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INTRODUCTION

Throughout this paper n > 2 and 2 is a smooth domain in R™ having a
nonempty compact boundary T', or a half space. If Q is an exterior domain
then we also assume that n > 3. We study the solvability of the nonstationary
nonhomogeneous incompressible Navier-Stokes equations

V-v=0
v+ (v-Vv—Av=—-Vr+f } in (0, 00),
(0.1) v=g on T x(0,00),
v(-,0) =° on .

Here f is the given exterior force, g the prescribed boundary velocity, v° the
given initial and v the unknown velocity, and = the unknown pressure.

We are interested in (0.1) in a weak, that is, distributional, setting. In
our recent work [4] we have already given a detailed discussion of the Navier-
Stokes equations in spaces of low regularity under the assumption that g = 0.
In this paper we extend those results to cover nonzero boundary conditions.
For the sake of simplicity we do not give the most general theorems but restrict
ourselves to an easy setting. We leave it to the reader to generalize the results
of this paper by using the full strength of [4].

To give a precise meaning to a solution in our general setting and to describe
our main results we need some preparation.

We use standard notation (explained in Section 1) and employ the following
convention: If F(Q, R™) is a vector space of R"-valued distributions on 2 then
we simply denote it by §. If X is a subset of R" different from {2 then we

put F(X) := F(X,R"*). For example, D, resp. D(Q2), is the space of smooth
1
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R”-valued functions having compact support in €, resp. Q, and C(T) is the
Banach space of continuous R”-valued functions on T.

We always assume that ¢ € (1,00). Then Hj are the usual Bessel potential
spaces (of R"-valued distributions on ), where s € R. (See [4] for explanations.
In particular, Theorem 2.1 of [4] gives useful intrinsic characterizations of H;
for s € [-2,0).) We also denote by do the volume measure of I" and set

(v, w) ::/v-wd:v, v,w € D(Q), {v,w)r ::/U-wda, v,w € C(I).
Q r

In addition, we use (-, -) to denote the standard duality pairings between var-
ious spaces of (scalar-, vector-, or tensor-valued) distributions without fearing
confusion. Similar conventions hold for (-,-).. We write 9, for the derivative
on I' with respect to the outer unit normal v and denote by y the trace operator
and by 7, the normal trace, defined by v,u := v - yu.

We set
{ue H]; yu=0}, 1/g<s<2,
oo {ue H/IR",R") ; supp(u) C O}, s=1/q,
) HE 0<s<1/q,
(Hi’s)la _253<07

q
where the dual space is determined by means of the duality pairing (-, -).
It follows that

(0.2) H =H;, —-2+1/g<s<1/q, s#-1+1/q.
Furthermore,
d gyt
(0.3) H,—> H,, —2<t<s<2
We also put

Hy:={u€lLy; V-u=0, n,u=0}
and

H :=

{H;ﬂHq, 0<s<2,
q

(H* ), —2<s<0,

by means of the duality pairing (-, -), obtained by restricting (-, -) to Hy x Hj.
Then

d
(0.4) HY — H., —2<t<s<2.

In addition,
Gy :={veL;; v=Vp, p€ Ly10c(R) },
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and
(0.5) G is the closure of G, in Hj for —2 <5 <0.

Proofs of (0.2)—(0.4) are given below. (In [4] the spaces Hj and H are denoted
by H;, and H; , ., respectively.) Lastly,

Do() :=={ueD@); yu=0}.

Now we suppose that

(0.6) g>n, 0<s<7<1l/g<o<2
and that
(0.7) (v°, (f,9)) € HY x C(RY,HI=2 x W7 ~/9(T)).

Let J be a subinterval of Rt containing 0 such that .J := J\{0} # §. Then
(u,w) is said to be a very weak H/-solution of the Navier-Stokes equations
on J, provided

(0.8) (u,w) € C(J,H x G ?)

and

/J{((at +A)p,u) + (Vo,u®@u)} dt
(0.9)

= /]{_<90’w) - (fa 90> + <956V<P>F} dt — <90(0),’U0>

for all € D(J,Do(f2)). A very weak H:-solution is maximal if there does
not exist such a solution being a proper extension of it.

