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Linear parabolic problems involving measures

H. Amann

Abstract We develop a general solvability theory for linear evolution equations of the form ������	��
�
on ��� , where � � is the infinitesimal generator of a strongly continuous analytic semigroup, and � is
a bounded Banach-space-valued Radon measure. It is based on the theory of interpolation-extrapolation
spaces and the Riesz representation theorem for such measures.

The abstract results are illustrated by applications to second order parabolic initial value problems.
In particular, the case where Radon measures occur on the Dirichlet boundary can be handled, which is
important in control theory and has not been treated so far.

We also give sharp estimates under various regularity assumptions. They form the basis for the study
of semilinear parabolic evolution equations with measures to be studied in a forthcoming paper jointly
with P. Quittner.

Problemas lineales parabólicos involucrando medidas

Resumen Desarrollamos una teorı́a general para la resolución de ecuaciones lineales de evolución
de la forma ������	��
�� sobre ��� , donde � � es el generador infinitesimal de un semigrupo analı́tico
fuertemente continuo y � es una medida de Radón con valores en un espacio de Banach. Utilizamos
la teorı́a de interpolación-extrapolación de espacios y el teorema de representación de Riesz para tales
medidas.

Los resultados abstractos son ilustrados mediante aplicaciones a problemas de valor inicial parabólicos
de segundo orden. En particular, el caso importante en teorı́a de control en el que las medidas de Radón
aparecen sobre la frontera Dirichlet puede ser contemplado pese a no haber sido tratado hasta ahora.

Damos también precisas estimaciones bajo diversas hipotesis de regularidad. Estos resultados consti-
tuyen la base para el estudio de ecuaciones semilineales parabólicas de evolución involucrando medidas
que será abordado en un próximo trabajo conjunto con P. Quittner.

1 Introduction

In this paper we study linear parabolic evolution equations of the form

������������ on �� "! #%$'&
where � is the negative infinitesimal generator of an analytic semigroup ( on some Banach space ) , and� is a bounded ) -valued Radon measure on �  . Equation (1) is to be understood in a weak sense. More
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precisely, a solution is a locally integrable ) -valued function � on �  such that��������	� �
 ! ��� � � ���
 ! ��������� � ���� 
�� � #�� &
for all smooth )	� -valued functions with compact support in �  �� ��� � !! & , and �  being the dual of �
(with respect to a suitable duality pairing). It is shown that (1) possesses a unique solution and that it is
given, as can be expected, by (#" � , the convolution of the semigroup ( with the vector measure � .

These facts, although looking natural, are far from obvious. For example, since ( is strongly continuous
only, it is by no means clear how to define ($" � in general. Furthermore, the validity of (2) depends on a
careful choice of the space ) and the operator � . As a rule, neither ) nor � is the one appearing in the
original concrete formulation of problem (1), but is derived from the latter by interpolation-extrapolation
techniques. This has already been done in [10] for elliptic problems. But here the situation is more compli-
cated since we deal with evolution problems.

We investigate in detail problem (1) and prove basic existence, regularity, and continuity theorems.
They are fundamental for the study of semilinear parabolic evolution equations involving measures carried
out in [11]. However, the results of this paper are of interest for their own sake as well. They apply, in
particular, to linear parabolic boundary value problems with measure data. In the following, we describe
some of these applications for second order model problems. More general cases are treated in Section 7.

Throughout this paper, % is a nonempty subdomain of ��& with a compact boundary ' . If ')(�+* then it
is supposed to be smooth and lying locally on one side of % . We denote by , the trace operator, by -. the
outward pointing unit normal, and by /10 the corresponding normal derivative on ' , if ')(�2* . In the latter
case, we assume that ' � ' �43 '65 with ' �87 '65 �9* and ' � and ':5 being open (hence closed) in ' . Of
course, either ' � or ':5 may be empty.

In the following all implicit or explicit references to ' or '<; and all formulas containing ' or '=; ,
respectively, have to be neglected if the corresponding boundary is empty.

We write >@?A � � >@?A #B%�& for the usual Sobolev-Slobodeckii spaces for CED � and $GFIH�FI so that> �A �KJ A . If $LFIHNM+ then we denote by O>@?A the closure of P in >Q?A , where P � � P #B%�& is the space

of smooth functions with compact support in % . Then O>@?A � >@?A for all CED � if ' �+* , and for CEM $SRTH
otherwise. Furthermore, >VU�?A � # O>@?AXW &Y� for CEZ � and $LM)H�MI , with respect to the J A -duality pairing
induced by

� � !X[ � � � �]\ � [ �_^ ! � !`[aDbPdc
We also set P # % & � � � ��e %If � DgP # ��& & � , etc. These spaces are given their usual topologies.

Let h be a i -compact metric space, that is, a locally compact metric space which can be written as a
countable union of compact subsets. Then j � #kh& is the space of all continuous functions on h vanishing
at infinity, endowed with the maximum norm. Moreover, j � #lh&m� , the dual space of j � #lh�& , is identified
with the space n #kh& of bounded Radon measures on h with respect to the duality pairing

� � ! ��� � � � � ! ���moqpsrutwv � � � t ��� � ! # � ! � &4Dxn #kh&4yzj � #lh&sc
We also put n|{ }s~ #kh�y��  & � ����<� � n��lh�y � � !X���l�
and give this space its natural Fréchet space topology. The same applies to J A�� { }s~ # �  !�>@?A & , etc.

Now suppose that
# �
\
! ��� &wDzn|{ }s~ #�%9y��  &wyzn|{ }s~ #B'$y �  & #B� &

and �����X� � �X���1� # � \ � ? & !�'�y��  �	� � ! #k� &
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Linear parabolic problems involving measures

where �
\ � ? is the singular part of �

\
in its Lebesgue decomposition with respect to Lebesgue’s measure� ^��_� on %2y��  . Consider the model problem

/ � � � � � � � \ in %+y �  !
� � � � on ' � y �  !/�0 � � � 5 on '65�y �  !

� ���� #�� &
where # � � ! � 5 & � ����� with � ;EDxn|{ }s~'#k'�;Ly �  & .

Suppose that $LM)H�M+ . By a (weak) J A -solution of (5) we mean a function � D J 5 � { }s~ # �  ! J A &
satisfying

� ���� � / � 
 � � 
 ! �����_� � � \
	��� 
�� �
\
� � ��� 	��� 
 � � 5 � � � p 	��� / 0 
 � � � #�� &

for 
 DbP # �  !XP�� & , where

P � � � � 
 DbP # %�&�f 
�2� on ' � !6/ 0 
 �K� on ' 5 � c
In particular, an J A -solution is a distributional solution of the first equation of (5).

Observe that (6) is obtained from (5) by multiplying the first equation by 
 , integrating over %+y �  ,
integrating by parts, and employing the boundary conditions — formally, of course. Here we have used
assumption (4) to guarantee that � \
	��  
 � � is well-defined for 
 DgP # �  !XP � & since, a priori, it makes
sense only for 
 DgP�# �  !mP & .

For this simple model problem our general results imply the following existence, uniqueness, continuity,
and positivity result. Clearly, H � � � H R #BH � $ & is the exponent dual to H .
Theorem 1� Suppose that � F)i M $ ��� R H � c #�� &

Then problem #�� & possesses a unique J A -solution � , and

� D J�� � { }s~ # �  !�>��A & #� &
for each !xZ $ satisfying �! � � H � � � $ � i�c #�" &

� If � � �+� then #� & is true for

� FIi MK� ��� R H � ! �! � � H � � � i�c # $ � &
� In either case the map # �

\
! ��� &$#% � is linear and continuous from the subspace of

n { }s~ #�%2y �� �&wyzn { }s~ #B'�y��� &
defined by #l� & to J$� � { }s~ # �  !�> �A & .� If �

\
and ��� are positive measures then � is positive as well.� � is independent of H�D � $ ! � R # �d� $'& � in the general case, and, if � � �2� , of H�D � $ ! � R # �d� � & � ,

where � R # �g� � & has to be replaced by  if � � $ .
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PROOF. This is a special case of Theorem 13. �
Remarks 1 (a) Assumption (7) implies # �b� $'&mH	M � , whereas it follows from the first inequality in (10)
that # �b� � &YH�M � . Also observe that we can choose i close to $ in the general case, resp. close to � if� � �+� , provided ! and H are close to $ .
(b) If � � �+� # $ $'&
then the second inequality in (10) implies

� D J$� � { }s~'# �  !!> 5A & for
�! � � H � � � $ c # $S� &

Furthermore, it follows from (8), (10), and Sobolev’s embedding theorem that

� D J�� � { }s~�� �  !�j � # %�& 7 j�� # % &X� ! � F��dM $ !
if � � $ and � � �K� .
(c) If � � �K� then the left-hand side of (6) can be replaced by� �� � �	� / � 
 ! ��� � � � 
 ! � ��� � ��� !
that is, by the expression occurring in the standard formulation of weak solutions for the heat equation.
(d) If �

\
and ��� have better regularity properties then the same is true for � .

(e) Theorem 1 remains valid if � � is replaced by an elliptic operator of the form

� � � � � ��� #
	 � � & � -� ��� ���� � �
and / 0 on ' 5 by a boundary operator � 5 of the form /�� ����� � , respectively, where /�� is the conormal
derivative on ' 5 , and

�
and � 5 have appropriately smooth coefficients. It remains also valid if 	 , -� , � � ,

and � are #
� y��& -matrix-valued, that is, if # � !X, � !��45 & is a normally elliptic system, , � being the trace
operator on ' � . �
Linear parabolic boundary value problems involving measures occur naturally in control theory, often for-
mulated as final value problems for the formally adjoint problem (eg., [12], [14], [23], [18], [24], [25]).
By choosing linear combinations of measures of the form ����� � with � Dzn # %�& and � � being the Dirac
measure supported at � D �  , so-called ‘impulsive’ systems can be incorporated into the framework of
this paper as well. (We refer to [21] and the references given there, for example, for an idea on impulsive
differential equations.)

Problem (5) (with general operators
�

and � of the form given above, but not for systems) has already
been studied by several authors, always imposing the condition that � � does not charge ' � , that is, condi-
tion (11) is satisfied. More precisely, given (11) and a bounded domain, it has been shown by Casas [14] and
Raymond [23] (also see [24], [25]) that (5) possesses a unique solution satisfying (12) (with the additional
restriction ! !`H�M)� ). However, the class of test functions 
 for (6) in those papers is larger than P�# �  !mP � &
(and defined in a somewhat ad hoc manner). Thus our uniqueness assertion is more general. In addition, we
get the much more precise regularity and continuity results exhibited in Theorem 1, which are of importance
for studying nonlinear problems.

Given assumption (11), one has also to refer to the earlier work of Lasiecka [20] (absolutely continuous
measures in an J�� -setting) and Baras and Pierre [13] (the case ' � ' � ). (We do not comment on the rather
large literature on nonlinear equations involving measures since this will be done in [11].)

Although problems with measures on the Dirichlet boundary are quite natural, occurring, for example,
in control theory when point-wise boundary observations are employed, this paper is the first one to deal
with them in the parabolic case. (For the elliptic counterpart see [10].)
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Our general results apply to problems involving more singular distributions than measures as well. For
example, suppose that

� ; Dxn { }s~ #B%2y �  & ! �����X� � �X���1� # � ; � ? & !`'�y �  �L� � ! $EF � F � c # $�� &
Consider the model problem/ � � � � � � � \ ��� ; / ; � ; in %2y��  !

� � � � on ' � y��  !/ 0 � � � 5 on ' 5 y��  !
� ���� # $ � &

where / ; � ; is the distributional derivative of � ; in the
�
-th coordinate direction, of course. By an J A -solution

of (14) we mean a function � D J 5 � { }s~ # �  ! J A & satisfying (6) with the term

� &�;�� 5
�]\�	��  / ; 
 � � ;

being added to the right-hand side.

Theorem 2 Let assumptions #k� & , #l� & , and # $�� & be satisfied. Given condition #�� & , problem #%$ � & possesses
a unique J A -solution satisfying #� & und # " & . It is independent of H , and the map� # � \ !���5'! c c c !�� & & ! � � ! � 5 � #% �

is continuous from the subspace of

��n { }s~ # �  !`n &X� &  5 ybn { }s~ # �  !�' � & ybn { }s~ # �  !`':5 &
defined by #l� & and # $ � & into J � � { }s~'# �  ! J A & .
PROOF. This is a special case of Remark 3(b). �

Note that � ; / ; � ; can be interpreted as distributions of dipoles in %2y��  . Similar dipole distributions
can be admitted on the Neumann boundary '�5 as well.

