Coagulation-Fragmentation Processes

HERBERT AMANN

Abstract. We study the well-posedness of coagulation-fragmentation mod-
els with diffusion for large systems of particles. The continuous and the
discrete case are considered simultaneously. In the discrete situation we are
concerned with a countable system of coupled reaction-diffusion equations,
whereas the continuous case amounts to an uncountable system of such
equations. These problems can be handled by interpreting them as abstract
vector-valued parabolic evolution equations, where the dependent variables
take values in infinite-dimensional Banach spaces. Given suitable assump-
tions, we prove existence and uniqueness in the class of volume preserving
solutions. We also derive sufficient conditions for global existence.

1. Introduction

In recent years, much effort has been put into the mathematical foun-
dation of cluster growth. In this theory it is assumed that the system under
consideration consists of a very large number of particles that can coagu-
late to form clusters, which in turn, can merge to form larger clusters or can
break apart into smaller ones. Models of cluster growth arise in a variety of
situations, for example in aerosol science, atmospheric physics, astrophysics,
colloidal chemistry, polymer science, hematology, and biology. The aim of
the theory is the description of the particle size distribution as a function
of time and space as the system undergoes changes due to various physical
influences (see [28] for a description of the forces dominating processes of
this type).

In a multitude of situations, namely in the case of thermal coagulation,
the movement of the clusters is governed by diffusion. It can be promoted or
hindered by free fields between the particles as well as by external fields due
to electric, magnetic, gravitational, or centrifugal forces. If the particles are
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suspended in a gas or a fluid, the movement of that medium can influence
the coagulation process too (e.g., [10]).

The theory of coagulation processes originated in the work of M.V. Smo-
luchowski [25], [26], who derived an infinite system of ordinary differential
equations for describing the coagulation of colloids moving according to
Brownian motion. That model has since been widely extended and gen-
eralized. In particular, continuous models formulated in terms of integro-
differential equations have been derived which are used to approximate phys-
ical situations involving a very large number of particles of very different
sizes. We refer to [8] for an extensive survey of the various models and their
derivations, and for a description of the mathematical results during the
first three quarters of this century, as well as to [10].

This paper deals with the mathematical foundation of coagulation-frag-
mentation processes taking into account the movement of the clusters due
to diffusion and superimposed transport processes. In many concrete situ-
ations, like aerosol physics, atmospheric physics, or astrophysics, say, it is
very difficult, if not impossible, to describe a boundary and boundary condi-
tions for the domain under consideration. In these cases it is a very reason-
able approximation to consider distribution functions defined throughout
the space, but being ‘small at infinity’. For this — as well as for mathemat-
ical — reason(s) we consider full-space problems in this paper.

Formally, the equations under consideration take the form of an initial
value problem of reaction-diffusion type:

Ou+ Az, t,y)u = r(x, t,y,u) , zeR*, t>0,

0 n (1.1)
u(z,0,y) = u'(z,y) , z€R",

where n = 1,2, or 3, depending on an additional real parameter y, the vol-
ume (which is used as the characteristic size. Thus by the size of a cluster we
mean its volume.). Here A are diffusion-convection operators, the ‘reaction
term’ r describes kinetic behavior of the process, and wu is the particle size
distribution function. Thus

u(z,t,y) >0 (1.2)

/X /yjl u(z, t,y) dy dzx (1.3)

is the total number of particles with volumes belonging to the interval
[0,y1] C RT and being at time ¢ contained in the space region X C R™.
The measure dy is either Lebesgue’s measure on RT or the counting mea-
sure on N := {1,2,3,...}. In the latter case only clusters can occur whose
sizes are integer multiples of an ‘elementary unit’. In this case all integrals
with respect to dy reduce to sums, of course, so that (1.3) takes the form

/X Z u(z,t,y) dr .

Y=Yo

and
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This situation corresponds to discrete coagulation-fragmentation processes,
the former one to continuous models. Note that we treat both cases simul-
taneously.

To be more precise, we begin by describing the kinetic part r. It is a
sum of three terms:

r($7 t7y7u) = c(x7 t7 y7 u) + f(x7t7y7u) + h($7 t7 y) ? (1'4)

accounting for coagulation, fragmentation, and particle input, respectively.
The coagulation term is of the form

1 Yy
c(z,t,y,u) == 5/ Yty — o'y uly — v )uly') dy'
0

o (1.5)
~ u(y) / (' Yuly') dy -

The coagulation kernel v, where (z,t,y,y") describes the rate of coales-
cences of clusters of sizes y and 3’ at time ¢ and position z, is supposed to
satisfy

0<~(z,tyy)=7@ty,y), yy ey, (1.6)

where Y is the support of dy and, here and below, (z,t) runs through
R™ x R*. Thus we neglect triple and higher collisions assuming them to be
rare, and take account of binary coagulation only. The first integral in (1.5)
expresses the fact that a cluster of size y can only come into existence if
two clusters of volumes y — ¢’ and y’ collide. The factor 1/2 guarantees that
each combination is counted only once. The last term in (1.5) says that a
cluster of size y disappears from ‘level y’ if it coagulates with a cluster of
any volume.

The fragmentation term f is given by
o0
fatywi= [ oty ) dy - 2o tyu) , (0L0)
Yy

where the fragmentation kernel ¢ satisfies
0<o(@tyy), 0<y <y<oo, yy ey, (1.8)

and y
1
D(z,t,y) == 5/ oz, ty,y )y dy' , yeY. (1.9)
0

The integral in (1.7) accounts for the production of clusters of size y by the
break-up of clusters of larger volumes. The last term takes care of the dis-
appearance of y-clusters by their fragmentation into smaller ones. Note that
we allow multiple fragmentation processes. The binary case, in which each
splitting produces two clusters only, can be subsumed in this formulation
by a suitable change of dependent variables (see [17]).



4 Herbert Amann

Lastly, the source term satisfies
h(z,t,y) >0, yevY, (1.10)

and accounts for creation of clusters of size y at time ¢ and position z due
to particle input, for example.

There are several models for the dependence of the coagulation and
fragmentation rates on the particle volume. Most of them amount to bounds
of the form

(@, t,y,y") <c[(L+y)*+1+y)*], o tyy) <cl+y+y)*,

where ag and «a; are positive constants. This means that these rates can
become arbitrarily large if arbitrarily large clusters are involved. However, it
has to be kept in mind that laws of this type are mathematical idealizations
which apply to a finite range of the particle volume only, since there are
no infinitely large clusters in nature. Thus, since coagulation-fragmentation
processes are of real interest for clusters up to a fixed — albeit rather
large — size only, we can assume, without losing physical significance, that
the coagulation and fragmentation rates are bounded.
Hence we impose the hypothesis that there exists a positive constant 3
such that
Y@ty y') < B, el tyy') <B (1.11)
for all possible arguments (z,t,y,y') of v and ¢, respectively. We also sup-
pose that

which means that the volume rate of change in the fragmentation process is
bounded as well. Note that assumptions (1.6), (1.8), and (1.10)—(1.12) hold
in virtue of their physical significance. For mathematical reasons we suppose
that v(z,t,-,-), ¢(z,t,-,-), and f(z,t,-) are measurable for (z,t) € R® x Rt
and sufficiently smooth with respect to (z,t).