Clearly, (0.9) is formally obtained from the differential equations in (0.1)
by multiplying the second one by ¢, integrating by parts, and using Green’s
formula, the boundary, and the initial data, setting w := —V, of course. The
terms (V,u ® u) and {p,w) in (0.9) have to be interpreted with care. In fact,
since s < 1/gq, the space H 3_2 is not a space of distributions on 2 but contains
distributions supported on I' as well. Indeed, Theorem 1.1 shows that

(0.10) HIZ2=2 g2 wiYyr),  0<t<1/q,

where this isomorphism is specified in Corollary 1.2. This is the key result
for our treatment of nonhomogeneous boundary conditions. The expressions
(Vo,u ®@u) and (@, w) are well-defined if u ® u and w belong to H2 and Hz,
respectively. In the general case these quantities are defined by continuous
extension on the basis of (0.3)—(0.5).

After these preparations we can formulate the main result of this paper.
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Theorem. Let assumptions (0.6) and (0.7) be satisfied. Then:
(i) There ezists a unique mazimal H;-solution (v,w) of the Navier-Stokes
equations, and Jt := dom(v,w) is an open interval in RY.
(ii) It depends continuously on the data.
(iii) If Q is bounded then it is global, that is, J* = RT, provided the data
are sufficiently small.

Remarks. (a) Observe that there is no compatibility condition for g of the
form v - g =0, even though u € H implies v, u = 0. This is explained by the
fact that, due to (0.10), the (generalized) pressure gradient w is not a distri-
bution on €2 but can contain a part supported on I', thus compensating in the
weak formulation (0.9) of (0.1) for a possible normal component of g.

(b) The proof of the Theorem shows that the velocity component v possesses
more regularity, namely

veCH(JT, (2 HE)) .= C(JT,HE )N CH(J T, H;?).

(¢) The solution (v, w) is independent of s € [0,1/q) and of ¢ in the following
sense: Suppose, in addition to (0.6) and (0.7), that § > ¢ and 0 <3 < 1/g, and
suppose that v° € ]HI% Let (U, w) be the unique maximal very weak Hg—solution
of the Navier-Stokes equations. Then (v,w) D (v,w), that is, the interval J+
of existence of (v,w) contains J* and (v,w)|Jt = (v,w). O

Example. Suppose that p,q,r € (1,00) satisfy ¢ > n,
1/¢<1/p<(n—1)/ng+2/n, 1/g<1/r<n/(n—1)g.
Then the Navier-Stokes equations possess for each
(%, (f,9)) € Ly x C(R", L, x L,(I))
with
V-v0=0, ’y,,1)0=0

a unique mazimal very weak Lg-solution.
Proof. Set 0 :=2—n(1l/p—1/q) and 7:=1/qg— (n — 1)(1/r — 1/q). It follows
that 1/¢ <o <2 and 0 <7 < 1/q. Thus, setting s := 0, assumption (0.6) is
satisfied. Then H7 7 < L, and Wfql,/q_f(l“) &L (T') by Sobolev’s embed-
ding theorem so that L, < HJ * = H7 % and L,(T) < Wy ~/9(T) by dual-
ity. Hence assumption (0.7) is satisfied. O

Navier-Stokes equations with nonhomogeneous boundary data for Dirichlet

(and other) boundary conditions have been intensively studied by G. Grubb
and V.A. Solonnikov [9] and, in particular, by G. Grubb (see [6], [7], [8]). These
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authors use techniques from the theory of pseudodifferential operators and work
in scales of anisotropic Bessel potential and Besov spaces. In her most recent
paper on this subject, Grubb [8] extended her earlier results for problem (0.1)
to cover the case of low regularity data. To be more precise, we fix T' > 0, set
Qr =02 x(0,T)and ¥ :=T x (0,T), and write H(ET)(QT) for the anisotropic
spaces HqT’T/2(QT), etc. In the main result, that is, Theorem 3.4 of [8] it is
assumed that

(0.11) 2/g<T<14+1/q, 7>-1+n/q+2/q,
and

(0.12) (0% f,9) € By, x H{2(Qr) x B, /9 ()
with

(I—P)’[)O:O, (].—P)f:o, V'g=0,

where P denotes the Helmholtz projection. (In fact, f and g have to comply to
the additional restriction that they are suitably ‘extensible’ distributions. Also,
if v° = 0 then the restriction 7 > 2/q can be slightly weakened, provided the
data have sufficiently small norm. For precise definitions and statements we
refer to [8].) Then it is shown that there exists b > 0 such that (0.1) possesses
a unique solution (v,p) such that

(v,Vp) € H{(Qy) x HT %(Qs),

where p is appropriately normalized if Q is bounded. (We again refer to [8] for
the precise meaning of ‘solution’ in this case.)

