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Abstract. Motivated by applications to problems from physics, we study elliptic operators with
operator-valued coefficients acting on Banach-space-valued distributions. After giving a defini-
tion of ellipticity, normal ellipticity in particular, generalizing the classical concepts, we show
that normally elliptic operators are negative generators of analytic semigroups on L,(R", E) for
1 <p < oo, and on BUC(R", E) and Cp(R"™, E), as well as on all Besov spaces of E-valued distri-
butions on R™, where E is any Banach space. This is true under minimal regularity assumptions
for the coefficients, thanks to a point-wise multiplier theorem for E-valued distributions proven
in the appendix.
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Introduction

In this paper we derive resolvent estimates for linear elliptic differential operators

A= A(z,D) = Z aq(z)D* (0.1)

la|<m

acting on E-valued distributions on R", where E is an arbitrary (nontrivial) Banach
space E. Thus a,(z) is, in general, a bounded linear operator on E. Of course, in
this generality, a concept of ellipticity has to be defined encompassing the finite-
dimensional case, that is, E = CV.

A particularly simple situation occurs if (Y, u) is a o-finite measure space and
E := L,(Y, p) for some ¢ € [1,00]. Then, given functions aq : R* — Lo (Y, ) and
setting aq(z,y) := aq(z)(y), we can interpret

> aalz,y)DS (0.2)

lo|<m



as a family of scalar differential operators depending on the parameter y € Y. In this
case ao(z) acts as a multiplication operator on E via [aq(2)v](y) = aa(z, y)v(y)
for (z,y) € R* x Y and v € L,(Y, ). Of course, our concept of ellipticity for (0.1)
has to be wide enough to include the case where there exists a constant v > 0
such that

Re 3 aa(z,9)e® > v[é™,  (oy) €R* xY, R,  (0.3)

la|l=m

that is, where the family (0.2) is uniformly strongly elliptic, uniformly with respect
toyeY.

The motivation for studying elliptic differential operators with operator-valued
coeflicients comes from our previous investigation of coagulation-fragmentation
equations describing certain physical situations involving a very large number of
particles (cf. [7], [10]). Corresponding mathematical models lead to quasilinear
reaction-diffusion systems

ou— Vs - (a(z,y,u)Vu) = f(z,y,u), zeR™, t>0, (0.4)

the parameter y being a measure for the cluster size, running either through ¥ := N
in discrete models, or through Rt in the continuous case. For physical reasons the
unknown u: R* x Y x Rt — R, the particle size distribution function, has to be
nonnegative and to satisfy

/u(m,y,t)(1+y)dy<oo, zeR*, t>0.
Y

Here dy denotes the counting measure if Y = N. In a relatively simple situation
taking only coagulation into account, the right hand side of (0.4) has the form

1

Yy
f(@y,0) =3 /0 Y@,y =y, Yy )v(y —y)v(y') dy'

—v(y) /Ooo vz, 9,y )v(y") dy’

for v: Y — R and a given function y: R* xY xY — R.

In [7] the semilinear case, where the diffusion coefficient a(z,y,u) in (0.4) is
independent of u, has been studied. The more general quasilinear case has been
investigated in [10]. In the latter paper, a is of the form

a(z,y,v)w(y) := ao(z,y,v)w(y) +/Ya1(a?,y,y’,v)w(y’)dy’

for w € Ly (Y, 1+y) dy), and ag and a; being suitable scalar-valued functions.



The principal idea in those papers is to interpret u as a function on R with
values in
E:=L(Y,(1+y)dy). (0.5)

Then (0.4) is a quasilinear evolution equation
o+ A(w)u = F(u) (0.6)

whose state space is the infinite-dimensional Banach space (0.5). Thus, if for any
given sufficiently smooth v: R* — E, the operator —A(v) generates a strongly
continuous analytic semigroup, the general theory of abstract quasilinear parabolic
evolution equations (e.g., [3]) can be invoked to prove the well-posedness of sys-
tem (0.4).

A natural choice for the solution space of (0.6) would be

(L1 N L) (R™, Ly (Y, (1 + y) dy)) (0.7

for some p > n. It is a consequence of this paper that such a choice is possible. (In
[7] and [10] less natural Besov spaces have been used since a suitable generation
theorem allowing the choice (0.7) had not been available.) Indeed, it is one of the
main results of this paper (Corollary 5.11) that every normally elliptic differential
operator A with bounded and uniformly Hélder continuous £L(E)-valued coefficients
is the negative generator of a strongly continuous analytic semigroup on each one
of the spaces

L,(R"E), 1<p<oo, BUC(R"E), Co(R",E).

There is no restriction whatsoever on E. The price which we have to pay is that
we cannot give a precise description of D(A). However, we obtain rather precise
inclusion results. In addition, we show that all real interpolation spaces between
D(A) and the underlying space §, where either § = L,(R", E) for 1 < p < oo or
§ = BUC(R", E), are suitable Besov spaces (Proposition 5.1). In particular, these
interpolation spaces are independent of A. As a consequence, one can study time-
dependent and quasilinear parabolic problems on § by using the general results in
[4, Section IV.2].

It should be mentioned that our derivation of the resolvent estimates in BUC
is rather simple and completely new, even in the finite-dimensional case. It does
not, in fact: cannot, make use of Ly-estimates as is the case for all known proofs if
E=CN.

The results described above are proven in Section 5. Indeed, we consider more
general elliptic operators and obtain precise resolvent estimates.

For explicit definitions of the realizations of A in § we need to know that —A is
the generator of an analytic semigroup in suitable superspaces of §, to be precise,
in the Besov spaces B) (R",E) if § = L,, and in B3, (R*,E) if § = BUC.
That this is true follows from the results of Section 4. There it is shown that



—A generates an analytic semigroup on each Besov space B,  (R", E) with s € R
and p,q € [1, 00|, and that D(A) = Bf,j;m (R, E), provided the coefficients of A are
bounded and uniformly p-Holder continuous with p > |s| and A4 is normally elliptic.
In particular, the Holder scale BUC*(R™, E) for s € R\Z is included. Moreover,
the same result holds for little Holder spaces, buc®(R", E), little Nikol’skii spaces,
n,(R*, E) for 1 < p < oo, and the scale C§(R", E) for s € R\Z.

Of course, all this relies on a good definition of ellipticity, which is given in
Section 3. There it is also shown that it naturally generalizes corresponding finite-
dimensional concepts.

In Section 1 we collect some properties of function spaces, in particular: Besov
spaces, which we use throughout. Section 2 contains a technical result which is
needed in Section 3 to handle bounded and uniformly Hélder continuous coefficients
without assuming additional conditions near infinity.

In view of applications to quasilinear problems it is most important to require
minimal regularity for the coefficients a, only. For this we have to extend the
well-known point-wise multiplier theorem, guaranteeing that BUC® is a multi-
plier space for Bf  if s > |t| and p,q € [1,00], from the finite-dimensional to the
infinite-dimensional setting. This result, being of independent interest, is proven in
Appendix A2. Note that it is by no means trivial to define a point-wise product
between a smooth operator-valued function and a vector-valued distribution, since
we cannot use duality. For this we have to rely on Schwartz’ theory of vector-valued
distributions ([21]; also see [5, Chapter VI] for an exposition of this theory in the
somewhat simpler case of Banach-space-valued distributions, as well as [6] for a
summary).

In Appendix Al we give a precise definition of Besov spaces and extend to
the infinite-dimensional setting an important criterion, due to Yamazaki [32], for a
temperate distribution to belong to a Besov space.

It should be mentioned that the whole paper is based on the Fourier multiplier
theorems in [6] for operator-valued symbols.

Notations and conventions Throughout this paper all abstract vector spaces
are over C. The real case can be included by complexification. We use standard
notation. In particular, if X and Y are locally convex spaces then £(X,Y) is the
space of all continuous linear maps from X into YV, and £(X) := £(X, X). It is a
Banach space with the operator norm if X and Y are Banach spaces. Lis(X,Y)
is the set of all isomorphisms in £(X,Y"), and Laut(X) := Lis(X, X). The identity
on X is often denoted by 1x, or simply by 1.

We write X — Y if X is continuously injected in Y, that is, X is a vector
subspace of Y and the natural injection z — z is continuous. X = Y means that
X Y and Y — X, provided X and Y are normed vector spaces. Thus X =Y
iff X and Y coincide as vector spaces and carry equivalent norms. If X — Y and

d
X is dense in Y then we express this by writing X — Y.



Suppose that X and Y are Banach spaces. If A is a linear operator in X then
o(A) and p(A) denote its spectrum and resolvent set, respectively. If X — Y and
A€ L(X,Y) then it is always understood that o(A) and p(A) refer to the linear
operator A in Y with domain X.

Let A: dom(A) CY — Y be linear and X < Y. Then the X-realization, Ax,
of A is the map in X with domain {z € X Ndom(A) ; Az € X } and Axz = Az
for z € dom(Ax). It is easily verified that Ax is closed if this is true for A.

If A is a linear operator in X then we write D(A) for its domain endowed with
the graph norm.

Let E := (E,|-|) be a Banach space. Then, as a rule, we use |-| also for the
norm in £(E). We denote by D¢ the space of scalar test functions on R, that is,
the locally convex space of all smooth complex functions with compact supports,
equipped with its usual inductive limit topology. We write S(E) for the Schwartz
space of all rapidly decreasing smooth E-valued functions on R”, endowed with the
usual family of seminorms (as in the scalar case). If E = C we denote this space
by Sc¢. Then §'(E) := L(S¢, E) is the space of all temperate E-valued distributions
on R™. It is given the topology of uniform convergence on bounded subsets of Sc.

We use F to denote the Fourier transform on §'(E), defined by u(y) := u(®) for
u € 8'(E) and ¢ € Sg, where @ := Fu. Then F € Laut(S(E)) N Laut(S'(E)). Also
recall that the distributional derivative 0%u is defined for a € N* and u € §'(E)

by (8%u)(p) = (—=1)I*lu(d%yp) for all ¢ € D¢ 4 Sc. Of course, we employ standard
multiindex notation. .

If Z is a nonempty subset of some vector space then Z := Z\ {0}. In particular,
N stands for all integers > 1.

We denote by ¢ (and ¢(a, 3, . . .)) various constants whose values may be different
from occurrence to occurrence (and depend on the indicated quantities) but are
always independent of all free variables of a given formula.

Throughout the rest of this paper all spaces of distributions are subspaces
of §'(E). Therefore we always drop R™, the domain of definition, in the notation.
If it clear which Banach space E is being considered, or if this choice is unimpor-
tant, we simply write S’ etc. For example, L, always means L, (E), more precisely,
L,(R™, E), etc. Noteworthy exceptions are D¢ and Sg, defined above.