As for the operator A, we assume that
Az, t,y)u := — div(a(z, t,y) gradu + @z, t,y)u) (1.13)
+g(mat7y) 'gra’du+a0($7tay)u ) -

where div and grad are taken with respect to 2 € R". The diffusion matrix a,
the drift vectors @ and b, and the absorption rate ag are sufficiently smooth
functions of (z,t) and measurable with respect to y. We also assume that

a(z,t,y) is symmetric and positive definite, (1.14)
uniformly with respect to (z,t,5) € R* x Rt x Y . ’

In summary, using standard notation and suppressing the independent
variables, system (1.1) can be written in the conventional form

Ou—V - (aVu + du) + b-Vu+ agu = [0¢u]coag + [Ortt]frag + R
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with
]' Y ! ! ! ! ! < ! ! !
[Octlcong = 5 | Yy =4,y )uly —y)uly)dy' —uly) | ~(y,y)uly)dy
0 0

and
Yy ]

oo
Y
[Oyu]trag = / e y)uly') dy' —u(y) / w(y,y’)g dy' .
y 0
In most concrete situations a = a - 1, where 1 denotes the identity ma-
trix, and a is a decreasing function of y. It is often approximated by an
expression of the form

[ay_1/3 + y_2/3 (ﬂ + 66_591/3)]T(w, t), (1.15)

where «, 3, §, and € are positive constants and T is the temperature, which
in this model is supposed to be given (cf. [10, Sect. 2.3]). This is consistent
with intuition which suggests that large clusters diffuse more slowly than
small ones. However, again it has to be kept in mind that such laws apply
only to clusters whose sizes belong to a finite range. Since in nature there
do exist neither infinitely large nor infinitely small clusters we do not lose
any physical significance if we assume that a(z,t,y) is uniformly bounded
and uniformly positive definite (where the constant of uniform definiteness
can be very small, of course).

The drift vector field @ describes the particle transport due to outer
forces such as gravitational, electrical or thermal fields, where the last one
is produced by temperature gradients in the gas or fluid in which the par-
ticles are being suspended. These fields — as well as the temperature dis-
tribution — are supposed to be explicitly given in order to simplify the
presentation. Of course, in general @ is determined by a set of partial dif-
ferential equations which is coupled to the reaction-diffusion system (1.1).

Lastly, if the particles are being suspended in a flowing fluid, that is,
if we consider convective diffusion, then b is the velocity of the fluid. Thus
in this case (1.1) has to be complemented by the Navier-Stokes equations
for the vector field b. In the incompressible case divb =0 so that b can
be subsumed in @ if it is regular enough. If we assume that the suspended
particles have no effect on the velocity distribution — which is true for low
aerosol concentration, for example — then we can solve the Navier-Stokes
equations for b and substitute the result in (1.1). In other words, in many
cases of physical interest, b can also be considered to be a given vector field.
This is the position adopted in this paper.

Most of the mathematical research on the coagulation-fragmentation
equations is concerned with the discrete case. Within this class the kinetic
coagulation-fragmentation equations

w=r(tyu), t>0, w0y =u’(y), (1.16)
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in which diffusion is neglected, attracted most attention. Note that in this
case (1.16) reduces to an infinite system of ordinary integro-differential equa-
tions. We refer in particular to [5], [6], and the references therein for some
of the more recent results.

Relatively little is known about the discrete coagulation-fragmentation
equations with diffusion. This case amounts to an infinite system of cou-
pled reaction-diffusion equations. An investigation of basic existence and
uniqueness questions has been initiated only very recently in [7] and has
been continued in a series of papers and preprints by Ph. Laurencot and
D. Wrzosek ([11]-[14], [27]). In all these papers, A(z,t,y)u = —a(y) Au with
a(y) being non-negative constants for y € N. Furthermore, the equations are
supposed to hold in a bounded domain under no-flux boundary conditions.

In the case of discrete coagulation-fragmentation systems the technique
used in practically all papers is the natural one: first one studies finite sys-
tems obtained by truncating to the first NV equations and, after having es-
tablished suitable a priori bounds, passes to the limit as N tends to infinity.
The situation is complicated by the fact that the authors allow unbounded
coagulation and fragmentation rates.

Much less seems to be known for the case of continuous coagulation-
fragmentation models, that is, if dy is Lebesgue’s measure on R . The ki-
netic equations have first been studied by Melzak [20], [21] under assump-
tions (1.6), (1.8), (1.11), and (1.12) with h = 0. He proved the existence of
a unique positive global solution by means of series expansions. Melzak’s
ideas have been extended by Marcus to include a transport term in one
space dimension, which depends on y only, that is, A(z,t,y)u := b(y)Ou
(see [8, Sect. 3.4]).

A different approach has been initiated by Aizenman and Bak [1]. These
authors consider the autonomous kinetic continuous coagulation-fragmenta-
tion equations with bounded coagulation and fragmentation rates, but with-
out assumption (1.12). By means of semigroup techniques they establish the
existence of a unique non-negative volume-preserving solution. This semi-
group approach has lately been extended in a series of papers by McLaugh-
lin, Lamb, and McBride ([15]-[19]) to include certain classes of unbounded
kernels as well. For further results we refer to the papers by Dubovskii and
Stewart (see [9] and the references therein).

Although diffusion and convection are fundamental in coagulation-frag-
mentation processes, there are no rigorous results for the continuous case in
presence of diffusion. The mathematical analysis is restricted to some formal
manipulations involving additional ad hoc hypotheses (see [8, pp. 336-373],
[22]-[24]).

The reason for this lack of a mathematical theory becomes apparent by
looking at the simplest continuous coagulation model with diffusion. It is
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given by the autonomous partial integro-differential equation

1

Y
Oyu — a(y)Au = 3 /0 Yy —y' 9y ) uly —y"uly') dy'

—u(y) /Ooo Y(y, ¥ )u(y') dy'

on R” with y running through RT and a(y) being a positive constant for
fixed y. The above equation can be viewed as a coupled system of un-
countably many reaction-diffusion equations, which sheds some light on the
inherent difficulties. It seems to be natural to approximate such a system
by finitely — or even countably — many equations and try to do a limit
argument. Even if such an approach could be carried through, it is unlikely
that it would lead to optimal results. In fact, even in the discrete models
involving diffusion not much is known so far about continuous dependence
on the data, say. For example, uniqueness already poses serious problems
in certain cases.

Our approach is a completely different one. Namely, we consider prob-
lem (1.1) as a single semilinear evolution equation

4+ A(t)u = R(t,u), t>0, u(0) = u° |

where u is a Banach-space-valued function of (z,t) € R® x R*. In other
words, we interprete (1.1) as a vector-valued evolution equation which we
are able to handle thanks to recent Fourier multiplier theorems for operator-
valued symbols and Banach-space-valued distributions, which we obtained
earlier [4].

Finally, we comment once more on our assumptions. As already men-
tioned, we impose — besides of mild regularity hypotheses — the physical
conditions (1.6) and (1.8)—(1.12) for the kinetic part. Of course, the fact
that y runs from 0 to oo is a mathematical abstraction since there exist
no arbitrarily large masses or infinitely small particle volumes in the physi-
cal world. This abstraction is made for convenience and does not influence
physical models since we can always assume that A, v, @, and h vanish iden-
tically for sufficiently large or small values of y. In this case condition (1.12)
is automatically satisfied, given the boundedness and non-negativity of ~.
These remarks also show that unbounded coagulation and fragmentation ker-
nels are artifacts which, by the way, enhance the mathematical difficulties
considerably.

Of course, setting up infinite systems of differential equations in the
discrete case, or approximating reality by continuous coagulation-fragmen-
tation models are mathematical idealizations as well. They simply serve as
approximations of very large systems of reaction-diffusion equations, having
the advantage that ‘one and the same law holds everywhere’ and one does
not have to worry about ‘non-uniform behavior near the boundaries of the
system’. In the discrete case, or in the continuous kinetic case when no dif-
fusion is taken into consideration, it is mathematically intriguing to admit
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unbounded coagulation and fragmentation kernels, and — from the math-
ematical point of view — this would also be of interest in the continuous
model involving diffusion. However, in the latter case the mathematical dif-
ficulties are insurmountable, at present. We emphasize again that this paper
contains the first rigorous results on continuous coagulation-fragmentation
equations with diffusion.