If % � �6& then we can allow much more singular distributions. Indeed, given � Dxn { }s~ # �  !!>@?�U �A &
for some CEMK� ��� � � RTH � with � D
	 , the differential equation/ � � � � ����� in � & y��  
possesses a unique distributional solution

� D J 5 � { }s~ # �� "!�> �A & ! ��� � �H � F)i M)� ��� � �H � !
and

� D J�� � { }s~ # �  !�>��A & ! �! � � H � � � � � i�c
As mentioned in the beginning, the results for parabolic boundary value problems are special instances

of our general results for (1). Parabolic evolution equations with singular data of a very general nature have
lately been studied by G. Lumer (e.g., [22] and the references therein) by completely different techniques
and applying to concrete problems of a different nature.

Convolutions involving operators, vector measures in particular, have been studied by many authors
(see [15] and the references therein). However, those results do not seem to apply to our situation since the
semigroup ( is strongly continuous only. To define (�" � we rely on duality theory and on the theory of
interpolation-extrapolation spaces developed by the author (see [4, Chapter V] for an account).
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In Section 2 we briefly collect some results on vector measures. In the next section we derive estimates
for solutions of linear parabolic evolution equations of the form

������������ # � & in # � !`��� ! � # � & �+^
under various assumptions on � . These estimates form the basis, in Section 4, for the definition of ($" � in
suitable interpolation-extrapolation spaces. In that section we also prove a trace lemma which we need for
piecing together local solutions in [11]. Furthermore, we derive an important and natural Green’s formula.

Section 6 contains our general results for problem (1). Besides of establishing existence and uniqueness,
we prove sharp regularity and continuity theorems under various restrictions on the data. These facts will
be fundamental for our study of semilinear problems in [11].

Although the results of Section 6 apply to a variety of problems, we restrict ourselves in this paper to
illustrating the applicability of some of them to second order parabolic boundary problems involving mea-
sures. We also leave it to the reader to translate the regularity results of Section 6 to concrete boundary value
problems. Finally, we refrain from giving applications to higher order problems and systems or problems
with dynamic boundary conditions. Some of those applications might be taken up in later publications.

We point out that one of the most crucial results in Section 7 is Theorem 10, giving a precise description
of abstract extrapolation spaces in terms of standard spaces of distributions on % and ' . This theorem also
clarifies the setting of [10].

For the sake of simplicity we have restricted ourselves to the case of a constant operator � . Building
on some estimates derived in [4], it is not too difficult to extend the abstract theory of this paper to non-
autonomous equations of the form

���� � # � & ����� . Since some points are more technical and are likely to
obscure the simple ideas, this will be done somewhere else.

Finally, many thanks go to P. Quittner for reading preliminary versions of this paper and helpful
comments.

2 Vector measures

Let h be a i -compact metric space and ) a Banach space with norm e � e . Denote by � t the Borel i -algebra
of h . By an ) -valued measure on h we mean a i -additive map � � � t %�) satisfying � # * & �2� . For
such a (vector) measure � we define its variation e �8e � � t %��  3��  �� bye �8e #���& � � �X�1�

� r
	 v �
�� � r
	 v e � # � & e ! � D�� t !

where the supremum is taken over all partitions � #���& of � into a finite number of pair-wise disjoint Borel
subsets. Then e �8e is a positive Borel measure on h . The (vector) measure � is said to be of bounded
variation if � � ��� � �Qe �8e #kh&4MK +c
We write n #lh ! ) & � � � n #lh ! ) & ! � � ��� � for the normed vector space of all ) -valued measures of bounded
variation so that n #lh !���& � n #kh& .

Let ) � , )�5 , and ) � be Banach spaces and suppose that

) 5 y�) � % ) � ! #�� 5 !�� � &$#%�� 5 � � � # $ � &
is a continuous bilinear map of norm at most one, a multiplication. We denote by � #lh ! )	5 & the closure
in � #lh ! )�5 & , the Banach space of all bounded maps from h into )E5 , of the linear subspace � #kh ! )L5 & of
all simple functions

��� �
	 � � rutwv�� 	 � 	 ! � 	 D )�5'! # $ � &
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where � 	 is the characteristic function of � . If � D � #kh ! )L5 & is given by (16) and � Dxn #lh ! ) � & then
we put � t �G� � � � �

	 � � rutwv � 	 � � #���&wD ) � c
It follows that

� #lh�! ) 5 &wybn #kh ! ) � & %�) � ! # � ! � &$#% � t �G� �
is a well-defined bilinear map satisfying

���
� t ��� � ����� p F �

	 � � rutwv e � 	 e e � #���& e F �
	 � � rutwv e � 	 e e �8e #�� &wF

� � � � � � ��� c
Hence it possesses a bilinear continuous extension over � #kh ! ) 5 &wybn #kh ! ) � & of norm at most one, again
denoted by the same symbol.

Recall that j � #kh ! )�& is the space of all continuous ) -valued functions on h vanishing at infinity, en-
dowed with the maximum norm. It is a closed linear subspace of � (:j #lh ! ) & , the Banach space of bounded
and uniformly continuous ) -valued functions on h , hence a Banach space, and j � #kh !�� & � j � #lh�& .

Since j � #lh ! )�5 & is a closed linear subspace of � #kh ! )L5 & , we obtain by restriction a well-defined
multiplication j � #lh ! ) 5 & ybn #kh ! ) � & %�) � ! # � ! � &$#% � t ��� � ! # $ � &
and � t ��� � is said to be the integral of � over h with respect to the (vector) measure � (and multiplica-
tion (1.1)). Moreover, ���

� t �G� � ��� F � t e ��em��e �8e F � � � � � � � � c # $  &
Now suppose that )G5 � � ) , ) � � � )N� , and ) � � � � . Then (17) implies that � #% � t ��� � is a con-

tinuous linear form on j � #kh ! )�& satisfying (18). The converse is also true, that is, the (generalized) Riesz
representation theorem holds: j � #kh ! )�& � � n #lh ! ) � & # $ " &
with respect to the duality pairing

� � ! ��� � � � � ! ���mo p r�t � � v � � � t �G� � ! # � ! � &4Dxn #lh�! ) � &4yzj � #lh ! ) &!c #B� � &
Thus, in particular, n #lh ! )N� & is a Banach space.

Now we give some general examples of vector-valued measures. They will be of importance in connec-
tion with evolution equations.

Here and below, � stands for a perfect interval, that is, an interval containing more than one point. We
denote by � # ) � ! ) 5 & the Banach space of bounded linear operators from ) � into ) 5 , and ��# ) & � � � # ) ! ) & .
Finally, we write )G5�� % ) � if )�5 is continuously injected in ) � , and )�5 �

� % ) � if )�5 is dense in ) � as well.
In later sections we use these notations also in cases where ) � and )�5 are locally convex spaces.

Examples 1 (a) Let �_� be Lebesgue’s measure on � . Given � D J 5 #	� ! )�& ,
# �G�_� & #���& � � � 	 �G�_� ! � D ��
 !

defines an ) -valued measure ����� Dxn #	� ! ) & , and
� ����� � � � � � � 5 . HenceJ 5 #	� ! ) &$%�n #�� ! ) & ! � #% �����
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is a linear isometry. By means of it we identify J 5'#�� ! ) & with a closed linear subspace of n #�� ! ) & .
PROOF. For this we refer to [19]. �
(b) Denote by � � the Dirac measure with support at � D � and let �	D ) be given. Then � � � � ��� � belongs
to n #	� ! ) & and � � ! ���Xo p r 
 � � W v � � � # � & !���� � for � D j � #	� ! )N� & .
(c) Let � be a Banach space and �9D ��# ) !���& . Then

# � #% � � &8D ����n #lh ! ) & !�n #lh !���&m� c
In particular, n #kh ! )�& � % n #lh !���& if ) � %�� .
(d) It is not difficult to prove that j � #�� ybh& � j � ��� !!j � #lh�&m� by means of the ‘canonical’ identification

� # � ! ^ & � ��� # � & # ^ & ! # � ! ^ &wD � ybh !
for � D j � � � !�j � #lh& � . From this it follows that n #	� ygh�& � n � � !`n #lh�& � with respect to the ‘canon-
ical’ identification n #	��ygh�&	� .�
 % � 0 Dbn � � !`n #kh& � !
given by � � 0 ! ���mo p r 
 � o p rutwvlv�� � . ! ���Xo p r 


	 twv #B� $'&
for � Dxj � � � !�j � #lh&X� � j � #	��ygh& . �
Now suppose that ) is reflexive and preordered by a closed convex cone � . Let � � be the dual cone of �
inducing the natural (dual) preorder of )�� . Then � Dxn #kh ! ) & is said to be positive, in symbols: � Z � , if

� � ! ��� Z � ! � D j  #lh�! ) � & � � j #lh�!�� � &!c
Observe that, in the scalar case, this definition is consistent with the usual notion of a positive measure.

For the general theory of vector measures and the corresponding integration we refer to [17] (also see
[16], [19], and [18]), where proofs for the above facts can be found. A direct short proof of the generalized
Riesz representation theorem is given in [8, Theorem VI.2.2.4].

3 Preliminary estimates

Let #lh � !Xh 5 & be a densely injected Banach couple, that is, h � and h 5 are Banach spaces such thathd5 �
� %�h � . For � M� M $ and $LF)H�FK we denote by # � ! � &�� � A the real, by # � ! � & � � � � the continuous,

and by � � ! � � � the complex interpolation functor of exponent  . Then we set

h � � A � � #kh � !Xh 5 & � � A ! h �� � � � � #kh � !Xh 5 & � � � ��! h�� ��� � �@� h � !Xh 5 � � c
It follows that

hd5 �
� %�h�� � A �

� % h�� � � �
� % h �� � � � % h�� � � �

� % h�� � 5 �
� %�h�� ��� �

� %�h �� � � �
� %�h � #B�_� &

for $LF)H�M !xM+ and � M�� M� M $ . (See [4, Section I.2] for a summary of interpolation theory.) To
avoid tedious distinctions we also put

h ; � A � � h �; � � � � h�� ; � � � h ; ! � D � � ! $ � ! $EF)H�FK Kc
Let h be a Banach space. Then � #lh& is the set of all densely defined closed linear operators � in h

such that � � generates a strongly continuous analytic semigroup, denoted by � ��U � � f � Z � � , on h , that
is, in ��#kh& . We set

�#lhd5 !`h � & � � ��#khd5 !`h � & 7 � #lh � &!c
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It follows that � D��#lh � & belongs to � #khd5 !Xh � & iff hd5 c��� # � & , where
c� means equivalent norms, and� # � & is the domain of � equipped with its graph norm. (For this and more details on � #kh 5 !Xh � & and

analytic semigroups we refer to [4, Section I.1].)
Henceforth, � denotes positive constants whose values may differ from occurrence to occurrence, but

they are always independent of all free variables in a given situation. We set � � � �@� � !X� � and
�
� � � � # � !`���

for ��� � . Finally, throughout this chapter � is a positive real number.
Now we suppose that� #lh � !`h 5 & is a densely injected Banach couple and � D�� #kh 5 !Xh � &!c

We set ( # � & � � � U � � for � Z � . It is a well-known fact from semigroup theory that � ( # � &�f � Z � � restricts
to a strongly continuous analytic semigroup on hb5 and�

( # � & � � rut��Xv �#� � ( # � & � � rut6p � t � v F�� ! � D �
�	� ! � �2� ! $_c #B� � &

Thus, by interpolation, given � F�
 M��dF $ ,�
( # � & � � rut�Xv �#��� U�� � ( # � & � � rut��� � � t�� � � v F�� ! � D �

� � ! #B�T� &
where h � D � h � � A !Xh �� � � !Xh�� � � f $EF)HNF+ � , and and ( is strongly continuous on h � if h � (� h � � � for

�� � .

In order to simplify the statements below we introduce the following convention: Let �6; � � be Banach
spaces with �=; � � � % J 5 #	� � !Xh � & for � D �

�	� and
� �K� ! $ , and suppose that � D � # � � � � !�� 5 � � & maps � � � �

into ��5 � � for each ��D �
� � . Then, given �bD � , we write

��� � D � # � � � � !�� 5 � � & � -uniformly

if � � � � � � r��Tp � � � � � � � v F�� for �9D �
�	� .

Lemma 1 (i) Suppose that � F�
�M��gF $ and $EF !xM $SR #�� � 
 & . Then, setting � � � 
 � � � $SR ! ,

� U! (�D � � h � � � ! J � #�� � !Xh � � 5 & � � -uniformly c
(ii) If � F��gM�
 M $ then (QD � �kh �� � � !!j"��U � #	�	� !Xh � � 5 &X� .

PROOF. (i) follows from (24), and (ii) is a special case of [4, Theorem II.5.3.1]. �
For ��D �

�	� and � D J 5 #	� � !Xh � & we put

($" � # � & � � � �� ( # � �$# & � # # & � # ! � D � � !
and investigate mapping properties of the linear operator ($" � � # � #% (�" � & .
Lemma 2 ($" D � � J 5 #	� � !Xh � & !�j #�� � !Xh � & � � -uniformly.