These results are difficult to compare to ours. One difference is that the
elements in anisotropic spaces have less time regularity than the ones of our
setting. However, as far a space regularity is concerned, (0.11) and (0.12) imply
that v° and g have to belong to spaces of positive regularity, whereas we can
allow data (v°, g) having zero regularity as the Example shows.

In the next section we prove the basic isomorphism theorem (0.10) and
collect some facts on Stokes scales. In Section 2 we derive an important direct
sum decomposition of the spaces H Z extending the Helmholtz decomposition
to all values of s € [-2,2]. The last section contains the proofs of the Theorem
and of Remark (c).

1. DIRICHLET SCALES

First we prove the fundamental isomorphism theorem (0.10). As usual, we
denote by H/ the closure of D in Hj.
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Given Banach spaces E and F, we write L(E, F') for the Banach space of all
bounded linear operators from E into F, and L(E) := L(E, E). Furthermore,
Lis(E, F) is the set of all isomorphisms in L(E, F). If E is continuously injected

d
in F' then we denote this by £ < F, and E — F means that E is also dense
in F. Finally, we write A € H(F1,Ey) iff A € L(E1, Ey) and —A, considered
as a linear operator in Fy with domain E;, generates an analytic semigroup
on Eo.

Next we recall some elementary facts about direct sum decompositions. The
duality considerations will be of particular importance in the next section. Let
X be a Banach space and P € £(X) a projection, that is, P2 = P. Then

X :Y@Z, Y = Hn(P)7 7 = ker(P)7
which means that
((y,2) =y +2) € Lis(Y x Z, X).

In particular, Y and Z are closed linear subspaces of X, hence Banach spaces.
Furthermore, P’ € £(X") is also a projection, so that

X'=Y'®Z, Y :=imP), Z':=ke(P).
It is easily verified that
(1.1) (z'2) = (' @2,y ®2) = (¥ y) + (', 2)
forz' =y ®2Z eX' andr=y®z€ X, wherey®z:=y+ 2z withy € Y and
z € Z. Here

(h)x={,): X' xX =R

is the ‘X -duality pairing’. Denoting by (-, -),- and (-, -) , the restriction of (-, -)
to Y’ xY and Z' x Z, respectively, (1.1) takes the form

(1.2) (ax =Gy 60z

Consequently, Y’ (resp. Z') is the dual space of Y (resp. Z) with respect to
the duality pairing (-,-),  (resp. {(-,-),). We say that (-,-), and (-,-), are
the duality pairings induced by (-, ) through the direct sum decomposition
X =Y @ Z. Note that, although Y’ is the dual of Y with respect to (-, -), it
is the annihilator of Z with respect to the duality pairing (-, ). If X is reflexive
then it is obvious from (1.2) that Y and Z are reflexive as well (with respect
to (-,-)y and (:,-),, of course).

Theorem 1.1. Suppose that —2 < s < —2+ 1/q. Then

S ~v +2—-1
H? = HS x WH2=1(T).
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Proof. By the trace theorem,
8, € L(H,*, W, /1)),

and it is a retraction. In fact (cf. (the proof of) Theorem B.3 in [1]), there
exists

R e L(W, >, 1)
satisfying 8, o R =1 and v o R = 0 (where 1 is the identity on I/I/:],_S_QH/"(I"),
of course). Thus, setting

0:= —8,,|H;,S, 6% = —-R,
it follows that
(1.3) § e L(H, W, 7wy, & ec(w, 1), H,*),
and 66¢ = 1. Note that

ker(0) ={ve H,*; yv=0,0,v=0}=H_".
Thus, since ¢ is a retraction, [3, Lemma 1.2.3.1]) implies that
H, =im(6) ® H,*

and that

p=po:=1-45%€ L(H,®)

is the projection onto H o parallel to im(6¢). From (1.3) and 66° = 1 we infer
by duality that

ri=rp = (6°) € L(H, WH21/9(T))
is a retraction and
r¢ =48 e (W H~1/9(T), HY)

is a coretraction. Hence
(1.4) H? = ker(r) @ im(r°) = ker(r) x W7 2=1/4(T)
since r¢ is an isomorphism from W,"*2~/%(T') onto its image. Note that u € H .
belongs to ker(r) iff (u,5°g) = 0 for all g € W/q,_s_ﬂl/q(l“), that is, iff