We close this introduction with a somewhat informal statement of the
main result of this paper.

Theorem 1.1. Suppose that b= 0, and u® > 0 satisfies

//|6§u0(x,y)|(1+y)dydx<oo, ol <2
nJy

Then there exists a mazimal T > 0 such that the coagulation-fragmentation
system (1.1) possesses a unique solution u on [0,T) satisfying (1.2) and

//u(;c,t,y)(1+y)dydx<oo, 0<t<T. (1.17)
»Jy

It is a smooth function of  for t > 0 and depends continuously on all data.

If there is neither absorption nor particle input then the total volume is
being conserved, that is,

/ /u(w,t,y)ydyda::/ /uo(m,y)ydydx, 0<t<T.
n Jy nJY

Lastly, T = oo, that is, u is a global solution if either n =1 or a is inde-
pendent of y or coagulation does not take place.

Note that condition (1.17) means that the total number of particles as
well as the total volume stay finite during time evolution.

It should be remarked that the assumption that b vanishes is only needed
to prove volume preservance and the global existence result.

Proofs and precise statements are given in the following sections.

2. Preliminaries

In this paper all vector spaces are over the reals. If there occurs a complex
number in a given formula then it is understood that the latter is interpreted
as the corresponding complexification.

Let E, Ey, . . ., E,, be Banach spaces. Then L(E, ..., E,,; Eo) ist the Ba-
nach space of all continuous m-linear maps from F; x --- x E,, into Eg, and

,Cm(E,Eo) :,C(El,,Em,Eo) if E1:: m:E
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Moreover, L(E, Ey) := LY(E; Ey) and L(E) := L(E,E). Elements of the
space L(E1,...,Ey; Eg) are sometimes simply denoted by

(e1,-..,em)rere---0e,

and are said to be multiplications.

Let (M, 1) be a measure space. Then L, (M, y; E) is the usual Lebesgue
space of (equivalence classes of) E-valued integrable functions on M for
1<p<oo, and L,(M,p) = L,(M, u; R). We write L,[E] for L,(R™; E),
where it is understood that Lebesgue’s measure is used. If no confusion
seems likely, the norm in L, (M, p; E) is simply denoted by ||-||, -

If m € N then W{"[E] := W{™(R"; E) is the Sobolev space of order m
of E-valued functions on R® whose distributional derivatives of order < m
belong to L [E], endowed with the norm

ut ullma = Y 10%ully -

la|<m

Ifm<s<m+1 then u € W[E] iff u € W*[E] and [0%U]s—m,1 < oo for
|| = m, where

[u(z) — u(y)|
U)g,1 = ——=d(z,y) , O<o<l1.
ea= [ i)

This Slobodeckii space is a Banach space with the norm

wes il = ulls + 3 10%ul st -

|a|]=m

Finally, if m —1 < s <m for some m € N then W, *[E] consists of all
E-valued distributions u on R™ such that there exist u, € W{" °[E] for
|a| < m satisfying

u= > 0uq . (2.1)

la|<m

It is a Banach space with the norm

wes o = inf (Y uallmes.)

la|<m

where the infimum is taken over all representations (2.1). It follows that

WPE] < WHE], —co<t<s<oo, (2.2)

where — denotes ‘continuous injection’ and ‘d’ stands for ‘dense’. More-
over,

0% € L(WHIEL,WE]), a€eN', seR. (2.3)
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We denote for m € N by BUC™[E] the Banach space consisting of all
u € C™(R", E) for which all derivatives of order at most m are bounded
and uniformly continuous, endowed with the norm

U > ||[u]|m,00 1= max ||0%|co -
al<m

la|<
If m < s <m+1then u € BUC*[E] iff u € BUC™[E] and

llulls,c0 = lltllm,00 + lglﬁ}fn[aau]sfm,oo <00,

where [-]5,00 is the Holder seminorm defined by

[U]g,00 == sUP M, 0<o<l1.
z,yeR™ |1’ - y|
T#y
It is known that
BUCP|E] = BUC'[E], 0<t<s<o0. (2.4)

(We refer to [3, vol. IT] for a thorough treatment of vector-valued distribu-
tions and related vector spaces.)

Let
Elx...xEm—)EO’ (61,...,€m)|—)61."'.6m (25)

be a multiplication. For u; € E}" we define uy o --- ¢ up, € Ey ", the point-
wise product induced by (2.5), by

ul."'.um(w) = ul(;p)o---.um(x) , z € R". (26)

Let §;[E;] be Banach spaces of Ej-valued functions on R” for 0 < j <m.
Then we write

gl[El] ®---0 3'm[Em] — 3"0[E0]

if the point-wise product (2.6) defines a continuous m-linear map
F1[E1] X -+ X Fm[Em] = Fo[Eo] , (u1,...,Um) > up @ @ Uy ,

the point-wise multiplication induced by (2.5).

In the next lemma, we collect those properties of point-wise multiplica-
tion which we shall need below.

Lemma 2.1. (i) Suppose Ey x Es — Egy, (e1,e2) — e ®ex is a multi-
plication. Then

BUC?[E;] @ W} [E,] — W} [Eo] , 0<t<s<o, 1<p<o.
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(ii) Let Ey x Ey x E3 — Eqy, (e1,e2,e3) — e1 ® ex @ e3 be a multiplication.
Then
BUCT[E,] e W{[E,]  Wi[Es] — W{[Eo]

provided 2n > 2s >t+n >mn and r > t, and
BUCT[El] [} WIS[EZ] o Wls[E3] — Wf[Eo]
ifr>s>n.
Proof. For 0 € R and 1 < p,q < oo we denote by By  [E]:= By (R",E)

the Besov space of order ¢ and integrability indices p and ¢ consisting of
E-valued distributions on R™. It is known that

i WPlE], p=1, c€eR\Z,
B [E] = 2.7
vl {BUC"[E], p=occ, o0 € RF\N, 27)
where = means ‘equivalent norms’ (cf. [3, vol. II], [4]). Using these facts,

(2.2), and
B ,[E] < B} |E] = B; [E] < B} [E]

for —oo <t < s < ocand 1 < p,q < 0o, the assertions are easy consequences
of [2, Theorems 2.1 and 4.1 and Remark 4.2(b)]. (Note that the results in [4]
are also valid without the assumption of finite dimensionality of the Banach
spaces Fy, ..., Ep (see [3, vol. IT]).) O

3. The Coagulation and Fragmentation Terms

We set
F:=L(Y,(1+y)dy) = Li(Y,dy) N Ly (Y, y dy) ,

and denote by Kcoag the closed linear subspace of Lo (Y2, d?y) consisting
of all ~ satisfying

Yy, y') =~vW"y), aa.yy eY.

Given v € K¢oag, We put

1 [y *©
¢y (v, w)(y) = 5/ Y(y—y', 4" )oly—y w(y') dy’—v(y)/ Y(y, y"w(y') dy’
0 0
for v,w € F and a.a. y € Y. It is easily verified that
(7, v,w) = ey (v,w)) € L(Kcoag, F,F;F) . (3.1)

Moreover,
1
/ cv(v,v)dy:——/ yo®vdly (3.2)
Y 2 Jye
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and
[ oy =0 (33
Y
for v € F.
Set Y2 := {(y,y') € Y?; 0 <y’ <y} and define
(> D) € L(Loo(YR,d%y), Ly 1oc (Y, dy))
by
]' v 1 ! !
Py (y) = o,y )'dy', aayey,
0
with the understanding that @,(0) := 0. Then
Keag = { ¢ € Lo (Y2, d%y) ; &, € Loo(Y,dy) }

is a Banach space with the norm ¢ — ||¢||co + [|Py |- For each ¢ € Koy
we set

o)) == / o ) dy — Bo(p)oy), veEF, aayeY.
Yy
It is obvious that

((p0) = fo(v)) € L(Kirag, F;F) . (3.4)

It is also easy to see that

[ fwran=[ / 1=y ety y) dy' o(y) dy (3.5)
and
/ fe(w)ydy =0 (3.6)
Y

for ¢ € Kgrag and v € F.
Suppose that (7, u,v) is a map from R” into Kceag X F x F. Then we put

ey (U, 0)(2) 1= Cya (ul2),v(2)) | reR". (3.7)
Similarly, if (¢, u) maps R" into Kgag X F then
fo@)(@) := fo@) (w(z)) , ze€R™. (3.8)

The following lemma establishes continuity properties of these maps.