PROOF. It is obvious from (23) that

(�"QD � � J 5 #	� � !Xh � & !�� #	� � !Xh � & � � -uniformly c
Suppose that � D J 5 #�� � !`h � & and � FICEM � F�� . Then, writing

� � �
for the norm in h � ,

�
(�" � #�C & � ($" � # � & � F�� � �

?
� � # # &

� � # �� � #�C ! � & !
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where
� � #BC ! � & � � � ?!U �� �

( #�C �$# & � ( # � �$# & � � rut6p`v � � # # & � � # ! � F)i FIC !
and � � #BC ! � & � �+� for i �IC . Note that

e � � #BC ! � & � � � #BC ! � & e F��
� ?r ?�U � v

 � � # # & � � # ! � F)i M�� c
Thus, thanks to � D J 5 #	� � !Xh � & , it follows that (#" � D j #	� � !`h � & if we show that � � #�C ! � &$% � as� � C % � for each fixed i D�# � !X� & . But this is an immediate consequence of the uniform continuity of (
on � i !���� for � M�i M�� . �

Next we consider the case where � has values in h � � � for some 
�D # � ! $ & . For later use we prove a
result more general than presently needed.

Lemma 3 (i) Suppose that � F�
�M��gF $ and $EF�� F !xFK satisfy � � 
 M $ . Also suppose that

� � � 
 � � � $ R�� � � $SR !bZ �
and that ��� $ and !xM+ if � �2� . Then� U� ($"@D � � J�� #	� � !`h � � � & ! J � #	� � !Xh � � 5 & � � -uniformly c

(ii) Assume that $LM�� MK and � F��dM $SR�� � . Then

($"@D ��� J � #�� � !`h � & !!j�� #	� � !Xh � � 5 &X� � -uniformly

for � F��dM $SR�� � � � .

PROOF. (i) It follows from (24) that
�
( " � # � & � t�� � � F�� � � �� # � �$# & � U � � � # # & � t��� � � # ! � D � � ! #B� � &

for ��D �
�	� and � D J � #�� � !`h � � � & .

Set
� � # � & � �2� ��U � � � # � & and � # � & � � � � # � & � � # � & � t� � � for � D � , denoting by � � the characteristic

function of # � !`� & . Suppose that � � 
�M $SR HNF $ and ��� � . Then� � � � 	�
 r � v � � 5 � ��U �  5� A ! �
�
�
	�� r � v � � � � 	�� r 
 � � t��� �wv ! �9D �

�	�=c
Thus, by Young’s inequality for convolutions,� � ��� � � 	�� r � v F�� 5s� ��U �  5� A � � � 	�� r 
 � � t��� �wv !
provided $ R ! � $ R H � $ R�� � $ . Since

� ��� � # � & equals the integral on the right-hand side of (25), the
assertion follows in this case.

If $SR ! � � � 
 � $ R�� ��� � then the assertion is a consequence of the Hardy-Littlewood inequality
(cf. [27, Theorem 1.18.9.3]).

(ii) For � D J � #	� � !Xh � & � � J � it follows that

( " � # � & � (N" � #BC & � � �
? ( # � � # & � # # & � # �

� ?� � ( # � � # & � ( #�C � # & � � # # & � # ! � FKCEM � F�� c"#B� � &
From (24) we infer that

���
� �
? ( # � � # & � # # & � #

��� t�� � � F�� � �
? # � � # & U �

� � # # &
� t6p � # F�� # � � C'& 5�� � W U � � � � 	 � ! � FKCEM � F�� c"#B��� &
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Letting C �2� in this estimate we see that, given � F�
 M $ R�� � ,
(�"@D � � J � #�� � !`h � & !�� #�� � !`h � � 5 & � � -uniformly c #��  &

Fix � D � � ! $SR�� � � � & and set 
 � � � � � . Since � F�
�M $SR�� � , we deduce from

( # � �$# & � ( #BC � # & � � ( # � � C'& � $��'( #�C �$# &
that

���
� ?� � ( # � � # & � ( #�C �$# &m� � # # & � # ��� t�� � � F �

( # � � C'& � $ � � rut��� � � t � � � v � ($" � � 	�r 
 � � t� � �wv
for � F)C	M � F)� . Hence h � � 5 � % h � � � , Lemma 1, and (28) imply

���
� ?� � ( # � � # & � ( #�C �$# &m� � # # & � # ��� t�� � � F�� # � � C & � � � � 	�� ! � FIC	M � F�� ! #B� " &

� -uniformly. Now it follows from (26), (27), and (29) that�
(�" � # � & � (#" � #�C & � t�� � � F�� # � � C & � � � � 	�� ! C ! � D � � ! � D J � !

� -uniformly. This and (28) imply the assertion. �
For $LF�!xFK we put

� 5� � � ! #lh � !`h 5 & � � �2J�� #	� !`h 5 & 7 > 5� #�� !Xh � &
and � 5 � � ! #kh � !Xh 5 &m� � � j #�� !Xh 5 & 7 j 5 #	� !`h � &!c
In the next lemma we collect some further mapping properties of ( .

Lemma 4 (i) Suppose that $EF �NM+ and � M�
 M $ . Then

(#" D ��� J � #	� � !Xh � � � & ! � 5� � � � ! #lh � !`hd5 &m��� � -uniformly c
(ii) If � F $ R !q��M�
 F $ then, setting � � � 
 � $SR !q� ,� U�� (QD ���Bh � � � ! � 5� � � � ! #lh � !`h 5 &m��� � -uniformly c

PROOF. (i) Lemma 3(i) implies

(�"@D � � J � #�� � !Xh � � � & ! J � #	� � !Xh 5 & � � -uniformly c
Hence � ($" D ��� J � #	� � !Xh � � � & ! J � #	� � !Xh � &m� � -uniformly c #B� � &
If � D j 5 #�� � !Xh � & then it is well-known that � � � (#" � D � 5 � � � ! #lh � !`h 5 & � and

���� � � � � � . From
this and (30) we deduce that� / � # ($" � & � 	�� r 
 � � t p v F � � ($" � � 	�� r 
 � � t p v � � � � 	�� r 
 � � t p v F��

� � � 	�� r 
 � � t��� �wv
for � Dxj 5 #	� � !Xh � � � & and ��D �

� � . Now the assertion follows from the density of j 5 #�� � !Xh � � � & inJ � #�� � !`h � � � & .
(ii) From (24) we see that

�
( # � & � � rut��� � � t � v F�� � ��U 5 for � D �

�	� . Hence�
(
� � rut��� � � 	 � r 
 � � t � vlv F���� � � -uniformly c #B� $'&

Consequently, � � ( � � rut �� � � 	 � r 
 � � t p`vlv F���� � � -uniformly c #B�_� &
Since � � � ( ^ D � 5 � �� � ! #kh � !Xh 5 &X� and

���� � � ( ^ on
�
� � for ^ Dzh � , the assertion is implied by (31)

and (32). �
We close this section with some important embedding results.
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Theorem 3 Suppose that $LF !xMK and � MICEM $ . If � F� M $ � C then

� 5� � � ! #kh � !Xhd5 &m� � % � J � � r 5 U � ? v #	� !`h � � 5 & if � MKCEM $SR ! !j ?�U 5�� � #	� !`h � � 5 & if $SR !bMKCEM $ c #k�_� &
If h 5 is compactly injected in h � then the injections in #B� � & are compact as well.

PROOF. Fix � D�#  ! $ � C & . It follows from the more general Theorem 5.2 in [5] that

� 5� � � ! #lh � !Xh 5 & � � % > ?� #	� !`h � � � & ! #k� � &
where this injection is compact if h 5 is compactly injected in h � . It is the latter case that has been
considered in [5]. But that proof obviously implies (34) if we drop the compactness assumption. Since>@?� #	� !`h � � � & � % >@?� #�� !Xh � � 5 & by (22), the assertion follows from (34) and Sobolev’s embedding theorem
which holds in the vector-valued case also (cf. [8] and [5]). �

Observe that the limiting case C � $ R ! is covered by the trace theorem which guarantees that

� 5� � � ! #kh � !Xhd5 & � � % j #�� !Xh 5 U 5� � � � & ! $EM !xM+ �! #k��� &
(e.g., [4, Theorem III.4.10.2]).

4 The interpolation-extrapolation setting

Now we suppose that � ) � is a reflexive Banach space and � � D�� # ) � &!c
We set )�� � � � # � �� & for

� D 	 . We also put )��� � � ) �� and � �� � � � �� , where � �� is the dual of � � in
the sense of unbounded linear operators in ) � . Finally, we put )��� � � � � # � �� & � � for

� D
	 . Then we

define ) U � for
� D
	�� � � � by ) U � � � # )��� &Y� , with respect to the duality pairing induced by � � ! � � � p , the

( )N�� - ) � )-duality-pairing. This means that ) U � is a realization of the dual space of )��� and

�	� ! ^q� ��
� � ��� ! ^q� � p ! ^ D )�� ! � D )��� c #k� � &
Since )��� �

� % )��� it follows that # )��� &Y� � ) � �
� % # )��� &Y� . Thus, by density, � � ! � � ��
� , and hence ) U � , are

uniquely determined by (36).
For each  D�# � ! $'& we fix

# � ! � & � D � # � ! � & � � A ! # � ! � & � � � ��! � � ! � � � f $EF)H�MI �
and put

)��  � � � # )�� ! )��  5 & � ! � D��Ec
It follows that

) ? �
� % ) � ! �  M � MIC	MK +c #k��� &

If CE� � then we denote by � ? the maximal restriction of � � to ) ? whose domain equals

� ^ D ) ? 7 ) 5 f � � ^ D�) ? � c
If CEM � then � ? is the well-defined closure of � � in ) ? . The families �'# ) ? ! � ? &�f:C	D���� and � ) ? f�CED �	�
are called interpolation-extrapolation scale and interpolation-extrapolation space scale, respectively, gener-
ated by # ) � ! � � & and # � ! � & � , � M� M $ , and � ? is the ) ? -realization of � � .
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One shows that � � is the closure of � ? if � MKC so that, in particular,

� ��� � ? ! ��MKC_c #k�  &
Furthermore, � ? D�� # ) ?  5 ! ) ? & ! � U � � � � � U � ��� ! � Z � ! ��MIC_c #k� " &
We define the dual interpolation functor # � ! � & �� of # � ! � & � by

# � ! � & �� � �
��� �� � � ! � � � if # � ! � & � ��� � ! � � � !
# � ! � & � � 5 if # � ! � & � � # � ! � & � � � � !
# � ! � & � � A W if # � ! � & � � # � ! � & � � A ! Hd(� $_c

It is known that � � D�� # )��5 ! )��� & . Thus the interpolation-extrapolation scale � # ) �? ! � �? &�f6C	D � � generated

by # ) � ! � � & and # � ! � & �� , � M aM $ , the dual scale to � # ) ? ! � ? &8f6C	D � � , is also well-defined if Hd(� $ .
If # � ! � & � (� # � ! � & � � 5 then

# ) U�? & � c� ) �? ! # � U�? & � � � �? ! CED � ! #l� � &
with respect to the duality pairing � � ! � � � 
 � induced by � � ! � � � p . Moreover,

� � � U�? � ! ^�� � � � �	� ! � ?!U 5 ^q� � � 
 � ! # � ! ^ &4D )��5 U�? y�) ? ! #l� $'&
that is, � � U�? D � # )��5 U�? ! )��U�? & is the dual of � ?�U 5 D ��# ) ? ! ) ?!U 5 & for C	D�� . For proofs of these facts and
many more details we refer to [4, Chapter V].

Denote by � ) ? � 5 f6C	D �<� and � ) �? � � f�CED � � the interpolation-extrapolation space scales generated for� M� M $ by # � ! � & � � 5 and # � ! � & � � � � , respectively. Then [6, Lemma 1.1] guarantees that

# ) ?�U 5 ! ) ? & � � 5 c� ) ?�U 5  � � 5'! # ) ?�U 5 ! ) ? & � � � � c� ) �?!U 5  � � � #l�]� &
for � F)C	F $ and � M� M $ with C � g(� $ , and

# ) ?!U 5 ! ) ? & � � 5 �
� % ) ?�U 5  � �

� % # ) ?�U 5 ! ) ? & � � � � ! � F)C	F $ ! � M�aM $_c #l��� &
Now we restrict # � ! � & � by requiring it to be admissible in the sense that

# � ! � & � D � # � ! � & � � A ! � � ! � � � f $LM)H�MK � ! � M� M $ c #l�_� &
It follows that ) ? is reflexive for CED � . We also set� � � ? � � � � � � � ! � � � �? � � � � � ���� ! � � ! � � ? � � � � ! � � � � ! � � ! � � �? � � � � ! � � ���� c
We fix real numbers 	#M�
$M�	 � $ and set

#lh � !`h 5 & � � # )� U 5 ! )�� & ! � � � � � U 5 c #l��� &
Then � D�� #lh 5 !Xh � & by (39), and we put

( # � & � � � U � � ! � Z � c #l��� &
We also set

#�� � !���5 & � � # )��U � ! )��5 U � & ! �  � � � � U � c #l� � &
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Then �  D�� #���5 !�� � & , and we put �
# � & � � � U � ��� ! � Z � c #l�� &

It follows from (40) that � � is the dual of h 5 and � 5 is the dual of h � with respect to the duality pairing� � ! � � � and � � ! � � � U 5 , respectively. Furthermore, (41) shows that

� �� � ! ^�� � � ��� ! � ^q� � U 5 ! # � ! ^ &4D � 5 ygh 5 !
that is, �  D � # ��5 ! � � & is the dual of � D ��#khd5'!`h � & with respect to these duality pairings. From [4,
Proposition V.2.6.5] it also follows that

�
�
# � & � ! ^ � � � � � ! ( # � & ^ � � U 5 ! # � ! ^ &wD ��5Gybhd5'! � � � c #l��" &

Thus

�
# � &wD ��#�� 5 ! � � & is the dual of ( # � &4D ��#lh 5 !`h � & with respect to the duality pairings � � ! � � � and� � ! � � � U 5 .

