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Abstract

Linear reaction-diffusion equations with inhomogeneous boundary and
transmission conditions are shown to possess the property of maximal
Lp regularity. The new feature is the fact that the transmission interface
is allowed to intersect the boundary of the domain transversally.

1 Introduction

The emerging and understanding of the theory of maximal regularity for para-
bolic differential equations, which took place within the last three or so decades,
has provided a firm basis for a successful handling of many challenging nonlinear
problems. Among them, phase transition issues play a particularly prominent
role. The impressive progress which has been made in this field with the help of
maximal regularity techniques is well-documented in the book by J. Prüss and
G. Simonett [32]. The reader may also consult the extensive list of references and
the ‘Bibliographic Comments’ in [32] for works of other authors and historical
developments.

The relevant mathematical setup is usually placed in the framework of
parabolic equations in bounded Euclidean domains, the interface being mod-
eled as a hypersurface. In most works known to the author it is assumed that
the interface lies in the interior of the domain. Noteworthy exceptions are the
papers by M. Wilke [37], J. Prüss, G. Simonett, and M. Wilke [33], H. Abels,
M. Rauchecker, and M. Wilke [1], and M. Rauchecker [34] who study various
important parabolic free boundary problems, presupposing that the membrane
makes a ninety degree boundary contact. In addition, in all of them, except
for [1], a capillary (i.e., cylindrical) geometry is being studied. The same ninety
degree condition is employed by H. Garcke and M. Rauchecker [25] who carry out
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a linearized stability computation at a stationary solution of a Mullins–Sekerka
flow in a two-dimensional bounded domain.

The assumption of the ninety degree contact considerably simplifies the anal-
ysis since it allows to use reflection arguments. This does not apply in the case
of general transversal intersection.

The only paper, we are aware of, in which a general contact angle is being
considered is the one by Ph. Laurençot and Ch. Walker [28]. These authors
establish the unique solvability in the strong L2 sense of a two-dimensional
stationary transmission problem taking advantage of a particularly favorable
geometric setting.

Elliptic problems with boundary and transmission conditions have also been
investigated in a series of papers by V. Nistor and coworkers [21], [29], [30],
and [31]. The motivation for these works stems from the desire to get op-
timal convergence rates for approximations used for numerical computations.
Although these authors employ weighted L2 Sobolev spaces, their methods and
results are quite different from the ones presented here.

In this paper we establish the maximal regularity of linear inhomogeneous
parabolic transmission boundary value problems for the case where the interface
intersects the boundary transversally. This is achieved by allowing the equations
to degenerate near the intersection manifold and working in suitable weighted
Sobolev spaces. We restrict ourselves to the simplest case of a fixed membrane
and a single reaction-diffusion equation.

In a forthcoming publication we shall use our present result to establish
the local well-posedness of quasilinear equations with nonlinear boundary and
transmission conditions.

The author is deeply grateful to G. Simonett for carefully reading the first
draft of this paper, valuable suggestions, and pointing out misprints, errors, and
the above references to related moving boundary problems.

2 The Main Result

Now we outline—in a slightly sketchy way—the main result of this paper. Pre-
cise definitions of notions, facts, and function spaces which we use here without
further explanation, are given in the subsequent sections.

Let Ω be a bounded domain in Rm, m ≥ 2, with a smooth boundary Γ lying
locally on one side of Ω. By a membrane in Ω we mean a smooth oriented hy-
persurface S of (the manifold) Ω with a (possibly empty) boundary Σ such that
S ∩ Γ = Σ. Thus S lies in Ω if Σ = ∅. Otherwise, Σ is an (m− 2)-dimensional
oriented smooth submanifold of Γ. In this case it is assumed that S and Γ in-
tersect transversally. Note that we do not require that S be connected. Hence,
even if Σ 6= ∅, there may exist interior membranes. However, the focus in this
paper is on membranes with boundary. Thus we assume until further notice
that Σ 6= ∅.

We denote by ν the inner (unit) normal (vector field) on Γ and by νS the
positive normal on S. (Thus νS(x) ∈ TxΩ = TxRm = {x} × Rm, the latter being
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also identified with x+ Rm ⊂ Rm for x ∈ S.) As usual, [[·]] = [[·]]S is the jump
across S. We fix any T ∈ (0,∞) and set J = JT := [0, T ].

Of concern in this paper are linear reaction-diffusion equations with nonho-
mogeneous boundary and transmission conditions of the following form.

Set
Au := −div(a gradu), Bu := γa∂νu,

C0u := [[u]], C1u := [[a∂νSu]], C = (C0, C1),

with γ being the trace operator on Γ. We assume (for the moment) that
a ∈ C̄1

(
(Ω\S)× J

)
and a > 0. A bar over a symbol for a standard function

space means that its elements may undergo jumps across S. (The usual defi-
nitions based on decompositions of Ω\S in ‘inner’ and ‘outer’ domains cannot
be used since Ω\S may be connected.) Then the problem under investigation
reads:

∂tu+Au = f on (Ω\S)× J,
Bu = ϕ on (Γ\Σ)× J,
Cu = ψ on (S\Σ)× J,
γ0u = u0 on (Ω\S)× {0},

(2.1)

where γ0 is the trace operator at t = 0.
We are interested in the strong Lp solvability of (2.1), that is, in solutions

possessing second order space derivatives in Lp. However, since S intersects Γ,
we cannot hope to get solutions which possess this regularity up to Σ. Instead,
it is to be expected that the derivatives of u blow up as we approach Σ. For
this reason we set up our problem in weighted Sobolev spaces where the weights
control the behavior of ∂αu for 0 ≤ |α| ≤ 2 in relation to the distance from Σ.
This requires that the differential operator is adapted to such a setting, which
means that the adapted ‘diffusion coefficient’ tends to zero near Σ. In other
words: we will have to deal with parabolic problems which degenerate near Σ.
To describe the situation precisely, we introduce curvilinear coordinates near Σ
as follows.

Since Σ is an oriented hypersurface in Γ, there exists a unique positive normal
vector field µ on Σ in Γ. Given σ ∈ Σ, we write µ(·, σ) for the unique geodesic
in Γ satisfying µ(0, σ) = σ and µ̇(0, σ) = µ(σ). Similarly, for each y ∈ Γ we set
ν(ξ, y) := y + ξν(y) for ξ ≥ 0. Then we can choose ε ∈ (0, 1) and a neighbor-

hood Ũ(ε) of Σ in Ω with the following properties: for each x ∈ Ũ(ε) there exists
a unique triple

(ξ, η, σ) ∈ N(ε)× Σ, N(ε) := [0, ε)× (−ε, ε),

such that
x = x(ξ, η, σ) := ν

(
ξ, µ(η, σ)

)
. (2.2)

Thus x ∈ Γ ∩ Ũ(ε) iff (ξ, η, σ) ∈ {0} × (−ε, ε)× Σ.
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Now we define curvilinear derivatives for u ∈ C2
(
Ũ(ε)

)
by

∂νu(x) = ∂1(u ◦ x)(ξ, η, σ), ∂µu(x) := ∂2(u ◦ x)(ξ, η, σ) (2.3)

for x ∈ Ũ(ε). It follows that1

Au = −
(
∂ν(a∂νu) + ∂µ(a∂µu) + divΣ(a gradΣ u)

)
(2.4)

on Ũ(ε), where divΣ and gradΣ denote the divergence and the gradient, respec-
tively, in Σ (with respect to the Riemannian metric gΣ induced by the one of Γ
which, in turn, is induced by the Euclidean metric on Ω).

For x given by (2.2), we set

r(x) :=
√
ξ2 + η2, (ξ, η) ∈ N(ε), (2.5)

which is the geodesic distance in Ω from x to Σ (and not, in general, the distance
in the ambient space Rm). We fix ω ∈ C∞

(
N(ε), [0, 1]

)
, depending only on r,

such that ω |N(ε/3) = 1 and supp(ω) ⊂ N(2ε/3) and set

ρ := 1− ω + rω. (2.6)

Then we define on
U := U(ε) := Ũ(ε)\Σ (2.7)

a singular linear reaction-diffusion operator AU by

AUu := −ρ2
(
∂ν(a∂νu) + ∂µ(a∂µu)

)
− divΣ(a gradΣ u) (2.8)

for u ∈ C̄2(U \S). The corresponding singular boundary operator is given by

BUu := γaρ∂νu. (2.9)

Since S intersects Γ transversally, it follows that there exists a smooth func-
tion s : [0, ε)× Σ→ (−ε, ε) such that s(0, σ) = 0 for σ ∈ Σ and

x ∈ Ũ(ε) ∩ S iff x =
(
ξ, s(ξ, σ), σ

)
, (ξ, σ) ∈ [0, ε)× Σ. (2.10)

Using this we associate with AU a transmission operator CU on U by setting

C0
Uu := [[u]]U∩S ,

C1
Uu :=

[[
a
(
ν1
S∂νu+ ν2

S∂µu+ ν3
S(gradΣ u | gradΣ s)

)
Σ

]]
U∩S

for u ∈ C̄2(U \S), where (· | ·)Σ = gΣ and

(ν1
S , ν

2
S , ν

3
S) := (∂νs,−1, 1)

/√
1 + (∂νs)2 + | gradΣ s|2Σ.

Now we define a singular transmission boundary value problem on Ω\S by

putting V := Ω
∖
Ũ(2ε/3) and

(Ar,Br, Cr) :=

{
(A,B, C) on V,

(AU ,BU , CU ) on U.

It follows from (2.4) and the properties of ρ that this definition is unambiguous.

1If m = 2, then the last term must be disregarded. It is understood that similar interpre-
tations and adaptions are to be made throughout this paper.
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To introduce weighted Sobolev spaces on U \S we put

〈u〉2 := |u|2 + |r∂νu|2 + |r∂µu|2

+ |(r∂ν)2u|2 + |r∂ν(r∂µu)|2 + |r∂µ(r∂νu)|2 + |(r∂µ)2u|2

+ |∇Σu|2 + |∇2
Σu|2,

(2.11)

where ∇Σ is the Levi–Civita connection on Σ for the metric gΣ. Moreover,
1 < p <∞ and

‖u‖W̄ 2
p (U\S;r) :=

(∫
U\S
〈u〉p d(ξ, η)

r2
d volΣ

)1/p

. (2.12)

Then W̄ 2
p (U \S; r) is the completion of C̄2(U \S) in L1,loc(U \S) with respect to

the norm ‖·‖W̄ 2
p (U\S;r).

The (global) weighted Sobolev space

X 2
p := W̄ 2

p (Ω\S; r)

consists of all u ∈ L1,loc(Ω\S) with u
∣∣U ∈ W̄ 2

p (U \S; r) and u
∣∣V ∈ W̄ 2

p (V \S).
It is a Banach space with the norm

u 7→
∥∥u |U∥∥

W̄ 2
p (U\S;r)

+
∥∥u |V ∥∥

W̄ 2
p (V \S)

,

whose topology is independent of the specific choice of ε and ω. Similarly, the
Lebesgue space

X 0
p := W̄ 0

p (Ω\S; r)

is obtained by replacing 〈u〉 in (2.12) by |u|. Moreover,

X 2−2/p
p := W̄ 2−2/p

p (Ω\S; r) := (X 0
p ,X 2

p )1−1/p,p, (2.13)

where (· | ·)θ,p is the real interpolation functor of exponent θ.
We also need time-dependent anisotropic spaces. For this we use the notation

s/2 := (s, s/2), 0 ≤ s ≤ 2. Then

X 2/2
p := W̄ 2/2

p

(
(Ω\S)× J ; r

)
:= Lp(J,X 2

p ) ∩W 1
p (J,X 0

p )

and X 0/2
p := Lp(J,X 0

p ). If X ∈ {Γ, S} and s ∈ {1− 1/p, 2− 1/p}, then

W̄ s/2
p

(
(X\Σ)× J ; r

)
:= Lp

(
J, W̄ s

p (X\Σ; r)
)
∩W s/2

p

(
J, Lp(X\Σ; r)

)
.

Here the W̄ s
p (X\Σ; r) are trace spaces of X 2

p (cf. (14.11) and (14.12)). Moreover,

Yp := W̄ (1−1/p)/2
p

(
(Γ\Σ)× J ; r

)
⊕ W̄ (2−1/p)/2

p

(
(S\Σ)× J ; r

)
⊕ W̄ (1−1/p)/2

p

(
(S\Σ)× J ; r

)
.
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By B̄C(Ω\S) we mean the space of bounded and continuous functions (with

possible jumps across S), endowed with the maximum norm. Then B̄C
1
(Ω\S; r)

is the Banach space of all u ∈ B̄C(Ω\S) with ∂ju ∈ B̄C(V \S), 1 ≤ j ≤ m, and

ρ∂νu, ρ∂µu ∈ B̄C(U \S), u |Σ ∈ BC1(Σ).

Furthermore,

B̄C
1/2(

(Ω\S)× J ; r
)

:= C
(
J, B̄C

1
(Ω\S; r)

)
∩ C1/2

(
J, B̄C(Ω\S)

)
.

To indicate the nonautonomous structure of (2.1), we write a(t) := a(·, t) and,
correspondingly, A(t), B(t), and C(t).