Lemma 3.1. (i) If 0<7<r<nand7+n <20 < 2n then
((’Y,U,U) = C’Y(uav)) € E(BUCT[Kcoag]an[]F]an []F]aW{ []F]) °
Ifn <1 <r < oo then

((v,u,v) — cn,(u,v)) € C(BUCT[Kcoag],WlT[F],WlT [IF]; W7 []F]) ;



Coagulation-Fragmentation Processes 13

(ii) Suppose that 0 < 7 < r < oc. Then

((p,u) = fo(u)) € L(BUCT [Kerag], WY [F); WY [E]) .

Proof. Thanks to (3.7) and (3.8) the maps

(v, u,v) = C’y(“a“) and (p,u) — fcp(u)

are point-wise multiplications induced by (3.1) and (3.4), respectively. Hence
the assertion is a consequence of Lemma 2.1. O

Throughout the remainder J denotes a closed subinterval of RT con-
taining 0 and more than one point. For each subinterval J' of J we put
J' := J'\{0}. Moreover, £ := £V 0 for £ € R.

Corollary 3.2. Suppose that 7 € (—1,7)\N with r > 0 and that
T 4+n<20<2n if T<n,
whereas o := 71 if T > n. Also suppose that
(t= (1), (1)) € C*(J, BUCT[Kcong X Kitrag))

for some p € R*. Then

(t = oy Fow)) € C° (L2 (WP F), W F)) x £(W7F, W7 [F))) -

In the following, we set
x(@,t) :==x®) (=) , x(@t,9,9") = x(=,1)(y,y")
for x € {v,p}, (z,t) eR* x J, and (y,y') € Y x Y. We also put
c(@,t,y,u) =y (w,u)(y) , (@, t,y,u) = foa(w)(y)

for (z,t) e R* x J, y€Y, and u € F. Finally, C(t,-) and F(t,-) denote
the Nemytskii operators induced by ¢(-,t,-,-) and f(-,t,-,), respectively,
that is,

C(t,u)(x) = C(.’L',t, ,U(.CL')) ’ F(t,u)(x) = f(mata ,’U/(IL'))

foru: R® — F and (z,t) € R® x J. Then it follows that, given the hypothe-
ses of Corollary 3.2,

(= C(t) + F(t,0) € C°(LOE(WIELWIE) ), (39)

where Cp°(E1, Ey) is the vector space C*°(Ey, Ey) endowed with the topol-
ogy of uniform convergence of all derivatives on bounded subsets of E;.
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4. The Diffusion-Convection Semigroup
For k € N we set
LF= Lo (Y, dy; RY)
and

Lan = Loo(Y; dy, an) ,

00,sym ym

where R T is the space of all real symmetric (n x n)-matrices. Then, given
o € Rt

E’ := BUC?[L1,.] x BUC’[LY] x BUC?[L%] x BUC~V'[LL].
We put

AleJu := =V - (@Vu + @u) + b- Vu + aou , e :=(a,d,b,a0) € B .
In the following, we write e(x,y) for e(z)(y) for x € R and y € Y.

Lemma 4.1. If -1<s<o—1< oo then

(e Ale]) € £(E7, £(W;*[F), Wi E) ) -

Proof. First observe that
Lo(Y,dy) xF =2 F, (a,u)+— au,

with au(y) := a(y)u(y) for a.a. y € Y, is a muliplication. Now the assertion
is an easy consequence of (2.2), (2.3), and Lemma 2.1. O

Suppose that E; <i> Ey. Given k¥ > 1 and w > 0, we write
Ae 'H(El,Eo;KJ,w)
iff A€ L(E1,Ey) with w+ A being an isomorphism from E; onto Ey and

Lo IO Al

LASAN N | L . , ReA>w, wue E\{0},
S ATl + Tl < 1\ {0}

where ||-||; is the norm in E;. We also set

H(E, Ep) = U H(Er, Eo; k,w) .

k>1

w>0
Then H(E1, Ep) is open in L(E, Ey), and A € H(En, Ep) iff —A, considered
as a linear operator in Ey with domain FE;, generates a strongly continuous
analytic semigroup on Ey, that is, in L£(Ep) (see [3, Sect. I.1]).

After these preparations we can formulate the following basic genera-

tion result.



Coagulation-Fragmentation Processes 15

Theorem 4.2. Suppose that s € (—1,00)\N witho > s+ 1, and o, M > 0.
Then there exist k > 1 and w > 0 such that

Ale] € H(WH[F], WP [F]; k,w)
whenever e = (a,d,b,ao) € B satisfies |le|lz= < M and

a(z,y)E-€>alél’, z€R, aayeY, £eR'.  (41)

Proof. If a is a constant with respect to x € R* and (d, b, ap) = 0 then
the assertion follows from [4, Theorem 7.3], thanks to (2.7). The case of
z-dependent a is then handled — as in the finite-dimensional case — by
freezing the coefficients and a partition of unity argument. Finally, the lower
order terms are included by employing a standard perturbation technique.
Details are left to the reader (and will be given in [3, vol. II]). O

Suppose that ¢t — e(t) : J — E”. Then we put
(@,@,b,a0)(w,t) = e(t)(@), weR*, tel,

and

A(t) == Ale(t)] , teJ.
Using these notations we can prove the following theorem which is the basis
for our further investigations.

Theorem 4.3. Suppose that s € (—1,7)\N with r > 0 and
(t — e(t)) € C*(J,E"TT)
for some p € RT. Also suppose that there exists o > 0 such that
a(z,t,y)&-&> g|§|2 , (z,t) ER*"XJ, aa.y€Y, E£eR*. (4.2)

Then
(t > A1) € C° (L H(WIHF, W) ) . (4.3)

Proof. This is an easy consequence of Lemma 4.1 and Theorem 4.2. O

Finally, suppose that
(t = h(t)) € C* (J, W [F)
for some 7 € (s,7), and put
R(t,u) := C(t,u) + F(t,u) + h(t) .

Then, given the hypotheses of Corollary 3.2 and Theorem 4.3, the initial
value problem (1.1) can be rewritten as the semilinear parabolic evolution
equation

u+ Alt)u=R(t,u), ted,  u0)=u (4.4)
in the Banach space W{[F|, where A satisfies (4.3) and

(t = R(t,) € C°(J,C° (WY EL W E) ) - (4.5)



16 Herbert Amann

5. Existence, Uniqueness, And Regularity

By an admissible interpolation functor (-,-)g we mean an interpolation

functor of exponent 6 such that F; i) (Eo, E1)g whenever E; £> Ey. Note
that, in particular, the real interpolation functor (-,-)g,1 has this property
(We refer to [3, Sect. I1.2] for a summary of the basic facts of interpola-
tion theory).