(u,v) = (u, (1 — §°6)v) = (u,pv), veH,’.
Since im(p) = fch_,S and p? = p we see that u € ker(r) iff u = rqu, where

ro € L(H, H;)

is the restriction map

ul—)mu::u|Hq’,s, uEHZ.
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Thus ker(r) = H; which, thanks to (1.4), proves the assertion. O
Corollary 1.2. Suppose that —2 < s < —2+ 1/q and set

R(f,9) =pof —(0.)'g.
Then
R € Lis(H: x WiH271/9(T), H?)
and u — (rQu,Tru) is its inverse.
Remark 1.3. Assume that —2<s<-2+1/¢g<0 <0 and f € H7. Then
fDpofe€eH,
Proof. Since —o <1+ 1/q' it follows that D is dense in H_°. From pv =v
for v € D it follows that
(fiv) =(fipv) = (' f,v), veD.

Thus p'f € Hj has a unique continuous extension over H ;", namely f. O

We set A := —Ap 4, where Ap , :=A|H Z is the Dirichlet-Laplacian, con-
sidered as an unbounded linear operator in L,. Then A € H(H E,Lq) and
[(Eq; Aq) 5 @ € R] denotes the interpolation-extrapolation scale generated by
(Eo, Ag) := (L4, A) and the complex interpolation functors [-,-],, 0 <6 < 1.
(We refer to Section 2 in [4] for more details on Dirichlet scales. We also
use the opportunity to point out that in Proposition 2.4 of [4] the restriction
s # —1+1/q is missing). We denote by [(E%, A%); a € R] the dual scale
generated by (E% AL := (Ly,—Ap,,) and [-, ‘Jg, 0< 8 < 1. Then

= 2 — gt = —2
(1.5) E.=H?, (B,) =FE,=H/> <1,

where = means ‘equivalent norms’, and (0.3) is true. It is known that Ao has
bounded imaginary powers (e.g., [10]). Hence it follows from Theorem V.1.5.4
in [3] that

(1.6)  [HI, H = H} D0ota 9 <s<s <2, 0<8<1.

In the next lemma we give explicit representations of the extrapolated op-
erators A, for 0 < o < 1, where (-, -) , is the E,-duality pairing for a € R.

Lemma 1.4. () If 1+1/q<2a <2 then Aq_y = —A|H°.
(i) If 1/g<2a <1+1/q then

(v, Ag—1u)o—1 = (Vv,Vu), (v,u) € Hzf%‘ X Hﬁo‘.
(i) If 0 <2a < 1/q then
(v, Ag—1u)q—1 = (—Av,u), (v,u) € Hg,_m X Hga.
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Proof. This follows from [2, Theorem 8.3]. O

Remark 1.5. The space Dy({2) is dense in Hj for |s| < 2.

Proof. Thanks to Hg 4 H; for —2 < s < 2, it suffices to show that Dy(Q) is
dense in Hﬁ Since 1+ A € £is(H§,H2) and D is dense in Hg we see that

M := (1+ A)~'(D) is dense in H2. Since M C C*(Q), the assertion follows
if 2 is bounded. Otherwise, we obtain the desired result by multiplying the
elements of M by suitable smooth cut-off functions. O

2. STOKES SCALES
Recall that H, is the closure of
Dy:={ueD; V-u=0}

in Ly and that the Helmholtz decomposition
(2.1) H)=L,=H, ®G,
is valid. The Helmholtz projection, P := P,, is the projection of L, onto H,
parallel to G, (cf. [4] for references).