For ��D �
�	� we define

� ��� by� ��� � # � & � � � ��
�
# # � � & � # # & � # ! � D � � ! �dD J 5 #�� � !�� � &!c

In the following lemma we collect some mapping properties of

�
and

� � � .

Lemma 5 (i) Suppose that $EM�!zM $ R # 	 � 
 � $'& and set � � � 
 � 	 � $ R !�� . Then� U� 
� ��� D ��� J�� W #�� � ! ) �U � & !!j #	� � ! ) �5 U�� &m� � -uniformly c

(ii) Assume that there exists an admissible interpolation functor � � ! � � ��U � of exponent 
 � 	 such that

) �1U 5 c� � )�� U 5 ! )�� � ��U ��c #�� � &
Then

� e � � D � � )��5 U�� !!j #	� � ! )��5 U�� & � � -uniformly c
PROOF. (i) From (43) we infer that �=5  � U�� � 5 �

� %�)��5 U�� . Consequently,J � W #�� � ! ��5  � U�� � 5 & � % J � W #�� � ! )��5 U�� & � -uniformly !
that is, the norm of this linear map in bounded, uniformly with respect to � D �

�	� . Thus it follows from
Lemma 3(i) (with #lh � !`h 5 & replaced by # � � !�� 5 & and with ! � �  , � � � !q� , 
 � �+� , and � � � $ � 	 � 
 )
by an obvious change of variables that� U� 

� ��� D ��� J�� W #	� � ! � � & !�� #	� � ! )��5 U�� &m� � -uniformly c #�� $'&
Since

� ��� � D j #	� � !�� 5 & � % j #	� � ! )��5 U�� & for � D j 5 #�� � ! � 5 & , the assertion is a consequence of (51)
and the density of j 5 #	� � !���5 & in J � W #	� � !�� � & .

(ii) Recall that

�
� Dxj #	� � !�� 5 & for � D � 5 . Hence � 5 �

� % � 5  � U�� � 5 �
� %�)��5 U�� implies that

�
� D j #��	� ! )��5 U�� & for � D � 5 . Thanks to (50) we deduce from the duality properties of admissible inter-

polation functors that

� � � !���5 �T5  � U�� � � )��U � ! )��5 U � � � 5  � U�� c� � # ) � & � ! # ) � U 5 & � � � 5  � U��� � � ) � ! ) � U 5 �T5  � U�� � � � � � ) � U 5'! ) � � ��U � � � c� # ) ��U 5 & � � )��5 U�� c
Thus (24) implies

� �
# � & � � r � �� 

	 v F�� for � D � . Now the assertion follows by the density of �<5 in )��5 U�� c �
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5 Convolutions of semigroups with vector measures

After the preceding preparations we can now define the convolution ($" � of a strongly continuous semi-
group with a vector measure. We also prove a generalized Green’s formula which is basic for interpreting
($" � in terms of the original evolution equation.

5.A Definitions and basic properties For

� � � � D J 5 #	� � ! ) �1U 5 &��In #	� � ! ) ��U 5 &
we see that

(�" � # � & � � � �� ( # � � # & � # � # & � � �� ( # � � # & � # # & � # � ($" � # � & ! � D � � c
Now we define (#" � for all � Dzn #�� � ! ) ��U 5 & . Since # #% ( # � �$# & is not continuous but strongly con-
tinuous only (at # �2� ), the integral � �� ( # � � # & � # � # & does not have an obvious meaning for general vector
measures. We avoid this difficulty by a duality approach.

Suppose that $EM�!xM $ R #�	 � 
 � $'& and set

� � � �Q�
� ��� � � D �

� � j #	� � ! )��5 U�� & � � ! � J$� W #	� � ! )��U � & � ��� ! �9D �
�	� c #��_� &

Thanks to Lemma 5(i), this linear map is well-defined. Since ) �U � is reflexive, it follows from (40) that

# )��U � &m� � )�� with respect to the duality pairing � � ! � � � U � . Hence

� J�� W #	� � ! ) �U � & � � �2J�� #	� � ! )�� &
with respect to the J � W -duality pairing induced by � � ! � � � U � . Furthermore, we deduce from (19) and reflex-
ivity that � j #	� � ! )��5 U�� & � � � n #	� � ! ) ��U 5 &
with respect to the j � -duality pairing induced by � � ! � � � 5 U � . Thus it follows from Lemma 5(i) that

� U! � � D � �Bn #�� � ! ) ��U 5 & ! J�� #	� � ! )�� &m� � -uniformly ! #��T� &
where � � � 
 � 	 � $SR ! � .

Our next lemma identifies the restriction of
� � to J 5 #	� � ! ) ��U 5 & .

Lemma 6
� � e J 5 #�� � ! ) ��U 5 & � ($" .

PROOF. From (24) (with 
 � � 
 � 	 and � � � $ ), (43), and (45)–(48) we infer that
�� � � ! ( # � & ^ � � U 5 �� F � � ��� p � ( # � & ^ � t � F�� � ��U � U 5 � � ��� p � ^ � t 	 

	 � � F�� � ��U � U 5 � � � � U � � ^ � �1U 5

for # � ! ^ &wD )��5 U � y ) � and � D �
�	� . Thus, given

#l[ ! � &4D J � W #	� � ! )��5 U � &wy J 5 #	� � ! ) � & � � h !
it follows that� �� � [ ! (#" ��� � U 5 ����� � �� � �� � [ # � & ! ( # � �$# & � # # & � � U 5 � # �_� � �

�� � �� � � # # & !
�
# � �$# & [ # � & � � U � � # �_�
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and � �� � �� �� � [ # � & ! ( # � �$# & � # # & � � U 5 �� � # ��� F��
� �� � �� # � �$# & �1U � U 5 � [ # � & � � U � � � # # & � �1U 5 � # �_�

F��
� �� � � # # &

�
��U 5 � ��

# � �$# & ��U � U 5 � [ # � & � � U � �_�]� #F����  � [ � 	 � W r 
 � � ���

	 v � � � 	 � r 
 � � � 	 
 � v
by Hölder’s inequality and Tonelli’s theorem. From this and Fubini’s theorem we now infer that� �� � [ ! (#" ��� � U 5 �_��� � �� � � !

� ��� [ � � U � ��� ! #k[ ! � &4Dbh c #��T� &
The above estimates show that the left-hand side of (54) is continuous on h with respect to the topology
induced by � � �2J$� W #	� � ! )��U � & y J 5 #	� � ! ) ��U 5 & . We deduce from Lemma 5(i) that the right-hand side of
(54) is bilinear and continuous on � . Hence the density of h in � implies that (54) holds for all #l[ ! � &4D � ,
proving the assertion. �

This lemma justifies the following definition:

($" � � � � � � �Q� � ��� � � � D J�� #	� � ! )� & ! � Dbn #�� � ! ) ��U 5 & ! �9D �
�	�<c

Corollary 1 Suppose that $LM�!xM $ R # $ � 	 � 
 & and set � � � 
 � 	 � $ R !�� . Then

� U� ($"@D � � n #�� � ! ) ��U 5 & ! J � #	� � ! ) � & � � -uniformly c
PROOF. This is a restatement of (53). �
5.B A trace lemma From Lemma 5(ii) and the preceding arguments we know that, given assump-
tion (50), 
 � � � �

�
#k� � � & �� � � � � D � � n #	� � ! ) �1U 5 & ! ) �1U 5 � � -uniformly c #�� � &

Our next lemma identifies the restriction of 
 � to J 5 #�� � ! ) ��U 5 & . Observe that Lemma 2 implies that
($" � belongs to j #	� � ! ) ��U 5 & for � D J 5 #�� � ! ) ��U 5 & .
Lemma 7 Let #�� � & be satisfied. If � ��� D J 5 #�� � ! ) ��U 5 & then 
 � � � ($" � #l� &4D ) ��U 5 .
PROOF. From (49) we deduce that

� � ! (�" � #k� &�� ��U 5 � �
�� � � ! ( #k� � # & � # # &�� ��U 5 � # � �

�� � � # # & !
�
#l� �$# & � � � 5 U�� � #

� � � !
�
#l� � � & � � o�r 
 � � � �� 

	 v

for � D )��5 U � . Since

� � !
�
#l� � � & � � o�r 
 � � � �� 

	 v � �	� ! 
 � �<� ��U 5 ! � D�)��5 U�� ! #�� � &

the assertion follows. �
This lemma shows that 
 � � is the trace of ($" � at ��� � in ) �1U 5 if � belongs to J 5 #	� � ! ) ��U 5 & . For

this reason we set

(#" � #k� & � �2
 � � � �
�
#l� � � & �� � � � � � D ) ��U 5 ! � Dzn #	� � ! ) ��U 5 & ! ��D �

� �<c
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Corollary 2 Let #�� � & be satisfied. Then� � #% ($" � #l� &m�LD ����n #	� � ! ) ��U 5 & ! ) ��U 5 � � -uniformly c #�� � &
PROOF. This follows from (55). �
5.C Green’s formula After these preparations we can prove the main result of this section, a gener-
alized Green’s formula.

Proposition 1 Let #�� � & be true and suppose that $EM !xM $ R # $ � 	 � 
 & . Then
� # � / � �G & [ ! (#" � � 	 � r 
 � � � 	 v � � � !X[ � � � [ #l� & ! ($" � #k� &�� ��U 5 #��  &

for all #l[ ! � &4D � 5� W � � � ! # )��U � ! )��5 U � & � yzn #	� � ! ) ��U 5 & and �9D �
�	� .

PROOF. From (22) and (43) we infer that

� 5 U 5�� � Wk� � W � # )��U � ! )��5 U � & 5�� � � � W � % # )��U � ! )��5 U � & 5  � U�� � 5 � %�)��5 U�� !
thanks to $SR !b� $ � 	 � 
 . Thus (35) implies

� 5� W � � � ! # )��U � ! )��5 U � & � � � 5� W � � � ! # � � !���5 & � � % j #	� � !�� 5 U 5� � W � � W & � % j #	� � ! )��5 U�� &!c #�� " &
This shows that the right-hand side of (58) is well-defined.

Choose [ D j � #	� � ! )��5 U � & � j � #	� � !���5 & . Then

� � � # � / � �� &Y[ D j � #	� � !�� � & � j � #�� � ! )��U � &!c
Hence [ �

�
#k� � � & [ #l� & �

� ��� � , as is seen by the substitution � #%�� � � . Thus, using the definitions
of (#" � and ($" � #k� & for � Dxn #	� � ! ) ��U 5 & , it follows that

� # � / ���� & [ ! ($" � � 	 � r 
 � � � 	 v � � � ! (#" �<� 	�� r 
 � � � 	 v�� � � !
�
� ���

� � � !X[ �
�
#k� � � & [ #l� & � � � � !`[ � � � [ #k� & ! ($" � #l� & � �1U 5 c # � � &

The left side of (58) is continuous with respect to [gD � 5� W � � ! # )��U � ! )��5 U � & � . From (59) we see that the

right-hand side is also continuous in this topology. Since j � #	� ! )��5 U � & is dense in
� 5� W ��� ! # )��U � ! )��5 U � &X� ,

the assertion follows from (60). �

6 Linear evolution equations

Throughout this section we suppose that� ) � is a reflexive Banach space f� � � D��# ) � &!f��� ) ? f�CED �	� is the interpolation-extrapolation space scale
generated by # ) � ! � � & and a fixed choice

# � ! � & � D � # � ! � & � � A ! � � ! � � � f	$EMIH�MI � for � M aM $_f� �)� � and �  M 	$M 
�M 	 � $EMK Kf� � � � � � U 5 ! �� � � � � U � c

� ����������������������
# � $'&

We also set
�! � � $SR # $ � 	 � 
�& and n � � � n #	� � ! ) ��U 5 & for �9D �

�	� , andJ As� � � � � �2J A #�� � ! ) � & ! H�D � $ !! $� !���D �
� � ! , D �wc
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6.A Weak solutions For ��D �
� � and � Dbn � we consider the linear parabolic evolution equation

���� � ��� � on � � c # ��� &
Given !xD � $ ! �! & , a function � is said to be a (weak) J � # ) � & -solution of (62) if � belongs toJ � � { }s~_� � � !X� & ! ) �q� and satisfies � �� � # � / � �  &Y[ ! � � � ����� � � !`[ � # �_� &

for all [ D � 5� � � � !X� & ! # )��U � ! )��5 U � &m� , where the index � means ‘compact support’.
Suppose that � is an J � # ) � & -solution of (62) for some !xD�# $ ! �! & . Then it is an J A # ) � & -solution for

every H�D � $ !�! & , as follows from J � � { }s~ � % J As� { }s~ . Thus every J � # ) � & -solution is a (weak) ) � -solution of
(62), that is, an J 5 # )�� & -solution.

