — a,(&) is a homogeneous polynomial of degree two, it follows that

10”40 (E)ll oy < c(1+1€)* M, e R (3.5)

Setting &' := £/|£], £ € R* \ {0}, and recalling the assumption « € EW(E; M), we moreover
obtain

1+ 0a(€) 7| iy = €177 [|(AET + @al€) 7| sy
< M(|EP+A) T, E€R\ {0}, ReA > 0.

Thus, for each w > 0 there exists a ¢(w) > 0 such that

(T4 A+ 1€1%) || + aal(€)) 1H£ <clw)M,E€R"\{0},Red>w. (3.6)
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Estimates (3.5) and (3.6) enable us now to apply [Ama97, Theorems 7.1 and 7.3] to the
symbol a,. This shows that a, is a Fourier multiplier for BS , and F'a,F = aq(D) = A,

has the asserted property.

|

The remainder of Section 3.2 is devoted to an example which arises from the diffusion

operator in Problem 2.1. Namely, we consider the mapping

a=afa,b] : ur—s |y— a(y)uly) + ; /Yb(y, y)u(y) y' du(y)

on E" with E := L(Y; (1 + y) du(y)), where
a€E, =L (Y,R") and b € E}, := L1 (Y, Loo (Y, RE™); (1 4+ 1/y) du(y))-

7 7sym ym

These conditions ensure that o = «]a, b] belongs to L(E"), and satisfies

lelleen < llallz. + [Ibllz,-

Definition 3.10 Let ap > 0 and ¢ € [0, 1) be given. Then o = «fa, b] with (a,b) € E, x E},

is said to be of class e/(ay, q), if

a(y) :=min{¢-a(y)&;£€S™ '} > ag
holds for almost all y € Y, and b(y, ') := max {f -b(y,y")E; € € S”_l} satisfies

1

We now prove that efl(ag, q) is contained in a class E/(L, (Y5 (1 +y) du(y)); M).

(3.7)

(3.8)

Proposition 3.11 For given ay > 1 and q € [0,1), there exists a constant M = M (ay, q)

such that ell(ag, q) — EL(L1(Y; (1 + y) du(y)); M).
PROOF. We represent the symbol of a by a, = a. + a, with
ta(§)u = {y — [€ - a(y)€July)}, € € R,

and

(€)= {y — 2 1Bt du(y')} ceR,

where the conditions a € E,, b € E}, ensure that a.(£), ap(£) € L(E) hold for £ € R". Let

us first consider a,. Using (3.7) we obtain the estimate

A+ E&-a(y)é] > c(|A+€-a(y)é)
> c(ag+|A) > M(ap) (14 |A)), ReA >0, £ € "7,

14



which implies
{a : ur— [y —> a(y)u(y)]} € EU(M (ao)). (3.9)

Next the operators @ (&) := (A + aa(€)) Lan(§) € L(E), Rel > 0, £ € S*', represented by

Qu()u : / € - by, )EJu(y) o' duy),

yD+£

are considered. From condition (3.8) it follows that

j@xtepule < [ [ 2Ly

holds for ReA > 0, £ € S, and v € E. Hence we obtain I + Q,(£) € Laut(E), and
therefore,

WA+ 1/y)y' du(y') du(y) < gqllulle

A4 0,(8) = (A4 aa(€)) (I + Qr(€)) € Laut(E), ReA >0, € S™ L
Thus, in view of (3.9), the resolvents satisfy the estimate

(A + aa(f))_luz(E) <[l(r+ aa(g))_le(E) (7 + Q’\(g))_IHL(E)

M
<5 (_“(;) (1+]A) ', ReA>0,&e 8™,

which proves our assertion. O

3.3 Spatially variable coefficients

We now consider the general case of operator-valued coefficients a, which depend on the
spatial variable x € R”.
According to Proposition 3.5 (S3), the pointwise product

(o, v) — aov =[x — a(r)v(z)]

is a bilinear continuous mapping from BUC'(R", L(E™)) x Bj (R", E™) into B (R", E"),
provided 0 < s < t. In particular, this implies

{a— Ay :=[v — aev]} € L(BUCY(R", L(E™)), L(B; (R, E™))) (3.10)
for 0 < s < t. As a consequence, we obtain the following result.
Lemma 3.12 Let p, g € [1,00], t € (—1,00) and s € (—1,t). Then,

[a — A, = —divo A, o grad] € L(BUC(R", L(E™)), L(BSH?, BS ) -

p,q

15



PROOF. Since grad € L(B3+?, B5tH(R*, E™)) and div € L(B;H(R", E™), B; ) (cf. [Ama97,

p,q
Theorem 6.2]), our assertion follows from (3.10). O

Remark 3.13 In addition to A, we introduce the mappings

Agv = [z D i () @ Uij(.’lx‘)] , Agw == [l’ — D 0 Bi(x) e wi(w)
for functions «;;, B; : R* — L(E) and v;;, w; : R* — E. Similarly, as above, it follows
that
o Ao| € L(BUC(R", L(E™), L(B} ,(R", E""), By,,)
and
|8+ As| € LBUC' (R, L(B", E)), L (B}, (R", E"), B,))

hold for p,q € [1,00] and 0 < s < t. Consequently, we are able to rewrite 4, (in non-
divergence form) as
Ao = _/N\a o D? — Adiva o grad

with D?u := (85u), dive := (37 diy;), where

[a — A, 0 D2] € L(BUC!(R", L(E™)), L(B52, BS.)),

(3.11)

p,q

[a — Agivg © grad} € L(BUCH! (R, L(E™)), L(Bstt, Bs ),
provided 0 < s < t.