1. Spaces

Let E := (E,|-|) be a Banach space. We use standard notation for function spaces.
Thus BUC? is, for s € R, the Banach space of all u : R* — E whose derivatives of
orders at most [s] are bounded and uniformly continuous, and whose derivatives of
order [s] are uniformly (s — [s])-Holder continuous, if s ¢ N. Here and below, given
t € R, we denote by [t] the largest integer less than or equal to t. The space BUC®



is given the usual norm which we denote by ||-||s,00. Moreover,

u = [u]s,00 1= sup |u(z) —u(y)|/|z —y|”
TFY

is the s-Holder seminorm for s € (0,1).

Similarly, W’ denotes for s € Rt and 1 < p < oo the Sobolev space of E-valued
distributions on R" of order s if s € N, and the corresponding Slobodeckii space if
s ¢ N. Its norm, the usual one, is denoted by [|-||s,p- In particular, ||-||, is the norm
in L, = I/V;)O.

Suppose that s <0 and § € { BUC,W, ; 1 <p < oo}. Then §° is defined to
consist of all E-valued distributions on R” such that there exist u, € §*~ [ for
|a| < —[s] satisfying

u= Y Ua (1.1)

la|<—[s]

It is a Banach space with the norm

u = ”U'HS,q :=inf Z ||ua||sf[s],qa

la|<—[s]

where g :=p if §=W,, and q := oo if §F = BUC, the infimum being taken with
respect to all representations (1.1) of w.

For s € R, we write buc® for the closure of BUC**! in BUC?. By mollifying, it
is not difficult to see that

buc®* = BUC*, k€N (1.2)
If s € RT \N then buc® is a ‘little Holder space’, that is, u € buc® iff u € BUC) and

b s 27— 0"u()
t—0 0<|z7y|<t |:L' _ y|3_[3]

=0, || = [s].

For s € R and p,q € [1,00], we denote by B; , the Besov spaces of E-valued
distributions on R™. For a precise definition we refer to Appendix Al. We also
denote by b , the closure of BZ,‘ZI in B; . These ‘little Besov spaces’ differ from B
only if ¢ = oo, that is,

b;’q:B;,q, 1<p<oo, 1<g<o0, s€eR (1.3)
It follows that
by oo = dBf,,oo(B;),oo) =clps _ (BUC™), s<t, 1<p<oo, (1.4)

where clx (-) denotes the closure in X, and BUC® := (), BUC®. Furthermore,
By, =W;, seR\Z, 1<p< o, (1.5)



and
Bgo,oo = BUC?, s € R\Z. (1.6)

Consequently,
bgo,00 = buc’, s € R\Z. (1.7

It should be noted that Bj , equals, for s € R*\N and 1 < p < oo, the Nikols’kii
space of order s and integrability index p, except for equivalent norms. For this
reason we put

n, = b5 seR, pe[l,o0), (1.8)

and call it little Nikols’kii space. It is also convenient to set

B? := B? b, = b seR, pell, o0

p p.p’ 00,007

Besov spaces enjoy the following important embedding properties:

d d d d
S— B, —BX b, =B, =S8, s >8>t (1.9)

provided either s; = sp and 1 < ¢; < go < 00, or 81 > ¢ and o, q1 € [1,00). More-
over,
B;qu - B;g,qw 81 > 80, 51— n/pl >80 — n/po. (1-10)

It is also true that

d d
Bf, > WF <), keZ, pell,o0), (1.11)
and . J
B, = BUCF < b, kel (1.12)

We write ég,q for the closure of S in By ;. Then

. B} Vg<oo

B, :{ par PYAS00 (1.13)
’ ns, p<oo, g=o0.
Hence only the spaces égo,q for1 < ¢ < oo and Bgo = ngo’oo are different from the
ones already introduced.

Similarly, we denote by C§ the closure of S in BUC*® for s € R. Then Cp := C3
is the space of E-valued continuous functions on R vanishing at infinity. Moreover,
(1.6) implies .

C§ = BS, — buc’®, s € R\N. (1.14)

Besides of these embedding properties we need the following characterization of
Besov spaces: If m € N then

u€ B, , < 0%ue B, ", la| < m, (1.15)



and

ue Y 0%l

le|<m

B3=m (1.16)

is an equivalent norm for By , for s € R and p,q € [1, oc]. This implies, in partic-

ular, that 8% € L(Bf,f(}.lo‘l,Bf,,q) for B € {B,b} and o € N,
Similarly, if m €N, s €R, and p,q € [1,00] then u € B, ™ iff there exist
uq € By | for |a] < m such that

u= Z 0%Uq- (1.17)
loe|<m
Moreover,
wesinf Y fluallsg, (1.18)
lo]<m

is an equivalent norm for B, ™, where the infimum is taken over all representa-
tions (1.17).

We denote by (-,-)a,q the real interpolation functor of exponent 8 € (0,1) and
index ¢ € [1, 0], and by (-, ')3,oo the continuous one. (We refer to [4, Section 1.2]
for a summary of and to [11] and [27] for more details on interpolation theory.)
It follows that, given 6 € (0,1) and p,qo,q¢1,9 € [1,00] as well as sg,s; € R with

307£SI>

(Bityos Byig)o,g = Biy 1ot0s (1.19)
and
(BISO?QO’BISJ}M)%,OO = (bZ?QO’bZTm)g,OO = bg;og)so-i_a& . (1‘20)

For more details and proofs of the above results we refer to [6] and [5]. The proof
of characterization (1.17), (1.18) of [8, Theorem 2.1] carries over to the infinite-
dimensional case without any change, thanks to [6, Theorem 6.1].

It should be noted that our definition of W and BUC*® for s <0 is consis-
tent with (1.5), (1.6), and characterization (1.17), (1.18) of B, ™. If E is infinite-
dimensional then we cannot describe negative spaces by duality, as in the finite-
dimensional situation, unless we impose restrictive conditions on E (cf. [6, (5.22)]).

2. Retractions

Fix § > 0 and a sequence (U;) of nonempty open subsets of R" with diam(U;) < 4,
covering R, and being of finite multiplicity, that is, there exists k£ € N such that
any intersection of more than £ distinct sets U; is empty.

Let (¢;) and () be sequences in D¢ satisfying 0 < ¢; < ¢; < 1 with supp(¢;)
contained in U; and ;| supp(p;) = 1. Also suppose that

sup [|¢;|k,00 + sup [[¢j]lk,00 <vk <00, k€N
J J



Set -
®((uj)) :== Zgojuj, ®°(u) == (pju), u,uj: R" - E.
j=0

Also set

3 Wy, 1<p<oo,
| BUC?, p = 00,

i
and let £,(3F;) == £,(N,§7) for s € R.
Lemma 2.1. Suppose that s € R and p € [1,00]. Then

D e L(6,(35),85), @ €L(F50(55).

Proof (i) If 1 < p < oo then the assertion follows by the arguments of the proofs
of [9, Lemma 9.1 and Corollary 9.2] if 0 < s <1, and from [10, Remark 3.15] if
—1 < 5 < 0. Thus suppose that p = oco.

(ii) If s € {0,1} then the lemma is an immediate consequence of the finite mul-
tiplicity of (Uj).

(iii) Suppose that 0 < s < 1. Then, given v € BUC?,

piv(@) — p0(y) = (pi(@) — ;i) Yiv(e) + ¢, (Y) (Y(x) =¥ (y))v(z)
+ ¢ (W) (y) (v(x) = v(y))
implies, thanks to diam (supp(};)) < & for A; € {¢;,%;},
lpjv(@) — pv@)| <207 oll, o (Xi(2) + x5) [& — 9", 2,y € R,

where x; is the characteristic function of U;. Now, by the finite multiplicity of (Uj;),
the assertion is obvious.
(iv) Assume that —1 < s < 0. For v € BUC?, there are v; € BUC®**! such that

V=1 + E:Zl O V. (2.2)
Hence
n
v = p;vo + Z [0,k0k + Ok (@jk)], (2.3)
k=1

where ¢; , == —0p; belong to D¢ with supp(yp; k) C supp(p;) for 1 <k < n and
sup; i, [|0jkll1,00 < v2. Define @ and ®f for 1 <k <n by replacing ¢; in the

definition of ® and ®°, respectively, by ;. Given (u;) € oo (BUC?), choose
uj; € BUC**! for 0 < i < n satisfying

U; = Ujo + ZZ:l 3ku]'7k, jeN (2.4)



Then it follows from (2.3) that

®((uj)) = ®((uj0)) + Z‘I’k((uz‘,k)) + Zak‘l’((uj,k))
k=1 k=1

and
®°(v) = B°(vo) + »_ B (vk) + Y P (v).
k=1 k=1

From this and from (ii) and (iii) we infer that ®((u;)) € BUC?, that ®°(u) belongs
t0 oo (BUC?), and that

n n
12 () 15,00 < nggz llujills+1,00,  [12°(0)len (BUCE) < CZ llvills+1,005
JEN =0 i=0

where c is independent of (u;), (u;;:), v, and v; for 0 < ¢ < n. This being true for
every representation (2.4) and (2.2), respectively, it follows that

H‘I’((Uj)) ”s,oo < C||(Uj)||e°°(BUCs) ) ||‘I’C(’U))||em(Bch) < C||U||s,oo;

where ¢ is independent of (u;) and v.
(v) The assertion for |s| > 1 is now deduced by an obvious induction argument. [J

Henceforth we fix an enumeration (z;) of Z" satisfying |z;|co > |2k|co if § > k.
We denote by @ the open cube {z € R” ; |2|oc < 1} and set U, ; := e(z; + Q) for
€ > 0. Then (U; ;) en covers R™, has finite multiplicity being independent of €, and
satisfies dim(U, ;) < 2e/n.

For j € N, we write A ; for the smooth diffeomorphism

Uesj = Q, z— —x;+z/e

We also fix 7,19 € Dg satisfying 0 < 7 <9 < 1andsupp(v) C Q aswellasw(z) =1
for |z|eo <1/2 and ¢(z) =1 for = € supp(w), and set
WOAaj

ﬂaj::: 00 1/27? ¢&j:=:d)OAEJ7 j EI&
[ 0 Ae y)?]

Then 7 ;, 1. ; belong to D¢ with 0 < 7. ; < 9. ; < 1,and ¢ ;| supp(n, ;) = 1 with
supp(¢e,;) C Ue,j,

oo
Y oaZiw)=1, TR, (2.5)
j=0

and
koo < c(k)e™®  keN

sup 7,5l k00 + sup [le, 1
j J

10



Given Banach spaces X and Y, a linear map r: X — Y is said to be a retrac-
tion in £(X,Y) if r € £L(X,Y) and there exists ¢ € L(Y, X), a coretraction for 7,
satisfying r o ¢ = ly.