We denote by C} (E1, Ey) the set of all maps from E, into Ey, which
are uniformly Lipschitz continuous on bounded subsets of E;. It is a locally
convex space endowed with the family of seminorms

u(z) —u
u = sup [lu(z)|lo + sup llu(z) = u()llo
z€B z,yCB |z — yl|1
TF£Y

?

where B runs through the family of all bounded subsets of E;. As an easy
consequence of the mean-value theorem we obtain

Cy (Ey, Ey) — Cy (Ey, Ey) , (5.1)

where C}(E, Eo) is C'(E1,Eo) endowed with the topology of uniform
convergence of the functions and their first derivatives on bounded sub-
sets of F.

Suppose that X is a locally convex space. Then C?(J, X)isfor 0 < p < 1
a locally convex space as well, where the topology is induced by the family
of seminorms

u+— max p(u(t)) + sup M, TelJ,

0<t<T o<s<t<T |8 —t|P

with p running through a family of seminorms defining the topology of X.

After these preparations we can prove the following fundamental exis-
tence, uniqueness, and continuity theorem for semilinear parabolic evolution
equations.

Theorem 5.1. Suppose that E ‘i> Ey, that 0 <y < B <a< 1, and that
(,-)o are admissible interpolation functors for 0 € {a, B,v}. Put

Eg = (Eo,El)g
and suppose that
(t = (A(), g(t, -))) € C*(J, H(Er, Bo) x CF (B, E,))

for some p € (0,1).
Then, given u® € E,, the initial value problem

o+ Atu=g(t,u), telJ, u(0) = u® (5.2)
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has a unique maximal solution
u(-,u®) == u(-,u’, A, g) € C(J(u®), E,) NC(J(u°), E1) N C* (J(u°), Eo) -
The mazimal interval of existence, J(u®) := J(u°, A, g), is open in J. If

sup llu(t, u®)||la < 0o (5.3)
teJ(u®)N[o,T]

for each T € J then u(-,u®) is a global solution, that is, J(u®) = J.
For each T € J(u®) there exists a neighborhood U of (u°, A, g) in

E, x C?(J,H(E1, Ey)) x C*(J,C} (Eg, E,))
such that J(@°, A,§) D [0,T] for (@, A,§) € U and such that
u(-,ﬂo,g,fﬁ - ’LL(',’LLO,A,g) in C([OaT]aEa)

as (@° A,5) — (u°, A, g) in U.

Proof. Put § := pA (a — ). Fix T € J and set
g(t) == g(t, o), 0<t<T,

for v € C°([0,T], Eg). Then g, € C°([0,T], E,) and [3, Theorems I1.1.2.1
and I1.5.3.1] guarantee the existence of a unique solution

u(+v) € C([0,T], Eo) N C((0,T], E1) nC*((0,T], Eo) (5.4)
of the linear Cauchy problem
o+ A u=g,(t), 0<t<T, u(0) = u® . (5.5)
If w € C°([0,T), Es) then [3, Theorem IL5.2.1] implies
lu(t;0) —utw)lls < T lu = vllgommyy » O<E<T,

where ¢ is independent of v and w if v([0,7]) and w([0,7]) remain in
a given bounded subset of Ez. Thus, by making T smaller, if necessary,
the contraction mapping principle implies the existence of a fixed point
u € C([0,T], Eg) of v u(-;v). Next we infer from [3, Theorem II.5.3.1]
that u € C([0,T], E.) N C%([0,T), Es). Hence u = u(-;%) and (5.4) imply
that @ is a solution of (5.2) on [0, T]. Now a standard continuation argument
shows that @ has an extension u(-,u°) to a maximal solution of (5.2), and
that the corresponding maximal interval of existence is open in J. The
uniqueness assertion is obvious.

Suppose that (5.3) is satisfied for each T € J and J(u®) # J. Then the
extension argument can be applied to the initial value u(t*,u°), where t* is
sufficiently close to the right end point of J(u), to obtain an extension
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of u(-,u’) over an interval which is strictly larger than J(u®). Since this
contradicts the maximality of J(u®) it follows that (5.3) implies J(u®) = J.

Lastly, it is not difficult to deduce the stated continuity assertion from [3,
Theorem I1.5.2.1]. (Recall that #(E1, Ep) is open in L£(E1, Ep).) For details
we refer to [3, vol. II]. O

It is now easy to establish the well-posedness of system (1.1).

Theorem 5.2. Suppose that r,p >0 and
(=24+n/2)V(-1)<s<T, s¢N. (5.6)
Also suppose that

(£ (e, (1,9), ) (1) € C7 (1B x BUC" [Keoag X Kirag] x W7 [F])

for some T > s, such that (4.2) is satisfied for some a > 0. Finally, as-
sume that
(st +n)/2<o<nA(s+2), s<n, (5.7)

and
s<o<s+2, s>n, (5.8)

with o ¢ N. Then, given any u® € W7 [F], the coagulation-fragmentation sys-
tem (1.1), that is, problem (4.4), has a uniqgue mazimal solution

u(-,u’) € C(J(u®), WY [F]) NC (J(u®), Wy H[F]) NC* (J(u), WIF]) , (5.9)

where the mazimal interval of existence, J(u®), is open in J.

This solution, u(-,u®,e,v,p, h) :=u(-,u®), depends continuously on the
data in the following sense: given T € J(u), there exists a neighborhood U
of (u° (e,(7,¢),h)) in

WY [F] x BUC? (J,E"" x BUC"[Kcoag X Ktrag] x W1 [F])

such that u(-,u°,€,%, @, h) exists on [0,T] and

u('aﬂoaréaaa @5%) — u(-,uo,e,'y,ap, h) in C([OaT]an[m)

as (170757 ?7 (;57 h) _> (u07e7 /77 (p7 h) zn u'

Proof. First note that (5.6) implies s > -1 if n=1,2, and s > —1/2 if
n = 3. Moreover, (5.6) guarantees that condition (5.7) is not void.

By making 7 smaller, if necessary, we can assume that
(tt +n)/2<o<nA(s+2) if s<n,
and that 7 < o if s > n. Then we can fix o1 such that

V(t+n)/2<o1<o<nA(s+2), s<n,



Coagulation-Fragmentation Processes 19

and
s<1t<o1<0, s>n.

We can also assume that 7,01 ¢ Z.

We set Ey := W{[F] and E; := W2 [F]. We also set Ep := (Ey, E1)g,1
for 0 < @ < 1. Then it follows from (2.7) and [4, formula (5.7)] (also see [3,
vol. TT]) that

Eg =W,  s+20¢7Z. (5.10)
Put a:= (0 —1s)/2, B:=(0o1—35)/2, 7v:=(7—5s)/2. Then Theorem 4.3
and assertions (4.5) and (5.1) imply that problem (4.4) satisfies the hy-
potheses of Theorem 5.1 (with g replaced by R, of course). This proves
everything. O

The following proposition shows that u(t, u°) is independent of the choice
of s and o, provided ¢ > 0, and that problem (4.4) enjoys a smoothing
property.

Proposition 5.3. Presuppose the hypotheses of Theorem 5.2 and fix G in
(n/2,mn A2). Then, given u® € W{[F], problem (4.4) has a unique mazimal
solution

u(-,u) € C(J(u®), WY [F]) N C (J (u®), Wi *[F) N C*(J (u®), WP[H]) |
and J(u®) is independent of s satisfying (5.6).
Proof. Fixs € (—1/2,0) such that & < n A (5 + 2). Then Theorem 5.2 guar-
antees the existence of a unique maximal solution u(-,u°) in
C(J(u®), WY TF)) N C(J(®), Wy H[F]) nC' (J(u®), WiTF) . (5.11)

If 5 < s then we fix any t* € J(u®) and put u* := u(t*,u®). For some suffi-
ciently small § € (0,p) we set 0 := 3+ 2 — 2§ and choose s; € Rt \N such
that it satisfies (5.7) or (5.8), respectively. Then, setting

Jo={teR" ;t+t* € JW®)}, A*(t):=A(t+t%)

and
R*(t) :== R(t + t*,u(t + t*,u°)) , teJ*,
we consider the linear initial value problem
b+ At =R(t), teJ,  v(0)=u". (5.12)

From (5.10) and [3, Proposition II.1.1.2] we infer that
(t = u(t +t*,4%) € C°(J*, WY [F) .