Now we are ready to formulate the main result of this paper, the optimal
solvability of linear reaction-diffusion transmission boundary value problems.

Theorem 2.1 Let 1 < p <∞ with p /∈ {3/2, 3} and

a ∈ B̄C1/2(
(Ω\S)× J ; r

)
, a ≥ α,

for some α ∈ (0, 1). Suppose(
f, (ϕ,ψ0, ψ1), u0

)
∈ X 0/2

p ⊕ Yp ⊕X 2−2/p
p

and that the following compatibility conditions are satisfied:

(i) C0
r (0)u0 = ψ0(0), if 3/2 < p < 3,

(ii) Br(0)u0 = ϕ(0), Cr(0)u0 = ψ(0), if p > 3,

where ψ := (ψ0, ψ1). Then

∂tu+Ar(t)u = f on (Ω\S)× J,

Br(t)u = ϕ on (Γ\Σ)× J,

Cr(t)u = ψ on (S × Σ)× J,

γ0u = u0 on (Ω\S)× {0}

(2.14)

has a unique solution u ∈ X 2/2
p . It depends continuously on the data.

Corollary 2.2 Suppose a is independent of t, that is, a ∈ B̄C1
(Ω\S; r). Set

X 2
p,0 :=


X 2
p , 1 < p < 3/2,

{u ∈ X 2
p ; C0u = 0 }, 3/2 < p < 3,

{u ∈ X 2
p ; Bu = 0, Cu = 0 }, 3 < p <∞,

and Ar := Ar |X 2
p,0. Then −Ar, considered as a linear operator in X 0

p with
domain X 2

p,0, generates on X 0
p a strongly continuous analytic semigroup.

6



Proof The theorem implies that Ar has the property of maximal X 0
p regularity.

This fact is well-known to imply the claim (e.g., [7, Capter III] or [23]). �

Theorem 2.1 is a special case of the much more general Theorems 7.1 and
14.1. They also include Dirichlet boundary conditions and apply to transmis-
sion problems in general Riemannian manifolds with boundary and bounded
geometry.

The situation is considerably simpler if Σ = ∅, that is, if only interior trans-
mission hypersurfaces are present. Of course, if S = ∅, then (2.14) reduces to a
linear reaction-diffusion equation with inhomogeneous boundary conditions. In
these cases no degenerations do occur.

We refrain from considering operators (Ar,Br) with lower order terms. This
case will be covered by the forthcoming quasilinear result.

In the case of an interior transmission surface (that is, Σ = ∅) and if a is
independent of t, Theorem 2.1 is a special case of Theorem 6.5.1 in [32]. The
latter theorem applies to systems and provides an Lp-Lq theory.

If Σ 6= ∅, then the basic difficulty in proving Theorem 2.1 stems from the
fact that Ω\Σ and, consequently, S\Σ and Γ\Σ, are no longer compact. The
fundamental observation which makes the proofs work is the fact that we can
consider Ω\Σ as a (noncompact) Riemannian manifold with a metric g which
coincides on U(ε/3) with the singular metric r−2dν ⊗ dµ+ gΣ and on V with
the Euclidean metric. With respect to this metric, Ar is a uniformly elliptic
operator.

Theorems 4.4 and 5.1 show that (Ω\Σ, g) is a uniformly regular Riemannian
manifold in the sense of [10]. Thus we are led to consider linear parabolic
equations with boundary and transmission conditions on such manifolds. As
in the compact case, by means of local coordinates the problem is reduced to
Euclidean settings. However, since we have to deal with noncompact manifolds,
we have to handle simultaneously infinitely many model problems. In order for
this technique to work, we have to establish uniform estimates which are in a
suitable sense independent of the specific local coordinates. In addition, special
care has to be taken in ‘gluing together the local model problems’. These are
no points to worry about in the compact case.

In our earlier paper [12] we have established an optimal existence theory for
linear parabolic equations on uniformly regular Riemannian manifolds without
boundary. The present proof extends those arguments to the case of manifolds
with boundary. The presence of boundary and transmission conditions adds
considerably to the complexity of the problem and makes the paper rather
heavy.

In Section 3 we collect the needed background information. In the subse-
quent two sections we establish the differential geometric foundation of trans-
mission surfaces in uniformly regular and singular Riemannian manifolds.

After having introduced the relevant function spaces in Section 6, we present
in Section 7 the basic maximal regularity theorem in anisotropic Sobolev spaces
for linear non-autonomous reaction-diffusion equations with nonhomogeneous
boundary and transmission conditions on general uniformly regular Riemannian
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manifolds. Its rather complex proof occupies the next five sections. Finally, in
the last section it is shown that our general results apply to the Euclidean setting
presented here.

3 Uniformly Regular Riemannian Manifolds

In this section we recall the definition of uniformly regular Riemannian manifolds
and collect those properties of which we will make use. Details can be found
in [9], [10], [11], and in the comprehensive presentation [15]. Thus we shall be
rather brief.

We use standard notation from differential geometry and function space the-
ory. In particular, an upper, resp. lower, asterisk on a symbol for a diffeomor-
phism denominates the corresponding pull-back, resp. push-forward (of tensors).
By c, resp. c(α) etc., we denote constants ≥ 1 which can vary from occurrence to
occurrence. Assume S is a nonempty set. On the cone of nonnegative functions
on S we define an equivalence relation ∼ by f ∼ g iff f(s)/c ≤ g(s) ≤ cf(s),
s ∈ S.

An m-dimensional manifold is a separable metrizable space equipped with
an m-dimensional smooth structure. We always work in the smooth category.

Let M be an m-dimensional manifold with or without boundary. If κ is a lo-
cal chart, then we use Uκ for its domain, the coordinate patch associated with κ.
The chart is normalized if κ(Uκ) = Qmκ , where Qmκ = (−1, 1)m if U ⊂ M̊ , the in-
terior of M , and Qmκ = [0, 1)× (−1, 1)m−1 otherwise. An atlas K is normalized
if it consists of normalized charts. It is shrinkable if it normalized and there
exists r ∈ (0, 1) such that

{
κ−1(rQmκ ) ; κ ∈ K

}
is a covering of M . It has fi-

nite multiplicity if there exists k ∈ N such that any intersection of more than k
coordinate patches is empty.

The atlas K is uniformly regular (ur) if

(i) it is shrinkable and has finite multiplicity;

(ii) κ̃ ◦ κ−1 ∈ BUC∞
(
κ(Uκκ̃),Rm

)
and ‖κ̃ ◦ κ−1‖k,∞ ≤ c(k)

for κ, κ̃ ∈ K and k ∈ N, where Uκκ̃ := Uκ ∩ Uκ̃.
(3.1)

Two ur atlases K and K̃ are equivalent if

(i) there exists k ∈ N such that each coordinate patch of K

meets at most k coordinate patches of K̃, and vice versa;

(ii) condition (3.1)(ii) holds for all (κ, κ̃) and (κ̃, κ) belonging to K× K̃.

(3.2)

This defines an equivalence relation in the class of all ur atlases. An equivalence
class thereof is a ur structure. By a ur manifold we mean a manifold equipped
with a ur structure. A Riemannian metric g on a ur manifold M is ur if, given
a ur atlas K,

(i) κ∗g ∼ gm, κ ∈ K;

(ii) ‖κ∗g‖k,∞ ≤ c(k), κ ∈ K, k ∈ N.
(3.3)
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Here gm := (· | ·) = dx2 is the Euclidean metric2 on Rm and (i) is understood in
the sense of quadratic forms. This concept is well-defined, independently of the
specific K. A uniformly regular Riemannian (urR) manifold is a ur manifold,
endowed with a urR metric.

Remarks 3.1 (a) Given a (nonempty) subset S of M and an atlas K,

KS := {κ ∈ K ; Uκ ∩ S 6= ∅ } .

We say that K is normalized on S, resp. has finite multiplicity on S, resp. is
shrinkable on S if KS possesses the respective properties. Moreover, K is ur
on S if (3.1) applies with K replaced by KS . Similarly, two atlases K and K̃,

which are ur on S, are equivalent on S if (3.2) holds with K and K̃ replaced by

KS and K̃S , respectively. This induces a ur structure on S. Finally, M is ur
on S if it is equipped with a ur structure on S.

(b) Suppose K is a ur atlas for M on S. Given any ε > 0, there exists a ur
atlas K′ on S such that diamg(Uκ) < ε for κ ∈ K′, where diamg is the diameter
with respect to the Riemannian distance dg. �

In the following examples we use the natural ur structure (e.g., the product
ur structure in Example 3.2(c)) if nothing else is mentioned.

Examples 3.2 (a) Each compact Riemannian manifold is a urR manifold and
its ur structure is unique.

(b) Let Ω be a bounded domain in Rm with a smooth boundary such that
Ω lies locally on one side of it. Then (Ω, gm) is a urR manifold.

More generally, suppose that Ω is an unbounded open subset of Rm whose
boundary is ur in the sense of F.E. Browder [20] (also see [27, IV.§4]). Then
(Ω, gm) is a urR manifold. In particular, (Rm, gm) and (Hm, gm) are urR man-
ifolds, where Hm := R+ × Rm−1 is the closed right half-space in Rm.

(c) If (Mi, gi), i = 1, 2, are urR manifolds and at most one of them has a
nonempty boundary, then (M1 ×M2, g1 + g2) is a urR manifold.

(d) Assume M is a manifold and N a topological space. Let f : N →M be
a homeomorphism. If K is an atlas for M , then f∗K := { f∗κ ; κ ∈ K } is an
atlas for N which induces the smooth ‘pull-back’ structure on N . If K is ur,
then f∗K also is ur.

Let (M, g) be a urR manifold. Then f∗(M, g) := (N, f∗g) is a urR manifold
and the map f : (N, f∗g)→ (M, g) is an isometric diffeomorphism. �

It follows from these examples, for instance, that the cylinders R×M1 or
R+ ×M2, where Mi are compact Riemannian manifolds with ∂M2 = ∅, are urR
manifolds. More generally, Riemannian manifolds with cylindrical ends are urR
manifolds (see [11] where more examples are discussed).

Without going into detail, we mention that a Riemannian manifold without
boundary is a urR manifold iff it has bounded geometry (see [10] for one half of

2We use the same symbol for a Riemannian metric and its restrictions to submanifolds of
the same dimension.

9



this assertion and [24] for the other half). Thus, for example, (H̊m, gm) is not
a urR manifold. A Riemannian manifold with boundary is a urR manifold iff it
has bounded geometry in the sense of Th. Schick [35] (also see [17], [18], [19],
[26] for related definitions). Detailed proofs of these equivalences can be found
in [15].

4 Uniformly Regular Hypersurfaces

Let (M, g) be an oriented Riemannian manifold with (possibly empty) bound-
ary Γ. If it is not empty, then there exists a unique inner (unit) normal vector
field ν = νΓ on Γ, that is, a smooth section of TΓM , the restriction of the tan-
gent bundle TM of M to Γ. Furthermore, Γ is oriented by the inner normal in
the usual sense.

Suppose that S is an oriented hypersurface in M̊ , an embedded subman-
ifold of codimension 1. Then there is a unique positive (unit) normal vector
field νS on S, where ‘positive’ means that

[
νS(p), β1, . . . , βm−1

]
is a positive

basis for TpM if [β1, . . . , βm−1] is one for TpS.
Let Z ∈ {Γ, S}. Then we write

γZp (t) := expp
(
tνZ(p)

)
, t ∈ IZ

(
ε(p)

)
.

This means that, given p ∈ Z, γZp is the unique geodesic in M satisfying

γZp (0) = p and γ̇Zp (0) = νZ(p) and being defined (at least) on IZ
(
ε(p)

)
, where

IΓ
(
ε(p)

)
=
[
0, ε(p)

)
and IS

(
ε(p)

)
=
(
−ε(p), ε(p)

)
for some ε(p) > 0. Note that

γΓ
p (t) ∈ M̊ for t > 0.

We say that Z has a uniform normal geodesic tubular neighborhood of width ε
if the following is true: there exist ε > 0 and an open neighborhood Z(ε) of Z
in M such that

ϕZ : Z(ε)→ IZ(ε)× Z with ϕ−1
Z (t, p) = γZp (t) (4.1)

is a diffeomorphism satisfying ϕZ(Z) = {0} × Z. If Z = Γ, then a uniform tubu-
lar neighborhood is a uniform collar.

Given any embedded submanifold C of M , with or without boundary, we
denote by gC the pull-back metric ι∗g, where ι : C ↪→M is the natural embed-
ding.

Now we suppose that

(M, g) is an m-dimensional oriented urR manifold. (4.2)

This means that there exists an oriented ur atlas for M .
Let S be a hypersurface with boundary Σ such that Σ = S ∩ Γ. Thus S ⊂ M̊

if Σ = ∅. An atlas K for M is S-adapted if for each κ ∈ KS one of the following
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alternatives applies:

(i) κ /∈ KΓ. Then Qmκ = (−1, 1)m and

κ(S ∩ Uκ) = {0} × (−1, 1)m−1;

(ii) κ ∈ KΓ. Then Qmκ = [0, 1)× (−1, 1)m−1,

κ(Γ ∩ Uκ) = {0} × (−1, 1)m−1, and

κ(Σ ∩ Uκ) = {0}2 × (−1, 1)m−2.