Proposition 2.2. Suppose that s € R and 1 < p < 0o0. Put
o0
Re((uj)) == D mejuj, RE(u) := (me ju)
j=0

for (uj) € £,(3%) and u € F3. Then R. is a retraction in L(£,(3%),35) and R is
a coretraction for R..

Proof Thanks to Lemma 2.1 and the preceding observations it suffices to verify
that R. o R = idgs. But this is obvious by (2.5). O

Similar results are given in [19, pp. 148ff] in the finite-dimensional setting. How-
ever, Peetre uses duality arguments to cover spaces of negative order. Hence in our
case his method is not applicable without additional restrictions on F.

3. Elliptic Operators
Suppose that m € N and ao: R = L(E) for |a|] < m. Then, setting D; := —i9;,

A= A(z,D) := Z aq(z)D®

la|<m

is a (formal) linear differential operator on R* with L(E)-valued coeflicients. We
denote by oA its principal symbol, that is,

cA: R* xR" = L(E), (x,&)— Z aq(x)E%.
lal=m

We also set £y :={z€ C; |argz| < ¥ }U{0} for ¥ € [0,n].
Given £ > 1 and ¥ € [0,7), the operator A is (uniformly) (k, 9)-elliptic if

p(—oA(z,€)) D Ty (3.1)

and
L+ ) |(A+0A@, ) | <k,  AeDy, (3.2)

for (z,£) € R® x R® with |{| = 1. It is called J-elliptic if it is (k,?)-elliptic for
some k > 1, and A is said to be normally elliptic if it is 7/2-elliptic.

11



Remarks 3.1. (a) Condition (3.2) is equivalent to

(A +0A@,6) | <K(E™+ A (2,6 ERT x (R'), A€ Ty

Proof The m-homogeneity of o A(z,-) implies

A+ AGE = [E" (ME™ + 0 AGLE/lED),  Ee(®'), XeC
Now the assertion is obvious. O

(b) If A is normally elliptic then m is even.

Proof If m were odd then (3.1) and (3.2) would imply, upon replacing £ by —¢,
that p(a(z,€)) = C, which is impossible. O

(c) Suppose that M € R and

> laallo < M. (3.3)

|a|=m

If Ais (k, 9)-elliptic, then there exist 0 < r» < R such that the spectrum of 0. A(x, £)
is contained in
{zeC;r<|z|<R}INZ, (3.4)

for (z,€) € R® x R™ with |¢| = 1. In particular, if A is normally elliptic, then these
spectra are contained in

{z€eC; Rez>r}n{zeC; |z2| <R} (3.5)

If E is finite-dimensional and (3.4) or (3.5) is satisfied then A is (k,)-elliptic or
normally elliptic, respectively.

Proof The necessity of (3.4) and (3.5) is obvious from (3.1), (3.2), and (3.3).
Their sufficiency is an easy consequence of [9, Lemma 4.1] (see [5, Section VII.2.3]
for details). O

Remark 3.1(c) shows that our definitions of ellipticity are the correct extensions
of these concepts from the finite- to the infinite-dimensional setting. It should also
be remarked that, in the finite-dimensional case, 4 is normally elliptic iff 0; + A
is (Petrowskii) parabolic. This property is also called parameter-ellipticity on the
rays A = ret? for [J| < 7/2 (e.g., [13]).

The next example is related to the applications mentioned in the introduction.

Example 3.2. Let (Y,u) be a o-finite measure space and E := L, (Y, u; CY) for

some g € [1,00] and N € N. Identify a, € BUC(R™, Loo (Y, p; CN*N)) for |a] <m
with the multiplication operator induced by a,,.

12



Then A=}, <, aaD® is J-elliptic if there exist § € [0,m — V) and £ >0

such that
o( Y talzy)e?) eZyn{zeC; |2 > e}

la|=m

for z € R, p-a.a. y € Y, and |¢] = 1. If, in particular, N = 1 then A is normally
elliptic if there exists € > 0 such that

Re ) aa(z,y)¢* 2el¢l™, 2,6 €R", paayey. (3.6)

lor|=m

Proof Remark 3.1(c) implies the existence of o > 1 such that

p(—JA(m,y,{)) D Xy, (1 + |’\|) |()‘ + U-A(xayaf))ilthxN < Ko

for z e R, [{|=1, paa y€eY, and A € £y. Now the assertion follows from
well-known properties of multiplication operators on Lg-spaces. O

For easy reference we include the following simple perturbation lemma which
will be of repeated use for us.

Lemma 3.3. Let Ey, E;, and E> be Banach spaces satisfying Ey — Fy — Fy.
If A € Lis(Ey, Eo) and B € L(Es, Ey) satisfy [|[BA™"||z(gy) < 1/2, then A+ B be-
longs to Lis(E1, Ey) with ||(A+ B)7Y|| < 2[|A71].

Proof This follows from A + B = (1 + BA™')A and the Neumann series. O
As a first application we prove a perturbation result for 9J-elliptic operators.

Proposition 3.4. Let A be (k,9)-elliptic and B:= 3", ,, ba D* satisfy
|oB(x,€)| < 1/2k, (z,6) e R* xR*, |¢|=1.

Then A+ B is (2k,9)-elliptic.

Proof Since

(A +0A(,8) | <kA+A) <k, (2,6 ER* xR, |¢ =1, eIy,

the assertion is a consequence of Lemma 3.3. O

If aq € BUC™(L(E)) for |a| < m then the theory of vector-valued distributions
guarantees that

A= )" auD* € L(S)NL(S) (3.7)

la|<m

13



(see [6, Theorem 2.1] and observe that BUC™ (L(E)) < O (L(E))). However, we
are interested in differential operators .4 whose coefficients possess limited smooth-
ness. In this case A will be defined on suitable subspaces of S’ only. To formulate
our basic continuity result we suppose that p > 0 and set m(n) := E‘a|<m 1. Then,
using multiplication £(E) x E — E, (a,e) — ae, it follows from Theorem A.2.5
and the continuity properties of 9% that

[(aa)\a|§m A=Y aaD“] € L([BUCP(c(E))]”‘”),L(B;j;m,B;,)) (3.8)

la|<m

for B € {B,b,B} and —p < 5 < p.

4. Elliptic Operators in Besov Spaces

In this section we prove the basic resolvent estimates for elliptic operators in the
Besov space setting.

Throughout the following, we fix a Banach space E, a number p > 0, and con-
stants ko, M > 1 and ¢ € [0, 7). We also suppose that B € {B, b}.

Given s € (—p,p) and p, g € [1, 00], we denote by Ap: the B) -realization of A,

. Rstm s
AB;)Q : Bp’q - B

o U Au,
which is well-defined by (3.8).

Theorem 4.1. Suppose that —p < s < p and 1 < p,q < 00. Then there exist k > 1
and w > 0 such that w + Xy C p(—Ap; ) and

1—j - .
AN+ A) 1”5(35"1,5;’4;1'7") <K, AEw+3y, j=0,1, (4.1);

for every (ko,9)-elliptic operator A = 2 aj<m @aD* satisfying

> laallpeo < M. (4.2)

la|<m

Proof First we show that it suffices to prove some simpler versions of the asser-
tion. Then we consider the case of constant coefficients, and finally, by perturbation
arguments and by using the retractions of Section 2, we obtain the desired result
for general coefficients.

(i) We can assume that B= B, p=gq, and s ¢ Z.

Indeed, setting (-,-)9 , := (+,-)a,q for 1 < ¢ < 0o, it follows from (1.3), (1.19),
and (1.20) that

B, , =By 5, Byt)] s teR, e>0.

Pq

Now we obtain the claim by interpolation.

14



(ii) It suffices to prove the assertion for s € (—1,0) U (0,1).

To see this, first suppose that s = o + 1 for some o € (0, 1) and let the assertion
be true for ¢ (and B = B and p = q).

Suppose that f € B, and A € w + Xy. Since By — By, there exists u € Bg“”
satisfying (A + A)u = f. By differentiating we find

A+ A)dru = Ok f — Agu, 1<k<n,

with Ay, := 37, <, Okaa D*. Note that Oaq € BUC*~'(L(E)) and p—1> 0. Thus
(3.8) guarantees that 9y, f — Ayu € By. Consequently,

Ou=A+A) " Onf — Apu) € BJT™,  1<k<n,
and, thanks to (4.1); (for s = o),

N |0kl ggrim < c(10kfllgg + llull gg4m) < (10 fllsg +11f1l57)
<clfl

sy
BP

where the last estimate follows from (1.15) and (1.16). Thus, by employing these
facts once more, we see that u = (A + A)~'f € B5*™ and that (4.1) is satisfied.

Next suppose that s = o0 — 1 for some o € (~=1,0) and f € B,. Also suppose
that the assertion holds for ¢ (and B = B and p = ¢). Thus, by (1.17) and (1.18),
there exist fy € By such that

f:f0+zakfk- (4.3)

k=1

Note that dra, € BUCP~'(L(E)), where p—1 > |o|, so that (3.8) implies that
Ay € L(BS™™, BY). Set

n

wi= A+ A7 (fo- D AO+AT) + D A0+ A

k=1 k=1
n
=:ug + E OpUg.
k=1

Then u; € Bg+m for 0 <i<n so that u € B;er, thanks to (1.17). Moreover, we
obtain from (4.1)

m m
—j 1—j
I fullggram <IN D7 Mluill ggaam < €D Il fill g (4.4)

i=0 i=0

15



for j =0,1. Since Ay =9, o A+ A) — (A + A) o O we see that

A+ Au=fo— 3 O+ A7 i+ YA+ DA+ ALy

k=1 k=1

=fo+ Y Ofr="

k=1

Note that the constant in (4.4) is independent of fy, ..., f, and that these consid-
erations hold for every representation (4.3). Hence it follows that

A lullggeim <cllfllp,,  §=0,1.

Now the validity of the assertion in this case is clear.

If s € R\Z satisfies |s| > 2 then an obvious induction argument applies. Thanks
to (i), this proves (ii).

(iii) Suppose that .4 has constant coeflicients, that is, a, € L(E) for |a| < m. Set

A(§) = Z o

la|<m

and a := o A. Also put b(€) := A(€) — a(€) and note that |b(§)| < cM(1V [€|™ 1)
for £ € R". Then we infer from Remark 3.1(a) that

16(&) (A +a(€)) 7| < eMro(LV [€[™Y) (J€]™ + [A)~! < 1/2

for £ € (R")" and A € w + Xy, where w := w(ko, M) > 1 is sufficiently large. Hence
Lemma 3.3 and Remark 3.1(a) show that p(—A(§)) D w+ =y and

(A +A©) T <2k (€™ + ), Aew+Sy, € R

Now the assertion follows in this case from [6, Theorem 7.1].
(iv) Let the assertions of the theorem be true for 4 and suppose that

CeL(B™ By, |l < 1/2x.