It is now almost trivial to prove the following existence, uniqueness, and regularity theorem for ) � -solu-
tions of (62).

Theorem 4 Suppose that � Dzn � for some ��D �
�	� . Then problem # ��� & possesses a unique ) � -solution,

namely � # � & � � (�" � . It belongs to �5�� ������ J$� � � � �<c # � � &
PROOF. Suppose that !xD #%$ ! �! & . Then Proposition 1 shows that � # � & is an J � # ) � & -solution, hence an
) � -solution. Indeed, if [ vanishes near � then the last term in (58) does not appear so that assumption (50)
is not needed.

For ����D # � !`� & and �dDgP � # � !X��� & ! )��5 U � � , it follows that the unique solution in � 5 � � � W ! # )��U � ! )��5 U � & �
of the final value problem

# � / ��� � U � & � � � in � � !X� & ! � #k� � & �2� !
is given by [ � �

� � W � � . Hence (the proof of) [4, Proposition V.2.6.3] guarantees that (62) has at most one
solution. This proves everything. �

The next corollary shows that � # � & depends linearly and continuously on � Dzn � in the natural pro-
jective limit topology of (64).

Corollary 3 Suppose that $LM�!xM �! and set � � � $SR ! � $SR �! . Then

� � #% � U! � # � &X�LD ��#Bn � ! J$� � � � � & � -uniformly c
PROOF. This follows from Corollary 1. �
6.B Strong solutions Now we consider cases where � has better regularity properties. Suppose that
# ^ ! � & belongs to ) ��U 5 y J 5 � � � ��U 5 . Then Examples 1(a) and (b) imply � � ��� �$^ ��� � Dxn � and

� � !X[ �	� � [ ! ��� 	 � � �	� 	 
 � � � [ # � & ! ^ � ��U 5 ! [dDzj #�� ! )��5 U�� &sc
Hence it follows from (58) that (63) is a weak formulation of the initial value problem

������������ # � & ! � D �
� � ! � # � & �I^ c # ��� &

Suppose that $EF !xM+ and 	 F , M�
 . A strong J � # ) � & -solution of (65) is a function� D � 5� � � � ! # ) � U 5 ! ) � & � satisfying

#k/ ��� & ��� � ! � # � & �I^ c # � � &
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Note that #k/ � � & � D J � � � � � U 5�� % J 5 � � � � U 5 and ) ��U 5�� % ) � U 5 imply that the first equation makes sense
in J 5 � � � � U 5 . Similarly, the second equation in (66) is meaningful in ) � U 5 since � # � &4D ) � U 5 by Theorem 3.

Lastly, � is a classical ) � -solution of (65) if

� D � 5 � �� � ! # ) � U 5 ! ) � & � 7 j #	� � ! ) � U 5 &
and � satisfies (65) point-wise. It is said to be strict if � D � 5 � � � ! # ) � U 5'! ) � & � .

Henceforth, we set
� 5� � � � � � � � 5� ��� � ! # ) � U 5 ! ) � &m� .

Theorem 5 Suppose that $LF�� MI and # ^ ! � &4D ) �1U 5� � y J � � � � ��U 5 , and set � # ^ ! � & � � � # ���#^ ��� � & .
Then � # ^ ! � &4D � 5� � � � � for 	$F), M 
 , and it is represented by

� # ^ ! � & � ( ^�� ($" � !
that is, by the variation of constants formula. Furthermore, � # ^ ! � & is the unique strong J � # ) � & -solution
of #�� � & .
PROOF. We can assume that , � 
 � $SR�� . Set #lh � !Xh 5 & � � # ) � U 5 ! ) � & . Then (43) implies

h � � 5�� %�) �  � U 5�� % h �� � � ! � F�
�F $ c # ��� &
Consequently, setting 
 � � 
 � , , we find that ) ��U 5�� % h ��U �_� � and infer from Lemma 4(i) that

(#"@D � # J � � � � ��U 5 ! � 5� � � � � & � -uniformly c #��  &
From (67) it follows that ) ��U 5� � � %�h �1U �  5 U 5� � � � . Setting 
 � � 
 � , � $SR�� � , we deduce from Lemma
4(ii) that � � U�� (�D � # ) ��U 5�� � ! � 5� � � � � & � -uniformly c #�� " &
From this we infer that

� � � ( ^�� ($" � D � 5� � � � � c
If # ^ ! � &4D ) � yzj 5 #	� � ! ) �1U 5 & then � is a strict classical solution of (65) (see [4, Theorem II.1.2.1]). Thus
(68), (69), and the density of ) � yxj 5 #�� � ! ) ��U 5 & in ) ��U 5� � y J � � � � �1U 5 imply that � is a strong J � # ) � & -
solution in the general case also. It follows from [4, Proposition V.2.6.2] that every strong J � # ) � & -solution
is a weak J � # ) � & -solution, hence an )� -solution. Thus � � � # � �#^ ��� � & follows from the uniqueness
part of Theorem 4. �

Recall that ( ^�� ($" � is said to be the mild solution of (65). Thus Theorem 5 shows that, given the
assumptions of that theorem, the mild solution is in fact a strong solution.

In the next proposition we collect continuity properties of � # ^ ! � & .
Proposition 2 (i) If $EF�� MK and 	$F), M 
 then

� # ^ ! � & #% � # ^ ! � & � D ��# ) ��U 5� � y J�� � � � �1U 5'! � 5� � � � � & � -uniformly c
(ii) Suppose that $EF���M $SR # 
 � 	�& and � F !xM $ � #�	 � 
 � $ R�� & .

Then, setting � � � 
 � 	 � $SR�� � $ R ! ,

� # ^ ! � & #%�� U� � # ^ ! � & � D � # ) ��U 5�� � y J � � � � ��U 5 ! J$� � � � � & � -uniformly c
(iii) Assume that $SR # 
 � 	�&wM���M+ and � F� M 
 � 	 � $SR�� . Then

� # ^ ! � &$#% � # ^ ! � & � D � � ) �1U 5� � y J � � � � ��U 5'!�j � #�� � ! ) � & � � -uniformly c
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(iv) Suppose that $ R # 
 � 	�& M���MK . Then

� # ^ ! � &$#% � # ^ ! � & � D � � ) � y J � � � � ��U 5'!�j #�� � ! ) � & � � -uniformly c
PROOF. (i) This is a consequence of (68) and (69).

(ii) Set #kh � !Xh 5 & � � # )�� U 5 ! )� & . Then the assertion follows from (67) (with , replaced by 	 ), from
Lemma 1(i) (with 
 � � 
 � 	 � $SR��T� and � � � $ ), and from Lemma 3(i) (with 
 � � 
 � 	 and � � � $ ).

(iii) We put #lh � !Xh 5 & � � # ) ��U 5 ! ) � & and recall from (38) that � ��U 5 � � , so that � D�� #kh 5 !`h � &
by (39).

Let 
 � � $SR�� � and � � � 	 � 
 � $ so that 
 � �g��� . Then (67) (with , replaced by 
 ) and Lemma 1(ii)
show that

(QD ��� ) ��U 5�� � !�j�� #	�	� ! )�� &m� c #�� � &
From Lemma 3(ii) we similarly infer that

($" D ��� J � � � � ��U 5 !�j�� #	� � ! )� &X� � -uniformly c #�� $'&
Now (70), (71), and the variation-of-constants formula imply the assertion.

(iv) The strong continuity of ( on )� implies (�D � � )�� !�j #	� � ! )� & � . Hence the assertion follows
from (71). �
6.C Positivity Finally, we derive a positivity result which can be viewed as an abstract form of a
parabolic maximum principle. For this we introduce the following additional assumption:

) � is an ordered Banach space (OBS) with positive cone � � c #�� � &
Then )��� is given the natural dual preorder induced by the dual positive cone ���� � � �E�� . Moreover, ) � and
)��5 U � are naturally ordered for , D�� by the positive cones � � and � �5 U � , respectively, where � � � � � �47 ) �

if , � � , and � � is the closure of � � in ) � if ,xM � , with a similar definition for ���5 U � (see [4, Sec-
tion V.2.7]).

For H�D � $ !s �� and ��� � we set J  A #�� � ! ) � & � �2J A #�� � !�� � & . It is a closed convex cone in J A #	� � ! ) � &
inducing the natural preorder determined by the order of ) � . Similarly, J  A #�� � ! )��5 U � & � �2J A #�� � !�� �5 U � &
induces the natural preorder in J A #	� � ! )��5 U � & and in each of its vector subspaces, thus on j #�� � ! )��5 U � & ,
for example. We always refer to these preorders if (72) is presupposed.

Proposition 3 Let assumption #�� � & be satisfied and suppose that � � is resolvent positive. If � Dbn �1U 5
is positive then the )� -solution � # � & of #��_� & is also positive, that is, � Z � implies � # � &4Z � .
PROOF. Suppose that � � is resolvent positive. Then � and �  are also resolvent positive thanks to [4,
Theorem V.2.7.2]. Thus it follows from [4, Theorem II.6.4.1] that

� � is positive. From this and Lemma 5(i)
we deduce that

� � � [ belongs to j  #	� � ! )��5 U�� & for [dD J  � W%#	� � ! )��U � & and $LM�!xM �! . Thus � Z � and
the definition of � # � & � ($" � imply

� [ ! (#" �<� 	 � r 
 � � � 	 v�� � � !
� � � [ � o�r 
 � � � �� 

	 v Z � ! [ D J  � W%#�� � ! )��U � & !

for $LM�!xM �! . This shows that ($" � belongs to the dual cone of J  � W #�� � ! )��U � & . Using � �U � � # ��� &m� (see

[4, Theorem V.2.7.2]) and reflexivity it is not difficult to see that J  � #	� � ! )��U � &m� �KJ  � #	� � ! ) � & . Hence� # � &4D J  � #	� � ! ) � & , which proves the assertion. �
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7 Second order parabolic equations

In this section we illustrate the abstract results of Section 6 by applying them to one of the most important
concrete situations, namely to second order parabolic boundary value problems. At the end we indicate
generalizations and other applications as well.

7.A Elliptic boundary value problems We put

� � � � � ��� # 	 � � & � -� � � � �� � � !
where

�
denotes the gradient on % and

���
divergence, and assume that

#
	 ! -� ! � � &wD ��(:j � #�% ! � &
	
& y�� & y ��& !

with 	 being symmetric and uniformly positive definit. Thus
�

is strongly uniformly elliptic.
We denote by -� � � #k, 	�& -. the outer conormal on ' with respect to 	 and by / � � the corresponding

directional derivative. Then we set

� � � � � , � on ' � !/ � ����� , � on ':5 ! #��T� &
where we assume that � D j � #k'�& . (Clearly, we can always set ��e ' � �+� .) Thus # � ! � & is a normally
elliptic second order boundary value problem with smooth coefficients (using the terminology of [3]). We
also set � � [ � � � ��� # 	 � � [ & � -� � � � [ ��� �� [
with 	 � � � 	 , -� � � � � -� , and � �� � � � � � � � -� , and

� � [ � � � , [ on ' � !/ �� [ ��� � , [ on ' 5 !
where � � � � ��� #k,:-� & � -. and / �� � � / � . Then # � � !�� � & is a normally elliptic boundary value problem for-
mally adjoint to # � !���& . (We continue writing / �� instead of / � in view of the generalizations to systems
described in Subsection 7.H.)

The Dirichlet form � induced by # � ! � & is defined by

� #l[ ! � & � � � � [ ! 	 � ��� � � [ !S-� ��� ���� � ��� � � , [ ! � , ���Y� #�� � &
for � !X[ DgP # %�& , where

� � !`[ � � � � � � � [ � i ! � !X[aD j � #k'�& !
with � i denoting the volume measure of ' . Recall that the last term in (74) is omitted if ' �9* . Note that

� #k[ ! � & � � 	 � � [ ! � ��� � � -� � ��� [ �� �� [ ! ��� � � � � ,q[ !`, ��� � #�� � &
for � !X[ DgP # %�& . Also note that Green’s formulas

� #l[ ! � & � � [ ! � ��� � � , [ !`/ � ����� , ��� � � � � � [ ! ��� � � / �� [ �� � , [ !X, ��� � #�� � &
are valid for � !X[ DgP # %�& .
7.B The Sobolev-Slobodeckii interpolation-extrapolation scale Suppose that $EM�H�MK . If' �2* then we set > ?A�� � � � > ?A ! CED �wc
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Otherwise,

> ?A�� � � �
������ �����
� � Dx> ?A f � � �2��� ! $ � $SRTH	M)C	FI� � $SRTH !� � Dx> ?A f6, � �2� on ' � � ! $SRTH	M)C	M $ � $SRTH !> ?A ! � F)C	M $ R H !