Thus (3.9) and (5.1) imply R* € C°(J*, W;[F]). Consequently, a unique
solution

v e O( W E) NC(J*, W) N O (/WP E)  (5.13)
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of (5.12) is guaranteed by [3, Theorem I1.1.2.1]. Clearly, v is also the unique
solution of (5.12) in

C(J*, Wi H) N C(J*, Wi [F)) nC* (J*, WY[F) .
In this class t = u(t + t*,u°) is a solution of (5.12) as well. Hence
o(t) = u(t +t*,u°) , teJ,

by uniqueness. This proves that ¢ +— u(t + t*,u°) possesses the regularity
properties (5.13), where s; > 3. Now it is easy to see that we can repeat
this bootstrapping argument a finite number of times to reach s, which
proves the assertion. O

We denote by CI*'[E] := C§*(R™, E) the closed subspace of BUC™[E]
consisting of all u such that 0%u vanishes at infinity for |a| < m. Moreover,

CelE) = () Ci'E],

m>0

equipped with the natural projective limit topology. Similar definitions ap-
ply to > for § € {BUC,W;} and to E®.

Corollary 5.4. Suppose that p > 0 and
(t = (e, (1,9), h) (t)) € C?(J,E® x BUC™[Keong X Kirag) x W[H))

such that (4.2) is satisfied. Then, if u® € W/[F] for some 0 € (n/2,nA2),
the unique mazimal solution of (4.4) belongs to C*(J(u®), C§°[F]).

Proof. This follows from the preceding proposition and the Sobolev em-
bedding

WelE] S CPE],  s>m+n, meN, (5.14)

which is also valid in the case of an arbitrary Banach space E (cf. [3, vol. II]).
O

It should be observed that this corollary applies, in particular, if all data
are independent of x € R™. Moreover, it can also be shown that the solution
is more regular in the time variable than stated here. Roughly speaking, 4 is
p-Holder continuous with respect to ¢ > 0 (see [3, Theorem I1.1.2.1]). We
do not go into details.
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6. Positivity

Let X be a vector space ordered by a proper cone X T, the positive cone
of X, by means of z <y iff y—xz € XT. If S is any set, then X< is also
an ordered vector space with respect to the ‘natural’ (that is, point-wise)
order induced by the positive cone (X1)%. Thus u < v for u,v € X% iff
u(s) <w(s) for s € S.

If X and Y are ordered vector spaces, their product X x Y is an ordered
vector space as well with respect to the ‘natural product order’, whose
positive cone is XT x Y+,

If X is alocally convex space then X is an ordered locally convex space if
X is an ordered vector space whose positive cone is closed. If X is an ordered
locally convex space and Y is a locally convex space with Y — X, then Y is
given its ‘natural’ order induced by X, whose positive cone equals Y N X .
Note that Y is then an ordered locally convex space as well. Finally, the
real line is always given its natural order whose positive cone is R .

From these definitions it follows that each one of the spaces L, (M, u; E),
1 < p < oo, and BUC?[E], W{|E], s € R, is an ordered Banach space, pro-
vided FE is an ordered Banach space. (Of course, in the case of L,(M, u; E)
the point-wise order refers to the point-wise order p-a.a., that is, the point-
wise order of the equivalence classes.) In particular, F is an ordered Ba-
nach space with respect to the natural order induced by the positive cone
F+ = LT (Y, (1 + y)dy), and all function spaces considered below are given
their natural orders.

After these preparations we prove an approximation result for positive
cones. For this we denote by C.(Y) the space of all continuous functions
on Y with compact supports.

Lemma 6.1. DY (R") @ CF(Y) is dense in W{[F] for s € RT.

Proof. Thanks to (2.2) it suffices to consider s € N. Standard cutting and
mollification arguments show that DT [F] is dense in W#[F|*. From the proof
of [3, Proposition V.2.4.1] we infer that Dt (R™) ® F* is dense in DT [F]. Now
the assertion follows from the well-known fact that CF(Y') is dense in F*.
O

A bounded linear operator B on an ordered Banach space E is positive
(in symbols: B > 0) if B(E™T) C E*. A closed linear operator A in E is
resolvent positive if there exists Ag > 0 such that [Ag,00) belongs to the
resolvent set p(—A) of —A and (A + A)~! > 0 for A > Ag.

Proposition 6.2. Suppose thats € (0,7)\N, and let e € E'*" satisfy (4.1).
Then Ale] is resolvent positive on W{[F].

Proof. Theorem 4.2 implies that A := Ale] is a closed linear operator
in W#[F] with [w, 00) C p(—.A) for some w > 0.
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(i) Suppose that s > n and put Fy := Lo (Y,dy). Then the proof of
Theorem 4.2 applies to give

A€ H(WiTFo ], WiFs]) -

Hence there exists woo > 0 such that [wee,00) C p(—Asx), where A de-
notes A, but considered as a linear operator in W [Fu,]. Put

Mo =wVwe V (llaollsuciry) + IV - d@llsucrry) -

Fix A > X and v € DT (R"?) ® C.(Y), and put u:= (A + Ax) 'v. Then
u € WiT?[Fy] and

(A + A(z,y))u(z,y) = v(z,y) , zeR", aayeY.

Note that (5.14) implies u € C3[Fy]. Thus it follows that, for a.a. y € Y,
the function u(-,y) belongs to CZ(R"™) and satisfies the elliptic differential
inequality

_a‘('7 y) : VQU('ay) + 5('7 y) ) VU(,:I/) + d(7 y)u('ay) >0 (61)

on R" where d:= XA+ag—V-a@> 0. Here V2w denotes the Hessian of w
and A: B is the trace of the matrix product ABT. The coefficients of (6.1)
are uniformly bounded on R™. Since u(-,y) vanishes at infinity, the classical
maximum principle implies that u(-,y) is nonnegative. This being true for
a.a.y €Y, we see that u € W2T[F]*.

Since DT (R™) @ CF(Y) C W#[F]" and A > w, Theorem 4.2 guarantees
that u belongs to W;+2[F] as well. Consequently,

A+ AHDT(RY) @ CHY)) Cc WP[FT A> ).

Now we infer from Lemma 6.1, the continuity of (A + .4)~! on W{[F|*, and
the closedness of the positive cone that A is resolvent positive on W7 [F].

(ii) Suppose that s < n. Fixn < ¢t < r; < oo with ¢ ¢ N and suppose that
e € Bt Tt follows from (i) that A is resolvent positive on W{[F]. Lem-
ma 6.1 also implies that W{[F]* is dense in W[F]*. Thus, since (A + .4) "1
exists and is continuous on W{[F] for sufficiently large A, we see, once more
by approximation, that A is resolvent positive on W [F.

Finally, fix ro € (s,7) if r < r1 and suppose that e € E'*". Then it is
well-known that there exists a sequence (e;) in E'*™ converging in E'*7o
towards e. Hence we deduce from Lemma 4.1 and the continuity of the
inversion map B — B~! that

A+ Ale;) ™ = A+ A (G - o)

in L(W{[F]) for sufficiently large ), since we can assume that e; satisfies
(4.1) for all j € N with a replaced by some smaller positive number. Thus
the resolvent positivity follows in this case also. O
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After these preparations we can prove the main result of this section,
namely that the solution u(-,u%) of (4.1) is positive whenever u® > 0 and
(v,¢) and h are positive. (Recall that an element x of an ordered vector
space is positive iff z > 0.)