Then S is a regularly embedded hypersurface in M , a membrane for short, if
there exists an oriented ur atlas K for M which is S-adapted.

Let S be a membrane. Each S-adapted atlas for M induces (by restriction)
a ur structure and a (natural) orientation on S. Moreover, the ur structure and
the orientation of S are independent of the specific choice of K.

For the proof of all this and the following theorem we refer to [15].

Theorem 4.1 Let (4.2) be satisfied and suppose S is a membrane in M . As-
sume Z ∈ {Γ, S}. Then

(i) (Z, gZ) is an (m− 1)-dimensional oriented urR manifold.

(ii) If Σ = ∂S 6= ∅, then Σ is a membrane in Γ without boundary.

(iii) Let Σ = ∅ if Z = S. Then Z has a uniform tubular neighborhood

ϕZ : Z(ε)→ IZ(ε)× Z

and ϕZ∗g ∼ ds2 + gZ . Moreover, ϕZ is an orientation preserving diffeo-
morphism.

(iv) Suppose Σ 6= ∅. Then, given ρ > 0, there exists ε(ρ) > 0 such that

S ∩
{
q ∈M ; dg(q,Γ) > ρ

}
has a uniform tubular neighborhood of width ε(ρ) in M̊ .

Now we suppose that S is a membrane with Σ 6= ∅. It follows from (ii)
and (iii) that Σ has a uniform tubular neighborhood ψ : ΣΓ(ε)→ (−ε, ε)× Σ
in Γ for some ε > 0. By part (iii), Γ has a uniform collar ϕ : Γ(ε)→ [0, ε)× Γ
in M , where we assume without loss of generality that ϕ and ψ are of the same
width. Then

Σ(ε) :=
{
γΓ
q (t) ; q ∈ ΣΓ(ε), 0 ≤ t < ε

}
is an open neighborhood of Σ in M and

χ : Σ(ε)→ [0, ε)× (−ε, ε)× Σ with χ−1(x, y, σ) := ϕ−1
(
x, ψ−1(y, σ)

)
is an orientation preserving diffeomorphism, a tubular neighborhood of Σ in M
of width ε.

We refer once more to [15] for the proof of the next theorem. Henceforth,
h := gΣ and N(ε) := [0, ε)× (−ε, ε).

11



Theorem 4.2 Assume (4.2) and S is a membrane with nonempty boundary Σ.
Then

χ∗g ∼ dx2 + dy2 + h. (4.3)

It follows that
Σσ(ε) := χ−1

(
N(ε)× {σ}

)
is for each σ ∈ Σ a 2-dimensional submanifold of Σ(ε) and S ∩ Σσ(ε) is a
1-dimensional submanifold of Σσ(ε).

Remark 4.3 (The two-dimensional case) Suppose dim(M) = 2 and Σ 6= ∅.
It follows from Theorem 4.1(ii) and the fact that M has a countable base that
Σ is a countable discrete subspace of M . Thus we can find ε > 0 with the
following properties: if we denote by ψ−1(·, σ) : (−ε, ε)→ Γ the local arc-length
parametrization of Γ with ψ−1(0, σ) = σ for σ ∈ Σ, then the above definition
of χ applies and defines a tubular neighborhood of Σ in M of width ε.

Note that Σ(ε) is the countable pair-wise disjoint union of Σσ(ε), σ ∈ Σ.
The term +h in (4.3) (and everywhere else) has to be disregarded and the
volume measure of Σ is the counting measure. Thus in this case integration
with respect to d volΣ reduces to summation over σ ∈ Σ. �

Now we restrict the class of membranes under consideration by requiring
that S intersects Γ uniformly transversally. This means the following: there
exists f ∈ C∞

(
[0, ε)× Σ, (−ε, ε)

)
such that, setting fσ := f(·, σ),

(i) fσ(0) = 0, σ ∈ Σ;

(ii) Given ε ∈ (0, ε), there exists ρ ∈ (0, ε) with

|fσ(x)| ≤ ρ, 0 ≤ x ≤ ε, σ ∈ Σ;

(iii) |∂fσ(0)| ≤ c, σ ∈ Σ;

(iv) χ
(
S ∩ Σσ(ε)

)
= graph(fσ)× {σ}, σ ∈ Σ.

(4.4)

In general, a submanifold C of a manifold B intersects ∂B transversally if

TpC + Tp∂B = TpB, p ∈ ∂B.

The following theorem furnishes an important large class of urR manifolds
and membranes intersecting the boundary uniformly transversally.

Theorem 4.4 Let (M, g) be a compact oriented Riemannian manifold with
boundary Γ. Assume S is an oriented hypersurface in M with nonempty bound-
ary Σ ⊂ Γ and S intersects Γ transversally. Then (M, g) is a urR manifold and
S is a membrane intersecting Γ uniformly transversally.

Proof Example 3.2(a) guarantees that (M, g) is an oriented urR manifold. Thus
(Γ, gΓ) is an oriented urR manifold by Theorem 4.1(i). Since S intersects Γ
transversally, it is a well-known consequence of the implicit function theorem
that Σ is a compact hypersurface in Γ without boundary. It is oriented, being
the boundary of the oriented manifold S. Hence, invoking Example 3.2(a) once
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more, (Σ, gΣ) is an oriented urR manifold. As it is compact, it has a uniform
tubular neighborhood in Γ. Thus, Γ having a uniform collar, Σ has a uniform
tubular neighborhood χ in M of some width ε.

Since S intersects Γ transversally, χ
(
S ∩ Σσ(ε)

)
can be represented as the

graph of a smooth function fσ : [0, ε)→ (−ε, ε) with fσ(0) = 0, and fσ depends
smoothly on σ ∈ Σ. The compactness of Σ implies that (4.4) is true. Hence
S intersects Γ uniformly transversally. Now, due to the compactness of S, it
is not difficult to see that S is a regularly embedded submanifold of M . The
theorem is proved. �

Remarks 4.5 (a) This theorem applies to the case (M, g) = (Ω, gm) considered
in Section 2.

(b) Suppose (M, g) is an oriented urR manifold and S a membrane without
boundary. Then the fact that S has a uniform tubular neighborhood in M̊
prevents S from either reaching Γ or ‘collapsing’ at infinity. �

5 The Singular Manifold

In this section

(M, g) is an oriented urR manifold and
S a membrane with nonempty boundary Σ
such that S intersects Γ uniformly transversally.

(5.1)

By Theorem 4.1 and the considerations following it we can choose a uniform
tubular neighborhood

χ : Σ(ε)→ N(ε)× Σ. (5.2)

We write D(ε) :=
{

(x, y) ∈ R2 ; x2 + y2 < ε2, x ≥ 0
}

. Then

Ũ(ε) := χ−1
(
D(ε)× Σ

)
(5.3)

is an open neighborhood of Σ in M contained in Σ(ε). We put

M̂ := M \Σ, U(ε) := Ũ(ε) ∩ M̂ = Ũ(ε)\Σ.

Furthermore, r and ρ are given by (2.5) and (2.6), respectively. Then we define

a Riemannian metric ĝ on M̂ by

ĝ :=


g on M

∖
Ũ(ε),

χ∗
(dx2 + dy2

ρ2(x, y)
+ h
)

on U(ε).
(5.4)

Note that, see Theorem 4.2,

ĝ ∼ g on M
∖
Ũ(ε/3) (5.5)

and

ĝ = χ∗
(dx2 + dy2

x2 + y2
+ h
)

on U(ε/3).

Hence (M̂, ĝ) is a Riemannian manifold with a wedge singularity near Σ.
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The following theorem is the basis for our approach. It implies that it
suffices to study transmission problems for membranes without boundary on
urR manifolds.

Theorem 5.1 (M̂, ĝ) is an oriented urR manifold and Ŝ := S\Σ is a membrane

in M̂ without boundary.

Proof (1) We set Ḋ(ε) := D(ε)\{0, 0} and define δ ∈ C∞[0, ε) by

ρ(x, y) = δ
(
r(x, y)

)
, (x, y) ∈ D(ε).

Then we fix ε̂ ∈ (2ε/3, ε), define a diffeomorphism

s : (0, ε̂ ]→ R+, r 7→
∫ ε̂

r

dt

δ(t)
,

and set t := s−1. It follows, see [14, Lemma 5.1], that

t∗
( dr2

δ2(r)

)
= ds2.

We also consider the polar coordinate diffeomorphism

R : (0, ε̂ )× [−π/2, π/2]→ Ḋ(ε̂), (r, α) 7→ r(cosα, sinα) .

Then

R∗(dx2 + dy2) = dr2 + r2dα2 = δ2
(dr2

δ2
+
r2

δ2
dα2

)
,

that is,

R∗
(dx2 + dy2

ρ2

)
=
dr2

δ2
+
r2

δ2
dα2. (5.6)

Hence
λ := R ◦ (t× id) : (0,∞)× [−π/2, π/2]→ Ḋ(ε̂)

is a diffeomorphism satisfying

λ∗
(dx2 + dy2

ρ2

)
= (t× id)∗R∗

(dx2 + dy2

ρ2

)
= ds2 + β2(s)dα2 =: γ2,

where β := t∗(r/δ). By (2.6), r/δ = r/(1− ω + rω) for 0 < r ≤ ε̂. Hence β is
smooth and β ∼ 1. Thus γ is a metric on N := (0,∞)× [−π/2, π/2] which is
uniformly equivalent to g2 = ds2 + dα2. By Examples 3.2 (a)–(c),(

R× [−π/2, π/2], ds2 + dα2
)

is a urR manifold. From this we deduce, see Remark 3.1(a), that (N, γ) is a
urR manifold on (s,∞) for each s > 0.

It follows that

w := (λ−1 × id) ◦ χ :
(
U(ε̂), ĝ

)
→ (N × Σ, γ + h)
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is an isometric isomorphism. Hence we derive from Example 3.2(d) and Re-
mark 3.1(a) that U(ε̂) is a urR manifold on U(ε), where ε := 5ε/6. Since

(M, g) is a urR manifold, it is a urR manifold on M
∖
Ũ(ε/3). Thus it is a

consequence of (5.5) that (M̂, ĝ) is a urR manifold. The first assertion is now
clear.

(2) Fix ε ∈ (ε/3, ε̂). It can be assumed that (4.4) applies with this choice

of ε. Set f̃σ := t∗fσ. Note that (4.4)(ii) implies

f̃σ :
[
s(ε),∞

)
→ [−ρ, ρ], σ ∈ Σ. (5.7)

Also note that t(s) = ce−s for s ≥ s(ε/3) and some c > 0. Hence

∂f̃σ(s) = −ce−s∂fσ(ce−s), s ≥ s(ε/3).

Thus it follows from (4.4)(iii) that

lim
s→∞

∂f̃σ(s) = 0 σ-unif., (5.8)

that is, uniformly with respect to σ ∈ Σ.
We write G̃σ for the graph of f̃σ in

[
s(ε),∞

)
× [−π/2, π/2]. We can assume

that

ν̃σ(s) :=
(∂f̃σ(s),−1)

(1 + |∂f̃σ(s)|2)1/2
, s ≥ s(ε), (5.9)

is the positive normal for G̃σ at
(
s, f̃σ(s)

)
(otherwise replace ν̃σ(s) by −ν̃σ(s)).

It follows from (5.8) that

lim
s→∞

ν̃σ(s) = (0,−1) σ-unif. (5.10)

From this and (5.7) we deduce that G̃σ has a uniform tubular neighborhood
in
(
[s(ε),∞)× [−π/2, π/2], ds2 + dα2

)
whose width is independent of σ ∈ Σ.

It follows from step (1) that its pull-back by w is a uniform tubular neighbor-

hood of Ŝ in U(ε). Now the second part of the assertion is a consequence of

Theorem 4.1(iv), since, given any δ > 0, ĝ and g are equivalent on M
∖
Ũ(δ). �

6 Function Spaces

Let (M, g) be a Riemannian manifold. We consider the tensor bundles

T 1
0M := TM, T 0

1M := T ∗M, T 0
0 = M × R,

the tangent, cotangent, and trivial bundle, respectively, and

Tστ M := (TM)⊗σ ⊗ (T ∗M)⊗τ , σ, τ ≥ 1,
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endow Tστ M with the tensor bundle metric gτσ := g⊗σ ⊗ g∗⊗τ , σ, τ ∈ N, and
set3

|a|gτσ =
√

(a |a)gτσ :=
√
gτσ(a, a), a ∈ C(Tστ M). (6.1)

By ∇ = ∇g we denote the Levi–Civita connection and interpret it as covariant
derivative. Then, given a smooth function u on M , ∇ku ∈ C∞(T 0

kM) is defined
by ∇0u := u, ∇1u = ∇u := du, and ∇k+1u := ∇(∇ku) for k ∈ N.