#B> U�?A W � � � & � ! � � � $SRTH	F)C	M � ! CgRD � � $ R H !
where #�> U�?A W � � � &Y� is determined by the duality pairing � � ! � � being induced by the J A W -duality pairing. Further-
more, the values C � $ � $SRTH and C � � � � $SRTH are admitted if ' � ' � , and C � $SR H and C � � $ � $ R H
are included if ' � ' 5 . Observe that

> ?As� � � > ?A for

� � � � $SRTH	MICEM $SR H if ' � ' � (�9* !� $ � $SRTH	MICEM $SR H if ' 5 (�+* ! #�� � &
where C (� � $ � $ R H if ' � ' � (�2* . Moreover, >Q?As� � is a closed linear subspace of >Q?A for

C	D � A � �
����� ����
� if ' �2* !� � � $SR H ! � $ � $SRTH � if ' � ' � (�2* !� � � $ � $SRTH ! � � � $SR H � if ' � ':5N(�2* !��� # � � $SRTH & otherwise !

where
� � � # � � � $ R H !!� � $SRTH & .

Now we define the J A -realization � � � � � � � A of # � ! � & by�����
# � � & � � > �As� � ! � � � � � � � c

Similarly, � �� � � � �� � A`W , the J A W -realization of # � � !�� � & , is given by�����
# � �� & � � > �A W � � � ! � �� [ � � � � [ c

Then � � and � �� are densely defined in ) � � �2J A and )��� � �+J A W , respectively. However, much more is true
as the next theorem shows.

Theorem 6 (i) � � D�� #B> �A�� � ! J A & and � �� D�� #B> �A W � � � ! J A W & .
(ii) � �� ��� �� in the sense of unbounded linear operators.

(iii) Suppose that � ) ? f6C	D �N� is the interpolation-extrapolation space scale generated by # ) � ! � � & and
the interpolation functors

# � ! � & � � � �
# � ! � & � � A ! aD�# � ! $'& � � $SRT� � !� � ! � � � !  � $SRT� ! #��  &

and let � ) �? f�CED �	� be its dual scale. Then

) ? c� > � ?A�� � ! � CLD � A ! and ) �? c� > � ?A W � � � ! � CLD � A W c
PROOF. For this we refer to [3] and [8]. (It is easily seen that the results of [3] can be extended to the full
range

� A .) �
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7.C The existence theorem Let ) be a Banach space and � � � �  or � � � �
�  � # � !! & . Then

n|{ }s~ #�� ! ) & � ����<� � n���� 7 � � !X��� ! )N� !
and this space is given its natural Fréchet space topology.

Now we suppose that � C !�i D � A !6C � ��MIi MKC_f� C !�i � � $ � $ R H if '�(�9* f��� Dzn { }s~ # �  !�> ?�U �As� � &!c
� ���� #�� " &

Then we study the linear parabolic problem

�������� ��� on �  ! #  � &
where � � ��� � � � U 5 . We also investigate the case where � is more regular, that is, we consider the additional
assumption � $EF���M+ Kf� # � � ! � &4Dx> ?�U � � �As� � y J � � { }s~ # �  !!> ?�U �As� � &!f��� ��� � � � �� � c

� ���� #  $'&
This case is related to the initial value problem

���� � ��� � # � & in # � !! & ! � # � & � � � c #  �� &
Clearly, weak and strong J � #B> �A�� � & -solutions, respectively, are defined as in Subsections 6.A and 6.B,
respectively, by replacing there � � by �  .

Now we can prove the following fundamental existence, uniqueness, continuity, regularity, and posi-
tivity theorem. Here and below, all concrete spaces are ordered by the natural order induced by standard
point-wise positivity and canonical product orders.

Theorem 7 Let #�� " & be satisfied.

(i) Problem #� � & possesses a unique > �As� � -solution � , and � D J � � { }s~ # �  !!> �As� � & for
$EF !xMI��R #ki � C � � & .

(ii) Let also #� $'& be true. Then � D � 5� � { }s~ � �  ! #�> � U �As� � !�> �As� � & � , and it is the unique strong J � #B> �As� � & -
solution of #  �� & . Furthermore, if i �KC � �_R�� then

� D J$� � { }s~ # �  !!> �As� � & ! $LF !xMI� � #ki � C � �_R�� & !
and if i MIC � �_R�� then

� D j � # �  !!> �As� � & ! � FK� �aMKC � i � �_R�� c
In the latter case � Dzj # �  !�> �A�� � & if � � D > �As� � .

(iii) In each case the map � #% � is linear and continuous in the respective topologies.

(iv) If � Z � then � Z � .
PROOF. (a) In case (i) fix !xD � $ !!�_R #Bi � C � � & � . In case (ii) choose !xD � $ !�� � #Bi � C � �_R�� & � ifi �KC � �_R�� , and fix � � in � � !!C � i � ��R�� & otherwise. Set � 	 � � i and � 
 � � C . Given any �I� � , it
follows from Theorem 6 that assumption (61) is satisfied. Hence Theorems 4 and 5 and Proposition 2 apply
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to problems (80) and (82), respectively, with �  replaced by � � . Since this is true for every �I� � and the
corresponding solutions are unique, assertions (i)–(iii) follow.

(b) It is a consequence of the maximum principle that � � is resolvent positive (see [1], where the case
without sign restriction for � has been treated, also see [3, Theorem 8.7]). �

It remains to give interpretations of this theorem in more classical terms. This is done in the following
subsections.

7.D Weak solutions First we identify the extrapolated operators � � for 	#M � with appropriate
realizations of # � ! � & . This is the content of the following assertions.

Theorem 8 (i) If � C	D � A with � CE� $ � $SRTH then � ?�U 5 � � e > � ?�U �A�� � .

(ii) Assume that $SRTH	MK� CLM $ � $ R H . Then � ?�U 5 is determined by

� [ ! � ?�U 5 ��� ?�U 5 � � #l[ ! � & ! #l[ ! � &4Dz> � U � ?A W � � � yz> � ?A�� � c
(iii) If � CEM $ R H and either ' �9* or �_CL� � $ � $SRTH then � ?�U 5 � # � � e > � U � ?A W � � � &Y� , that is,

� [ ! � ?�U 5 ��� ?�U 5 � � � � [ ! ��� ! #l[ ! � &4Dx> � U � ?A W � � � yz> � ?A c
PROOF. If '�(�2* then this is a special case of [3, Theorem 8.3], thanks to (77). The assertions are obvious
if ' �9* . �

We also need the following approximation result.

Lemma 8 (i) P � � � � � DdP # % &�f � � �K� � is dense in >@?A�� � for CED � A .
(ii) If either ' �9* or C	M $ R H then P is dense in >Q?A .

PROOF. (i) Theorem 6(iii) and (37) imply that >�?A�� � is dense in > �As� � for C ! � D � A with � MKC . Thus it
remains to show that P � is dense in >@?A�� � for � MICEMK� � $ R H , since the case where ' �9* is clear.
Fix � 	 � � C	D#�� !�� � $SRTH & and �x� � such that � ��� � U 5 is an isomorphism from >Q?As� � onto >@?�U �A . Then

#�� ��� � U 5 & U 5 � P #B%�& � �Ij � 7 > ?A�� �
by elliptic regularity theory. Since P�#B%�& is dense in >�?�U �A , we see that j � 7 >@?As� � is dense in >Q?As� � .
Now a standard argument based on multiplication with smooth cutoff functions shows that P � is dense inj � 7 >@?A�� � , hence in >Q?As� � .

(ii) Since P is dense in J A and J A � % >@?A for C	F � , the assertion is clear if C	F � . It is well-known if' �2* or � MKCLM $SRTH (e.g., [27]). �
Now we are ready for the first step in clarifying the concept of weak solutions.

Proposition 4 Let assumption #�� " & be satisfied. Then � D J 5 � { }s~ # �  !�> �As� � & is the > �A�� � -solution of
#  � & iff � �� �m� / � [ � � � [ ! ��������� � �� [ � � ! [ DgP # �  !mP � � &!c #  _� &
If i � $ R H then this is equivalent to� �� �1�	� / � [ ! ��� � � #k[ ! � & ������� � �� [ � � ! [ DbP � �  !mP #�% 3 ' 5 & � !
and, if i � $ � $SRTH , to� ������	� / � [ ! ��� � � [ ! � ����������� � �� [ � � ! [ DbP # �  !mP &sc
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PROOF. Set � 	 � � i and � 
 � � C . Then

� �� [ ! ��� � � � [ ! � ��� � U 5 ! #l[ ! � &4D )��5 U � y )�� !
and Theorem 8 imply

� �  [ ! ��� � �
��� �� � [ ! � ��� ! $ � $SR HNM)i MK� � $ R H !

� #l[ ! � & ! $SR HNM)i M $ � $ R H !� � � [ ! ��� ! � $ � $SR HNM)i M $SR H !
for # � !X[ &4Dz> � U �AXWk� � � yx> �As� � , where the restriction � $ � $ R H�M izM$� � $ R H can be dropped if ' �9* . Sincei � � $ � $ R H if ' (�9* it follows from (77) that

� / � [ ! ��� � � � / � [ ! ��� ! #l[ ! � &4DbP � � yx>��As� � c
It is an easy consequence of Lemma 8(i) that P # �  !XP � � & is dense in

� 5� � �  ! #B> U �A`Wl� � � !�> � U �A`Wl� � � &m� c #  � &
If $SRTH	MIi M $ � $ R H then P � � �#P�#B% 3 '65 & �)> � U �A W � � � so that P � �  !mP #�% 3 '65 & � is dense in (84). Fi-

nally, in the remaining case P # �  !mP & is dense in (84), thanks to > � U �A W � � � � > � U �A W and to Lemma 8(ii).
Now the assertions are obvious since > �As� � � % > �As� � for � ! # D � A with � � # . �

Suppose that C � �NMIi � M)iq5GMKC with i ; D � A and denote by � ; the > � �A�� � -solution of (80) for
� �+� ! $ .

Thanks to > � �As� � � % > � pAs� � it follows that � 5 is a > � pAs� � -solution also. Hence � 5 � � � by uniqueness. This

shows that the > �As� � -solution � is independent of i D#�C � � !!C'& . Since � belongs to J 5 � { }s~ # �  !�> ?!U �A�� � & we

say that � is a > ?!U �A�� � -solution of (80) to express its independence of i .
Now suppose that Hs;ED�#%$ !s & and C�;ED � A � for

� �2� ! $ with C�;E� � $ � $SRTH!; if ')(�+* . Also assume
that � Dzn|{ }s~ # �  !�> ? p U �A p � � 7 > ? � U �A � � � & #  �� &
and let � ; be the > ? � U �A � � � -solution of (80). The following theorem shows that � � ��� 5 in this case also .

Theorem 9 The > ?�U �As� � -solution is independent of C and H in the following sense: if #  �� & is satisfied and� 5 belongs to J 5 � { }s~ # �  !�> �A p � � & for some i D � A p with i F #BC ��� C 5 & � � , where i � � $ � $SRTH � if ')(�9* ,
then � � � � 5 .
PROOF. Our assumptions imply that � � � � 5 � � � belongs to J 5 � { }s~ # �  !�> �A p � � & . Fix C in

� A p satisfyingC � � M�i M)C , where C	� � $ � $SR H � if ')(�2* . Example 1(c) and (85) imply that � Dzn { }s~'# �  !!> ?�U �A p � � & .
Since � � and � 5 satisfy (83) it follows that� �� �X� / � [ � � � [ ! ���������2� ! [ DgP # �  !mP � � &sc
Thus Proposition 4 guarantees that function � is a weak > �A p � � -solution of

���� � ���2� . Hence � �+� by
uniqueness. �
Corollary 4 Let #  �� & be true and one of the conditions below be satisfied:

(i) % � �:& ;

(ii) % is bounded.

Then � � ��� 5 .
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PROOF. (i) We can assume that H � ZIH�5 . Set � � � C 5 ��� # $ R H�5 � $SRTH � & . Then >@? � U �A � � % > � U �A p by
Sobolev’s embedding theorem. Consequently, it follows that i � � # � � C � & � � F #BC ��� C 5 & � � and

� 5 D J 5 � { }s~ # �  !�> ? � U �A � & � % J 5 � { }s~ # �  !�>��A p &sc
Hence the hypotheses of Theorem 9 are satisfied and the assertion follows.