The aim of our following considerations is to extend the generation result of Proposition
3.9 to the case a € BUC'T*(R™, &#(M)). For that purpose, we fix an arbitrary ¢ € (0, 1] and
define the open covering

U={U;; jeN} ={z;+eQ; z; €cZ"}

of R", where () denotes the open ball {x € R" ;|z| < y/n }, and the enumeration of the Uj is
chosen in such a manner that j > k implies |z;| > |zx|. Note that ¢/ has finite multiplicity,
le.

dk==k(n) : card{j e N; z € U;} <K,z €R". (3.12)

For each j € N, we introduce the smooth diffeomorphism
0 Uj+—Q,z+— (r —zj)/e.

Moreover, let 7 € C*°(R™, [0, 1]) be a function with supp (7) CC @ and 7 = 1 on /2. Then
we define

-1/2
mj =m0 @i [Pien(mow)’] .
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It is easily verified that
m; € C°(R",[0,1]), supp (m;) CC U;, j €N, and >, \77(z) =1,z € R".
Moreover, for each m € N, there exists a constant ¢ = ¢(m) such that
SUDgegn |0V (z)| < ce™ | j €N, [y < m. (3.13)

Finally, we choose x € C*(R",[0,1]) with supp (x) CC @ and x = 1 on supp (7). Then
it follows that the functions x; := x o ¢, € C*(R", [0, 1]) satisty

supp (x;) CC Uj, x; =1 on supp (m;) , m; < x; <1, j€N.
Lemma 3.14 Letp € [1,00) and s € [—1,00). Then,
N
T (Wps) - Wps’ (UJ) — ZjeNﬂ-j Uj

is a retraction in L(£,(W;)),W;). A co-retraction is given by

r¢ W) — (W;)N , u— (7 u),

i.e., ¢ € LW, £,(W})) and T ore = idy; .

P

PROOF. From [AHS94, Proofs of Lemma 9.1 and Corollary 9.2] we already know that

r € L(GWE), W) and 1° € LOVE, 4,(W?)) (3.14)

p

hold for p € [1,00) and s € [0,00). The aim of the following steps is to extend this result to
s = —1, and then by interpolation to s € [—1,0).
First we consider the mapping 7. Let (u;) be a sequence in £,(W;'). According to the

definition of ", there are functions u;, € L, such that
wj =< (1) 8uj, , j €N, (3.15)
Hence the products 7; u; may be represented by
Tty =< (1) 005, (3.16)

with

. Mo s —
) T+ Ym0 ugy v =0 I
Yjp = €Ly

Tj Uj vl =1

(cf. Remark 3.6). Thus, we obtain the identity
14 14 £
ST =Y, (D8 Y v, kL EN,
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which shows that Zfiﬁ mju; € W, holds for k,£ € N. Moreover, the finite multiplicity

(3.12) of U, and inequality (3.13) enable us to derive the uniform estimate

kte 8 k+t P - k+0
szik TjUj — < Z|u|§1 Zjik Ujv ; < kP71 Z\VISI Zj:k ||Uj,,,||’£p
P p
k+¢
< C(é‘) Zjik Z|u\§1 ||u]'al/||ip ) k?£ € N.

Since the function u;, € L, , representing u; in (3.15), were chosen arbitrarily, we arrive at

k+£
szzk TjUj

k+e 1/p
o S LSl ) kL EN.

Hence, 7(u;) = >y 7; u; exists in W, and satisfies the estimate

JEN
I (ui)llwyr < e(e) NCup)lly, w1y -

This proves 7 € L(£,(W, 1), W, ).

P P
Let us consider now the mapping 7. We choose u € W]D_1 and u, € L, such that

u=3 =)oy, . (3.17)

Then the products 7 u are represented by formula (3.16) (with v and w, instead of u; and

u;, , respectively), so that estimate (3.13) leads to

Iy ullfy o < €2 llvinllz, < e(e) X< lIxiwllz, » 7 € N

Recalling the finite multiplicity (3.12) of U, we consequently obtain

||7'cu||2(wp—1) <c Z|u|§1 ZjEN 1X; uv”i < CKZMSl ||“u||]£p .

Since the representation (3.17) of u was chosen arbitrarily, this leads to

||7°CU||ep(W;1) <c ||U||W1,,—1 ’

and therefore to 7¢ € L(W, 7, £,(W,1)).
Using (W, ', Ly)s41p, =W, for s € (—1,0) (cf. [Ama, VIL3.2.2 Theorem]), as well as
Lemma 3.7, we see that (3.14) holds for p € [1,00) and s € [~1,00). Since r o r¢ = idy; is

obvious, this completes our proof. O

Remark 3.15 Analogous to the proof of Lemma 3.14, the following statement can be de-
rived. Let p € [1,00) and s € [-1,00). Then,
[u— (x;u)] € LOV,, 6,(W)))

p

and
(uj) — ZjeN Xjuj| € L(KP(W;): Wps)
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We now are able to derive the main result of Section 3.

Theorem 3.16 Assume that p, ¢ € [1,00), t € (—1,1] and s € (—1,1).
Then, for a given M > 1, there exist k > 1 and w > 0 such that

[a— A,] € CT(BUCHY(R™, &0(M)), H(BS 2, BS ; k,w)) .

p,q TP

PROOF. (a) Let p be a function in BUC*®(R",R™) such that

(z) = z, if z € supp (7) CC @,
PO 2/lz), if zeR\ Q.

We set p; : © — x; + € p(p;(z)) and consider A,; with o := a0 p; for j € N. The aim
of this part of our proof is to show that A,; € ’H(Wp”z, Wy K+, W), where k, and w, are
independent of j.