Then it holds for 4 + C, as follows from Lemma 3.3.
(v) For € > 0 denote by

ro(z) == z, 17|00 <&,
v ex/|T|00s 17|00 > €,

the radial retraction from R” onto £Q. Then 7. is uniformly Lipschitz continuous
with constant 2 (e.g., [1, Lemma 19.8]). Recall that U, ; = e(z; + Q) with z; € Z™
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Given a, € BUC*(L(E)) with 0 < p < 1, set
Qape,j(T) = aq(exj + r-(x —ex5)), =z €R".
Then aq,,; € BUC?(L(E)) and
Gay,j|Uej = aa|Usj,  jEN
Furthermore,

|aacj(#) = aa(ez;)| < sup  |aa(y) — aa(2)] < [aa]p 006’
ly—2leo <e

and
[aa,s,j - aa(exj)]p,oo < 2%[aq]p,00
for j € Nand z € R*. Fix p’ € (]s|, p) and observe that
[oe0 <2020 L0 0118577

implies, together with (4.6) and (4.7), that

”aa,s,j - aa(Exj)”p’,oo <8 [aa]p,oo gl=r s 0<e<l, je€ N.

Thus it follows from (3.8), (4.2), and (iii) and (iv) that we can fix gy € (0, 1) such

that the assertions (with B = B and p = q) hold for

Aj = Z Qaeo; D* = Aleozj, D) + (A; — A(eoz;, D)),

la|<m

uniformly with respect to j € N.

(vi) Set U; := Ug,,; and 7; := mg,,;. Then, by Leibniz’ rule (and by identifying ;

with the multiplication operator u — mju),

Bj:=Aom;j —mjo A= Z ba,j D7,
laj<m—1

where b, ; € BUC? (L(E)) satisfy

supp(ba,;j) C supp(m;)

and
> bagllpeo < (M),  jEN

la|<m—1

Thus (3.8) implies
Bj € L(B;*™ 1, By), IBjll <c(M), jeEN

17
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(vii) Now we construct a left inverse for A\ + A. Set
Cik(N) :==Bjomo(A+ Ax) ' € L(B}), jkeN

The finite multiplicity of the covering (U;) and (4.9) guarantee the existence of
¢ € N such that Cj; = 0 for |j — k| > £. Since, by (1.19),

By = (B, By ™)1 /mps (4.11)

we infer from the corresponding interpolation inequality (e.g., Proposition 1.2.2.1
in [4]) and (4.1) that, thanks to (v),

IO+ A7) Ml pgrmery S € ATY™ Aew+Dy, jeN
From this, (2.5), and (4.10) it follows that there exists w; > w such that
IC A Wllesy <1/(4L+1),  A€wi+3y, jkeEN.

Consequently, setting

(C(A)u)] = Z Cj,k(A)uka u = (uj) € gp(Bls))J .] € NJ
k=0

we see that
C(\) € L(6(By)), llCNII<1/2

for A\ € wy + By. Hence 1 — C()) € Laut(£,(Bg)) and
|[1— C(’\)Tl”z(z,,(g;)) <2, Aew +3Zy. (4.12)

Define A € L(£,(B5™™),£,(B5)) by Au := (Aju;) for u = (u;). Then (4.1) implies
wi + Xy C p(—A) and

TN+ A e, mo).a(B3+my S K A€W+, j=0,1. (4.13)
Put Bv := (B;v) for v € B5¥™~! and note that, by (4.10),
B € L(By ™, 6,(By)), 1Bl < e(M).

Also note that, setting R := R.,,

(BRu); = B; Y mpu,  u=(u;) € Lr(Byt™)
k=0
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implies A+ A— BR=(1—-C(\))(A+ A) for A € w; + Zy. Hence we infer from
(4.12) and (4.13) that

A+A-BR) '=(A+4)(1-cH) "
and
NN+ A= BR) g, m).e,30my S & T=01, 1)

for A € wy + Xyp.
Set R°:= R and L(\):= R(A\+A— BR) 'R°. Then Proposition 2.2 and
(4.14) guarantee that L()\) € £(Bj, B;T™) and

IA[M IZOl gy pgtimy S€ A€wi+Tg, j=0,1. (4.15)

From (4.8) it follows that R°(A + A) = (A + A)R° — B. Consequently,

LA +4) = R\ + A - BR)'R°(A + A) = RR® = 15.4m
for A € wy + Xyp.

(viii) Lastly, we construct a right inverse for A + 4. For this we set
Du := iBjuj, u = (uj) € L(B5t™ ).
Since Bjv(z) = 0 for = ¢ supp(n;), the finite multiplicity of (U;) and (4.10) guar-
antee that D € L(£,(Bst™"), BS) is well-defined. Thus, by Proposition 2.2,
R°D € L(£,(B5*™ 1), 4,(B)).
(

Lemma 3.3 and (4.11) imply that (A + A + R°D) ! exists for A € ws + Xy and is
uniformly bounded, provided ws > w; is suitably chosen. Hence

R(\):= R(A\+ A+ R°D)"'R° € L(B},B}t™)

is well-defined for A € wy + Xy. Since (4.8) implies (A + A)R = R(A + A) + D, it
follows that

A+ AR\ = A+ AR\ + A+ R°D)™'R° = RR® = 1p;

for A € wy + Xy.
From this and (vii) we deduce that (A +.4)~! = L(\) = R(}) for A € wy + y,
and the assertion follows from (4.15). O

The basic ingredient of this proof is the Fourier multiplier theorem of [6] for
operator-value symbols. It gives the fundamental estimates in the case of constant
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coefficients. Steps (vii) and (viii) are similar to the arguments used in the proof of

[9, Theorem 9.4], where resolvent estimates in the finite-dimensional case and in

the L,-setting for 1 < p < oo have been derived. Since the interpolation argument

used in [9] is not available if p = co, we have given here a more direct proof.
Suppose that A is normally elliptic. Then, by Theorem 4.1,

IO+ A e ) <K/IN,  Red>w.

This is well-known to imply that —AB; , generates an analytic semigroup on B, .

It is not strongly continuous if B3%™ is not dense in By , (cf. [18, Chapter 2]). Note

that Byt is never dense in Bj .
In the next theorem we concentrate on strongly continuous semigroups. For
this we use the following notation: If FEy and FE; are Banach spaces satisfying

E, ﬁ) Ey, then we write A € H(E1, Ep) iff A € L(E;,Ep) and —A, considered as
a linear operator in Ey with domain F4, generates a strongly continuous analytic
semigroup on Fy, that is, in £(Ep). It is known that H(E1, Ep) is open in L(E1, Ey)
(e.g., [4, Theorem I1.1.3.1]).

Theorem 4.2. Suppose that A = Ela\<m aqD® is normally elliptic and has coef-
ficients in BUC? (L(E)). Then

AeHbE™ b ), sl <p, pgel, o0l

P,q 7 7Ppq

In particular, if s € (—p, p)\Z, then
Ae HWH™ W) N H(nSt™, n) N H(buc™t™, buc®)

P

for 1 <p< 0.

Proof This follows from Theorem 4.1, Yosida’s well-known characterization of

d
generators of analytic semigroups, and from (1.3)-(1.8), thanks to b>*t™ < b? . O
In the following remarks we collect some useful consequences.

Remarks 4.3. Let A be (o, 9)-elliptic with coefficients in BUC? (L(E)).

(a) Suppose that —p < s < t < p. Also suppose that u € Bf,j}m and v € Bf,,q satisfy
(A+ A)u = v for some X € C. Then u € BLL™.

Proof Suppose that s +m < ¢ and set w; := w(s +m,p, q). Then Bf),q — ng;m
implies

(w1 + Au=v+ (w1 — Nu € Bt™.
Hence u € B3t?™ by Theorem 4.1. Define k € N by (k—1)m <t —s < km. By
repeating this bootstrapping argument (k — 1)-times we obtain u € B;:ka — Bf,, ¢
The assertion follows by invoking Theorem 4.1 once more.
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(b) If —p < s <t < pthen p(Ap: ) D p(4g: )

Proof This is an immediate consequence of (a). O

(c) Suppose that A has coefficients in BUC™ (L(E)). Also suppose that s € R and
that u € B and v € BUC®™ satisfy (A + A)u = v for some A € C. Then u € BUC®™.
If v € S and A € p(—Ap;) for some p € [1, oc] then

uEﬂ{Bﬁ,q ;teR, r€[p,00], g€[l,00]}. (4.16)

Proof The first assertion is a consequence of (a). Thus suppose that v € S. Then
(a) implies that u € { B. t € R}. Now (4.16) follows from (1.9) and (1.10). O

Finally, we can show that Theorem 4.1 holds for égo,q as well.

Theorem 4.4. Suppose that —p < s < p and 1 < q < 0o. Then there exist k > 1
and w > 0 such that w + Xy C p(—Ag. ) and
0,9

IO A ey gy SR A€wH o, =01, (417)

for every (ko,¥)-elliptic operator A satisfying (4.2).

Proof (i) From Theorem 4.1 we obtain & and w such that w + Xy C p(~Asy, )
and (4.17) holds with B replaced by B. Since A € L(B3I7*,BS,,) by (3.8), it
remains to show that there exists wso > w with
A+ A)HBL,) CBE™ N Ews+ Ty (4.18)
(ii) Fix v € S and suppose that the coefficients of A belong to BUC™ (L(E)).
Set weo :=w V w(s,1,1) and let X € we, + Xy be given. Then

u:=MA+A)"tve Byimtn

by Remark 4.3(c). Thus we deduce from (1.10) and the density of S in Bj{™*"
that u € Bg;t;” Since (A + A)~! € L(BS, ,, Bi4™) by Theorem 4.1, the assertion

00,97

follows in this case by a density a.rgument.q
(iii) Suppose that v € B, ;. Then there exists a sequence (v;) in S converging
in B, , towards v. Thanks to (1.4), (3.8), and Proposition 3.4 we can find a se-
quence (A;) of (2ko, ¥)-elliptic operators having coefficients in BUC™ (L(E)) and
converging in E(ng; 7' B3,q) towards A. Since, given Banach spaces X and Y, the
set Lis(X,Y) is open in £(X,Y) and inversion A — A~!: Lis(X,Y) — L(Y, X)
is smooth, it follows that (A +A;)~" = (A+.A)~" in L(B, ,, B™) whenever

A € Woo + Xy Hence (A + A;)~'v; = (A + A)v in B Now (ii) implies (4.18). O

21



Corollary 4.5. Suppose that —p < s <p and 1< q<oo. Then any normally
elliptic operator with coefficients in BUC? (E(E)) generates a strongly continuous

analytic semigroup on B, .