Theorem 6.3. Let the assumptions of Theorem 5.2 be satisfied and suppose

that (v,¢) > 0 and h > 0. Then u® > 0 implies u(-,u’) > 0.

Proof. (i) Suppose that s > n. Then Theorem 5.2 and (5.14) imply
wi=u(-u?) € O(J(), ColF) -

Fix T € J(u°) and put wp := ||7||,, maxo<i<7 |[u(t)||copr- Then

o0
‘/ y(x, t,y,y ulz, t,y'") dy" < wp (6.2)
0

for (z,t) € R* x [0,T] and a.a. y € Y. Set

1

py(v,w)(y) := 5 /Oy Yy -y y")ly —y)w(y') dy'

and o
3y (v, w)(y) == v(y)/0 Y,y )w(y") dy’

for y € Y and v,w € F. Also put w := wo + ||Py||cc and

G(t,v) = py)(v,v) = @) (v, u) + wv + F(t,v) + h(t)
for 0 <¢t<T and v € F. Then

G(t,u(t)) = R(t,u(t)) +wu(t), 0<t<T,

and (6.2) and the structure of F' imply

G(t,v(t) >0, ve C([0,T],CT[F]), 0<t<T. (6.3)

Lastly, set A, := w + A. Then u is the unique solution of the initial value
problem

'+ A,y =G(t,v), 0<t<T, v(0) = u° (6.4)
in WE[H.

Denote by U the parabolic evolution operator for A,, whose existence
is guaranteed by [3, Corollary 11.4.4.2]. Put

V)(®) :=/0 UtNG(ru(m)dr, veWS[F, 0<t<T.

Then (6.4) implies that u solves the nonlinear Volterra integral equation

u=U(-,0)u’ + V(u) (6.5)
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in C([0,T],W{[F]). If T is sufficiently small then equation (6.5) can be
solved by the method of successive approximations, that is, the sequence
(uy), determined by ug := u° and

Un+t1 = U(-,O)UO + V(un) ’ neN )
converges in W [F] towards u. Since A, is resolvent positive by Proposi-

tion 6.2, it follows from [3, Theorems I1.6.4.1 and 11.6.4.2] that U is positive.
Thus (5.14) and (6.3) entail that u,, > 0 for n € N. Consequently, u > 0.

These considerations show that there exists T € J(u®) such that 4 > 0
implies u(t,u®) > 0 for 0 < ¢ < T. Set
T* :=max{T € J(u°) ;u(t,u’) >0} .
If T* < sup J(u®) then we apply the above reasoning to the initial value
problem

O+ At +T*)v=R({t+T*v), teJwu’) -1, v(0) = u(T*,u°)

to find that u(t,u®) > 0 on [0,7* + T**] for some T** > 0. Since this con-
tradicts the choice of T*, we see that T* = sup J(u®), that is, u(-,u%) > 0.

(ii) Suppose that s <n and r = co. Fix s1,01 ¢ N with
n<s1<op <8 +2

and suppose that u® € W' [F]T. Then it follows from (i) that u(-,u°%) >0
in W'[F], hence in W{[F] by (2.2). Since W'[F|]T is dense in W/t
the continuous dependence of u(-,u°) on u® in W/ [F], as guaranteed by
Theorem 5.2, implies u(-,u°) > 0 in W/ [F] for u® € W{[F]".

(iii) Lastly, suppose that s <n and r > s. Then, as in step (ii) of the
proof of Proposition 6.2, we approximate (uo, e, (v, 9), h) by smooth func-
tions and derive the positivity of u(-,u®) from its continuous dependence on
the data and from (ii). O

7. Conservation of Volume

Throughout this section we suppose that
r,p,7 >0, and t —~ (e, (7, ), h)(t) belongs to
CP(J,E" x BUCT[K S, x Kif, ] x W F*)
with (4.2) being satisfied. Moreover,
b=0, n/2<o<n, ueWI[F".

(7.1)

We fix s € (0,7 A (20 —n) A7) and denote by u := (-,u®) the unique max-
imal solution of the coagulation-fragmentation system (1.1). Theorem 5.2
implies that u is well-defined and satisfies (5.9). Thus

u € C(J(u®), W2[F]) N C* (J(u®), L1 [F]) , (7.2)

and Theorem (6.3) guarantees u > 0.
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Lemma 7.1. If v € W2[F] then

/ /A(t)vyjdydx:/ /aovyjdyda:, j=0,1,
nJy rnJy

forte J.

Proof. Choose x € D(R") with x(z) =1 for |z]| < 1 and set x.(z) := x(ez)
for z € R® and ¢ > 0. Then

—/ /V-(aVv—}—d’v)yjdyxadm:/ /(aVv—FEiv)yjdy-Vxde.
nJY |z|>1/e JY

Since ||Vxelloo < €]|VX|lo, We see that the last integral tends to zero as

e — 0. Now the assertion follows. O

We denote by

V() ::/n/yu(t)ydydx, te I,

the total particle volume at time ¢. Similarly,

Ap(t) ::/n/yag(t)u(t) ydy dx

and

H(t) ::/n/yh(t)ydyda:

are the total absorbed particle volume and the total particle input, respec-
tively, at time ¢.

The following theorem shows, in particular, that the total particle vol-
ume is conserved if neither absorption nor particle input takes place.

Theorem 7.2.

V() = V(0) + /0 (H(r) = Ao(®) dr,  teJ).

Proof. By integrating
u(t) + A(t)u(t) = R(t,u(t)) (7.3)

over R" x Y with respect to the measure dz ® ydy and taking (3.3) and
(3.6) into account we obtain

V() = H(t) - Ao(t) , (7.4)

thanks to (7.2) and Lemma 7.1. Now the assertion follows by integrating
(7.4) from tq to t, where 0 < tg < ¢, and letting to tend to zero. O
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Corollary 7.3. Put a* :=||a||c. Then

t t
etV (0)+ / e () dr < V() < e 'V (0)+ / e I H(r)dr
0 0

for t € J(u°).

Proof. Note that
—a V() <Aot) <aV(t), teJw).
Thus (7.3) entails the differential inequalities
Ht)—atV(H)<V@)<HE)+a V(t), teJu’),

which imply the assertion. 0O

8. Global Existence

Finally, we discuss the problem of global existence, that is, the question
whether J(u®) = J.

Theorem 8.1. Let assumption (7.1) be satisfied. Then u := u(-,u®) erists
globally, provided one of the following assumptions is satisfied:

(i) There is no coagulation, that is, v = 0.
(i) n=1.
(iii) A is independent of y € Y.

Proof. (i) is obvious since in this case (4.4) is a linear evolution equation.