We first consider the operators .Aa;;, whose (spatially constant) coefficients are defined
by 042 = aop? with p? : & — pj(z;) = ;. Proposition 3.9 ensures that, for a given wy > 0,
there exists kg = ko(M,wp) such that

.Aa;) € H(Bs+2 B . KZQ,(A)O) y ] € N. (318)

P9 TP

To derive the desired result for A,, we employ the perturbation Lemma 3.3. This requires
an estimate of Ay, — .Aa? which is uniform with respect to j € N. Setting r :== 1 A (1 + 1)
and fixing some ry € (0,7), we obtain

(@ = ) @) gy < cls@) = 251" = e Il (@) < ce”

as well as

(e = a9) (@) = (a5 = 02) ()] simy < c&" lp3(x) = p3(y)

< ce”|p(g;(x)) — plei )™ ([p(ei(@)] + lp(ei())" "
< celpi(x) — i(y)| =ce” T |z -yl

| T

for z,y € R* and 5 € N. Both inequalities lead to the estimate

< ¢ j €N, (3.19)

Ha’j - O'/;?HBUCTO(]R",L(E”)) -

which enables us to investigate the differences Ay, —Aa? . We first consider the case ¢t € (0, 1].
According to Remark 3.13,

. , 2
Aa; — .Aa? = Aaj—a? = —Aa]._a? 0 D* — Agiva, © grad .

19



We fix ty € (s,t) with ¢y > 0 and apply (3.11). In view of the inequality (3.19) and the

interpolation result (Bj , Bit?)1/2, = B3t', this yields

0
HA%'—“?“ B3, < ¢ fles _ajHBUCan,c(E")) el 52
+c ||a'j||BUct+1(Rn,£(En)) ||u||B;j;1 (3-20)
<

e flull gz + c(e) llull gy

< cet~to ”u”Bf,jf + 0(5) ||u||Bf5,q

foru € B;jf, j €N, and e > 0. In the case t € (—1,0], we represent the difference A, —.Aa;)

as .Aaj_a? = —divo Aaj_a? ograd. For ¢y € (s,t), Lemma 3.12 and inequality (3.19) imply

0 t—to
ajHBUCtO‘H(Rn’L(En)) <ce , ] € N, g > 0,

A, 0 <c Ha- -
H =% || c(msk2,Bs ) J

so that (3.20) remains valid.
Recalling (3.18) and fixing ¢ < 1/kg in (3.20), we now see that Lemma 3.3 leads to the
desired statement: there are x, > 1 and w, > 0 such that

Aoy = 'Aa? + 'Aajfa? € H(B, %, By 4 ks, ws) , j € N. (3.21)

p,q 7 TDPq)

(b) Next we consider the mapping

A (W)Y — (W)Y, (uy) — (Anyuy) -

P
Since (3.21) holds uniformly with respect to j € N, it can easily be verified that
Ae H(Ep(WpSH):gp(W;); Ko, W)

(c) In the following, we construct a left inverse to A + A, for ReA > w;, with a suitable
wr, > 0. For that purpose,

B: Wt — (W;)N , u— Bju = (m; Aqu — Aq, (7 1))

is considered. In view of a — o =0, it follows that

supp (;)
Bju := (div o A, )(u gradr;) + grad; - [(A, o grad)u] , j € N.
Since (3.10) implies
[a — divo A,] € L(BUCHH(R", L(E™)), L(W T (R™, E™), W)
as well as

[a — Aq o grad] € LBUCKR™, L(E™)), L(W; 1, W, (R*, E™))),
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and ¢ is fixed (cf. part (a)), we obtain

1Bjullwg < [[(divo Aa;)(ugradm;) ||,y +¢l(Aa © grad) (x; )y gn gy

IN

¢ (”aj”BUCH‘l(R“,,C(E")) + ||a||BUCt(]R",L(E"))) lIx; U||W;+1
< cllxj ullyst , we W, j € N. (3.22)

According to Remark 3.15 this leads to
1Bulle,owg) < ellOG Wl oz < cllullwge, u e W,

so that B € L(W;T',£,(W})). Thus, the perturbation result of Corollary 3.4 ensures that

A+ Bor e H(L(Wit?), L(W;); kr,wr) holds for a kK, > 1 and an wy, > 0. In particular,
this implies
A+ A+ Bor e Lis(L,(W?),4,(W?)) , Red > wp

so that the operator
Ly:=ro(A+A+Bor) torte LW, W;**), ReA > wyg,
can be defined. As a consequence of

T ()\—FAQ)U = ()\+Aaj)(ﬂ'ju)+7Tj.AaU,—.Aaj(7TjU)
= (A4 Aq,)(mju) + (Bu); , u e W2, j €N,

we moreover obtain 7°o (A + A,) = (A+ A+ Bor)ort. Thus, Ly has the desired property
Lyo (A +Ay) =707° =idyes2, Red > wr.

(d) Analogous to the preceding part of our proof, a right inverse to A + A, can be
constructed. We consider the operator

C : (W;+2)N — Wy, (ug) — Y [Aalmjug) — w5 Ayug]
which can be rewritten as C': (u;) — >,y Cju; with
Cju := —(div o A,)(ugradr;) — gradm; - [(Aa, o grad)u] , j € N.
Analogous to (3.22) we derive
ICullwg < ellx; ullwg+r < cllullygsr , ue€ W™, j €N,
so that, by finite multiplicity of U,

IC@Iws = [ Syenxs ()| < e ICsu5)lyam) < € 1)l o
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follows for (u;) € £,(W;5T). Thus, C belongs to L(£,(W;*'), W;). Since Lemma 3.7 implies
(Lo (W), £p(W5t2))1 /2 = £p(Wt1), Corollary 3.4 ensures that

A+r°oC e (W), 6,(W,)); kg, wr)
holds for a kg > 1 and an wgr > 0. This enables us to define
Ry:=ro(A+A+r°oC) or®e LW, W;*?), Rel > wg.
In view of