(ii) We can assume that H 5 Z)H � . Since C ��� C 5 � $ � $SR H � � � it follows from Theorem 7(i) that� ; belongs to J 5 � { }s~'# �  ! J A � & . By the boundedness of % ,

� 5�D J 5 � { }s~ # �� "! J A � & � % J 5 � { }s~ # �� "! J A p & �KJ 5 � { }s~ # �� "!�> �A p � � &!c
Thus the assertion is also a consequence of Theorem 9. �
7.E The structure of extrapolation spaces In order to appreciate completely the significance of
a > �As� � -solution of (80) we have to understand the meaning of � [ � � for � Dxn # �  !!> ?�U �As� � & . By (77) this
is clear if either ' �+* or C	� $ � $SRTH . However, if ')(�9* and CEM $ � $ R H then >�?As� � is not a space of
distributions on % , but also contains distributions supported on ' . This is made precise in the following
theorem, and it is the key observation for our treatment of nonhomogeneous boundary value problems. In
the particular case where ' � ' � it has been proven in [7, Theorem 1.1], where we have used the Bessel
potential instead of the Sobolev-Slobodeckii scale.

For C	D�� and $GF�!xMI we define a vector subspace /�>�?� of > ?�U 5� �� #k' � &wyx> ?�U 5 U 5� �� #B'65 & by

/�> ?� � � � � � �Eyx> ?�U 5 U 5� �� #k' 5 & ! $SR !zMICEM $ � $ R ! ! ' 5 (�+* !> ?�U 5�� �� #k' � &wyx> ?�U 5 U 5� �� #k'65 & ! � $ � $SR !zMICEM $SR ! ! ')(�+* !
and by putting /�>@?� � � � � � in all other cases. As usual, we often omit any reference to a trivial space � � � ,
that is, we identify /�>Q?� with > ?�U 5 U 5�� �� #k':5 & if $SR !zMIC	M $ � $SR ! and '65�(�2* , for example.

Theorem 10 Suppose that ')(�9* and CED � A satisfies C	M $ R H . Then >Q?As� ���� >@?A yz/�>@?  �A .

PROOF. (a) If � $ � $ R H	MKCEM $SRTH then >Q?As� � � >@?A by (77).
(b) Suppose that � � � $ R HNMIC	M � $ � $SR H . Then > U�?A W � � � � � [ Dz> U�?A`W f6, � [ �K� � , where , ; de-

notes the restriction of , to '�; . Thus

����� #l, 5 e > U�?A W � � � & � � [ Dz> U�?A`W f6, [ �+� � � O> U�?A`W c
Recall that , 5 D ���Y> U�?AXWk� � � !!> U�?�U 5�� A WA W #k' 5 &X� is a retraction, that is, there exists a right inverse

, �5 D � ��> U�?�U 5� A WA`W #k' 5 & !!> U�?A W � � � � !
a coretraction for , 5 . Hence (see [4, Lemma I.2.3.1]) > U�?AXWB� � � � � � #k, �5 &�� O> U�?A W , and

!
\
� � $ � , �5 , 5 D ��#�> U�?A W � � � &

is the projection onto O> U�?A W parallel to
� �
#k, �5 & . Thus

O> U�?AXW � � � # $ � , �5 , 5 &sc #  � &
It follows that

� 5 � � #k, �5 & � D � � > ?A�� � !�> ?  5 U 5� AA #B' 5 & �
and

� �5 � � #l,�5 e > U�?A W � � � & � D � �Y> ?  5 U 5� AA #k':5 & !!> ?As� � �
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are well-defined. Furthermore,

�S5 � �5 � � #l,�5 e > U�?A W � � � & , �5 � � � #l,�5s, �5 & � � $�� �
 � 
 ��� 

 r ��� v c

Consequently, > ?As� � � � ��� # �S5 &�� � � # � �5 & �� ��� � # �S5 &wyz> ?  5 U 5�� AA #k'65 & #  �� &
because � �5 is an isomorphism from > ?  5 U 5�� AA #k' 5 & onto its image. But � D >Q?As� � belongs to

��� � # � 5 & iff� � !X, �5 � � �K� for all � Dx> U�?�U 5�� A WA W #k' 5 & . Since [ � # $ � , �5 , 5 & [ � , �5 , 5 [ , we see that � D � ��� # � 5 & iff� � !X[ � � � � ! #%$ � , �5 , 5 &Y[ � for all [gDz> U�?A W � � � . Hence we infer from (86) that � D ����� # � 5 & iff ��� �

\
� ,

where
�

\ D � #B> ?A�� � !�> ?A &
is the restriction map � #% ��e O> U�?A W . This shows that

� ��� # � 5 & � >@?A so that (87) proves the assertion.
(c) Now suppose that � � � $ R HNMIC	M � � � $SR H . Set

/ � > U�?�U �AXW � � > U�?�U �  5�� AAXW #B' � &4yz> U�?�U 5  5� AA`W #k' 5 &sc
Then /�>@?  �A � #k/ � > U�?�U �A W &Y� with respect to the duality pairing � � ! � � � p � � � ! � � ��� . We also put

/ �� � ; � � � / �� ��e ' ; ! � �5 � � � � � ��e ':5'! � Dx> U�?A W�! � �2� ! $ c
Then / �� � ; D � � > U�?A W !�> U�?!U �  5�� AA W #k' ; & � ! � �5 D � � > U�?A W�!�> U�?!U �  5�� AA W #k'65 & � c
It follows from (the proof of) [2, Theorem B.3] that there exist

� �; D � � > U�?�U �  5� AA W #B' ; & !!> U�?A W �
satisfying / �� � � � �� � $ ! / �� � � ,�5 �K� ! / �� � 5 � � 5 � $
and , ; � �; �+� ! , �� � ; � �� � , ; � �� �+� ! � (� � !
as well as , �5 D ��� > U�?!U 5  5�� AAXW #k' 5 & !!> U�?AXW �
such that ,�5!, �5 � $ , , � , �5 �K� and / �� � 5 , �; �+� , where $ denotes the identity in the appropriate spaces. Set

� [ � � # � / �� � � [ !`, 5 [ & ! [ Dz> U�?A W � � � !
so that � D ��#�> U�?A W � � � !`/ � > U�?�U �AXW & . Also put

� � � � � � � �� � � � #k, �5 � � � 5 � � & � 5 ! � � # � � !�� 5 &4Dx/ � > U�?�U �A W c
Then � � � � �2� so that � � D ��#k/ � > U�?�U �A W !�> U�?A W � � � & ! � � � � $�� � � 
 � 
��
 W c
Hence � is a retraction from > U�?A W � � � onto / � > U�?�U �A W , and � � is a corresponding coretraction. Note that

����� # � & � � [ Dx> U�?A W f6,q[ �K� !6/ �� [ �2� � � O> U�?A W c
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Consequently, as above, > U�?A W � � � � � � # � � & � O> U�?A W , and

!
\
� � $ � � � � D ��#�> U�?A W � � � &

is the projection onto O> U�?A W parallel to
� �
# � � & . Thus

O> U�?AXW � � � # $ � � � � &sc #   &
It follows that � � � # � � &m�=D ��#B>@?A�� � !`/�>@?  �A & is a retraction and � � � � � �<D � #k/�>@?  �A !�>@?A�� � & is a corre-
sponding coretraction. Hence > ?A�� � � ����� # � & �

� �
# � � & �� � ��� # � & yz/�> ?  �A c #  " &

Note that � Dx>@?As� � belongs to
��� � # � & iff � � ! � � � � �+� for all � Dx/ � > U�?�U �A W , that is, iff

� � !X[ � � � � ! # $ � � � � & [ � ! [gDz> U�?A`Wl� � � c
Thus (88) implies � D ��� � # � & iff � � �

\
� . So that,

��� � # � & � > ?A and the assertion follows from (89). �
If ) and � are Banach spaces then we denote by �

���
# ) !���& the set of all isomorphisms in ��# ) !���& .

Corollary 5 Suppose that ')(�2* and C	D � A satisfies CEM $SR H . Put

� # � !�� & � � ! �\ � � #k/ �� � � & � � � � , �5 ��5'! � Dz> ?A ! � � � # � � !���5 &4Dx/�> ?  �A !
where !

\
is the identity on > U�?AXW if CE� � $ � $ R H . Then

� D �
�u�
#B> ?A yz/�> ?  �A !!> ?As� � & !

and its inverse is given by � #% # �
\
� !� 5 � & if CE� � � � $ R H and by � #% # �

\
� !� � & otherwise.

Of course, !
\

and, consequently, the isomorphism
�

depend on the choice of the coretractions , �5 and � � ,
respectively.

Let h be an open subset of % . For C	D��  we denote by j	?� #lh�& the closure of P #kh& in ��(:j	?'#kh& ,
and jE?� � � jE?� #B%�& . Then

#�j ?� & � c� > U�?5 ! CED �  � 	 ! # " � &
with respect to the duality pairing � � ! � � (e.g., [8]). Since j	�� � n � � n #B%�& , we setn � #kh& � � j �� #kh& � ! � D 	 !
and n � � � n � #B%�& . We also set j ?� � � j ?� ! C	D��  ! ' �9* !
and j ?� � � � � [ D j ?� # % &�f , � [ �2��� ! � FKCEM $ !� [ D j ?� # % &�f �w[ �2� � ! $LFKCEM)� !
if ')(�9* . Note that j	?� � j � #B% 3 '65 & for � FICEM $ .
Lemma 9 The following embeddings are true:

(i) If H!;ED � $ !s & and C�;LD � satisfy

$H 5 Z $H � Z $H 5 � C 5 � C �� # " $'&
then > ? �A � �

� % > ? pA p .
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(ii) If H ; D#%$ !! & and C ; D � A � satisfy # " $ & then > ? �A � � � �
� % > ? pA p � � .

(iii) If CED � A satisfies C	� � R H then >Q?As� � �
� % j �� for � F � FIC � � RTH , with �x(� C � � RTH if C � � RTHND 	 .

(iv) If � F�� F � C ��� R H � , with �x(� � C ��� R H � for � C ��� R H ��D 	 , then #Bj �� � &Y� � % >@?As� � .

PROOF. (i) is a well-known Sobolev type embedding theorem.
(ii) If C � � � $ � $SRTH � then the assertion follows from (i) and (77), thanks to Lemma 8(i). The caseC 5 M $SRTH 5 is now obtained by duality and again by Lemma 8(i). If C 5 � $ R H 5 and C � M � $ � $ R H � then the

assertion is implied by > ? �A � � � �
� % J A p �

� % > ? pA p � � and what has just been shown.
(iii) is also a consequence of well-known Sobolev type embedding theorems and Lemma 8(i); and

(iv) follows from (iii) by duality. �
For

� D 	 we define the vector subspace /�n � of n � #B' & by

/�n � � � � � � �Lyzn #k':5 & ! � �+� ! ':5�(�+* !n #k' � &wyzn #k':5 & ! � � $ ! ')(�+* !
and by /�n � � � � � � in all other cases. Of course, /qn � � /�n �

.
Using these notations we can prove the following analogue to Theorem 10.

Theorem 11 Suppose that � M)C	MI� with C (� $ . Then

#�j ?� � & � �� > U�?5 yb/�> U�?  �5 c
If
� D � � ! $ � then

#Bj �� � & � �� n � yz/qn � c
For each � D � � !!�S� an isomorphism onto #Bj �� � &m� is given by the map

�
defined in Corollary 5.

PROOF. The assertion follows by literally the same arguments as those used in the proof of Theorem 10,
since [2, Theorem B.3] guarantees that the operators , , , � , � , and � � have the required properties in this
case also. (In [2] the case C	Z $ has been treated only. But those facts are obvious if � F)C	M $ .) �
Corollary 6 Suppose that $LF ��MK and CEM)��R�� � � RTHT� with C � ��R��ND � A . Also suppose that� F � FI��R�� ��� R H � � C and � M)�
with � M $ if C � ��R�� ��� R H � � $ . Then

� D ��#�> U �5 yb/�> U �  �5 !!> ?�U � � �As� � & !
and, if � D � � ! $ � ,

� D ��#Bn � yz/�n � !!> ?�U � � �As� � &sc
PROOF. This follows from Lemma 9 and Theorem 11. �
7.F Parabolic boundary value problems Let assumption (79) be satisfied. If ')(�9* then choose
an isomorphism

�
of the form specified in Corollary 5 and set # �

\
! ��� & � � � U 5 � . It follows from Exam-

ple 1(c) that
# �
\
! ��� &4Dxn|{ }s~ # �  !�> ?�U �A yz/�> ?A & ! # � � ! � 5 & � ����� c # "�� &

The definition of
�

implies that � is the > �As� � -solution of (80) iff � D J 5 � { }s~ # �  !!> �As� � & and� �� �X� / � [ � � � [ ! �����_��� ���� !
\ [ � � \ � ���� [ � � 5 � ���� / �� � � [ � � � ! [dDgP�# �� "!mP � � &!c�# "_� &
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This is being expressed by saying that � is the (unique weak) > �A -solution of the boundary value prob-
lem (BVP) / � ��� � � ��� \ in %9y �  !