Let κ = (x1, . . . , xm) be a local coordinate system and set ∂i := ∂/∂xi. Then

∇1u = ∂iu dx
i, ∇2u = ∇iju dxi ⊗ dxj = (∂i∂ju− Γkij∂ku)dxi ⊗ dxj ,

where

Γkij =
1

2
gk`(∂igj` + ∂jgi` − ∂`gij), 1 ≤ i, j, k ≤ m,

are the Christoffel symbols. It follows that

|∇u|2g1
0

= |∇u|2g∗ = gij∂iu∂ju (6.2)

and
|∇2u|2g2

0
= gi1j1gi2j2∇i1i2u∇j1j2u. (6.3)

As usual, d volg =
√
g dx is the Riemann–Lebesgue volume element on Uκ.

Let σ, τ ∈ N, put V := Tστ M , and write |·|V := |·|gτσ . Then D(V ) is the linear

subspace of C∞(V ) of compactly supported sections.
For 1 ≤ q <∞ we set

‖u‖Lq(V ) = ‖u‖Lq(V,g) :=
(∫

M

|u|qV d volg

)1/q

.

Then

Lq(V ) = Lq(V, g) :=
({
u ∈ L1,loc(M) ; ‖·‖Lq(M,g) <∞

}
, ‖·‖Lq(M,g)

)
is the usual Lebesgue space of Lq sections of V . Hence Lq(M, g) = Lq(V, g) for
V = T 0

0M = M × R. If k ∈ N, then

‖u‖Wk
q (V ) = ‖u‖Wk

q (V,g) :=

k∑
j=0

∥∥ |∇jv|gτ+j
σ

∥∥
Lq(M,g)

and

‖u‖BCk(V ) = ‖u‖BCk(V,g) :=

k∑
j=0

∥∥ |∇jv|gτ+j
σ

∥∥
∞.

The Sobolev space W k
q (V ) = W k

q (V, g) is the completion of D(V ) in Lq(V ) with
respect to the norm ‖·‖Wk

q (V ). If k < s < k + 1, the Slobodeckii space W s
q (V )

is obtained by real interpolation:

W s
q (V ) = W s

q (V, g) :=
(
W k
q (V ),W k+1

q (V )
)
s−k,q. (6.4)

3If V is a vector bundle over M , then Ck(V ) denotes the vector space of Ck sections of V .
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We also need the time-dependent function spaces

W s/2
q (M × J) := Lq

(
J,W s

q (M)
)
∩W s/2

q

(
J, Lq(M)

)
, 0 ≤ s ≤ 2, (6.5)

Thus W
0/2
q (M × J)

.
= Lq

(
J, Lq(M)

)
, where

.
= means ‘equivalent norms’.

By BCk(V ) = BCk(V, g) we denote the Banach space of all u ∈ Ck(V ) for
which ‖u‖BCk(V ) is finite, and BC := BC0. Then

BC1/2(M × J) := C
(
J,BC1(M)

)
∩ C1/2

(
J,BC(M)

)
(6.6)

with the usual Hölder space C1/2.
The following lemma shows that in the Euclidean setting these definitions

return the classical spaces.

Lemma 6.1 Suppose that X ∈ {Rm,Hm}, (M, g) := (X, gm), and V := X× F
with F = Rmσ×mτ ' Tστ X. Then

W s
q (V ) = W s

q (X, F ), s ∈ R+, 1 ≤ q <∞,

the standard Sobolev–Slobodeckii spaces, and

BCk(V ) = BCk(X, F ), k ∈ N.

Proof The second assertion is obvious.
If k ∈ N, then the above definition of W k

q (V ) coincides with the one in [13,
(VII.1.2.2)]. Now the first assertion follows from (6.4), Theorems VII.2.7.4 and
VII.2.8.3 in [13], and the fact that the Besov space Bsq = Bsqq coincides with W s

q

for s /∈ N. �

Now we suppose that

(M, g) is an oriented urR manifold and
S is a membrane without boundary.

(6.7)

By Theorem 4.1(iii) we can chose a uniform tubular neighborhood

ϕ : S(ε)→ (−ε, ε)× S (6.8)

in M̊ . We set

M+ := ϕ−1
(
[0, ε)× S

)
, M− := ϕ−1

(
(−ε, 0]× S

)
, M0 := M

∖
S(ε/2).

By V± := VM± and V0 := VM0
we denote the restrictions of V to M± and M0,

respectively. Then W̄ s
q (M \S, V ), s ∈ R+, resp. B̄C

k
(M \S, V ), k ∈ N, is the

closed linear subspace of

W s
q (V0)⊕W s

q (V+)⊕W s
q (V−), resp. BCk(V0)⊕BCk(V+)⊕BCk(V−),

consisting of all u = u0 ⊕ u+ ⊕ u− satisfying (u0 − u±) |M0 ∩M± = 0. Defini-

tions analogous to (6.5) and (6.6) give the Banach spaces W̄
s/2
q

(
(M \S)× J

)
and B̄C

1/2(
(M \S)× J

)
, respectively. Note that W̄ 0

p (M \S, V ) = Lp(M,V ),
since volg(S) = 0.
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Remark 6.2 Let (M, g) := (Rm, gm) and S := ∂Hm. We can set ε =∞ in (6.8)
to get M+ = Hm, M− = −Hm, and M0 = ∅. Then

W̄ s
q (M \S, V ) = W s

q (Hm, F )⊕W s
q (−Hm, F )

and
B̄C

k
(M \S, V ) = BCk(Hm, F )⊕BCk(−Hm, F ),

as follows from Lemma 6.1. �

Assume a ∈ B̄C(M \S, V ). Then the one-sided limits

lim
t→0±

a
(
γSp (t)

)
=: a±(p), p ∈ S,

exist and a± ∈ BC(S). Hence the jump across S,

[[a]] :=
(
p 7→ [[a]](p) := a+(p)− a−(p)

)
∈ BC(S),

is well-defined. Note that a± is the trace of a on S ‘from the positive/negative
side of S’.

Let u ∈ B̄C1
(M \S). Then u ◦ γSp ∈ B̄C

1(
(−ε, ε)\{0}

)
. We set

∂u

∂νS
(q) := ∂1(u ◦ ϕ−1)(τ, p), q ∈ (M+ ∪M−)\S,

for ϕ(q) = (τ, p) ∈ (−ε, ε)× S with τ 6= 0. Thus ∂u/∂νS is the normal derivative
of u in (M+ ∪M−)\S, that is, the derivative along the normal geodesic γSp .
Hence

∂u

∂νS
(q) =

〈
du(q), γ̇Sp (τ)

〉
=
(
γ̇Sp (τ)

∣∣ gradu(q)
)
g(q)

.

Consequently, the jump of the normal derivative,[[ ∂u
∂νS

]]
=
[[

(νS | gradu)
]]
∈ BC(S)

is also well-defined.

7 The Parabolic Problem on Manifolds

We presuppose (6.7) and assume

(i) a ∈ B̄C1/2(
(M \S)× J

)
.

(ii) a ≥ α > 0,
(7.1)

where α ≤ 1. Then
Au := −div(a gradu).

Fix δ ∈ C
(
Γ, {0, 1}

)
. Then Γj := δ−1(j), j = 0, 1, is open and closed in Γ

and Γ0 ∪ Γ1 = Γ. Either Γ, Γ0, or Γ1 may be empty. In such a case all references
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to these empty sets have to be disregarded. Recall that γ denotes the trace
operator on Γ (for any manifold).

We introduce an operator B = (B0,B1) on Γ by B0u = γΓ0
u, the Dirichlet

boundary operator, on Γ0, and a Neumann boundary operator

B1u :=
(
ν
∣∣γΓ1(a gradu)

)
on Γ1.

On S we consider the transmission operator C = (C0, C1), where

C0u := [[u]], C1u :=
[[

(νS |a gradu)
]]
.

Note that
[[

(νS |a gradu)
]]

equals [[a∂νSu]] and not
[[
∂νS (au)

]]
.

Of concern in this paper is the inhomogeneous linear transmission problem

∂tu+Au = f on (M \S)× J,
Bu = ϕ on Γ× J,
Cu = ψ on S × J,
γ0u = u0 on (M \S)× {0}.

(7.2)

We assume that

1 < p <∞, p /∈ {3/2, 3}, (6.7) and (7.1) are satisfied. (7.3)

For abbreviation we set, for 1 < q <∞,

W̄ k/2
q := W̄ k/2

q

(
(M \S)× J

)
, k = 0, 2,

and introduce the trace spaces

∂Wq := W (2−1/q)/2
q (Γ0 × J)⊕W (1−1/q)/2

q (Γ1 × J),

∂SWq := W (2−1/q)/2
q (S × J)⊕W (1−1/q)/2

q (S × J),

and
γ0W̄q := W̄ 2−2/q

q (M \S).

As a rule, we often drop the index q if q = p. Thus W̄ 2/2 = W̄
2/2
p , ∂W = ∂Wp,

etc. Finally,
∂B,CW = [∂W ⊕ ∂SW ⊕ γ0W̄ ]B,C

is the closed linear subspace of ∂W ⊕ ∂SW ⊕ γ0W̄ consisting of all (ϕ,ψ, u0)
satisfying the compatibility conditions

B0u0 = ϕ0(0), C0u0 = ψ0(0), if 3/2 < p < 3,

B(0)u0 = ϕ(0), C(0)u0 = ψ(0), if 3 < p <∞,

where ϕ = (ϕ0, ϕ1) and ψ = (ψ0, ψ1). It follows from the anisotropic trace the-
orem ([13, Example VIII.1.8.6]) that ∂B,CW is well-defined.

Given Banach spaces E and F , we write Lis(E,F ) for the set of all isomor-
phisms in L(E,F ), the Banach space of continuous linear maps from E into F .

Now we can formulate the following maximal regularity theorem for prob-
lem (7.2). Its proof, which needs considerable preparation, is found in Sec-
tion 13.
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Theorem 7.1 Let (7.3) be satisfied. Then(
∂t +A, (B, C, γ0)

)
∈ Lis

(
W̄ (2,1)
p , Lp(J, Lp(M))× ∂B,CWp

)
.

8 The Uniform Lopatinskii–Shapiro Condition

In the proof of Theorem 7.1 we need to consider systems of elliptic bound-
ary value problems. For this we have to be precise on the concept of uniform
ellipticity.

Let (M, g) be any Riemannian manifold. We consider a general second order
linear differential operator on M ,

Au := −a q∇2u+ a1
q∇u+ a0u (8.1)

with u = (u1, . . . , un) and

ai ∈ C(T i0M)n×n, i = 0, 1, 2, a2 := a.

Here ∇iu = (∇iu1, . . . ,∇iun) so that, for example,

a q∇2u = (a1
s
q∇2us, . . . , ans q∇2us),

where s is summed from 1 to n and q denotes complete contraction, that is,
summation over all twice occurring indices in any local coordinate representa-
tion.

The (principal) symbol sA ofA is the (n× n)-matrix-valued function defined
by

sA(p, ξ) := a(p) q (ξ ⊗ ξ), p ∈M, ξ ∈ T ∗pM.

Then A is uniformly normally elliptic if there exists an ‘ellipticity constant’
α ∈ (0, 1) such that

σ
(
sA(p, ξ)

)
⊂ [Re z ≥ α] = { z ∈ C ; Re z ≥ α }

for all p ∈M and ξ ∈ T ∗pM with |ξ|2g∗(p) = 1, where σ(·) denotes the spectrum.

Suppose Γ 6= ∅ and B = (B1, . . . ,Bn) is a linear boundary operator of order
at most 1. More precisely, we assume that there is k ∈ {0, . . . , n} such that

Bru =

{
br0 q γu, 1 ≤ r ≤ k,
br1 q γ∇u+ br0 q γu, k + 1 ≤ r ≤ n,

with
bri ∈ C(T i0Γ)n, 1 ≤ r ≤ n, i = 0, 1.

Then the (principal) symbol of B is the (n× n)-matrix-valued function sB given
by

sBr(q, ξ) :=

{
br0(q),

br1(q) q ξ, q ∈ Γ, ξ ∈ T ∗qM.
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Observe that X qω = 〈ω,X〉 if X is a vector, ω a covector field, and 〈·, ·〉 the
duality pairing.

We denote by ν[ ∈ T ∗ΓM the inner conormal on Γ defined in local coordinates
by ν[ = gijν

jdxi. Given q ∈ Γ, we write B(q) for the set of all

(ξ, λ) ∈ T ∗qM × [Re z ≥ 0] satisfying

ξ ⊥ ν[(q) and |ξ|2 + |λ| = 1.
(8.2)

Then, if (ξ, λ) ∈ B(q), we introduce linear differential operators on R by

A(∂; q, ξ, λ) := λ+ sA
(
q, ξ + iν[(q)∂

)
,

B(∂; q, ξ, λ) := sB
(
q, ξ + iν[(q)∂

)
,

(8.3)

where i =
√
−1.

As usual, C0(R+,Cn) is the closed linear subspace of BC(R+,Cn) consisting
of the functions that vanish at infinity.

Suppose A is uniformly normally elliptic. Then it follows that the homoge-
neous problem

A(∂; q, ξ, λ)v = 0 on R (8.4)

has for each q ∈ Γ and (ξ, λ) ∈ B(q) precisely n linearly independent solutions
whose restrictions to R+ belong to C0(R+,Cn). We denote their span by
C0(q, ξ, λ). It is an n-dimensional linear subspace of C0(R+,Cn).