Z()\ + .Aa)(ﬂ'j u]') = Z [71']' ()\ + .Aaj)u]' + Aa(ﬂ'j Uj) — Ty .Aaju]']
jeN JEN

=[ro(A+A) +Cl(w;) , (u)) € L(W;™),

we moreover obtain the identity (A+.4,)or =ro(A+A+7r°¢oC) which leads to the desired
property (A 4+ A,) o Ry =rort= idyys+2, ReA > wg.
(e) From the preceding parts of our proof it follows that

A+ A, € Eis(Wps“LQ,Wps) , ReA > w := wy, Vwg,

where (A 4+ A,)™" = Ly = Ry. Using A+ Bor € H(L,(W;?),£,(W;); kL, wr), and Lemma
3.14, we obtain

Al H()\—FAa)f = || H[ro(/\—i—A—FBor)*lorc]uHWs

<ckr |Irulle,owsy) < cllullws , u € W, , ReA > w.

1
UHW;

In view of Remark 3.2, this ensures that A, € H (W2, W). Since this holds for an arbitrary

s € (—1,t), we also have
Aq € HWSHP2 W) nH(WS P2 W),

provided 0 < 0 < (t — s) A (s + 1). Consequently, the interpolation result

(W;fd’ W;+J)1/2,q i B;,q bl p5q 6 [1’00)7 S E R?
leads to A, € H(B;t?, By ). This completes our proof. O

Remark 3.17 The basic idea of the construction of resolvents, carried out in parts (c)-(e)

of the preceding proof, goes back to [AHS94, Proposition 3.2].

We now are able to extend the result of Theorem 3.16 to operators
Ao g u— {z — —div[a(z) grad u(z)] + B(z) grad u(z)}
with 8 = (5;) : R* — L(E", F). Namely, the following can be proven.
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Corollary 3.18 Let p, g € [1,00), t € (0,1] and s € (0,1).
Then, given M > 1, there are k > 1 and w > 0 such that [(o, ) — Aqp] is Lipschitz
continuous from BUC"(R®, &U(M)) x BUCHR", L(E™, E)) into H(B:*2, BS ;: k,w).

pa > p,g’
PROOF. Since Proposition 3.5 (S3) ensures that (8,v) — [z — B(x)wv(z)] is a bilinear
continuous mapping from BUC(R*, L(E™, E)) x B (R", E™) into BS, = Bs (R",E), we
obtain
{8 — [u+— Bgradu]} € L(BUCYR", L(E™, E)),L(B;', B;,))-

Hence our assertion follows by the perturbation result of Lemma 3.4. O

4 Existence and Uniqueness

In the following, we return to the coagulation-fragmentation model of Section 2. The aim
is to show that Problem 2.1 possesses a unique maximal solution, where the sought particle
size distribution function remains positive for positive initial values.

Our proof can be outlined as follows. Choosing suitable Banach spaces E; = E; x Fj,
i € {0,1}, and an admissible interpolation functor (-,-)y, we will show (in Section 4.1) that

there is some 3 € (0, 1) such that the operator family 2A(v), formally given by

. (;) L Aw) = ( —diva((]u)grad _BA >’

has the property [v — A(v)] € C' ((Eo,E1)p, H(E1,Ep)). Then (in Section 4.2) the
mapping
F) = Fi(u,7) _: cy(u) + fo(u) — 7 - gradu
Fy(u,v) |~ —P(¥-grad) 7+ Pf(u) )’
where P denotes the Helmholtz projection, is investigated. For a suitable v € (0, 3), we

derive [v — F(v)] € C* ((Eg,E1)g, (Eg,E1),). Now our coagulation-fragmentation model

can be formulated as an abstract quasilinear Cauchy problem
O(t) + A(v(t))v(t) = F(v(t)) , t >0, v(0) = v,

in Ey, and an existence result, stated in [Ama93|, may be applied. This ensures that the
problem possesses a unique maximal solution v € C(J,Eq) N C(J,E;) (on the maximal
time interval J = [0,7T(vy)) ), provided vy € E;.

4.1 Diffusion and Stokes operator

This section is devoted to the second order differential operators on the left-hand side of
Problem 2.1.
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First we consider Aywyu : R* — E, x — —div [a(z, w) grad u(z)], where E denotes a
Banach space of real-valued functions on Y (specified in 4.2), and w — a(w) = a(-,w) is
supposed to fulfil the following condition.

Assumption 4.1 There are constants ¢ and 7 with 0 < ¢ < 7 < 0 + 1 < 3, such that
a € C'(BUC™(R", E),BUC’ (R, &U(E; M)).

We fix s, p € R satisfying
-1v(r—-2)<s<o—-1, p>n/2+s—71), (4.1)
and introduce the spaces
Ey:=B;, =B (R, E) , E :=B"=B"T[R"E).