Remark 4.6. If p = ¢ = oo and s € R" \N, so that B, , is one of the Holder spaces
BUC?, buc?, or C§, then p = s is admissible, provided BUC? (L(E)) is replaced by
buc? (L(E)) for B € {b, B}.

Proof This follows from Remark A2.6. O

The only paper (apart from [10]) known to the author, in which resolvent esti-
mates for elliptic operators in Besov spaces have been proven, is [14]. There esti-
mate (4.1); is derived for scalar (ko,)-elliptic operators with smooth coefficients
(see [14, Lemma 2.4]). Thus, even in the finite-dimensional case, Theorem 4.1 is
new since our regularity assumptions are optimal. Guidetti’s proof relies on Fourier
multiplier theorems as well. However, he uses duality so that his arguments cannot
be generalized to the infinite-dimensional setting.

In the finite-dimensional case, elliptic operators have been studied in Holder
space settings by several authors. In particular, Lunardi [18, Theorem 3.1.14 and
Corollary 3.1.16] shows that if m = 2 and A is normally elliptic with coefficients
in BUC*®, where s € (0,2)\ {1}, then —A generates an analytic semigroup on BUC"*®
with D(A) = BUC®**2. On page 117 of [18] it is mentioned that her proof carries
over to higher order operators. The arguments in [18] rely on Agmon-Douglis-
Nirenberg L,- and C*-estimates and cannot be generalized to infinite dimensions.

Other approaches for second order operators in Holder spaces are due to Cam-
panato [12] and Vespri [30] (who consider boundary value problems as well). Their
methods are also restricted to the finite-dimensional setting.

It is clear that for operators of divergence form (if m = 2, for example) the
continuity requirements on the coefficients can be further relaxed for —1 < s <0
(see [10]). Note, however, that, in [10], non-divergence form operators could not
be handled in Besov spaces of negative orders since Theorem A2.5 had not been
available.

5. Elliptic Operators in L,, BUC, and ()

We again fix a Banach space E and numbers m € N and p€(0,1) as well as
Ko, M > 1and 9 € [0, 7). We also suppose that A = E\alﬁm aa D% is (ko, ¥)-elliptic
and that (4.2) is satisfied. Moreover, throughout this section 1 < p < oo.
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We denote by A, the Ly-realization of A,g and by A the BUC-realization
of Ay . Since, by (1.9) and (1.11),

d d d
ny — By, < L, = ny (5.1)
and, by (1.9) and (1.12),
b < BY <% BUC <5 b2, (5.2)

these realizations are well-defined closed and densely defined linear operators in
L, and BUC, respectively. Furthermore, Theorem 4.1 guarantees the existence of
kg > 1 and wy > 0 for 1 < g < oo such that wy + Xy C p(—A4) and

A+A) T =+ A )T A€w+Zy, 1<g< oo, (5.3)

where §, := 9 (see (2.1)). From (5.2) and (5.3) we easily deduce that

B G5 <h D(A,) S b,

1<¢g< 0. (5.4)

In contrast to the case where A is looked at as a map between Besov spaces,
D(A,) depends on A, in general. In fact, in the scalar case it has been shown by
Guidetti [15, Proposition 1.12 and Remark 1.13] that, if A and A are strongly
elliptic with constant coefficients, then neither D(A;) is contained in D(A;) nor
conversely, unless the principal symbols of these operators are proportional. Propo-
sition 1.11 of [15] also shows that D(A;) # W™ if n > 2. The same proofs apply
to BUC (see [5, Theorem VII.2.4.5] and also [23] for a related observation).

In the light of these negative results the following proposition is of considerable
interest since it guarantees that all real interpolation spaces between §, and D(A,)
are independent of A and explicitly known.

Proposition 5.1. Suppose that 0 < § < 1. Then

(80, D(Ay),, = BIT, (84, D(Ay)), . =™, g €[1,00]

Proof This follows from (5.2) and (5.4), thanks to (1.19) and (1.20). O

Corollary 5.2. Suppose that m ¢ N. Then

(Lp, D(Ap)), = W!™, (BUC,D(Ax)), . = BUC'™,

H,p 97

and

(BUC, D(Ax))o = buc®™.

6,00
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0

By interpolating the resolvent estimates of Theorem 4.1 for Abg _ with (-, -)} 00

we infer from (1.20) that, given ¢,r € [1, 0],
IO+ Ao )M leg vs ) S e AT New, +8y, 0<s<m.

q,m? )

Hence it follows from (5.3) that, given € € (0,1) and ¢ € [1, 00], there exists £ > 1
such that

1A+ A) ey < /INTTT, A e w + 2o
It is the purpose of the following considerations to show that we can set € = 0 in
these estimates. This implies that —A, generates a strongly continuous analytic

semigroup on §, if A is normally elliptic.
Given a Banach space X, we set

FLi(X):={ueSX); Flue Li(X) }.

It is a Banach space with the norm u +— ||u|| £z, := | F 'ull;.
For r € R we write S, for the vector space of all a € C"™'((R")", L(E)) for
which there exists a constant ¢ satisfying

0%a(©)l <c(L+[e) 1, ol <n+1, e R (5.5)

It is a Banach space, its norm, ||-||s,, being the infimum of all ¢ satisfying (5.5).
Note that

S, — S, r<t. (5.6)

The following lemma is the basic tool for proving the desired result.

Lemma 5.3. Ifr >0 then S_, — FL;(L(E)).

Proof This follows from [6, Corollary 4.4]. O
Our next result, which is taken from [15, Proposition 1.1], shows that F~1a is

integrable near infinity if a € Sg. For completeness we include its proof. Henceforth

all integrals are over R”.

Lemma 5.4. Ife € (0,1) then there exists ¢ := c¢(e) > 0 such that

|7 a(@)] < cllalls, 27",z € (), a€So.

Proof Suppose that a € So. If |a| = n then we see from (5.5) that 9®a vanishes
at infinity and that 8;0% € Ly (L(E)) for 1 < j < n. Consequently,

/ajaaadgzo, 1<j<n.
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From this we deduce that, given f € N* with || =1,
e**PFa(e) = (2m) 7" / (€™ = 1)|a- €7 o - €' D*Fa(€) dé

for z € (R")". Thus, |e'*€ — 1| |z - £|°"" being uniformly bounded, it follows from
(5.5) that

|2° 0| |7 ta(2)] < cllalls, 2] / €11+ [g) 7" d€ < cllalls, =] *

for z € (R*)" and |f] = 1. Hence
2| |7 ta(@)] < cllalls, |25, =€ (R")".

Since |z|" = [(#} +--- + :E?l)”]l/2 < ¢35 4j=n |2*| by the multinomial theorem, the
assertion follows. O

In the following, we set H := ¥y, and

A = VIER + I, (€5,0%) = (Em)/AEm),  (&n) € (R x H)"

Given r € R, we denote by H, the vector space of all a: (R®)" x H — L(E) being
positively r-homogeneous (that is, positively homogeneous of degree r) with

ap :=a(-,n) € C"7((R")", L(E)), ne€H,

and
[0ga(€* ™) <¢, ol <n+1, (§n)€ (R" x H)". (5.7)

It is a normed vector space, its norm being the infimum of all ¢ in (5.7).
Lemma 5.5. Suppose that r > 0. Then

laglls_, <cllally_., neH, l>1, aeH.,. (5.8)
Ifr >0 then a, € FL(L(E)) and

lagllze, <cllallg_, ™",  neH, aeH,. (5.9)

Proof By differentiating the identity a(t&,t€) =t "a(£,n) we find
(Bga)(te 1) =t 7 *loga(¢,m),  t>0, (&m) € (R" x H)"
Upon replacing (£,71) by (£*,7*) and ¢ by A(&, ), respectively, it follows that
0%, (O)] < llally_, A,71¥1©),  Jal<n+1, (&m) € (R* xH).  (5.10)
This implies (5.8).
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Suppose that 7 > 0. Then (5.8) and Lemma 5.3 guarantee that

lagllFe, <cllallg_,,  neH, Inl=1.

(5.11)

Denote by oy dilation by ¢ > 0, that is, oyu(z) := u(x/t) for functions u on R” and

extended to distributions in the usual way (e.g., [6, Section 1]). Then
Fltooy=t"o1 0 F 1, llogullr =t [Jull, -
Note that ay, = |n|™" o)y an/|y for n € H. Hence (5.12) implies
_ —r+ —
Frag = """ o1 F ayp

and
lagllzz, = 01" llay)mllFL,

for n € H. Now (5.9) follows from (5.11).
Suppose that k := (y — k(-,y)) € BUC(L{(L(E))) and set
Kyu(z) := /k(w—y,y)U(y)dy, Keou(z) := /k(w—y,w)u(y) dy
for £ € R” and u: R*" — E, whenever these integrals exist.

Lemma 5.6. K; € L(F;) and

1Kl ey <cllkll, k€ BUC(Li(L(E))),
for j € {1,00}, where ||| is the norm in BUC (L,(L(E))).
Proof If u € L; then

(5.12)

(5.13)

1Kyl < / Ik(z — y,9)| de u(y)| dy = / 15 9)ly [u(w)] dy < [1E] lull,

For u € BUC we find

K ou(z)| < / k(@ — y, 2)] Ju(y)| dy < / k(@ — g, )] dy lullay < [1E] [lull.c

for z € R™. Furthermore,
K sou(z) — Kogu(y)] < / [k(z,2) — k(z,9)] lu(z — 2)] dz

+ / 1k (z,)] [u(z — 2) — u(y — 2)|dz

< NEG2) = kG o)l llull + sup |u(z — 2) — u(y — 2)| [|%]

for z,y € R™. Consequently, K.,u € BUC and the assertion follows.
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Now we set
a(z, &) = 1" +0A@,8), bz, n) =a(z,&n) "
for (z,&,m) € R* x R® x H. It is obvious that
(z — a(z,-,-)) € BUC*(Hp). (5.14)
Remark 3.1(a) implies
|b(z, & m)| < wo(l[™ + ™)1, (2,&,m) € R* x (R” x H)". (5.15)

It is easily verified that, given o € (N")", the derivative O¢'b is a sum of terms of
the form
+b(0¢*a)b(0ga) - - -- -b(6?ja)b, (5.16)

where this sum extends overall j € {1,...,|a|} and all a1, ..., a; € (N?)" satistying
o1 +---+ a; = a. From this we easily deduce that

(z — b(z,-,+)) € BUC?(H_p,). (5.17)
Consequently, Lemmas 5.5 and 5.3 imply that
ko(z,9) = F by, m) (@),  (z,y,m) €R" xR x H,
is well-defined and that k, := (y — ky(-,y)) € BUC(Li(L(E))) with
kgl < eln™,  nef. (5.18)

We set
Ki(n)u(z) :== /k‘n(fc —y,y)u(y) dy, reR", neH

Then it follows from Lemma 5.6 that

Ki(n) € L(L1), [IK1Mllgey <celn™,  neH. (5.19)
We also denote by A, the principal part E|a\=m aqD* of A.
Lemma 5.7. There exist v > 0 and T1(n) € L(L1) satisfying

ITe (e, <enl™ (5.20)

and
(™ + Az)Ki(n) = 11, + T1(n)

forn € H.
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Proof First suppose that aq € BUC*™ (L(E)) for |a| = m. Then, if u € Ly,

0aD* (K )) = D* (aas)) = 3 () D%0aD"? (K (n)u)

0<f<La

for |a| = m. Given ¢ € Dc, we see that

D*(aaK1(n)u)(p) = (- )'“‘(aaKl( Ju )(D" )

I\/ )D%p(z) dz

= (=1l // (@) ( — 1, y)uy) dy Do () d

(5.21)

= 1" [[ caltse - y,1)u(w) dy D*p(a) do + Rali)(e)

= (=1)l /aa(y)kn(- —y,y)u(y) dy (D) + Ra(n)(p),

where

1)l // aa(7) = aa(y)]ky(z — y,y)u(y) D%¢(z) dy da.