Now we consider the initial value problem on the half-line:

A(∂; q, ξ, λ)v = 0 on R+,

B(∂; q, ξ, λ)v(0) = η ∈ Cn.
(8.5)

Then (A,B) satisfies the uniform parameter-dependent Lopatinskii-Shapiro (LS)
conditions if problem (8.5) has for each η ∈ Cn a unique solution

v = R(q, ξ, λ)η ∈ C0(q, ξ, λ) (8.6)

and
‖R(q, ξ, λ)‖L(Cn,C0(R+,Cn)) ≤ c, (8.7)

unif. w.r.t. q ∈ Γ and (ξ, λ) ∈ B(q).
The basic feature, which distinguishes the above definition from the usual

form of the LS condition, is the requirement of the uniform bound (8.7). With-
out this requirement the LS condition is much simpler to formulate (e.g., [5],
[6], [22], [23], [32], for example) and to verify.

It is known that the LS condition is equivalent to the parameter-dependent
version of the complementing condition of S. Agmon, A. Douglis, and L. Niren-
berg [2] (see, for example, [27, VII§9] or [38, Section 10.1]). Using this version,
it is possible to define a uniform complementing condition which is equivalent
to (8.7) (see [3] and [4]). However, that condition is even more difficult to verify
in concrete situations. We refer to [15] for a detailed exposition of all these
facts. It should be noted that the uniformity condition (8.7) is fundamental
for the following, since we will have to work with infinitely many linear model
problems.
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9 Model Cases

For the proof of Theorem 7.1 we have to understand the model cases to which
problem (7.2) reduces in local coordinates.

Until further notice, it is assumed that

• assumption (7.3) applies.

• K is an S-adapted ur atlas for M.

By Remark 3.1(b) we can assume that diam(Uκ) < ε/2 for κ ∈ KS where ε is
the width of the tubular neighborhood of S.

We can choose a family {πκ, χ ; κ ∈ K } with the following properties:

(i) πκ ∈ D
(
Uκ, [0, 1]

)
for κ ∈ K and

∑
κπ

2
κ(p) = 1 for p ∈M.

(ii) ‖κ∗πκ‖k,∞ ≤ c(k), κ ∈ K, k ∈ N.
(iii) χ ∈ D

(
(−1, 1)m, [0, 1]

)
with χ | supp(κ∗πκ) = 1 for κ ∈ K.

(9.1)

(See Lemma 3.2 in [10] or [15]). We fix an ω̃ ∈ D
(
(−1, 1)m, [0, 1]

)
which is equal

to 1 on supp(χ). Then
gκ := ω̃κ∗g + (1− ω̃)gm

is a Riemannian metric on Rm such that

gκ ∼ gm, κ ∈ K, (9.2)

and
‖gκ‖k,∞ ≤ c(k), κ ∈ K, k ∈ N. (9.3)

This follows from (3.3). Furthermore,

aκ := ω̃κ∗a+ 1− ω̃. (9.4)

Note that
aκ ≥ α, κ ∈ K. (9.5)

We write gradκ := gradgκ and divκ := divgκ for κ ∈ K. Then

Aκu := −divκ(aκ gradκ u), u ∈ Qmκ .

Let δκ := κ∗δ. Then

Bκu := δκ
(
νκ
∣∣γ(aκ gradκ u)

)
κ

+ (1− δκ)γu, κ ∈ KΓ,

where νκ is the inner normal on ∂Hm with respect to (Hm, gκ), and (· | ·)κ = gκ.
If κ ∈ KS , then

Cκu :=
(

[[u]],
[[

(νκ |aκ gradκ u)κ
]])

on ∂Hm.

Using these notations, we consider the three model problems:

∂tu+Aκu = fκ on Rm × J, (9.6)
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and
∂tu+Aκu = fκ on Hm × J,

Bκu = ϕκ on ∂Hm × J,
(9.7)

and
∂tu+Aκu = fκ on (Rm\∂Hm)× J,

Cκu = ψκ on ∂Hm × J.
(9.8)

In the following two sections we prove that each one of them, complemented
by appropriate initial and compatibility conditions, enjoys a maximal regularity
result, unif. w.r.t. κ.

10 Continuity

First we note that √
gκ ∼ 1, κ ∈ K, (10.1)

and, given k ∈ N,

k∑
i=0

|∇iκu| ∼
∑
|α|≤k

|∂αu|, κ ∈ K, u ∈ Ck(Qmκ ), (10.2)

with ∇κu := κ∗∇κ∗u (cf. [10, Lemma 3.1] or [15]).
We set

Xκ :=


Rm, if κ ∈ K0 := K\(KΓ ∪ KS),

Hm, if κ ∈ KΓ,

Rm\∂Hm, if κ ∈ KS .

(10.3)

Then
W s
κ := W s

p (Xκ, gκ), κ ∈ K0 ∪ KΓ,

and
W̄ s
κ := W̄ s

p (Rm\∂Hm, gκ), κ ∈ KS ,

where 0 ≤ s ≤ 2. For the sake of a unified presentation,

Ws
κ :=

{
W s
κ , if κ ∈ K\KS ,

W̄ s
κ , if κ ∈ KS .

If X ∈ {Rm,Hm}, then W s
p (X) := W s

p (X, gm). It is a consequence of (10.1) and
(10.2) that

Wk
κ
.
= Wk

p (Xκ) K-unif., (10.4)

where
.
= stands for ‘equal except for equivalent norms’.
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Since

Ws
p (X) =

(
Wk
p (X),Wk+1

p (X)
)
s−k,p, k < s < k + 1,

(cf. [13, Theorems VII.2.7.4 and VII.2.8.3, as well as (VII.3.6.3)]), it follows
from definition (6.4) and from (10.4) that

Ws
κ
.
= Ws

p (Xκ) K-unif. (10.5)

Due to (10.1) and (10.2) we get, with an analogous definition of BC,

BCkκ := BCk(Xκ, gκ)
.
= BCk(Xκ) := BCk(Xκ, gm) K-unif. (10.6)

Using this, (6.5), and (6.6), we infer that

Ws/2
κ

.
= Ws/2

p (Xκ × J), BCk/2κ
.
= BCk/2(Xκ × J) K-unif. (10.7)

First we note that (3.1), (7.1), (9.4), and (10.2) imply

aκ ∈ BC1/2
κ K-unif. (10.8)

In local coordinates, gradu = gij∂ju ∂/∂x
i. Using this, (3.3), and (10.8) we

deduce that
‖ gradκ aκ‖BCκ(TXκ×J) ≤ c K-unif. (10.9)

Given a vector field Y = Y i∂/∂xi, it holds div Y =
√
g−1∂i

(√
g Y i

)
. By this

and the above it is verified that

Aκ ∈ L(W2/2
κ ,W0/2

κ ) K-unif. (10.10)

Now we consider Sobolev–Slobodeckii spaces on ∂Hm ' Rm−1. We set
g
q
κ := gκ∂Hm for κ ∈ KΓ. Then

∂iWκ := W (2−i−1/p)/2
p (∂Hm × J, g qκ + dt2), i = 0, 1, (10.11)

and
∂Wκ := (1− δκ)∂0Wκ + δκ∂1Wκ, κ ∈ KΓ.

Suppose 0 < σ < s < 1. Then

BC1/2(Rm−1 × J) = C
(
J,BC1(Rm−1)

)
∩ C1/2

(
J,BC(Rm−1)

)
= C

(
J,BC1(Rm−1)

)
∩ C1/2

(
J,BUC(Rm−1)

)
↪→ B

(
J,BUCs(Rm−1)

)
∩ Cs/2

(
J,BUC(Rm−1)

)
.
= BUCs/2(Rm−1 × J) ↪→ bσ/2∞ (Rm−1 × J),

(10.12)

where the BUCρ are the usual Hölder spaces and b
σ/2
∞ is an anisotropic little

Besov space. Indeed, the first embedding follows from the mean value theorem
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and by using the localized Hölder norm (cf. [13, (VII.3.7.1)]). For the norm
equivalence we refer to definition (VII.3.6.4) and Remark VII.3.6.4. The last
embedding is implied by Lemma VII.2.2.3 and Theorem VII.7.3.4. By Theo-
rem VII.2.7.4 in [13],

bσ/2∞ (Rm−1 × J)
.
=
(
BUC2/2(Rm−1 × J), BUC0/2(Rm−1 × J)

)0
σ/2,∞.

(10.13)

We deduce from (3.3) and (10.2) that

BUCs/2κ (∂Hm × J) := BUCs/2(∂Hm × J, g qκ + dt2)
.
= BUCs/2(Rm−1 × J)

KΓ-unif. Now it follows from (10.12) and (10.13) that

BC1/2
κ (∂Hm × J) ↪→ bσ/2∞,κ(∂Hm × J) KΓ-unif.

Since, trivially, γ ∈ L
(
BC1/2(Hm × J), BC1/2(∂Hm × J)

)
, it is now clear that

γaκ ∈ bσ/2∞,κ(∂Hm × J) KΓ-unif. (10.14)

In local coordinates

νκ =
g1i
κ√
g11
κ

∂

∂xi
. (10.15)

Hence δκBκu = δκb
i
κγ∂iu = δκγaκν

i
κγ∂iuκ, where it follows from (3.3), (9.5),

and ‖aκ‖∞ ≤ c that

1/c ≤ b1κ = γaκ
√
g11
κ ≤ c (10.16)

and, from (10.14),

‖biκ‖bσ/2∞,κ(∂Hm×J)
≤ c, 1 ≤ i ≤ m,

for κ ∈ KΓ. Thus it is a consequence of (10.14), (10.16), and the boundary
operator retraction theorem [13, Theorem VIII.2.2.1] that

Bκ is a KΓ-uniform retraction4 from W 2/2
κ onto ∂Wκ. (10.17)

Clearly, ‘KΓ-uniform’ means that there exists a coretraction Bcκ such that ‖Bκ‖
and ‖Bcκ‖ are KΓ-uniformly bounded.

Obviously,
∂SWκ := ∂0Wκ ⊕ ∂1Wκ, κ ∈ KS . (10.18)

If we replace in the preceding arguments the boundary operator retraction ar-
gument by Theorem VIII.2.3.3 of [13], we find that

Cκ is a KS-uniform retraction from W̄ 2/2
κ onto ∂SWκ. (10.19)

4An operator r ∈ L(E,F ) is a retraction if it has a continuous right inverse, a coretrac-
tion rc. Then (r, rc) is an r-c pair for (E,F ).
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It follows from (10.5) that

γ0Wκ
.
= γ0Wp(Xκ), κ ∈ K. (10.20)

The anisotropic trace theorem ([13, Corollary VII.4.6.2, Theorems VIII.1.2.9
and VIII.1.3.1]) implies that

γ0 ∈ L
(
W 2/2
p (X× J), B2−2/p

p (X)
)
, X ∈ {Rm,Hm}, (10.21)

is a retraction. Using Theorems VII.2.7.4 and VII.2.8.3, definition VII.3.6.3 and
Remark VII.3.6.4 of [13], we get

B2−2/p
p (X)

.
= W 2−2/p

p (X). (10.22)

Now we infer from (10.7), (10.20)–(10.22), and (10.5) that

γ0 is a K-uniform retraction from W2/2
κ onto γ0Wκ. (10.23)

11 Maximal Regularity

First we rewrite (A,B) in terms of covariant derivatives. For this we define

a\ ∈ B̄C1/2(
T 2

0 (M \S)× J
)

in local coordinates by

a\ := agij
∂

∂xi
⊗ ∂

∂xj
.

Then we get

Au = −a∆u− (grad a | gradu) = −a\ q∇2u− (grad a) q∇u, (11.1)

where ∆ is the Laplace–Beltrami operator (e.g., [36, (2.4.10)]). Consequently,

sA(q, t, ξ) = a(q, t) |ξ|2g∗(q), q ∈M \S, ξ ∈ T ∗q (M \S), t ∈ J. (11.2)

For the boundary operator we find

B1u = γa(ν[ |γ∇u)g∗ . (11.3)

Hence

sB1u(q, t, ξ) = a(q, t)
(
ν[(q)

∣∣ξ)
g∗(q)

, q ∈ Γ, ξ ∈ T ∗qM, t ∈ J. (11.4)

Clearly, these formulas apply to any oriented Riemannian manifold, thus to
(∂Hm, gκ), κ ∈ KΓ.

It follows from (9.5) and (11.2) that

sAκ(x, t, ξ) = aκ(x, t) |ξ|2g∗κ(x) ≥ α |ξ|
2
g∗κ(x)

for x ∈ Xκ, ξ ∈ T ∗xXκ, t ∈ J , and κ ∈ K. Hence

Aκ is uniformly normally elliptic, unif. w.r.t. κ ∈ K and t ∈ J. (11.5)

We begin with the full-space problem.
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Proposition 11.1 It holds

(∂t +Aκ, γ0) ∈ Lis(W 2/2
κ , W 0/2

κ × γ0Wκ) K0-unif.,

that is,
‖(∂t +Aκ, γ0)‖+ ‖(∂t +Aκ, γ0)−1‖ ≤ c, κ ∈ K0.