We denote by

A:=-PA|H, A':=—-PyA|H,

the Stokes operators in L, and Ly, respectively. Then A € H(]H[j,Hq), and
we write [(Eq,As); @ € R] and [(E4,A%); a € R] for the interpolation-

extrapolation scales induced by (Eg,4Ay) := (H;,A) and (]Eg,Ag) = (Hy , AY),
respectively, and by complex interpolation. It follows that

2.2 E, = H*, (E,) =FE' _ =H, %, al <1,
a q

and also that (0.4) is true. It is known that A has bounded imaginary powers
(see [4, Remark 8.1]). From this we deduce that

(2.3) [EHS0 o g = HI—0so+0s1 —2<s0<85 <2, 0<6<1,
(cf. [3, Theorem V.1.5.4]).
Lemma 2.1. Suppose that —2 < s < 0. Then Hj is a closed linear subspace
of Hy.
Proof. Set
Qf = (1+ AT PH(1 + A) € L(EY),
where P* := P,. In the proof of [4, Lemma 3.2] it has been shown that Q§ isa
projection onto ]Eji which extends uniquely to a projection Qg € E(Eg) onto ]Eg
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By interpolation we obtain from (1.6), (2.3), and [4, Lemma 3.2] that Qg re-
stricts to Qf, € £L(E?) and that Q! is a projection onto Ef, for 0 < a < 1.
Consequently,

E' =F oF!, F! =ker(Q}), 0<a<l.
Hence, putting F_, := (F})’, we infer from (1.5) and (2.2) that
E_,=E ,®F_,, 0<a<l
This implies the assertion. O

Theorem 2.2. Suppose that —2 < s < 2. Then

(2.4) H; =1 ©Gj,

and G is the closure of Gy in H; for =2 < s < 0. Denote by P, := P, ; the
projection of H, onto H; parallel to G} . Then

(2'5) Pq’s = (quv_s)l

and P_; is the unique continuous extension of the Helmholtz projection P
over H;t for 0 <t <2. Furthermore, Hy, is the annihilator of G, * (with
respect to (-, -)).

Proof. (i) From [4, Lemma 3.3] we know that there exists a unique extension
P_,e L(E_4E_,)of Pfor0<a<1. Hence P_, € L(E_,) by Lemma 2.1.
Thus (P_,)? is well-defined. Since P2 = P and P_, D P, the density of Ey
in E_, implies (P_,)? = P_,, that is, P_, is a projection of E_, onto E_,.
Consequently,

(2.6) E_, =E_, ®ker(P_,), 0<a<l
From ker(P) = G, we see that G; C ker(P_,). Suppose u € ker(P_,). Then

E, & E_, implies the existence of a sequence (u;) in Eq such that u; — u
in E_,. Hence Puj = P_yu; - P_ou=0in E_,. Thusv; := (1 - P)u; > u
in E_, and v; € ker(P) = G,. This shows that

ker(P_,) = (G,I_QO‘, 0<a<l.
Thus, thanks to (2.6), the direct sum decomposition (2.4) holds for —2 < s < 0.

(i) From (i) it follows that

H, =H,/ oG, 0<s<2.

Thus, by duality and thanks to (1.5) and (2.2),

H=H oG, 0<s<2
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where

G} :=ker[(Py, 5)'].
The Helmholtz decomposition (2.1) guarantees that (G4 )’ = G, with respect
to (-,-),, where (-,-) and (-,-)_ are the duality pairings induced by (2.1)
so that (-,-) =(-,-), +(-,-),. It also implies P, o =P, = (Py) = (Py,)".
From this (2.5) follows by density and reflexivity. The last assertion is now
clear by the general facts on direct sums. O

Corollary 2.3. If —2 <t < s <2 then G} is dense in G.

Henceforth, we simply write P for P, if no confusion seems likely.

It is known by results of G. Grubb and V.A. Solonnikov (see [5, Exam-
ple 3.14], [9], [7]) that the Helmholtz projection P has a pseudodifferential
representation which implies that P € E(H;(Q)) for -1+ 1/g < s < 0. From
this and Theorem 2.2 it follows that P = P; for —1+1/¢ < s < 1/q since
H? = Hj in this range. However, P # P, for 1/q < s < 2 since H; involves
homogeneous Dirichlet boundary conditions.

3. THE PROOF
Let assumptions (0.6) and (0.7) be satisfied. Put
B(u,v) ==V - (u®v) =—(u- V), u,v € H.
An obvious modification of the proof of [4, Theorem 4.2] (replace in step (iii)
the map b by B and the image spaces ]I-]If,j —1-n/p by H ZJ' ~1on/p ) guarantees that
2 S 2s—1—n
(3.1) B e L*(H;, H? /9y,

where £2(E, F) is the Banach space of all continuous bilinear maps from E
into F'.