Note that
/|aa ) [ 1ol = .| 1D%p(a)| do ()| dy

< laallo 10l [ Vot =3, )] dofuo)] dy

< llaalloo 1D @lloo [1kqll [Jullr < oo
Hence, by Fubini’s theorem and denoting by 7, translation,

“'/ (- =9, 9)uly) dy (D)
= (-p / aa(u) [ (9 (D) () dy
) [D% ey

- / 00 (¥) [P (- 9)] (r_y)u(y) dy.
Setting by (y,&,n) := £*b(y, €, ), we find

a0 (y)Dky (-, y) = aa(y) D*F'b(y,-,n) = F~ " (aa(y)ba(y, - n)).

Since

(K1(n) / /k dyda:—/k

= [ ] utw) dy,
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we deduce from (5.23) and (5.24), setting 1(z) := 1 for z € R", that

7™ (K (n)u) () + 1)lel / (- — v, 9)uly) dy (D*0)

Ial

- / [f’l(a(y,-,n)b(y,-,n))(tw)]U(y) dy
- / [F ' (1p ® 1)(r—y)]uly) dy
- / (1 ®6)(r_y@)uly) dy = / oW)uly) dy = u(p).

We also find

o //aa (@ —y,y)u(y)D%p(z) dy dz
- // aa(2) D3k (z — y, y)u(y)p(z) dy dz

Py (Z) / DPaq(2) D5 Phy( = y:y)u@)p(@) dyds (5 96

0<B<La

(5.25)

- // 0a(£) D2y (& — 1, 1) u(y)p(x) dy da
+ Yy ( ) [DPa.D* P K (n)u] (),

0<p<a
thanks to the fact that, given v € N* with |y| < m,
D’Ykn('ay) = ]:_lb’Y(ya ';77) € Ll (‘C(E))a

as follows from Lemma 5.3 since b, (y,-,n) € S—1 by (5.6) and (5.10). Thus the
application of Fubini’s theorem in (5.26) is justified. Now, by combining (5.21),
(5.22), (5.25), and (5.26), we obtain

(0™ + Ax)K1(n)u] (p) = u(p) + (Te(n)u) (@), (5.27)
where
u() = [ (As(@ D) = Au(y: D)) ol = v, )u(w)p(a) dy o

Put
tn(x7y) = (Aw(:E:Dz) - Aw(yaDz))kn(w - y7y)
= Z (aa(:v) - aa(y))filba(ya S n)(x —y).

|a|=m
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Note that bs(y, -,-) € Ho, uniformly with respect to y € R™. Hence bs(y,-,n) € So
and (5.10) imply ||ba(y, -, 7)l|s, < ¢ for |@] = m and |n| > 1. Moreover, by (5.12),

Fbaly, m)(@) = [n]" F'oaly, 0/l (nlz), =,y € R
Fix r € (0, p). Then it follows from Lemma 5.4 and BUC? (L(E)) — BUCT (L(E))
that
[tn(@, )| < clz—yl" " |F " baly, 0/ lnl) (Il (= — )]

<cEe) " " |nl@-y)| "

for z,y € R® and 0 < £ < 1. Thus, fixing ¢ in (0,r) if |n|(z —y) <1 and in (r,1)
otherwise, we see that

/ Itn(x—y)IIU(y)ldyde/ [ty (z —y)|de |u(y)|dy < cln| " lull.  (5.28)

Hence, by Fubini’s theorem,

Tuwue) = ([ ta(a.v)ulw) dy (o) do

This being true for all ¢ € Dg, it follows that

T (yu = / b )u(y) dy.

Thus (5.28) implies that Ti(n) € £(L1) and that (5.20) is satisfied. Since (5.27)
is true for every test function ¢ and every w € L;, the assertion has been shown
under the additional assumption that a, € BUC® for |a| = m.

In the general case, we approximate a, by elements from BUC*™ (L£(E)) and
derive the desired result in the obvious way. O

We fix a nonnegative smooth function 4 on R"™ having its support in the unit
ball and satisfying [ ¢ dx = 1. Then we set 9. (z) := e ™)(z/e) for z € R* and
e > 0. We also set 6 := 1/(1+ p) and

aé(';fﬂl) = wA—“(f,n) *a('agan)a (5,77) € (R" X H).

Then
aé('7§7 77) = Am(§7 n)¢A_5(§,n) * a(': §*777*)'

From (5.14) and well-known properties of convolutions it follows that

il_ff(l)@bs * a(',f*ﬂ?*) = a(',ﬁ*,n*) in BUC(‘C(E))J
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uniformly with respect to (£,7) € (R* x H)". Thus, since A=%(&,7) < |n|~%, we infer
from Lemma 3.3 that there exits 19 > 0 such that

do(-+&,m) = [a-se,m *al€%m")]
is well-defined for £ € R™ and |n| > 7, belongs to BUC(L(E)), and satisfies

lldo (- & Mlloc < 21b(-, €%, 1) lo0 < 20, (5.29)
uniformly with respect to (§,1) € R® x H with || > 9. Hence

d(-,€,1) := [a°(-.&m)] " € BUC(L(E)) (5.30)
is also well-defined with ||d(-,£,m)||cc < 2k0A™™(&,n) for £ € R® and n € H with

Inl > no-
Finally, we set

1
e:=(a—a’)d+ Y - 0faDid, (5.31)
0<|B|<m

so that e is defined for z,£ € R" and n € H with |5| > no.

Lemma 5.8. Putr := pd/2. Then
(i) (=~ d(z,-,n)) € BUC(FLy) and

sup ||d(xa ';77)||fL1 < c|77|7m7 |77| 2 1o-
TER™
(i) (=~ e(z,-,n)) € BUC(FL,) and

sup [le(z,-,n)llFL, <cln|™", In| > 10-
zER™

Proof Set 1 :=n/[n|ande, := (9| A1)~% , where A;(§) = A(£,1) = A(&,7). Then

a6(';§;77) = |77|m 1/’5,,(&/\”\) * a(':f/'”l;ﬁ)a é € ]Rn; neE l:i

Hence

d(-&m) =™ [Ye,e/m) * a(-&/ml, M), EER™, |l > 10.

Thus we infer from (5.12) that

||d(.’l§', 'an)”}—Ll = |77|7m “ [¢67, * (l(iU, 7’?’/)] _1||_7-'L1’ T e Rn) |TI| 2 1o,
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where convolution is taken with respect to x, of course. Consequently, Lemma 5.3
guarantees that it suffices to show that

(z = [e, *a(z, )] ") € BUC(S_m) (5.32)

with .
sup | [, *al@, D] “|ls_ <e  Inl >0 (5.33)
e

First note that
"ubs,,(ﬁ) * a('7€7 m = A;n(é-)"ps"(é) * a('a g*aﬁ*)a
and the arguments leading to (5.29) imply

|| [¢5n(§) * a('aE:m] _1”00 = Al_m(é.) || [wfﬂ(f) * a(-,f*,ﬁ*)] _1”00

5.34
< eA™(E) .

for £ € R" and |n| > no.
Second, it is not difficult to verify (cf. the proof of [9, Lemma 5.1]) that

651 (¢an * a(a:, Jﬁ)) = (wl)fn * Cll((E, 'aﬁ) + w&, * 6@1&(1’, '777)7

where 11 belongs to Dc, has its support in the unit ball, and is independent of n,
and where a; (-, &,7) := =0 A 2(€)a(-, &, 7). Clearly,

”al(':&m”w + ”65:‘(1(',{,’7]/)”00 < CA;n_l({)
and, consequently,
||8§J (%bs,, * a(':é-a ﬁ)) ||OO S CA;n_l(é-)'
Proceeding by induction, it follows that
(z = A, "0 (e,  a(-,&,7)) (2)) € BUC(L(E))

for |a] < n+ 1, uniformly with respect to £ € R® and |n| > no. From this (5.32)
and (5.33) are obtained by employing (5.34) and the analogue of (5.16).
(ii) By modifying the arguments of step (i) in the obvious way we find that

(@ = AT™H018 (6 ) og8Bad (z, €,m)) € BUC(L(E))

and
(z = AT 0Vl pagald(x, €,m)) € BUC(L(E))

for |a| <n + 1 and |8] < m, uniformly with respect to £ € R™ and || > no (cf. the
proofs of [9, Lemmas 5.1 and 5.3]).

32



Similarly, (5.14) and the proof of [9, Lemma 5.2] show that
(@ = A-H2 (6 0)0g (a - @) (2, €,m)) € BUC(L(E))

for |a| < n + 1, uniformly with respect to £ € R” and |n| > 1. From this and Leib-
niz’ rule we infer that

(@ = Aol m)dge(e, €,m)) € BUC(L(E))

for |a| <n + 1, uniformly with respect to £ € R” and |n| > no. Now assertion (ii)
follows from Lemma 5.3. O

We set koo, := F1d(y,-,n)(z) for z,y € R* and

Koo(n)u(z) = / koom(@ -y, 2)u(y)dy, T ER®, uE Lo,

for n € H with || > no. Since Lemma 5.8(i) implies that y — koo (-,y) belongs to
BUC(L1(£(E))) and

sup [|ko,n(59)ll <clnl™,  Inl =m0,
yER™

it follows from Lemma 5.6 that K (n) € L(BUC) with
Koo Ml zBucy < clnl™™, n€H, |n|>no. (5.35)
The following lemma is an analogue for BUC' to Lemma 5.7.
Lemma 5.9. There exist r,mg > 0 and T, € L(BUC) satisfying

1 Too (Ml c(Buc) < elnl™ (5.36)

and
(™ + Ar) Koo (n) = 1euc + Teo(n) (5.37)

for n € H with |n| > no.