Moreover, Ey is the real interpolation space (Ey, E)g, of exponent 6 € (0, 1), which can be

characterised as
Ey =Bt [ 0€(0,1) (4.2)

(cf. e.g. [Ama, VIL.1.3.6 Theorem]|). Since (4.1) implies
1/2<(n/p—s+7)/2<1 and (1-3s)/2<1, (4.3)
we are able to fix 8 > 1/2 with
(1-9)/2]V](n/p—s+71)/2] < B <1. (4.4)
This choice guarantees, in particular, that 7 < s + 23 — n/p, and therefore,
Eg = Bi1* < BUC” (cf. e.g. [Ama9l, (48)]). (4.5)

Hence Assumption 4.1 implies [w — a(w)] € C' (Eg, BUC? (R, EU(E; M))). Recalling

the generation result of Theorem 3.16 we arrive at

[w— Agw)] € C* (Eg, H(B;}?,B; ) » q € [1,00). (4.6)
Now the Helmholtz projection and the Stokes operator are introduced. To that end, let
Fy:=L,,R"R")
be the closure of {t € C5°(R"*,R"); divy =0} in L,(R",R"), and

F = W;G(R’n:Rﬂ) = W;(RnaRn) N Ly, (R*,R").
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Then the Helmholtz projection P, of L,(R",R") onto L, ,(R",R") is given by

Py =1— (RjRy)jkeft,n} >

where R;, j € {1,...,n}, are the Riesz transforms R; := F~'r;F with symbol r;(§) = &;/[¢|.
Since R; € L(W"(R")), m € N, holds by Mikhlin’s multiplier theorem, this implies

P, € LWJ(R",R"),F;) , i € {0,1}.
Using the property Bgﬂ,(R”, R") = (L,(R*,R"), WPQ(R”,R"))QJ,, 6 € (0,1), we arrive at
P, € L(BY (R*,R"), Fy), (4.7)
where the spaces Fy := (Fp, F1)gp, 0 € (0, 1), are characterised by

Fy= BY

p,p,o

(R*,R") := B2 (R*,R") N L, ,(R*,R") (4.8)
(cf. [Ama00b, Theorem 3.4]). It is known that the Stokes operator,
Sp: Fi — Fy,u— —vAu,

has the property
S, € H(F, Fy). (4.9)

For further references and a more comprehensive treatment of the Stokes scale we refer to
[Ama00b, Section 3].

Our considerations are summarized in the following statement.
Lemma 4.2 Assume that w — a(w) satisfies Assumption 4.1, and let

Eo := Eo x Fy = B (R", E) x L, ,(R*,R"),
E, = E x F| = B;}*(R", E) x W2, (R",R"),

where s,p € R fulfil (4.1). Then the real interpolation spaces Eg := (Eo,E1)g, of exponent
6 € (0,1) are characterised by

Ey¢ = B1*(R", E) x B}’ ,(R*,R"),

p,p,o

[Uz(?)ﬁﬂ[(@:z(ﬁl‘gw) g )

holds for p € R with (n/p—s+171)/2 << 1.

and

€ Cli(E/g,H(El,EO))

PROOF. According to [Ama95, 1.2.3.3 Proposition], the characterization of the interpolation
spaces Ey, 8 € (0, 1), follows from (4.2) and (4.8). Our second assertion is a consequence of
(4.6), (4.9), and [Ama95, 1.1.6.1 Theorem]. O
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4.2 Reaction terms, convection terms, and external forces

We now consider the right-hand side of the coagulation-fragmentation model. For that

purpose, let the space E be given by

E:=Li(Y;(1+y)duly) = Li(Y;du(y) N Li(Y;ydu(y))-

For a motivation of this choice we refer to Section 4.4.
Let us first consider the coagulation term ¢y, given by (2.10), where 1 is supposed to
satisfy the following condition.

Assumption 4.3 The coagulation kernel ¢ : R* XY x Y — R belongs to BUC” (R, K ),
where K. = K.(Y x Y) denotes the closed subspace

{k € Loo(Y xY); k(y,y") = k(v',y) for almost all y,y' € Y}
of Loo(Y X Y), and o is the real number specified in Assumption 4.1.

For k € K, and v,w € E, we introduce the mapping

(v, 0)(y) = » / "kl — oy oy — ) wly) duty)

2
= o) [ k) wl) dute) v € Y,
which has the property [(k,v,w) — cx(v,w)] € L(K,, E, E; E). Since (4.1) and (4.4) imply
n/p<s+28<oc+1, (4.10)
Proposition 3.5 (Ss) ensures that the pointwise product
(v, w) : T — Ce)(v(2), w(2)) (4.11)
of functions (k,v,w) : R* — K. x E x E is a multiplication
[(k,v,w) — cx(v,w)] € LBUCTT (R*, K,), Bi+?, B5t2P: Bst27), (4.12)
provided v < . Recalling (4.2) and Assumption 4.3, we consequently obtain
[ cp(u) = ey u,w)] € C=(Eg, Ey) , 7 € (0, 9) (4.13)

Now the fragmentation term fj, defined by (2.12), can be treated analogously. To that
end, we impose the following condition on ¢.
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Assumption 4.4 Let Y7 be the set {(y,9') € Y xY; 0 < ' < y}. Moreover, K; = K;(Y}?)
denotes the Banach space

{k € Loo(YX); [y — p(y) = é/oyk(y,y’) y' du(y’)} € Loo(Y)}

with norm k — ||&||1, (v2) + [| Pl Lo (v)- Then the fragmentation kernel ¢ : R* x YR — R
is supposed to lie in BUC”T(R", K/).

It is easily seen now that
o) sy [ R o) duly) - Bulw) o) w €Y
y

defines a multiplication [(k,v) — f(v)] € L(Ky, E; E). Then, according to (4.10), Propo-
sition 3.5 (S3) shows that

{(k,v) — [f(v) : +— fi@(v(2))] } € LBUCTTH(R", Ky), B2 BEH?P)
holds for ¢ € [1,00). By virtue of Assumption 4.4, this implies
[u— fy(u)] € E(B;:;%) , ¢ €[1,00). (4.14)

We now consider ¢ - gradu : y — ¥ - grad u(y). To that end, v € (0, 8) is assumed to
satisfy the additional condition
0<y<B—1/2, (4.15)

which ensures that s + 2y < s+ 28 — 1 < 283. Moreover, s + 23 —1 > 0 and
26>28—-1>n/p+7—s—1>n/p (4.16)
hold by (4.1), (4.4), and Assumption 4.1. Hence Proposition 3.5 (S;) implies