Proof It is obvious from (10.10) and (10.23) that

(∂t +Aκ, γ0) ∈ L(W 2/2
κ , W 0/2

κ × γ0Wκ) K0-unif.

Due to (11.5), the assertion now follows from Corollary 9.7 in [16] and The-
orem III.4.10.8 in [7] and (the proof of) Theorem 7.1 in [8]. (See [15] for a
different demonstration.) �

Next we study the case where κ ∈ KΓ. For this we first establish the validity
of the uniform LS condition. Henceforth, it is always assumed that

ζ = (x, ξ, λ) with x ∈ ∂Hm and (ξ, λ) ∈ B(x). (11.6)

We fix any t ∈ J and omit it from the notation. The reader will easily check
that all estimates are uniform with respect to t ∈ J . From (11.2) we see that
the first equation in (8.4) has the form

v̈ = ρ2
κ(ζ)v on R, (11.7)

where

ρκ(ζ) :=

√
λ

aκ(x)
+ |ξ|2g∗κ(x) ∈ C (11.8)

with the principal value of the square root.
Suppose |ξ|2g∗κ(x) ≤ 1/2. Then ζ ∈ B(x) implies ρ2

κ(ζ) ≥ 1/2aκ(x). Other-

wise, ρ2
κ(ζ) ≥ 1/2. Thus, since ‖aκ‖∞ ≤ c, we find a β > 0 such that

Re ρκ(ζ) ≥ β, κ ∈ KΓ. (11.9)

From aκ ≥ α we infer that |ρκ(ζ)| ≤ c for κ ∈ KΓ. Set

vκ(ζ)(s) := e−ρκ(ζ)s, s ≥ 0. (11.10)

Then Cvκ(ζ) is the subspace of C0(R,C) of decaying solutions of (11.7).
Let κ ∈ KΓ0

so that Bκ = γ, the Dirichlet operator on ∂Hm. Then (re-
call (8.6)), Rκ(ζ)η = ηvκ(ζ). Thus, by (11.9),

‖Rκ(ζ)‖L(C,C0(R+,C)) ≤ 1, κ ∈ KΓ0
.

Now assume κ ∈ KΓ1
. Then we see from (11.3) and (11.10) that

Bκ(∂; ζ)vκ(ζ)(0) = −iaκ(x)ρκ(ζ). (11.11)
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Consequently,

‖Rκ(ζ)‖L(C,C0(R+,C)) =
1

aκ(x) |ρκ(ζ)|
≤ 1

αβ
, κ ∈ KΓ1

.

This proves that (Aκ,Bκ) satisfies the uniform parameter-dependent LS condi-
tion, unif. w.r.t. κ ∈ KΓ and t ∈ J .

Proposition 11.2 It holds(
∂t +Aκ, (Bκ, γ0)

)
∈ Lis

(
W 2/2
κ , W 0/2

κ ⊕ [∂Wκ ⊕ γ0Wκ]Bκ
)

KΓ-unif.

Proof We deduce from (10.17), (10.23), and [13, Example VIII.1.8.6] that

[∂Wκ ⊕ γ0Wκ]Bκ

is a well-defined closed linear subspace of ∂Wκ ⊕ γ0Wκ and, using also (10.10),(
∂t +Aκ, (Bκ, γ0)

)
∈ L

(
W 2/2
κ , W 0/2

κ ⊕ [∂Wκ ⊕ γ0Wκ]Bκ
)

KΓ-unif.

The uniform LS condition implies now the remaining assertions. For this we
refer to [15]. �

Nonhomogeneous linear parabolic boundary value problems (of arbitrary
order and in a Banach-space-valued setting) on Euclidean domains have been
studied in [23]. It follows, in particular from Proposition 6.4 therein, that the iso-
morphism assertion is true for each κ ∈ KΓ. However, it is not obvious whether
the KΓ-uniformity statement does also follow from the results in [23]. For this
one would have to check carefully the dependence of all relevant estimates on
the various parameters involved, which would be no easy task. (The same ob-
servation applies to Proposition 11.1.) In [15] we present an alternative proof
which takes care of the needed uniform estimates.

Lastly, we assume that κ ∈ KS . We set, once more suppressing a fixed t ∈ J ,

a1
κ(x) := aκ(x), a2

κ(x) := aκ(−x), x ∈ Hm,

and
aκ := diag[a1

κ, a
2
κ] : Hm → C2×2.

Then
Aκu := −divκ(aκ gradκ u), u = (u1, u2).

Furthermore, Bκ = (B0
κ,B

1
κ), where

B0
κu := γu1 − γu2,

B1
κu :=

(
νκ
∣∣γ(a1

κ gradκ u
1 + a2

κ gradκ u
2)
)
gκ

(11.12)

on ∂Hm.
Clearly,

σ
(
a(x)

)
⊂ [Re z ≥ α], x ∈ Hm.

Thus Aκ is uniformly normally elliptic on Hm, KS-unif.
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We define ρiκ, 1 = 1, 2, by replacing aκ in (11.8) by aiκ and introduce viκ by
changing ρκ in(11.10) to ρiκ. Then

Cv1
κ ⊕ Cv2

κ

is the subspace of C0(R+,C2) of decaying solutions of(
λ+ sAκ(x, ξ + iνκ(x)∂)

)
v = 0, x ∈ ∂Hm, v = (v1, v2).

From (11.11) and (11.12) we see that the initial conditions in (8.5) are in the
present case

v1(0)− v2(0) = η1,

a1
κ(x)ρ1

κ(x)v1(0) + a2
κ(x)ρ2

κ(x)v2(0) = iη2.

Omitting x ∈ ∂Hm, the solution of this system is

v1
κ(0) = v2

κ(0) + η1,

v2
κ(0) =

1

a1
κρ

1
κ + a2

κρ
2
κ

(iη2 − a1
κρ

1
κη

1).

From this, the uniform boundedness of aκ, and Re(a1
κρ

1
κ + a2

κρ
2
κ) ≥ 1/αβ it fol-

lows that (Aκ,Bκ) satisfies the uniform parameter-dependent LS condition,
unif. w.r.t. κ ∈ KS and t ∈ J .

Proposition 11.3 It holds(
∂t +Aκ, (Cκ, γ0)

)
∈ Lis

(
W̄ 2/2
κ , W̄ 0/2

κ ⊕ [∂SW̄κ ⊕ γ0W̄κ]Cκ
)

unif. w.r.t. κ ∈ KS and t ∈ J .

Proof Set u(x) :=
(
u(x), u(−x)

)
for x ∈ Hm and W̄s

κ := W̄ s
κ ⊕ W̄ s

κ etc. Then
the assertion is true iff(

∂t + Aκ, (Bκ, γ0)
)
∈ Lis

(
W̄2/2
κ , W̄0/2

κ ⊕ [∂SW̄κ ⊕ γ0W̄κ]Bκ

)
KS-unif.

By the preceding considerations, the proof of Proposition 11.2 applies verbatim
to the system for u. This proves the claim. �

12 Localizations

We presuppose (7.3) and fix an S-adapted atlas for M with diam(Uκ) < ε/2 for
κ ∈ KS . Then

N(κ) := { κ̃ ∈ K ; Uκ ∩ Uκ̃ 6= ∅ }, κ ∈ K,

NΓ(κ) := N(κ) ∩ KΓ, and NS(κ) := N(κ) ∩ KS . By the finite multiplicity of K,

card
(
N(κ)

)
≤ c, κ ∈ K. (12.1)
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We set for κ ∈ K and κ̃ ∈ N(κ)

Sκκ̃u := κ∗κ̃
∗u = u ◦ (κ̃ ◦ κ−1), u ∈W

0/2
κ̃ .

It follows from (3.1)(ii) that, given s ∈ [0, 2],

Sκκ̃ ∈ L(W
s/2
κ̃ ,Ws/2

κ ) K-unif. (12.2)

Interpreting K as an index set, we put

Ws/2 :=
∏
κ∈K

Ws/2
κ , (12.3)

endowed with the product topology. For α ∈ {0,Γ} we set

W s/2[α] :=
∏
κ∈Kα

W s/2
κ , W̄

s/2
:=

∏
κ∈KS

W̄ s/2
κ .

Since K is the disjoint union of K0, KΓ, and KS ,

Ws/2 = W s/2[0]⊕W s/2[Γ]⊕ W̄ s/2
. (12.4)

A similar definition and direct sum decomposition applies to γ0W. We also set

∂W :=
∏
κ∈KΓ

∂Wκ, ∂SW :=
∏
κ∈KS

∂SW̄κ.

We define linear operators R and Rc by

Ru :=
∑
κ

πκκ
∗uκ, Rcu :=

(
κ∗(πκu)

)
κ∈K (12.5)

for u = (uκ) ∈W0/2 and u ∈ L1

(
J, L1,loc(M \S)

)
, respectively. The sum is lo-

cally finite and πκ is identified with the multiplication operator v 7→ πκv.
We want to evaluate A ◦Ru for u ∈W2/2. Observe

A(πκu) = πκAu+ [A, πκ]u, u ∈W 2/2
p ,

the commutator being given by

[A, πκ]u = −(gradπκ |a gradu)− div(au gradπκ). (12.6)

Thus we get from (12.5)

ARu =
∑
κ

A(πκκ
∗uκ) =

∑
κ

πκA(κ∗uκ) +
∑
κ

[A, πκ]κ∗uκ. (12.7)
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By A(κ∗uκ) = κ∗Aκuκ, the first sum equals RAu, where A := diag[Aκ]. Using
1 =

∑
κ̃ π

2
κ̃, we find

[A, πκ]κ∗uκ =
∑
κ̃

πκ̃πκ̃[A, πκ]κ∗uκ

=
∑
κ̃

πκ̃κ̃
∗((κ̃∗πκ̃)κ̃∗[A, πκ]κ̃∗(κ̃∗κ

∗)uκ
)

=
∑

κ̃∈N(κ)

πκ̃κ̃
∗((κ̃∗πκ̃)[Aκ̃, Sκ̃κ(κ∗πκ)]Sκ̃κuκ

)
.

(12.8)

Set
Aκκ̃ := (κ∗πκ)

[
Aκ, Sκκ̃(κ̃∗πκ̃)

]
Sκκ̃χ.

Then (12.2), (12.6), (9.1), (10.8), and κ∗πκ = (κ∗πκ)χ imply

‖Aκκ̃v‖W0/2
κ
≤ c ‖χv‖

W
1/2
κ̃

, κ̃ ∈ N(κ), κ ∈ K. (12.9)

We define A0
κ : W1/2 →W

0/2
κ by

A0
κu :=

∑
κ̃∈N(κ)

Aκκ̃uκ̃, u ∈W1/2, κ ∈ K.

Then we deduce from (12.1) and (12.9) that

‖A0
κu‖W0/2

κ
≤ c

∑
κ̃∈N(κ)

‖χuκ̃‖W1/2
κ̃

, u ∈W1/2, κ ∈ K. (12.10)

Moreover, A0 := (A0
κ)κ∈K.

Now we sum (12.8) over κ ∈ K and interchange the order of summation to
find that the second sum in (12.7) equals RA0u. Thus, in total,

AR = R(A + A0). (12.11)

Similar considerations lead to

RcA = (A + Ã0)Rc. (12.12)

Here Ã0 = (Ã0
κ)κ∈K with Ã0

κ ∈ L(W1/2,W
0/2
κ ) satisfying

‖Ã0
κu‖W0/2

κ
≤ c

∑
κ̃∈N(κ)

‖χuκ̃‖W1/2
κ̃

, u ∈W1/2, κ ∈ K. (12.13)

We turn to Γ and define κ
q
:= γκ for κ ∈ KΓ. Then

RΓu :=
∑
κ∈KΓ

γπκ(κ
q
)∗uκ, u = (uκ) ∈ ∂W , (12.14)

and
RcΓu :=

(
κ
q
∗γ(πκu)

)
κ∈KΓ

, u ∈W 2/2
p

(
(M \S)× J

)
. (12.15)
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Observe that
B(πκu) = (γπκ)Bu+ [B, πκ]u

and
[B, πκ]u = δ

(
ν
∣∣γ(a gradπκ)

)
g ppppγu, u ∈W 2/2

p

(
(M \S)× J

)
.

Similarly as above, we find

BR = RΓ(B +B0), (12.16)

where B := diag[Bκ] and B0 = (B0
κ)κ∈KΓ with B0

κ : W 1/2[Γ]→ {0} ⊕ ∂1Wκ

satisfying

‖B0
κu‖∂1Wκ ≤ c

∑
κ̃∈NΓ(κ)

‖χuκ̃‖W 1/2
κ̃

, κ ∈ KΓ. (12.17)

Analogously,
RcΓB = (B + B̃0)Rc, (12.18)

where B̃0 = (B̃0
κ) with B̃0

κ : W 1/2[Γ]→ {0} ⊕ ∂1Wκ is such that

‖B̃0
κu‖∂1Wκ ≤ c

∑
κ̃∈NΓ(κ)

‖χuκ̃‖W 1/2
κ̃

, κ ∈ KΓ. (12.19)

Concerning the transmission interface S, we define RS and RcS analogously to
(12.14) and (12.15). Observe that

[C, πκ]u =
(
0, [[(νS |a gradπκ)u]]

)
.