Proof Suppose that u € BUC and ¢ € D¢. Similarly as in the proof of Lemma 5.7,
we deduce that

[0 + A Kas()u) () = () + ([t ~ vy 2 uwp(@) dody, ) > m,

for ¢ € D¢, where
ta(z,y) == F "ely,,n)(@).
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Lemma, 5.8(ii) implies (y — t,(-,y)) € BUC(L1(£(E))) and
sup [ty (5 y)llh < el Il = no-
yER

Hence, defining T\, (n) by

T(u@) = [tfs ~ .0y, weBUC, |nl >m,
it follows from Lemma 5.6 that T, (n) € L(BUC) and (5.36) is true. Consequently,
/ lty(z —y, 2)| |u(y)| dy l¢(z)| dx < [|ull, sup G )l lleolly
yeR™

and Fubini’s theorem guarantee that

J[ trte = wayutwypta) dedy = [ (Tta) @)(o) do = (T o)

This proves
(1™ + Ax) Koo (n)u] () = u(p) + (Too(n)u) (¢)
for ¢ € D¢ and u € BUC and for n € H with |n| > no. Hence (5.37) is also true. O

After these preparations we can prove the main result of this section. For this
we denote by A% the Cy-realization of Ax.

Theorem 5.10. There exist k > 1 and w > 0 such that
IO+ A Hleg + IO+ A iz < e/IA 1<g< oo, (5.38)

for A € w+ By, whenever A is (ko,9)-elliptic and satisfies Plal<m |aa

lpso0 < M.

Proof (i) Suppose that ¢ =1 and a, = 0 for |a| < m. Then (5.19) and Lemmas
5.7 and 3.3 imply that there exists k1 > 1 such that, setting 5 := AV/™

Ry (\) := Ki(n)(1+ Tu(n)) " € £L(Ly)
is well-defined for A € w; + Xy and satisfies
1B (Mle) S wi/[Al, A€ wr+ Xy,

and also (A + A)R;(A)u = u for u € L;. Thus R;(A)(L1) C D(A;) and R;()) is a
right inverse of (A + A;). Since we know already that A € p(—A;) for A € w; + By,
that part of assertion (5.38) concerning ¢ =1 is true if a, = 0 for |a| < m.
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(if) Next suppose that ¢ = 0o and a, =0 for |a| < m. Similarly as in (i), we
deduce from (5.35) and Lemmas 5.9 and 3.3 that there exist Koo > 1 and wee > 0
such that

(A + Aoo) ™ = Koo () (1 + Too(n)) ™ € L(BUC)

for A = 7™ € wy + Xy, and that
A+ Aso) Ml e(Buc) < Eoo/ Al A€ W + By.

(iii) Suppose that g € {1, 00} and set wp := w; V we- Note that A — A, belongs
to E(B;’ffl,gq) and that (3.8) implies

A - Afr”c(B;'j;l,gq < ¢(M).

Since u — [|(wy + Ax)ull3, is equivalent to the graph norm of A, 4, we infer from
Arg A+ Az )t =1 - AA+ Aro)~" and the validity of (5.38) for A, , that

|\ + A,r’q)ilug(gq,D(Aﬂ’q)) <cg, A€ wp+ Ty (5.39)

By interpolating (5.38) (for A, ,) and (5.39) we obtain from Proposition 5.1 that
IO+ Ar) g, mmi1) < cATY™ Aew+ Sy

Now Lemma 3.3 guarantees the existence of w > wp such that the part of (5.38)
referring to ¢ € {1, 00} is true for A € w + Xy.

(iv) Denote by [-,-], the complex interpolation functors for 0 < § < 1 and re-
call that L, = [L1, Loo)i—1/p for 1 < p < oo (e.g., [11, Theorem 5.11] or [27, The-
orem 1.18.6.1]). Hence the part of (5.38) concerning ¢ € (1, 00) follows by interpo-
lation from (iii).

(v) It is clear that AY is the Cp-realization of Apgo - Thus Theorem 4.4 im-
plies that (A +.4)71(Cp) C Cp for A € w + Xy. Now the assertion concerning A%
is clear. O

Corollary 5.11. If A is normally elliptic and has coefficients in BUC? (ﬁ(E)) for
some p > 0 then —A generates a strongly continuous analytic semigroup on Ly, for
1<p< o, on BUC, and on Cy.

The idea for the proof of (5.38) for the operator A; is taken from [15], where the
scalar version of Lemma 5.7 is derived. Our proof is somewhat more complicated
since we have to build on the theory of vector-valued distributions and cannot
employ duality arguments.

It should also be mentioned that Corollary 5.11, as far as L; is concerned,
coincides in the case E = CV with Guidetti’s generation theorem [15, Theorem 1.7].
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Note that, formally,

Koo(iu = @m) " / ¢ Ed(z, £, m)a(E) d.

Thus K (n) is a pseudodifferential operator. Since it has an operator-valued sym-
bol and we are considering an arbitrary Banach space E, no general theory is
available to which we could refer. Of course, the ‘natural’ candidate for the con-
struction of a parametrix for ™ + A is obtained by replacing d by b. Since this
symbol is not smooth we had to use the technique of symbol smoothing (see [9] for
references).

If E = C (or CV) and A is normally elliptic, it has been shown by several authors
that —A generates an analytic semigroup on BUC (cf. [24], [25], [18, Sections 3.1.2
and 3.2] and the bibliographic remarks in Lunardi’s book). All these proofs rely on
L,-estimates (of Agmon-Douglis-Nirenberg type). Hence they cannot be generalized
to the infinite-dimensional setting (see below). It should also be remarked that our
proof is much simpler than the ones previously known (in the finite-dimensional
setting). In addition, (5.4) is a rather precise inclusion result for D(Ay)-

In the finite-dimensional case it is well-known that

D(Ap) =W,", l1<p<oo. (5.40)
This relies on the fact that Mikhlin’s multiplier theorem holds for L,-spaces if
1 < p < oo. In the case of operator-valued symbols such a theorem cannot be true,
in general, as has been shown by Pisier (cf. [17]). Thus it cannot be expected that
(5.40) is true, in general, if F is infinite-dimensional.

Recently, it has been shown by Weis [31] and Strkalj and Weis [26] that operator-
valued Fourier multiplier theorems are valid on L,-spaces for 1 < p < oo if the
Banach spaces and the symbols belong to suitably restricted classes. It would be
interesting to investigate whether these results can be used to prove that (5.40) is
true under these assumptions.

Appendix

A1l. Besov spaces

For ¢ € D¢ we denote by p(D) € L(S) the Fourier multiplier operator defined by
o(D)u := F1(pu) = F Ly xu.

We fix a real-valued radial ¢ € D¢ satisfying ¢(§) =1 for || <1 and hav-
ing its support in [|{| < 3/2]:= {£{ € R ; |£] < 3/2}. Then we set 1)y := ¢ and
P (€) 1= 1h(275E) — h(21F¢) for £ € R™ and k € N. Note that

supp(yr) C [2871 <€) <3-2871),  keN, (AL1)
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and
m

D k() =927,  £EeR', meN (A1.2)

k=0

Let E := (E, |-|) be a Banach space. For s € R and p, g € [1, 0], the Besov space
B; , = B, ,(R", E) is defined to consist of all u € S’ satisfying

lullss, = || (2 llex(D)ull,) . < oo.

It is a Banach space with the norm |[|-||p; , and different choices of ¢ lead to
equivalent norms.

If s >0 then By , can be renormed as follows: Denote by Ap =7 5 —1 the
difference operator for h € R*. If 0 < s <1 and p,q € [1, 0] then set

[uls,pg = || 1B Al |

Ly
where L := L,(R™,dh/|h|"; R). Then, given s € (0,00) and p,q € [1, 00],

g, ~ o+ D 0% Jomtolpas (A1.3)

lee| <[5]-

where [s]_ :=[s] if s¢ N and [s]l-:=s—1for s € N. For details we refer to 5,
Chapter VII] (also see [29, Section III.15]).

Following Yamazaki [32] we now prove an important criterion for v € S’ to be-
long to B, ,. It is based on the following lemma which we include for completeness.

A1.1 Lemma. Suppose that s >0 and 1 < q < oco. Then

|y w) |, <cleral,

and

for every sequence (a;) in C.

Proof [32, Lemma 3.8]. O

Thanks to the multiplier theorems for vector-valued Besov spaces of [6] we can
now extend [32, Theorems 3.6(1) and (3.7(1)] to our setting by following Yamazaki’s
arguments.
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A1.2 Proposition. Fiz s € R and p,q € [1,00]. Let (v;) be a sequence in Fp
satisfying ||21's [[vj]lp ”e < 00. Also suppose that either

supp(d;) C [277° < €] < 27F1],  jeN (Al.4)

or
supp(d;) C [|€] <27*°],  jeN. (AL1.5)

Then v := E;’io v; exists in S', belongs to B, ,, and satisfies

lvlls;, < <[ lloslla)],, (A1.6)

where ¢ is independent of (v;), and s > 0 if (A1.5) is presupposed.

Proof (i) Suppose that v =} 72 v; exists in S'.
If (A1.3) is satisfied then (A1.1) and [6, Proposition 4.5] (with a := 1) imply

k+3 k43
252 |l (DYoll, < 2% D [l (D)vsllp, < Y 277,
j=k—3 j=k—3
for £k € N. Hence '
lolls; , < |2 llusll,),.. (A1.7)

If (A1.5) is true then it follows from [6, Proposition 4.5] that

2 |l (D)oll, < 2% Y [l

k—4<j<oco

Thus, if s > 0 then Lemma A1l.1 guarantees that (A1.7) holds in this case also.
(ii) Fix t < s and note that

1@ losllp)ll, < el ol -

Hence we can apply the results of (i), with (s, p) replaced by (¢,1), to the partial
sums v(™) := E;nzo vj for m € N. Then we obtain from (A1.7) that

m
||,U(m)_v(€)||B;1 <c Z 2J't||q;]-||p, 0<l<m< 0.
j=t+1

This shows that the series E]. v; converges in Bf,,l, hence in &', which proves

everything. O
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A2. Point-Wise Multipliers
Let Ey, F1, and E> be Banach spaces and suppose that
Ei x By — Eo, (61,62) = €1 @€ (A21)
is a multiplication, that is, a continuous bilinear map.
Given (u1,u2) € C(E1) X Lp1oc(E2) for some p € [1, oo], the point-wise product
uy ® up (induced by (A2.1)) is well-defined by
uy @ uz () := uy(x) ® us(x), a.a.z € R". (A2.2)
Furthermore, the map

BUC(Ey) x Lp(E2) = Lp(Ep), (u1,uz2) = up ®up

is a multiplication, the point-wise multiplication induced by (A2.1). Henceforth
we express this fact by writing

BUC(Ey) & L,(E>) — L,(Ey), 1<p<oo. (A2.3)
If s,t > 0 and p, ¢ € [1,00] then
BUC?®(Ey) x Bf,,q(E2) — BUC(E) x L,(E»)

by (1.9), (1.11), and (1.12). Thus point-wise multiplication (A2.3) restricts to
BUC*(E) x B}, ,(E») as a multiplication with values in L,(Eo), that is,

BUC*(Ey) ¢ B (E») = Ly(Bo),  5,t>0, pyq€[l,00]. (A2.4)

Of course, the image space in (A2.4) is not optimal. In fact, a much better result
is true.