[(’U),ﬁ) — - ’U)] € E(B;jl?ﬁfl(Rn,En)’ B;g)(Rn,Rn), Bs—|—27),

pp

and therefore,
- — s+28 pR2B (n pn). RS+2
[(u, V) — 7 - gradu] € L(B; ", B, ,(R",R"); By ™). (4.17)
In view of F = B2’ (R",R") < BZ5(R",R"), it follows that

[(u,V) — ¥ - gradu] € C*(Eg, E,). (4.18)

We now consider the convection term v — (¥ - grad)¥. In view of (4.16) and the
inequality 2y < 2 — 1, which holds by (4.15), Proposition 3.5 (S;) ensures that

[(v,w) —> vu] € L(BZ (R",R), B~ (R", R); B (R", R)).
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This implies
2 n 2 ) . R2 1) :
(v, ) — v O] € L(BY(R",R), B (R",R); B}(R", R)) , i € {1, ..,n},
and therefore,
(3,0) —> (7- grad)d] € L(BZ(R", K"), B (R", R"); B (K", R"))
In view of (4.7), we consequently obtain
[0 — P,(¥U- grad) ¥] € C*(Fp, F). (4.19)

Finally, the external force field f, given by (2.15), is considered under the following

condition.

Assumption 4.5 Let @ : R® x Y — R"® be in BUC’"!(R", Lo,(Y,R")). Furthermore,
there is some ¢ > 0 such that @(-,0) € BUC”*!(R",R") N B (R",R").

First we introduce

(10) > b( ) = /Y B(y) u(y) y du(y)| € L(Loo(Y,RY), E;RY).

Then, in view of (4.10), Proposition 3.5 (S3) ensures that b(w,u) : z —— b(W(x),u(x)) is a
multiplication

[(w, u) — b(w, u)] € LBUCTT(R*, Loo (Y, RY)), B3 12, BSP(R*, R™)).

Since 2y < s+ 14 27 < s+ 20 holds by (4.15), we may apply the continuous imbedding
Bt (R™, R") — B27(R",R"), which, together with Assumption 4.5, leads to

[u— b(Z - @(-,0),u)] € C=(Es, B, (R",R")).
In the following, let « satisfy the additional assumption v < §/2, ensuring that
é(-,0) € B) ,(R*,R") < B2 (R",R").

Consequently,

wi—s flu) = @(,0) + b(@ — (-, 0), u)| € C=(Ey, B(R",K")
is valid. Recalling property (4.7), we finally arrive at

ur—s P, f(u)} € C®(E;, F,). (4.20)
Our considerations are summarized in the following statement.

Lemma 4.6 Let Assumptions 4.3, 4.4, and 4.5 be satisfied. Then there are B,y € R with
0 <v<pB<1 such that

v = q_{ — F(v) := cw(u)j—qu(u):v-grii‘du € C*(Eg,E,).
U —P, (v - grad) U+ P, f(u)
PROOF. Our assertion follows from (4.13), (4.14), (4.18), (4.19), and (4.20). O
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4.3 Existence of a unique maximal solution

The results obtained in Sections 4.1 and 4.2 enable us to formulate the following existence
theorem for Problem 2.1. Here (and in the sequel) we do not explicitly mention the pressure

p, since it is well-known that it can be recovered from the velocity ¥ of the suspension by

P=—2 k=1 RiR(vjur).

Theorem 4.7 Assume that the diffusion coefficient «, the coagulation kernel 1), the frag-
mentation rate ¢, and the external force field f satisfy Assumptions 4.1, 4.3, 4.4, and
4.5, respectively. Moreover, s,p € R are supposed to fulfil (4.1), and E denotes the space

Ly(Y, (1 +y) dp(y)).
Then, for each initial value vy = (ug,¥y) € Bit?(R", E) x W7, (R",R"), Problem 2.1
possesses a unique mazximal solution v = (u,v') with
veCYJ,B; (R* E) x L,,(R*,R*)) N C(J, B::*(R*, E) x W, (R*,R")),
where J = J(vg) denotes the mazimal existence interval [0, T (vy)).

PROOF. Applying the Helmholtz projection P, to the Navier-Stokes equations, and using
the notation introduced in Sections 4.1 and 4.2, we formulate the coagulation-fragmentation
model 2.1 as the abstract Cauchy problem

b(t) + AE))(t) = F(u(t)), >0, v(0) = vy, (4.21)

in Ey. Now Lemmas 4.2 and 4.6 guarantee the existence of 5,y € Rwith0 <y < g <1
such that
[v— (A(v), F(v))] € C'~ (B, H(E1,Ep) x E,).

As a consequence, the existence result [Ama93, 12.1 Theorem] applies to the Cauchy problem

(4.21), and proves our assertion. O

Remark 4.8 Existence of a unique maximal solution to Problem 2.1 can also be proven for
time-dependent data. In that case, our coagulation-fragmentation model is formulated as

the abstract Cauchy problem
O(t) + At v(t))v(t) = F(t,v(t) ,t >0, v(0)= vy,
and the desired statement follows from [Ama93, 12.2 Remark (a)], provided
[(t,v) — (A(t,0), F(t,v))] € C"(J x Eg,H(E1,Eq) X E,).