From this it is now clear that

CR = RS(C +C0), RcSC = (C + C̃0)Rc, (12.20)

where C := diag[Cκ], C0 = (C0
κ), and C̃0 = (C̃0

κ) with

‖C0
κu‖∂1Wκ ≤ c

∑
κ̃∈NS(κ)

‖χuκ̃‖W̄ 1/2
κ̃

,

‖C̃0
κu‖∂1Wκ ≤ c

∑
κ̃∈NS(κ)

‖χuκ̃‖W̄ 1/2
κ̃

(12.21)

for κ ∈ KS and u ∈ W̄ 2/2
.

The following consequences of the preceding results are needed to establish
Theorem 7.1.

Lemma 12.1 Fix s ∈ (1, 2) and q > p with 1/p− 1/q < (2− s)/(m+ 2).
Then

(v 7→ χv) ∈ L
(
W2/2
κ , Lq(J,W

s
κ) ∩W s/2

q (J,W0
κ)
)

K-unif.
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Proof (1) Set X := Rm and s1 := s+ (m+ 2)(1/p− 1/q) < 2. By (VII.3.6.3)
and Example VII.3.6.5 of [13]

W s/2
q

.
= Lq(J,W

s
q ) ∩W s/2

q (J, Lq), (12.22)

where W
s/2
q = W

s/2
q (X× J) etc. Hence, see [13, Theorem VII.2.2.4(iv)],

W 2/2
p ↪→W s1/2

p ↪→ Lq(J,W
s
q ) ∩W s/2

q (J, Lq).

Consequently, invoking (10.5),

W 2/2
κ ↪→ Lq(J,W

s
q,κ) ∩W s/2

q (J, Lq,κ) K0-unif.

(2) Since supp(χ) ⊂ (−1, 1)m, Hölder’s inequality implies

‖χv‖Wk
p
≤ c ‖χv‖Wk

q
, v ∈W 2

q , k = 0, 1, 2.

Hence, by interpolating and then using (10.5) once more,

‖χv‖Wσ
κ
≤ c ‖χv‖Wσ

q,κ
K0-unif., σ ∈ {0, s}.

From this we get

‖χu‖Lq(J,W s
κ ) ≤ c ‖χu‖Lq(J,W s

q,κ) K0-unif.

and
‖χu‖

W
s/2
q (J,W 0

κ )
≤ c ‖χu‖

W
s/2
q (J,W 0

q,κ)
K0-unif.

Now the assertion follows in this case from step (1).
(3) The preceding arguments also hold if we replace X = Rm by X = Hm.

Then (see Remark 6.2) it also applies to X = Rm\∂Hm. Thus the lemma is
proved. �

Given a function space F defined on J , we write F(τ) for its restriction to Jτ ,
0 < τ ≤ T .

Lemma 12.2 Let Âκ ∈ {A0
κ, Ãκ}. There exists ε > 0 such that

‖Âκu‖W0/2
κ (τ)

≤ cτε
∑

κ̃∈N(κ)

‖uκ̃‖W2/2
κ (τ)

, u ∈W2/2,

unif. w.r.t. κ ∈ K and 0 < τ ≤ T .

Proof Fix s and q as in Lemma 12.1 and set ε := 1/p− 1/q. We get from
Hölder’s inequality, Lemma 12.1, (12.10), and (12.13)

‖Âκu‖W0/2
κ (τ)

= ‖Âκu‖Lp(Jτ ,W0
κ) ≤ τε ‖Âκu‖Lq(Jτ ,W0

κ)

≤ cτε
∑

κ̃∈N(κ)

‖χuκ̃‖Lq∩Ws/2
κ̃

(τ)
≤ cτε

∑
κ̃∈N(κ)

‖uκ̃‖W2/2
κ (τ)

for 0 < τ ≤ T , K-unif., where ‖·‖
Lq∩Ws/2

κ
is the norm in the image space occur-

ring in Lemma 12.1. �
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The next lemma provides analogous estimates for the boundary and trans-
mission operators.

Lemma 12.3 Let B̂κ ∈ {B0
κ, B̃

0
κ} and Ĉκ ∈ {C0

κ, C̃
0
κ}. There exists ε > 0

such that

‖B̂κu‖∂Wκ(τ) ≤ cτε
∑

κ̃∈NΓ(κ)

‖uκ̃‖W 2/2
κ̃

(τ)
KΓ-unif., u ∈W 2/2[Γ],

and

‖Ĉκu‖∂SWκ(τ) ≤ cτε
∑

κ̃∈NS(κ)

‖uκ̃‖W̄ 2/2
κ̃

(τ)
KS-unif., u ∈ W̄ 2/2

,

for 0 < τ ≤ T .

Proof Let s, q, and ε be as in the preceding proof.
Given any Banach space E, Hölder’s inequality gives

‖u‖Wk
p (Jτ ,E) ≤ τε ‖u‖Wk

q (Jτ ,E), k = 0, 1.

Hence, by interpolation (see [13, Theorems VII.2.7.4 and VII.7.3.4]),

‖u‖
W

(1−1/p)/2
p (Jτ ,E)

≤ cτε ‖u‖
W

(1−1/p)/2
q (Jτ ,E)

, 0 < τ < T. (12.23)

Set

Lσκ(τ) := Lq
(
Jτ ,W

σ
κ (∂Hm)

)
∩Wσ/2

q

(
Jτ ,W

0
κ (∂Hm)

)
, κ ∈ KΓ.

Then we get from (12.23)

‖·‖∂1Wκ(τ) ≤ cτ
ε ‖·‖L1−1/p

κ (τ)
KΓ-unif., 0 < τ < T. (12.24)

It is clear from the structure of B̂κ and the mapping properties of γ that

‖B̂κu‖L1−1/p
κ (τ)

≤ c ‖χu‖L1
κ(τ) KΓ-unif.

Since Lsκ(τ) ↪→ L1
κ(τ) KΓ-unif. and unif. w.r.t. τ , the first assertion now follows

from (12.24), Lemma 12.1, and the fact that B̂κ has its image in the closed
linear subspace ∂1Wκ(τ) of ∂Wκ(τ).

The proof of the second claim is similar. �
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13 Proof of Theorem 7.1

Let E =
∏
α∈AEα, where each Eα is a Banach space and A is a countable index

set. Then `p(E) is the Banach space of p-summable sequences in E.
We put

Ei[α] := `p
(
W i/2[α]

)
, γ0E[α] := `p

(
γ0W [α]

)
, α ∈ {0,Γ},

and
Ēi := `p

(
W̄

i/2)
, γ0Ē := `p(γ0W̄ )

for i = 0, 2. Then

Ei := Ei[0]⊕ Ei[Γ]⊕ Ēi, i = 0, 2, γ0E := γ0E[0]⊕ γ0E[Γ]⊕ γ0Ē.

Moreover, FΓ := `p(∂W ), FS := `p(∂SW̄ ).
Recall the definitions of (R,Rc), (RΓ,RcΓ), and (RS ,RcS) in Section 12.

Proposition 13.1 (R,Rc) is an r-c pair for (Ek, W̄ k/2), k = 0, 2, and

(RΓ ⊕RS ⊕R, RcΓ ⊕RcS ⊕Rc)

is an r-c pair for

(FΓ ⊕ FS ⊕ γ0Ē, ∂W ⊕ ∂SW ⊕ γ0W̄ ).

Proof This follows from [10, Theorem 6.1] (also see [9, Theorem 9.3] or [15]). �

Lemma 13.2 γ0 is a retraction from W̄ 2/2 onto γ0W̄ and from E2 onto γ0Ē.
Furthermore, γ0R = Rγ0.

Proof Due to (10.23) there exists γc0 ∈ L(γ0Ē,E2) such that (γ0, γ
c
0) is an r-c

pair for (E2, γ0Ē). For the moment we denote it by (γ̄0, γ̄
c
0). Then it follows

from Proposition 13.1 that

Rγ̄0Rc ∈ L(W̄ 2/2, γ0W̄ ), Rγ̄c0Rc ∈ L(γ0W̄ , W̄ 2/2).

Since γ0 is the evaluation at t = 0 and (R,Rc) is independent of t ∈ J , we see
that γ0R = Rγ̄0. Hence γ0 ∈ L(W̄ 2/2, γ0W̄ ) and γc0 := Rγ̄c0Rc is a continuous
right inverse for γ. �

We write
Â := A + Â with Â := [Âκ]κ∈K

and, using (12.4), set u = (v,w, z) ∈W2/2 and, analogously,

B̂u := (B + B̂)w ∈ ∂W , Ĉu := (C + Ĉ)z ∈ ∂SW .

Moreover, G := FΓ ⊕ FS ⊕ γ0Ē and [G]B,C is the linear subspace consisting of
all (ϕ,ψ,u0) satisfying the compatibility conditions

B(0)u0 = ϕ(0), C(0)u0 = ψ(0)

if p > 3, with the corresponding modifications if p < 3. Analogous definitions
apply to [G]B̂,Ĉ.
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Proposition 13.3
(
∂t + Â, (B̂, Ĉ, γ0)

)
∈ Lis

(
E2, E0 ⊕ [G]B̂,Ĉ

)
.

Proof (1) First we prove that

L :=
(
∂t + A, (B,C, γ0)

)
∈ Lis

(
E2, E0 ⊕ [G]B,C

)
. (13.1)

Since L has diagonal structure, the claim is a direct consequence of Propositions
11.1–11.3.

(2) Set L0 := (Â, B̂, Ĉ, 0). Then

L̂ := (∂t + Â, B̂, Ĉ, γ0) = L + L̂0. (13.2)

It follows from (12.1) and Lemmas 12.2 and 12.3 that L̂0 ∈ L(E2, E0 ⊕G) and
there exists ε > 0 such that

‖L̂0‖L(E2(τ),E0(τ)⊕G(τ)) ≤ cτε, 0 < τ ≤ T. (13.3)

From this and step (1) we see that

L̂ ∈ L(E2, E0 ⊕G). (13.4)

Write
E2

0 := {v ∈ E2 ; γ0v = 0 }, G0 := FΓ ⊕ FS ⊕ {0}.

By Lemma 13.2 we can choose a coretraction γc0 for γ0 ∈ L(E2, γ0Ē). Let
(f , g) ∈ E0 ⊕ [G]B̂,Ĉ with g = (ϕ,ψ,u0). Set u := γc0u0. Then u ∈ E2 satis-

fies L̂u = (f , g) iff v := u− u is such that

L̂v = (f , g)− L̂u =: (f0, g0).

Note that v ∈ E2
0 and g0 ∈ [G0]B̂,Ĉ. Suppose p > 3. Given any w ∈ E2

0, we get

γ0(Bw) = B(0)γ0w = 0 = B̂(0)γ0w = γ0(B̂w).

From this, the analogous relation for C and Ĉ, and (13.4) we infer that it suffices

to prove that L̂ : E2
0 → E0 ⊕ [G0]B,C is surjective and has a continuous inverse.

Obvious modifications apply to p < 3.
(3) Let F := E0 ⊕ [G0]B,C and h ∈ F. Suppose u ∈ E2

0 and set v := Lu ∈ F.

By step (1) and (13.2), the equation L̂u = h is equivalent to v + L̂0L−1v = h.

Observe L̂0L−1v ∈ F.
Due to (13.3), we can fix τ ∈ (0, T ] such that ‖L̂0L−1‖L(F(τ)) ≤ 1/2. As is

well-known (e.g., [12, Lemma 12.2]), this implies that L̂ ∈ Lis
(
F(τ),F(τ)

)
.

(4) If τ = T , then we are done. Otherwise we repeat this argument for the
problem in [0, T − τ ] obtained by the time-shift t 7→ t− τ and with the initial
value u(τ). After finitely many such steps we reach T . The proposition is
proved. �
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Proof of Theorem 7.1 Now we write (A,B,C) for (Â, B̂, Ĉ) if (Â, B̂, Ĉ) equals

(A0,B0,C0), and (Ã, B̃, C̃) otherwise. We also set G := ∂W ⊕ ∂SW ⊕ γ0W̄ .
Then Proposition 13.1 implies

~R := R⊕ (RΓ ⊕RS ⊕R) ∈ L(Ek ⊕G, W̄ k/2 ⊕G)

and
~Rc := Rc ⊕ (RcΓ ⊕RcS ⊕Rc) ∈ L(W̄ k/2 ⊕G, Ek ⊕G)

for k = 0, 2.
Let

(
u, (ϕ,ψ,u0)

)
∈ E2 ⊕G and write

(
u, (ϕ,ψ, u0)

)
for its image under ~R.

Then we obtain from (12.16) and (12.20)

Bu = BRu = RΓBu, Cu = CRu = RSCu.

Suppose p > 3, u0 = γ0u, and B(0)u0 = ϕ(0). Then

ϕ(0) = RΓϕ(0) = RΓB(0)u0 = RΓγ0(Bu)

= γ0RΓBu = γ0BRu = γ0(Bu) = B(0)(γ0u).