Set
(3.2) 2y:=(tAo—s)A(1—(n—1)/q).
Note that 0 < v < 1/2. Also observe that
Ly(T) = Wy 7V4(T) = W+=1/a(T)
and, thanks to (0.2), (0.3), and (0.6),
o—2 __ o—2 s—2+42
H] "=H; "< Hj .

Hence Corollary 1.2 and (0.6) and (0.7) imply
(3.3) h:= R(f,g) € C(RY ,H;7*t?").
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Let J be an open subinterval of R* containing 0 and set B(u) := B(u,u).
Suppose that

(3.4) u€C(J, (IHIZ’z,IHI;)), w e C(J, (Ggfz)
satisfy
(3.5) U+ As_2)pu=w+ B(u)+h in J, u(0) = o°.

Then (u,w) is said to be a strict solution on J of the initial value problem (3.5).
It is maximal if there does not exist such a solution being a proper extension
of it.

Recall that A(,_2)/s € H(H;,HZ*Z). From this and (3.1)—(3.4) it follows
that (3.5) is a well-defined equation in H 3_2. Theorem 2.2 and the definition
of the Stokes operator imply that (3.5) is equivalent to the system
U+ Ags_2y/5u=PB(u) + Ph in J, u(0) = °,

w = (1—P)(A(s-2)/2u — B(u) — h).
Set (Eo, Fy) := (HE=?,HE) and A := A, sy/2. Also put Ey :=[Eo, E]p for
0 <6 <1. Then we obtain from (2.3) that E, = H >*>7. Hence we infer
from (0.3), Theorem 2.2, and (3.1)—(3.3) that

b:= PBe€ L*(E\,E,), k:=PheCR",E,).

(3.6)

Now we can apply [4, Theorem 5.6] with @ = 0 to deduce that
(3.7 o+ Au=b(u) +k in J, u(0) = °

possesses a unique maximal strict solution v, and J* :=dom(v) is an open
interval of RT. Consequently,

(3.8) w:= (1= P)(A(;_2)2v — B(v) —h) € C(JT,H;?).
By the equivalence of (3.5) and (3.6) this proves that (3.5) possesses a unique
maximal strong solution, namely (v,w), defined on JT.

From [4, Remark 5.7(a) and Theorem 7.2] and Remark 1.3 it follows that
u is a strict solution of (3.7) on J iff
(3.9 u € C(J,Hy)

and

/J{<(6‘t + A, u) + (Vp,u @ u) } dt
(3.10)

= [t + .00 b e = (o0.00)
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for all
¢ € Wi (J,(H,*  H2 %)) = Ly (J,H2° ) n Wi (J,H®)

vanishing near the right endpoint of J. Remark 1.5 and Theorem 2.2 imply that
PDy(9) is dense in H27* and (1 — P)Do(Q) is dense in G, °. This implies
that D(J, PDo()) is dense in W} (J, (H,*,H2*)) and D(J, (1 - P)Do(1?))
is dense in Lq(J, G;72). Since the left-hand side of (3.10) is continuous with
respect to u € Wi (J, (H;=2,H;)) it follows that u is a strict solution of (3.7)
on J iff u satisfies (3.9) and (3.10) for all ¢ € D(J, PDo(R)). If

(3.11) (u,w) € C(J,H x GI7?)
then the second equality of (3.6) is equivalent to

(3.12) /J (o w) dt = /J (X, As_2)jou — B(u) — R(f, 9)) dt

for all x € D(J, Gif #). This is the case iff (3.12) holds for all x belonging to the

space D(J, (1 — P)Dy(R2)). From Lemma 1.4 and (3.1) we infer, by a density
argument, that (3.12) equals

(3.13) / (o w) dt = / {=~Ax,u) + (Vo u ®u) — (£,X) + (9,005 } db.
J J
Thus, setting

we obtain from (3.5)—(3.13) that (u,w) is a strict solution of (3.5) on J iff it
is a very weak Hj-solution of the Navier-Stokes equations on J. This proves
part (i) of the Theorem and Remark (b).

The assertions of part (ii) follow by applying Remark 5.7(b) in [4] to (3.7).

Similarly, part (iii) is obtained by applying [4, Theorem 5.8] to (3.7) which
is possible thanks to Remark 3.1 of [4].

The assertions of Remark (c) follow by the arguments of the proof of Theo-

rem 6.1 and by Proposition 6.5 of [4], by employing once more the equivalence
of (0.8) and (0.9) with system (3.6). O
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