Remark 4.9 The maximal solution v = (u,?) to Problem 2.1 has the Holder regularity
1-6 s+20 (Ten 20 n n
veC'(J, B Y (R, E) x B (R",R")), 6 € (0,1).
This property follows from [Ama95, 11.1.1.2 Proposition] and Theorem 4.7.
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Remark 4.10 The maximal existence interval J = [0,7(v)) of the solution v = (u,7),
obtained by Theorem 4.7, does not depend on the choice of s. This can be proven by means
of the following bootstrapping argument.
For i € {0,1} we define F; := B % x W2 (R",R"), and set
Fy := (Fo,F1)ep = B3, x BY (R",R"), 0 € (0,1),

p.p,0

where s' € R satisfies s < s’ < (s+1) A (o —1). Together with (4.1) and (4.3), this condition
enables us to choose a ' > 1/2 with

[(A=5)/2VIn/p—s+7)2] <B <1-(s—5)/2<1.
By Lemmas 4.2 and 4.6 we then obtain
[w — (A(w), F(w))] € C (Fyr, H(F1, Fy) x Fy).
Since Ei_. < Fg holds for e := 1 — (s’ — s5)/2 — ' € (0,1), Remark 4.9 implies
[t — (A(v(t)), F(v(t)))] € C°(J, H(F,Fy) x Fy).
It follows by [Ama95, I1.1.2.1 Theorem] that the linear Cauchy problem
w(t) + Av()w(t) = F(v(t)) , t € J\{0}, w(0) = wo,
has a unique solution w € C'(J,Fy) N C(J,F,). Thus, v — w € C'(J,Eq) N C(J,E,) fulfils
2(t) +Av(t))z(t) =0,t e J\ {0}, 2z(0)=0. (4.22)

Since Lemma 4.2 and Remark 4.9 imply [t — A(v(t)] € C'=#(J, H(E,Ey)), the existence
and uniqueness result of [Ama95, 11.1.2.1 Theorem| ensures that (4.22) possesses only the
trivial solution in C1(J,E)NC(J,E ). Consequently, the function v equals w, and therefore,
it belongs to C*(J,Fy) N C(J,F;). This proves our assertion.

4.4 Conservation of mass

It is the aim of this section to show that the total mass of all suspended particles, given by
(2.17), is finite at each moment ¢ € J, and conserved. For that purpose, we first derive the
following regularity result.

Proposition 4.11 Let the assumptions of Theorem 4.7 be satisfied, ensuring that Problem
2.1 possesses the mazimal solution v = (u,¥') on the time interval J. Then the particle size

distribution function u has the property

uwe C'(J,B; (R*, E)N B (R*, E))NC(J, B}?>(R", E) N B{{*(R", E)).
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PROOF. Our proof is based on a bootstrapping argument, where the unique maximal solution
v = (u,?), obtained by Theorem 4.7, is inserted into the nonlinearities of the considered
reaction-diffusion equation. This leads to a linear problem, whose solution has the desired
regularity, and can be identified with w.
First we consider the operator family {A(t) := Asuu);t € J}. From (4.6) it follows
that
[u — Aoq)] € C' (B, H(B3L? By,) N 1B, BS ).

Pp
Setting X; := B51% N B{{*, i € {0,1}, and using the easily verified imbedding
H(B;}?, B;,p) N H(ijﬁ, Bil) — H(X1, Xo),
we obtain [u — Agw)] € C'7(Es, H(X1, Xo)). In view of Remark 4.9, this implies
[t — A(t) = Aauy] € C* P (I, H (X1, Xo)). (4.23)

For a treatment of the coagulation term, we consider ¢, (v, w) defined by (4.11). Analogous
to (4.12), it follows by means of Proposition 3.5 (S;) and (1.1) that

[(k,u, w) — ¢ (u, w)] € LBUCTT (R", K,), BsE?, ij"’ﬁ ;Bi ).

Thus,
[(u, w) — ¢y (u, w)] € L(Eg, Bi¥ n By B; N B;,) (4.24)

holds. We now observe that, X; < B;t* for i € {0,1} and ¢ € {1,p} implies
Xo = [Xo, X1]o = By, B;,JEQ]G iB;ZQG ,q€{1,p},0¢€(0,1)
(cf. e.g. [Ama, Chapter VII]). This leads to the relation
Xg <= (B, Bitg N [Bf,, Bi1?y = B N BT — X, , 0 € (0,1), (4.25)
whose application to (4.24) yields
{u — [w— ¢y (u,w)]|} € L(Es, L(Xp, X0))- (4.26)
From (4.14), we analogously infer
{wr— fy(w)} € L(Xp, B3 N Bi*) — L£(X5, Xo). (4.27)

Finally, the term w — ¥ - grad w is considered. According to Proposition 3.5 (S;) we have

[(w,7) — w#] € LB (R, E"), BYS(R*,R"); B} ,),
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so that [(w,?) — ¥ - gradw| € E(ijZ’B,Bzg,(R”,R”);Bf,I) holds. In view of (4.17) this
leads to
{7+ [wr— ¥ gradw]} € L(Fp, LB N B B: N B;))).

Consequently, (4.25) implies

{V+— [wr— V- gradw]} € L(F3, L(Xp, Xo)). (4.28)
Summarizing (4.26), (4.27), and (4.28), we obtain the property

[ [ g(0)w = ey, w) + folw) — 7 grad w]} € £(E 5, £(X5, Xo)),

which, by virtue of Remark 4.9, leads to

[t +— B(t) == —g(v(t))] € C*(J, L(Xp, Xo))-
Due to this property and (4.23), Corollary 3.4 ensures that

[t — L(t) := A(t) + B(t)] € C*7P(J, H(X1, Xo)).

As a consequence, the existence result of [Ama95, 11.1.2.1 Theorem| applies to the linear
Cauchy problem

w(t) + L(tw(t) =0,t e J\ {0}, w(0) = u, (4.29)
in Xy, and guarantees a unique solution w € C1(J, X;) N C(J, X}).