(ii) Set F; := L1(Y,y’dy) for j = 0,1. Then, by integrating (7.3), we
infer from Lemma 7.1, the positivity of u, and (3.2) and (3.5) that

W ®llgey = [ [ oty

llolloo
< llaolloo [[u@)ll 1 ) + =5V (&) + 12| 2. ro]

for t € J(u®). Thus we deduce from Corollary 7.3 that there exist a > 0 and
B € C*(J) such that £ := [|u(-)||,[r,] satisfies the differential inequality

E<ag+pB(t), telw).
Since & € C(J(u®)) N C* (J(u?)) it follows that

(@)l <o), teJ)n[o,T], Tel.
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Thus, by taking V'(t) = ||u(t)|L,[g,] into account and applying Corollary 7.3
once more,
lu@llp,m <e(T), teJ@)N[O,T], TelJ. (8.1)
From (3.1) and (3.4) we deduce that
[C(t,u®)], < cllu®)ll, lu®)h

and
1E(#u®)], < ellu?)

for t € J(u®) (where ||-||x,q is the norm in WX [F] and [|-|g := [|-||o,q). Hence
we infer from (8.1) that

lloo

| Rt u®)], < @) (lu®)llo+1) , te Jw’)N[0,T], T>0. (82)

Fix 5 € (—1,0) and 7 € Rt \N with 1 <& < 5+ 2. Then (5.14), the injec-
tion L, [F] — W{[F], and (8.2) imply

[B(tu®))]l5, < @ (lu@®llzr +1) (8.3)

fort € J(u®)N[0,7T] and T € J. Theorem 5.2 guarantees that u is a solution
on J(u) of the linear initial value problem

o+ A(t)v = R(t,u(t)) , te€ J°), v(0) = u®,
where R(-,u(-)) € C(J(u®), W] [F]) with § <7 < 0. Consequently, u satis-
fies in W{[F] the integral equation
t
u(t) = U(t,0)u’ +/ U(t, 7)R(r,u(r)) dr , te JuO) . (8.4)
0

Hence it follows from [3, Lemma I1.5.1.3] and

lu®)llz < e(T) (77 60l + /0 (t =) 2 (u(r) 7 +1) dr )

for t € J(u®)N[0,T] and T € J. Thus the singular Gronwall inequality
(e.g., [3, Corollary I1.3.3.2]) entails that, given to € J(u°),

lu@®llog < cllu@®llz, <e(T),  teJ@’)n[t,T],  (85)

for every T € J with T > to. Now the assertion is a consequence of the last
part of Theorem 5.1, since E, = W{[F] by the proof of Theorem 5.2.

(iii) By integrating (7.3) over Y with respect to the measure dy and using
(3.2), (3.5), and the positivity of it follows that @ := [, udy satisfies the
parabolic differential inequality

o+ AT <hE), teJwd), u0)= / u® dy
Y
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on R, where h(t) := [, h(t) dy. If u € C§(R™) then the maximum principle
implies

()| (zn,50) = O @my < e(T),  te J@)N[O,T].

In the general case we obtain this estimate by an approximation argument
similar to the one of the proof of Theorem 6.3. Hence Corollary 7.3 and
(8.2) imply

|R(tu®)];, <eT), teJ@)Nn[0,T], TelJ.

Thus (8.4) and [3, Corollary I1.3.2.2] guarantee that (8.5) is true in this case
also. O

Remark 8.2. Instead of assuming (iii) it suffices to presuppose that a is
independent of y € Y. This follows by an obvious modification of the above
proof. O

References

1. M. AizenmaN & T.A. Bak. Convergence to equilibrium in a system of
reacting polymers. Comm. Math. Phys., 65 (1979), 203-230.

2. H. AMANN. Multiplication in Sobolev and Besov Spaces. In Nonlinear Anal-
ysis, A Tribute in Honour of G. Prodi, pages 27-50. Quaderni, Scuola Norm.
Sup. Pisa, 1991.

3. H. AMANN. Linear and Quasilinear Parabolic Problems, Volume I: Abstract
Linear Theory. Birkhauser, Basel, 1995. Volumes IT and III in preparation.

4. H. AMANN. Operator-valued Fourier multipliers, vector-valued Besov spaces,
and applications. Math. Nachr., 186 (1997), 5-56.

5. J.M. BALL & J. CARR. The discrete coagulation-fragmentation equations:
existence, uniqueness, and density conservation. J. of Stat. Phys., 61 (1990),
203-234.

6. J.M. BaLL, J. CARR & O. PENROSE. The Becker-Déoring cluster equations:
basic properties and asymptotic behaviour of solutions. Comm. Math. Phys.,
104 (1986), 657-692.

7. PH. BENILAN & D. WRZOSEK. On an infinite system of reaction-diffusion
equations. Adv. Math. Sci. Appl., 7 (1997), 349-364.

8. R.L. DRAKE. A general mathematical survey of the coagulation equation. In
G.M. Hidy, J.R. Brock, editors, Topics in Current Aerosol Research, Part 2,
pages 202-376. Pergamon Press, Oxford, 1972.

9. P.B. DuBovskil & I.W. STEWART. Existence, uniqueness and mass conser-
vation for the coagulation-fragmentation equation. Math. Meth. Appl. Sci.,
19 (1996), 571-591.

10. S.K. FRIEDLANDER. Smoke, Dust and Haze. Fundamentals of Aerosol Behav-
ior. Wiley, New York, 1977.

11. PH. LAURENGOT & D. WRZOSEK. Fragmentation-diffusion model. Existence
of solutions and their asymptotic behaviour. Proc. Royal Soc. Edinburgh,
Section A. To appear.

12. PH. LAURENGOT & D. WRZOSEK. The Becker-Doring model with diffusion.
1. Basic properties of solutions. Colloqu. Math., 75 (1998), 245-269.

13. PH. LAURENGQOT & D. WRzOSEK. The Becker-Déring model with diffusion.
II. Long time behaviour. J. Diff. Equ., 148 (1998), 268-291.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Coagulation-Fragmentation Processes 29

PH. LAURENGOT & D. WRzOSEK. Coagulation model with partial diffusion,
1998. Preprint.

D.J. McLAUGHLIN, W. LAMB & A.C. MCBRIDE. An existence and unique-
ness result for a coagulation and multiple-fragmentation equation. SIAM
J. Math. Anal., 28 (1997), 1173-1190.

D.J. McLAuGHLIN, W. LAMB & A.C. McBRIDE. Existence results for
non-autonomous multiple-fragmentation models. Math. Meth. Appl. Sci., 20
(1997), 1313-1323.

D.J. McLAUGHLIN, W. LaMB & A.C. MCBRIDE. A semigroup approach to
fragmentation models. SIAM J. Math. Anal., 28 (1997), 1158-1172.

D.J. McLAUGHLIN, W. LAaMB & A.C. McBRIDE. Uniqueness results for
non-autonomous multiple-fragmentation models, 1997. Preprint.

D.J. McLAuGgHLIN, W. LAMB & A.C. MCBRIDE. Existence and unique-
ness results for the non-autonomous coagulation and multiple-fragmentation
equation. Math. Meth. Appl. Sci., 21 (1998), 1067-1084.

Z.A. MELZAK. A scalar transport equation. Trans. Amer. Math. Soc, 85
(1957), 547-560.

Z.A. MELZAK. A scalar transport equation II. Mich. Math. J., 4 (1957),
193-206.

S. SiMoNs. Diffusive relaxation for a system of coagulating particles — inter-
actions between the modes. J. Phys. A, 24 (1991), 227-288.

S. SimoNs. On the steady-state equation for particles undergoing simultane-
ous Brownian diffusion and coagulation. J. Phys. A, 29 (1996), 303-307.

S. SiMoNs & D.R. SIMONS. The effect of particle coagulation on the diffusive
relaxation of a spacially inhomogeneous aerosol. J. Phys. A, 21 (1988), 3522—
3536.

M.V. SMOLUCHOWSKI. Drei Vortrige iiber Diffusion, Brownsche Bewegung
und Koagulation von Kolloidteilchen. Physik. Z., 17 (1916), 557-585.

M.V. SMOLUCHOWSKI. Versuch einer mathematischen Theorie der Koagula-
tionskinetik kolloidaler Lésungen. Z. Phys. Chem., 92 (1917), 129-168.

D. WRrzosEK. Existence of solutions of the discrete coagulation-fragmentation
model with diffusion. Top. Meth. in Nonl. Anal., 9 (1997), 279-296.

G. ZEBEL. Coagulation of aerosols. In C.N. Davis, editor, Aerosol Science,
pages 31-58. Academic Press, New York, 1966.

Institut fiir Mathematik
Universitat Zirich
Winterthurerstr. 190
CH-8057 Ziirich
Switzerland