A2.1 Proposition. Suppose that 0 <t < s. Then

BUC*(Ey) » B. () < B (Ey),  1<p,q< oc. (A2.5)

Proof This has been shown in [2, Remark 4.2(b)] as a consequence of much more
general results, under the assumption that Ey, E;, and E» are finite-dimensional.
That proof is, in contrast to those by other authors (cf. [22], [28], [16], [20] and
the references therein), solely based on (A1.3), embedding properties (1.9) and
(1.10), and on Holder’s inequality. Hence it applies to the general, possibly infinite-
dimensional, case also. O
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Now we turn to ¢t < 0. Since we do not want to put any conditions on the
underlying Banach spaces E;, we cannot use duality arguments as done in the finite-
dimensional case in [2]. For this reason we employ the theory of paramultiplication
following Yamazaki [32], Johnson [16], and Runst-Sickel [20].

We know from [6, Theorem 2.1] that there exists a unique hypocontinuous
bilinear map, called point-wise multiplication too,

OM(EI) X Sl(Ez) — SI(E0)7 (U17U2) = U ® Uy (A26)
such that
(1 ®e1) o (p2 ®ez) = 12 ® (€1 @ €32), p;®e; € Dc@E;, j=1,2.

Since it coincides on (D¢ ® E1) x (D¢ ® Es) with the one introduced in (A2.2),
the two definitions of point-wise multiplication are consistent.
Given u; € S'(E;), we set

k
SkUj = ’ka(D)uJ‘, Skuj = ZS@UJ', keN,
£=0

and
m(u ® uz) := lim Skuy o Skuy,
k—o0

whenever this limit exists in §'(Ep). Since S¥u; € Op(E;) (cf. [6, Theorem 3.1]),
the point-wise products S*u; e S¥u, are well-defined.
First we show that 7 coincides with (uy,us) — u; @ us on BUC®(E;) X S(Es).

A2.2 Lemma. 7(u,v) =uev for u € BUC®(E;) and v € S(E»).
Proof From (Al.2) it follows that S¥u = F1(ogr1)) * u. Hence (5.12) implies
18*ulloo < NIF ottt lulloe = 191 lulle,  keN (A2.7)
Thanks to 9*S*u = S¥9%u, we thus obtain
[S*ulleco <Nl llullgyee, K lEN

This shows that { S*u ; k € N} is bounded in BUC® (E}), hence in Oy (E,).

It is not difficult to see that ooxt) = 1 in Op(C) (cf. [6, pp. 19/20]). Hence
(ogrp)w — win S(E) [resp. S'(E)] if w € S(E) [resp. S'(E)] (cf. [6, Theorem 2.1]).
Consequently, S¥w = F 1 ((o9x9)@) = w in S(E) if w € S(E), and in S'(E) if
w € §'(E). Now

Sty e Sty —uev=Skue (Skv—v)+ (SFu—u)ev

and the hypocontinuity of (A2.6) imply the assertion. O
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For u; € §'(Ej;), we put S_ju; := 0 and

00
2 : j—2
7I'1(U1,U2) = S7 Uy e SjUQ,

i=2
o0

mo(u1, us) == Z(Sj_l'u1 o Sjus + Sjur ® Sjus + Sjur @ Sj_1us),
§=0

0
2 : j—2
7T3(U1,U.2) = SJ"U.l e 57 Uz,

=2
provided these series converge in S§'(Ep). Note that
T = + 7 + 3. (A2.8)
Also note that
supp (F(S7 uy @ Sjuz)) Usupp(F(Sjur @ $7 2us)) C [2773 < |¢] < 27H'] (A2.9)
and, setting T)j(uq,u2) := Sj—1u1 ® Sjus + Sjuq ® Sjus + Sjus ® Sj_qus,
supp (FTj(u1,us2)) C [[€] < 27%7] (A2.10)
for j > 2 (cf. [6, Remark 3.2(e)]).
A2.3 Lemma. Suppose that 0 < —t < s and p,q € [1,00]. Then
m: BUC®*(Ey) x B}, ,(Ez) = B} (E)
is well-defined, bilinear, and continuous.

Proof Thanks to (A2.8), (1.6), and (1.9) it suffices to show that

||7Tj(uav)||B;’q(Eo) < C||’LL| Bs_(E1) ||U||B;,Q(Eg)7 .7 = 17253a (A211)]

for u € B (Ey) and v € B}, (Fs) and that m;(u,v) exists in §'(Fp), since we can
assume that s ¢ N.

Thus we suppose that u € B (Ey) and v € B}, ,(E») and follow arguments from
the proof of [16, Theorem 5.1].

(i) From (A2.7) we infer that

[ 1872w e Sjullp) ||, < (|1 ullo) [, (27 1801,
<cllull vllBg, < cllullgs llvllB -
Thanks to (A2.9), we can apply Proposition A1.2 to deduce that 1 (u,v) exists
in §'(Ep) and satisfies (A2.11);.
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(i) To estimate 7y we observe that

|7+ )1Sj1u e Spollp)|,, < e [[(27% 1Sjulloo) | (127 11Sllp)]l,,

= ¢|lul

B3, |'U||B;,q-

Similar estimates for S;u e S;v and S;ju e S;_v imply

1@+ T;(w, 0) 1), < cllul

Bs, |'U||B;,’q-

Hence (A2.10), the fact that s +¢ > 0, and Proposition A1.2 imply that w2 (u,v)
exists in S'(Ey) and satisfies (A2.11),, thanks to B5tt < B} .
(iii) Similarly as in (i),

1@ 1S5u e ST20llp) ]|, < [[UISullo), (17 11S7~20llp)],,

ji—2
(2 X2 0slly) |, <eliul
k=0 ?

where the last inequality sign follows from Lemma A1l.1, thanks to ¢ < 0. Now,
once again, (A2.9) and Proposition A1.2 imply that 73(u,v) exists in S’'(Ep) and
satisfies (A2.11)s. O

< lullgo. lvllBe

B

After these preparations we can extend Proposition A2.1 to certain negative
values of ¢.

A2.4 Proposition. Suppose that s,t € R with |t| < s, and p,q € [1,00]. Then
there exists a unique continuous bilinear map

BUC*(Ey) x B;’Q(Ez) — Bf)’q(Eg),

denoted by (u,v) — u e v and called point-wise multiplication, which coincides with
the point-wise product (A2.3) whenever (u,v) belongs to BUC(E;) N L.(Ey) for
some r € [1,00].

Proof (i) If ¢ > 0 then this follows from Proposition A2.1.
(i) Suppose that ¢t < 0. Fix o € (0,s)\N and 7 € (—s,t) and note that

BUC*(E;) < buc’ (Ey) — BUC’ (E,), B;’q(Ez) < By 1(F1)
by (1.9). Thus, given (u,v) € BUC*(Ey) x B}, ,(E»), there exists a sequence (u;,v;)
in BUC™(Ey) x S(Ez) converging in BUC (E1) x B] ,(Es) towards (u,v). Hence
Lemmas A2.2 and A2.3 imply

uj o v; = m(u;,v;) = m(u,v)
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in B] (Ey), hence in 8'(Ep). This being true for every such sequence ((u;,v;)),
the product
uev:=m(u,v)

is well-defined for (u,v) € BUC*(Ey) x B}, ,(E») (and, in particular, independent
of ¢). This proves the assertion in this case.

(iii) If ¢ = 0 then we obtain the desired result from (i) and (ii) by interpolation,
thanks to (1.19). O

Henceforth we use the notations introduced in (A2.3) in the more general case
of Proposition A2.4 and in related situations also. Then we can prove the main
result of this section.

A2.5 Theorem. Suppose that s,t € R with |t| < s, and p,q € [1,00]. Then
BUCS(El) [ B;’Q(EQ) — B:)’q(Eo)
for B € {B,b, B}.

Proof If B = B then this is a restatement of Proposition A2.4. Using [6, Theo-
rem 2.1], it is not difficult to verify that, given & € {BUC*, S},

uev € B(Ey) for we BUC™(E;), v€ 6(Ey). (A2.12)

Fix o € (|t|, s) and (u,v) € BUC*(Ey) x Bt ,(Es), where B € {b, B}. Then there
exits a sequence (uj,v;) in BUC™(E;) x &(E»), where ® := BUC® if B =) and
® := S if B = B, converging in BUC? (Ey) x Bt ,(E2) towards (u,v). Since u; ® v;
lies in B(Ey) by (A2.12) and

BUCU(El) o B;,Q(Eg) — B;)’q(Eo)

by what we already know, it follows that ue v € Bf,’q(Eo). O

A2.6 Remark. Suppose that s € R* \N. Then
BUCS(El) L] BUCS(EQ) — BUCS(E())

and
buc®(E;) e buc®(Es2) < buc®(Ey)
as well as
buc®(Ey) @ Cj(E2) — C§(Ey).

Proof This follows, as in the scalar case, by a direct investigation of the Holder
norms and an approximation argument similar to the one used in the preced-
ing proof. O
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In the scalar case, Theorem A2.5 is known, of course, and contained as a special
case in much more general results (cf. [28], [16, Theorem 6.6(1b) and (1d)] and [20,
Theorem 4.4.3.2]). Triebel’s proof uses duality arguments, and the one in [20] relies
on Triebel-Lizorkin spaces. Although the latter spaces can be defined in the infinite-
dimensional setting (see [29, Section III.15]), they are not too useful since this scale
is not known to contain the Lj-spaces for 1 < p < oo unless restrictive conditions
on E are imposed. Consequently, the techniques of Triebel and Runst-Sickel do not
extend to infinite-dimensional spaces. As mentioned above, our arguments are those
of Johnson [16], except that we have to invoke the full strength of Schwartz’ theory
of vector-valued distributions in order to define point-wise products of smooth
vector-valued functions and vector-valued distributions.

It should also be mentioned that the investigations by Triebel, Sickel, and John-
son for the scalar case show that Theorem A2.5 is optimal (except for the possibility
of having s = |t| in some cases).
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