Hence it remains to be proven that w equals u. Since u obviously fulfils (4.29) as well,
the difference u — w € C'(J, Ey) N C(J, Ey) is a solution to the homogeneous problem

S+ L(H)2(t) =0, te J\ {0}, 2(0)=0. (4.30)

On the other hand, we also have [t — L(t)] € C'=#(J, H(E1, Ey)). Thus, [Ama95, 11.1.2.1
Theorem] ensures that (4.30) possesses only the trivial solution in C'(J, Ey) N C(J, E}).

Consequently, u equals w, and therefore, it has the asserted regularity. O

Corollary 4.12 For 6 € [0,7/2), where T > 0 is given in Assumption 4.1, the particle size
distribution function u belongs to C?(J, L, (R", E)). In particular, the total mass MM(t) of all
suspended particles is finite at each moment t € J, and has the property M € C9(J).

PROOF. According to [Ama95, 11.1.1.2 Proposition], it follows that
u e CH(J, B] ) NC(J, B2 — C?(J, B;1209).

From (4.1), we moreover infer the inequality 26 < 7 < s+ 2, which implies s +2(1 — ) > 0,

and therefore, ij2(1—0) < L,. This proves our assertion. O

We now are able to prove the following conservation law.
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Theorem 4.13 Let the hypotheses of Theorem 4.7 be satisfied, where the constant o, given
in Assumption 4.1, is supposed to satisfy the additional condition o > 1. Then, the total
mass IMM(t) of all suspended particles is finite and conserved on the mazimal time interval J

of existence, i.e.

M(t) = M(0) = 1 / n /Y wo(z,y) ydu(y)dz , t € J.

PROOF. In view of the additional assumption ¢ > 1, the constant s can be chosen in such a
manner that it satisfies both (4.1) and s > 0. Thus, the particle size distribution function u
has the regularity

uwe C'(J,Bs,NBi,)NC(J,Bst? N Bi1?) — C'(J, Li(R", E)),
which implies 9t € C*(J). From (4.23), (4.26), (4.27), and (4.28), it follows that
Aa(uytt, ¢y (u), fo(u), 7 - gradu € C(J, B, ,N Bi ;) — C(J, Li(R", E)).

Hence, the reaction-diffusion equations in Problem 2.1 may be integrated over Y x R" with
respect to ydu(y) ® dz. Since the arguments of [Ama00a, Proof of Lemma 7.1] lead to

[ ] et .6) + @ gradu) 2, )] () de =0, v €

and it can easily be verified that

| ] st + @itz nlyantyda =0, te

this yields MM(t) =0, ¢t € J. O

Remark 4.14 In view of hypothesis (2.3), Theorem 4.13 implies
/ m(t,z,0)dz=0,t€eJ,

i.e. the mass of the carrier fluid is conserved. This reflects the fact that the particles do not

interact with the carrier fluid during the process.

4.5 Positivity of the particle size distribution function

In this section our considerations on the coagulation-fragmentation model, Problem 2.1, are
confined to the spatial dimensions n € {2,3}, and to diffusion operators with vanishing
cross diffusion coefficient b. The aim is to prove that, in this special case, the particle size
distribution function u(t) = wu(t,-,-) remains non-negative for ¢ € J, provided the initial
value wug is positive.

First we specify a suitable condition on the diffusion coefficient.
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Assumption 4.15 There are constants o, 7 with 1 <o <7<2<0o+1<3, and ay > 0,
such that o € C'~(BUC™(R", E), BUC? (R, ef/(aq, 0)).

This means that the diffusion coefficient (2.16) is of the form [a(w)v](y) := a(w)(y) v(y),
where a € C'~(BUC"(R*, E), BUC? (R", Lo, (Y,R"%"))) is positive definite.

ym

Theorem 4.16 Let n € {2,3}, and suppose that the hypotheses of Theorem 4.7 are sat-
isfied, where Assumption 4.1 is substituted by the (stronger) Assumption 4.15. Moreover,
the additional conditions ¥(x,y,y") > 0 and ¢(z,y,y') > 0 are assumed to be satisfied for
T €R", a.a. (y,9) €Y XY, and a.a. (y,y') € Y2, respectively.

Then, u(t,z,y) > 0 holds fort € J, v € R*, and a.a. y € Y, provided the initial value

u(0,z,y) = uo(x,y) is non-negative.

PROOF. Since Proposition 3.11 implies BUC?(R", el/(ay,0)) — BUC?(R",EW(M)) for an
M = M(ap), Theorem 4.7 and Proposition 4.11 guarantee existence of a maximal solution

v=(u,7) e C(J, (B> N Bi1?) x W2 (R*,R")) N C'(J,(B;,NB; ) x L, ,(R*,R"))

to Problem 2.1, where s € (0,0 —1) and p > n/(2—7) can be chosen. In view of Remark 4.9
and (4.5), the function u belongs to C'=#(J,BUC™(R", E)). Hence, Assumption 4.15 implies

a(u) € C*P(J,BUC (R, elt(ag, 0))).
Since p > n/(2—7) > n/(2— o) guarantees F; — W2}(R"*,R") — BUC?(R",R"), we obtain
ve C(J, F1) = C(J,BUC°(R",R")).

Consequently,
(a(u(t)), v(t)) € BUC(R", ell(ay,0) x R*) , t € J. (4.31)

We now observe that u € C(J, Bj1?) N C'(J, B ) solves the semilinear Cauchy problem
() + Au()2(t) = cy(2(1) + fo(2(2) , t € J\{0},  2(0) = uo,

with
Ay(t) + wr— Agueyw +7-gradw, t € J,
which coincides with the model considered in [Ama0OOa]. Thus, in view of (4.31) and our

assumptions on the kernels 9, ¢, the result of [Ama00a, Theorem 6.3] can be applied. This
yields our assertion. O
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