Since Lemma 13.2 and u0 = γ0u imply u0 = γ0u, we see that B(0)u0 = ϕ0.
Similarly, we find that it follows from C(0)u0 = ψ(0) that C(0)u0 = ψ(0). Thus,
letting F := [G]B,C and F := [G]B,C , we have shown that

~R(E2 ⊕ F) ⊂ W̄ 2/2 ⊕ F.

Consequently,
~R ∈ L(E2 ⊕ F, W̄ 2/2 ⊕ F ). (13.5)

We find analogously that

~Rc ∈ L(W̄ 2/2 ⊕ F, E2 ⊕ F). (13.6)

This holds for p > 3. The case p < 3 is similar.
Now we set

L :=
(
∂t +A, (B, C, γ0)

)
, L :=

(
∂ + A, (B,C, γ0)

)
.

Define L̃ :=
(
∂ + Ã, (B̃, C̃, γ0)

)
. It is a consequence of (12.11), (12.12), (12.16),

(12.18), (12.20), and the fact that (R,Rc) is independent of t that

LR = ~RL, ~RcL = L̃ ~Rc. (13.7)

Proposition 13.3 guarantees

L, L̃ ∈ Lis(E2, E0 ⊕ F). (13.8)

Suppose Lu = 0. Then (13.7) and (13.8) imply Rcu = 0. Thus u = RRcu = 0.
This shows that L is injective.
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Let (f, g) ∈ W̄ 0/2 ⊕ F . By (13.8) we find u ∈ E2 satisfying Lu = ~Rc(f, g).
Put

u := Ru = RL−1 ~Rc(f, g) ∈ W̄ 2/2.

Then, by (13.7) and (13.8),

Lu = LRL−1 ~Rc(f, g) = ~RLL−1 ~Rc(f, g) = ~R ~Rc(f, g) = (f, g).

Hence L is surjective and, by (13.5) and (13.6),

L−1 = RL−1 ~Rc ∈ L(W̄ 0/2 ⊕ F, W̄ 2/2).

The proof is accomplished. �

Remarks 13.4 (a) Recall that either some of Γ0, Γ1, and S, or all of them, can
be empty. If (Γ, S) 6= {∅, ∅}, then the result is new. Otherwise, it is a special
case of the more general Theorem 1.23(ii) of [12].

(b) Theorem 7.1 is true for systems u = (u1, . . . , un), provided the uniform
Lopatinskii-Shapiro conditions apply. This is trivially the case if a is a diagonal
matrix. �

14 Membranes with Boundary

Now we turn to the case of membranes intersecting Γ transversally. This case
is handled by reducing it to the situation studied in the preceding section.

Theorem 14.1 Let (5.1) be satisfied. Theorem 7.1 applies with (M, g) replaced

by (M̂, ĝ).

Proof Theorem 5.1. �

In preparation for the proof of Theorem 2.1 we derive rather explicit repre-
sentations of (A,B, C) and the relevant function spaces in a tubular neighbor-

hood of Σ = ∂S in M̂ .
We use the notations of Sections 4 and 5 and set

U := U(ε), Ṅ := N(ε)
∖{

(0, 0)
}
, g̃ := g2/ρ

2.

The Christoffel symbols Γ̃kij for the metric g̃ turn out to be

Γ̃1
11 = Γ̃2

12 = −Γ̃1
22 = −ρ−1∂1ρ, Γ̃2

22 = Γ̃1
12 = −Γ̃2

11 = −ρ−1∂2ρ.

We set D := (D1, D2) with Di := ρ∂i and ∇̃ := ∇g̃. Then, for u ∈ C̄2(Ṅ \Gσ)
with Gσ := graph(fσ),

ρ2∇̃11u = D2
1u− ∂2ρD2u, ρ2∇̃12u = D1D2u+ ∂2ρD1u,

ρ2∇̃21u = D2D1u+ ∂1ρD2u, ρ2∇̃22u = D2
2u− ∂1ρD1u.

(14.1)
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Hence, see (6.2) and (6.3),

|∇̃u|2g̃∗ = |Du|2 = |D1u|2 + |D2u|2 (14.2)

and
|∇̃2u|2g̃2

0
= ρ4

(
(∇̃11u)2 + (∇̃12u)2 + (∇̃21u)2 + (∇̃22u)2

)
. (14.3)

Let
[D2u]2 := (D2

1u)2 + (D1D2u)2 + (D2D1u)2 + (D2
2u)2

and
〈u〉2ρ := |u|2 + |Du|2 + [D2u]2 + |∇hu|2h∗ + |∇2

hu|2h2
0
.

We write
W̄2
p =

(
W̄2
p , ‖·‖W̄2

p

)
for the space of all u ∈ L1,loc(Ṅ × Σ) for which the norm

‖u‖W̄2
p

:=
(∫

Σ

∫
Ṅ\G(σ)

〈u〉pρ(x, y, σ)
d(x, y)

ρ2(x, y)
d volΣ(σ)

)1/p

is finite. Moreover, W̄0
p is obtained by replacing 〈·〉ρ by |·|. It is then clear how

to define the anisotropic spaces W̄k/2
p , k = 0, 2.

Proposition 14.2 u ∈ W̄ 2
p (U \S; ĝ) iff χ∗u ∈ W̄2

p .

Proof First we note that √
g̃ = ρ−2. (14.4)

It follows from (14.3) that

|∇̃2v|2g̃2
0
≤ c
(
|Dv|2 + [D2v]2

)
.

Consequently, since ∇ = χ∗(∇̃ ⊕ ∇Σ)χ∗,

‖u‖W̄ 2
p (U\S, ĝ) ≤ c ‖χ∗u‖W̄2

p
. (14.5)

If (uj) is a converging sequence in W̄ 2
p := W̄ 2

p (U \S; ĝ), then we infer from

(14.1)–(14.3) that (χ∗uj) converges in W̄2
p . Hence χ∗u ∈ W̄2

p if u ∈ W̄ 2
p . From

this, (14.5), and Banach’s homomorphism theorem we obtain

‖χ∗ · ‖W̄2
p
∼ ‖·‖W̄ 2

p
.

This proves the claim. �

Let λ : Vλ → (−1, 1)m−2, σ 7→ z be a local chart for Σ. Then

κ := (idṄ × λ) ◦ χ : Uκ → Qmκ , q 7→ (x, y, z) = (x1, x2, . . . , xm)
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is a local chart for M̂ with Uκ ⊂ U and κ(Uκ) = Ṅ × (−1, 1)m−2. Set h̃ := λ∗h.

It follows from (5.4) that κ∗ĝ = g̃ + h̃.

Assume u ∈ C2(M̂), put v := κ∗u ∈ C2(Qmκ ), and denote by e1, . . . , em the
standard basis of Rm. Then

κ∗(gradĝ u) = gradg̃ v + gradh̃ v = ρ2(∂xve1 + ∂yve2) + gradh̃ v. (14.6)

Similarly, let X = Xi∂/∂xi ∈ C1(TUκ) and set

Y := κ∗X = Y iei = Y 1e1 + Y 2e2 + Ỹ ,

where Ỹ = Y αeα with α running from 3 to m. Observe that v and Y depend
on (x, y, z). It follows

κ∗(divĝX) = κ∗

( 1√
ĝ
∂i
(√

ĝ Xi
))

=
1√
κ∗ĝ

∂i
(√

κ∗ĝ Y
i
)
.

Since
√
κ∗ĝ =

√
g̃
√
h̃ = ρ−2

√
h̃, we see that

κ∗(divĝX) = ρ2
(
∂x(ρ−2Y 1) + ∂y(ρ−2Y 2)

)
+ divh̃ Ỹ .

From this and (14.6) we obtain, letting ã := κ∗a,

κ∗(Au) = −κ∗
(
divĝ(a gradĝ u)

)
= −ρ2

(
∂x(ã∂xv) + ∂y(ã∂yv)

)
− divh̃(ã gradh̃ v).

(14.7)

As in (2.3), we define curvilinear derivatives by

∂νu := κ∗∂x(κ∗u), ∂µu := κ∗∂y(κ∗u).

Then it follows from (14.7) that

AUu = −ρ2
(
∂ν(a∂νu) + ∂µ(a∂µu)

)
− divΣ(a gradΣ u), (14.8)

where AU is the restriction of A to U . Due to (6.2), the regularity assumption

for a stipulated in Theorem 2.1 means that a ∈ B̄C1/2
(M̂ \S × J, ĝ + dt2).

Analogously,

κ∗(B1u) = κ∗
(
ν
∣∣γ(a gradĝ u)

)
ĝ

=
(
κ∗ν

∣∣∣γ(ã(gradg̃ v + gradh̃ v)
))
g̃+h̃

.

From (10.15) and (κ∗ĝ)1i = 0 for i ≥ 2 we deduce that κ∗ν(0, y, z) = ρ(0, y)e1.
Hence

κ∗(B1u)(y, z) = ρ(0, y)ã(0, y, z)∂xv(0, y, z).

This implies
B1
Uu = γ(ρa)∂νu on Γ ∩ U. (14.9)

Next we determine the first order transmission operator on (M̂, ĝ). Recalling
definition (4.4), we set s := χ∗f ∈ C∞(U).
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Proposition 14.3 Define

(ν1
S , ν

2
S , ν

3
S) := (∂νs,−1, 1)

/√
1 + (∂νs)2 + | gradΣ s|2Σ. (14.10)

Then

C1
Uu = [[a∂νSu]] =

[[
a
(
ν1
S∂νu+ ν2

S∂µu+ ν3
S(gradΣ u | gradΣ s)Σ

)]]
.

Proof (1) It follows from (4.4) that

S̃ := χ(S) =
{

(x, fσ(x), σ) ; 0 < x < ε, σ ∈ Σ
}
.

We write f(x, z) := fλ−1(z)(x). Then (x, z) 7→ F (x, z) :=
(
x, f(x, z), z

)
is a local

parametrization of S̃, and

∂F := [∂jF
i] =

 1 0
∂xf ∂zf

0 1m−2

 ∈ Rm×(m−1).

Hence, given (x̄, z̄) ∈ (0, ε)× (−1, 1)m−2,

T(x̄,z̄)S̃ =
{

(x̄, z̄)
}
× ∂F (x̄, z̄)Rm−1 ⊂ T(x̄,z̄)Rm.

For Ξ := (ξ, ζ) ∈ R× Rm−2 and Ξ̂ := (ξ̂, η̂, ζ̂) ∈ R× R× Rm−2 we find(
Ξ̂
∣∣∂F (x̄, z̄)Ξ

)
g̃+h̃

= α(x̄, z̄)
(
ξ̂ξ + η̂

(
∂xf(x̄, z̄)ξ + ∂zf(x̄, z̄)ζ

))
R2

+ (ζ̂ |ζ)h̃,

where α(x̄, z̄) := ρ−2
(
x̄, f(x̄, z̄)

)
. Choose ξ̂ := ∂xf(x̄, z̄), η̂ := −1, and ζ̂ in

Rm−2 such that (ζ̂ | ζ̃)h̃ =
〈
∂zf(x̄, z̄), ζ̃

〉
Rm−2 for all ζ̃ ∈ Rm−2, that is, ζ̂ equals

gradh̃ f(x̄, z̄). Then
(
(x̄, z̄), Ξ̂

)
⊥ T(x̄,z̄)S̃. Now we define

(ν̃1, ν̃2, ν̃3) := (∂xf,−1, 1)
/√

1 + (∂xf)2 + | gradh̃ f |
2
h̃
.

Then
ν̃ := ν̃1e1 + ν̃2e2 + ν̃3 gradh̃ f

is the positive5 normal on S̃, since ν̃1(x̄, z̄)e1 + ν̃2(x̄, z̄)e2 is a positive multi-
ple of the positive normal of the graph of fσ̄ at

(
x̄, fσ̄(x̄)

)
, where σ̄ := λ−1(z̄)

(cf. (5.9)).
(2) Using (14.6) and κ∗νS = ν̃, we obtain

κ∗(νS | gradĝ u)ĝ = (κ∗νS | gradg̃ v + gradh̃ v)g̃+h̃

= ν̃1∂xv + ν̃2∂yv + ν̃3(gradh̃ f | gradh̃ v)h̃

= κ∗
(
ν1
S∂νu+ ν2

S∂µu+ ν3
S(gradΣ s | gradΣ u)Σ

)
,

the νiS being given by (14.10). From this the assertion is now clear. �

5By the conventions employed in (5.9).
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Note that, see (14.4),

χ∗(d volΓ∩U ) ∼ dy

y2
d volΣ . (14.11)

Since, by (4.4),

g̃G(σ)(τ) =
1 + (∂fσ(x))2

x2 + (fσ(x))2
dx2 ∼ dx2

x2

uniformly with respect to τ =
(
x, fσ(x)

)
∈ Gσ and σ ∈ Σ, we see that

χ∗(d volS∩U ) ∼ dx

x2
d volΣ . (14.12)

On the basis of (14.11) and (14.12) it is possible to represent the trace spaces

on Γ\Σ and S\Σ analogously to W̄2/2
p . Details are left to the reader.

Proof of Theorem 2.1 The claim is an easy consequence of Theorems 4.4 and
7.1, (14.2), (14.3), Proposition 14.2, (14.8), (14.9), and Proposition 14.3. �
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