� � ����� on '�y��  c
�

# " � &
Let also assumption (81) be satisfied and set

# �
\
!�� & � � � U 5 � D J � � { }s~'# �  !�> ?!U �A�� � & ! # � � ! � 5 & � � �qc

Then (93) takes the form���� �m� / � [ � � � [ ! ��������� ���� �1� !
\ [ ! � \ � � � ,�5![ ! ��5 � � � �I� / �� � � [ ! � � � � p �8�_� � � [ # � & ! � � � ! # "�� &

and � is said to be the (unique weak) > �A -solution of the initial boundary value problem (IBVP)

/ � ��� � ��� �
\
# � & in %9y�# � !! & !

� � � � # � & on '�y�# � !s & !
� # � ! � & � � � on %Gc

� ���� # " � &
Theorem 12 Let assumption #�� " & be satisfied. Then the > �A -solution of # "T� & is a distributional solution
of / � � � � � ��� \ , that is,� �� �X� / � 
 � � � 
 ! ��������� � �� 
 � � \ ! 
 DdP�#���& ! # "�� &
where � � � %2y�# � !s & .
PROOF. It follows from (93) and !

\ e P � $�� that (97) is true for all 
 belonging to P � # � !s & !mP � . It is
known that P � # � !s & !mP � can be naturally identified with P #���& (e.g., Corollary 1 to Theorem 40.1 in [26]).
Since CE� � $ � $SRTH if ')(�9* and since we can choose i close to C it follows that

� D J 5 � { }s~ # �  !�> �A & � % P�� #���& !
so that � is a distribution on � . �

Suppose that �
\

has the property that� �� !
\ [ � � \ � � �� [ � � \ ! [ DbP # �  !mP � � &!c # "  &

Then !
\

, hence the isomorphism
�

, does not appear explicitly in (93) and (95). In this case (93), resp. (95),
is formally obtained by ‘multiplying’ (94), resp. (96), by [dDgP # �  !XP � � & , integrating over �  , integrating
by parts, and using Green’s formulas (76) and the boundary, resp. initial and boundary, conditions.

In the following lemma we collect some important cases for which (98) is true. Of course, it is trivially
true if ' �+* .
Lemma 10 Suppose that #�� " & is true.

(i) Let one of the following assumptions be satisfied:

# 	�& �
\ Dzn|{ }s~'# �  !!> �A & for some � ZKC � � with � � � � � $ R H , and � � � $ � $SR H if ' 5 (�2* ;

# 
 & J 5�� % > ?�U �A�� � and �
\ D J 5 � { }s~ # �  ! J 5 & .

Then #�"  & holds for every choice of !
\

.
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(ii) For each � � � there exists !
\

such that # "  & is true whenever �
\ Dzn { }s~ # �  !�>@?�U �A & satisfies�����m� � �`����� # � \ #���& & !`'6�EZ��

for every Borel subset � of �  .

(iii) Suppose that �
\ Dzn { }s~ # �  !�n & and let �

\
������� � ? be the Lebesgue decomposition of�

\ Dzn #B%9y �  & with respect to Lebesgue’s measure � ^��_� , where ��� is the absolutely continuous
and � ? � ��� the corresponding singular part. If

�����m� � �`����� # � ? & !�'$y �  �L� � then there exists !
\

such that #�"  & is true.

PROOF. (i) Suppose that � Dz> �A or � D J 5 , where we can assume that � M $ R H . Hence

#B> �A & � � O> U �A W � > U �A W � � � so that P �
� % #�> U �As� � � & � . Of course, P �

� % J 5 . Since !
\ 
��+
 for 
 DbP we see

that � 
 ! ���	� � !
\ 
 ! ��� � � 
 !�! �

\
�G� ! 
 DgPdc

Thus !q�\ � Dx> ?�U �As� � has the unique continuous extension � Dx> �A , resp. � D J 5 . This implies the assertion.

(ii) Let �KDgP # %�& be equal to $ in a neighborhood of ' such that ��# ^ & �2� for ^ Dz% with�����m�
# ^ !�' &wZ �_RT� . Let , �5 , resp. � � , be a coretraction for ,15 , resp. � . Then �8, �5 , resp. � � � , is a coretraction

for , 5 , resp. � , as well. Hence we can assume that
 ! \ [ �+
 [ ! [ DbP � � !
for each 
 D ��(:j � with

�����X� � �`����� # 
 & !`' � � �_R � . Fix any such 
 satisfying 
 # ^ & � $ if
�����X�

# ^ !`'�&wZ � .
Then, given [dDgP � � , it follows that 
 [dDgP . Now suppose that � Dz> ?�U �A satisfies

�����m� � �`����� # � & !`' � Z � .
Then � 
 [ ! �G� � � 
 !

\ [ ! �G� ! [dDgP � � c # " " &
Let �
 be another function having the same properties as 
 . Then�`����� � # 
 � �
 & [ � 7 �`����� # � & �9* ! # 
 � �
 &Y[ DbP ! [ DbP � � c
Thus

� # 
 � �
 & [ ! � � �2� , that is, � 
 [ ! ��� � � �
 [ ! ��� for [ DbP � � . Consequently, setting �� #l[ & � � � 
 [ ! ���
for [ DgP � � , it follows that �� D > ?!U �A�� � with �� e O> � U�?A W � � , and �� is uniquely determined by � . Hence,
writing again � for �� , we see from (99) that � [ ! ��� � � !

\ [ ! ��� for [ DbP � � . Now the assertion is obvious.
(iii) Since � � ���G� ^ ��� , where � D J 5 � { }s~ # �  ! J 5 & , the assertion follows from (i) and (ii). �
Lastly, we study positivity properties.

Proposition 5 Let #�� " & be satisfied and suppose that # "  & is also true. If �
\
Z � and �=� Z � then the> �A -solution of BVP # " � & is also positive.

PROOF. Suppose that [dDgP � � is positive. Since the trace operator is positive, � , 5s[ ! � � � � p Z � . More-
over, , � [ �2� implies /��� � � [dF � . Hence � / �� � � [ ! � 5 � � � F � . Consequently, �

\ Z � and � � � # � � ! � 5 & Z �
imply � � � # �

\
! ��� &wZ � . Now the assertion follows from Theorem 7(iv). �

7.G Examples We begin by considering the case where �
\

and ��� are Radon measures on %9y��  
and '$y��  , respectively.

Theorem 13 Let #k� & and #k� & be satisfied and set � � �+� if � � �+� , and � � � $ otherwise. Also suppose
that i D � A satisfies � FIi MK� � � RTH � � � . Then BVP # " � & has a unique > �A -solution � , and � belongs
to J � � { }s~ # �  !�> �A & for !xZ $ with �_R ! � � R H�� � �� � i . Furthermore, the map # �

\
! � � &$#% � is linear

and continuous in the respective topologies. If # �
\
! � � &4Z � then � Z � .
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PROOF. Fix !
\

such that (98) is true. Thanks to (4) and Lemma 10(iii) this is possible. Also fix C	D � A
satisfying i M)C	MI� ��� R HT� � � . Then Corollary 6 and n y � � � �Eybn #B' 5 & � � %�n � yz/�n � imply

� # �
\
! ��� &$#% � # �

\
! ��� &m�LD ����n|{ }s~ # �  !`n ybn #B' & & !`n|{ }s~ # �  !!> ?�U �As� � &m�_c

Now it follows from the considerations of Subsection 7.F and Theorem 7(i) that (94) has a unique > �A -
solution � , and � D J�� � { }s~ # �  !�> �A & ! $EF !xMI��R #ki � C � � &!c
Theorem 9 guarantees that � is independent of C . Thanks to Proposition 5, the assertions are now clear. �
Remarks 2 Let (3) and (4) be true and let � be the solution of (94).
(a) Suppose that � � �K� . Then � is characterized by � D J 5 � { }s~'# �  !�> 5A�� � & and���� ���	� / � [ ! ��� � � #l[ ! � & ������� ���� [ � � \ � ���� [ � � 5 ! [ DbP # �� "!XP � &!c
Furthermore, , 5 � D J�� � { }s~�� �  ! J � #k' 5 &X� for �_R ! � # �g� $'&`R��N� � .
PROOF. The first assertion follows from Proposition 5. Since,�5�D � � >��A !�>�� U 5�� AA #B'65 & �
and > � U 5� AA #k' 5 & � % J � #B' 5 & for $ R���Z $SRTH � #ki � $SRTH & � # �z� $ & , we obtain the second one. �
(b) For simplicity, we have imposed j � -smoothness for the coefficients of # � !���& and % . However, these
requirements can be considerably relaxed. For example, it suffices to assume that # � � ! � � &4D J � y J � #k' 5 & ,
and these restrictions can be relaxed even further (see [3] and [9, Appendix]). �
Now we briefly consider examples involving distributions which are not necessarily measures.

Theorem 14 Let #k� & , #l� & , and # $ � & be satisfied and consider

/ � ��� � ����� \ � � ; / ; � ; in %2y �  !
� � ����� on '�y��  c

�
# $ �_� &

Given i D � � ! $ ��� R H � & , problem # $ �_� & has a unique > �A -solution � , and

� D J � � { }s~ # �  !�>��A & for �_R ! � � RTH	� � � $ � i ! !xZ $ c #%$ � $'&
PROOF. This follows from Theorem 7 and the arguments of the proof of Theorem 13. �
Remarks 3 (a) Solution (101) of (100) is smooth on #�%9y��  & � �`����� � �

\
� � ; /T; � ; � , as follows from

standard regularity theory.
(b) Suppose that % � �:& and � D
	 . Also assume that � �xDzn|{ }s~ # �6&�y �  & for 	 D
	:& with e 	 e F � .
Given any i D � ��� ��� R HT� !!� � � � � RTH � & , the BVP

/ � � � � � � �
� � � ��� / � � � in � & y��  

has a unique > �A -solution � , and � D J � � { }s~ # �  !�> �A & for �_R ! � � RTH	�Ii � � � � with !xZ $ . Moreover,� is independent of i and H .
PROOF. This is a consequence of Theorem 7 and Corollary 4. �
7.H Generalizations For the purpose of illustration we have treated second order parabolic initial
boundary value problems for a single equation in detail. However, our abstract results apply to many other
problems as well, in particular, to fully coupled systems.
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More precisely, we now suppose that � D 	 with � � $ , that

� � ��� 	=; �S� D � (:j � #B% ! � &
	
& &

is symmetric and uniformly positive definit, and that

� ! � ; ! � � D � (:j � #B% ! � �
	
� & ! � Dxj � #B' ! � �

	
� & ! $LF � F � c

We also assume that there exists � � � such that

i�� � # ^ &m� � ��� D �If�� � # � &4Z�� � ! ^ Dx% !
where i�# � & denotes the spectrum. Then we set

� ; � � � � 	�; � D ��(:j � #�% ! � �
	
� & ! 	 � �Q� � ; �S� ! -� � ��� � 5 ! c c c ! � & � !

and, using the summation convention with
�

and
�

running from $ to � ,

� � # 	 � � & � � / ; # � ; � / � � & ! -� � � � � � � ; / ; � ! � DgP # % ! � � &sc
We also set / � � � �+. ; , # � ; � / � � & ! � DbP # % ! � � &!c
Using these notations we define # � ! � & as before. Then # � ! � & is a normally elliptic boundary value prob-
lem of separated divergence form, using the terminology of [3].

Now we put
	 � � � 	  ! -� � � � � � ��5 ! c c c ! ��& � ! � �� � � ���

and � � � � �� � #k, ��; & . ; ! / �� � � �2. ; #k, ��; � / � � & ! � DgP # %"! � � &!c
With these conventions we define # � � ! � � & as before. Finally, we set

� � [ ! 	 � ��� � � � / ; [ ! � ; �T/ � ��� ! � !X[aDbP # % ! � � &sc
Then, by obvious modifications, everything above, except the assertions concerning positivity, remains valid
for the parabolic system corresponding to (94).
PROOF. This follows from the results in [3] (see, in particular, Example 4.3(d) therein). �

Of course, it is also possible to consider more general systems not being of separated divergence form.
For this we again refer to [3].

The general theory applies equally well to higher order systems or to triangular systems of possibly
different orders. Moreover, it can be suitably modified to cover parabolic problems with dynamic boundary
conditions.

References

[1] Amann, H. (1983), Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45,
225–254.

[2] Amann, H. (1990), Dynamic theory of quasilinear parabolic equations – II. Reaction-diffusion systems, Diff. Int.
Equ., 3, 13–75.

[3] Amann, H. (1993), Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Func-
tion Spaces, Differential Operators and Nonlinear Analysis, (H.J. Schmeisser and H. Triebel, eds.), Teubner, Stutt-
gart, Leipzig, pp. 9–126.

117



H. Amann

[4] Amann, H. (1995), Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory, Birkhäuser,
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