Nonhomogeneous Navier-Stokes equations
with integrable low-regularity data

Herbert Amann

Dedicated to O.A. Ladyzhenskaya on the occasion of her 80" birthday

On the basis of semigroup and maximal regularity techniques, we derive optimal
existence and uniqueness results for the Navier-Stokes equations in spaces of low
regularity.

Introduction and main results

Throughout this paper, unless explicitly stated otherwise, 2 is a subdomain
of R? having a nonempty compact smooth boundary, T, lying locally on one side
of . We study solvability questions for the nonhomogeneous nonstationary
incompressible Navier-Stokes equations

V-v=0 in Q x (0, 00)
in Q x (0, 0),
v+ (v-Vv—Av=-Vr+f (0.1)
v=g on I x (0,00), )
v(-,0) =° on (.

The exterior force f, the boundary velocity g, and the initial velocity v9 are
the given data, and the velocity v and pressure 7 are the unknowns.

These equations have been studied by numerous authors under various
hypotheses on the data, using many different concepts of solutions. So far,
existence and uniqueness without restriction on the size of the data is known
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for local solutions only. The first such results are due to Kiselev and Ladyzhen-
skaya [1] (also see [2]). They have been considerably extended by Solonnikov [3]
who obtained optimal results for the class of data considered by him. (We re-
fer to the introduction in [4] for a survey of the literature on this subject.) In
almost all publications devoted to solvability questions for (0.1) homogeneous
boundary conditions, that is, g = 0, are considered only. Given sufficient regu-
larity for g, this is justified since problem (0.1) can then be reduced to the case
of homogeneous boundary conditions by choosing a suitable extension g of g
and by studying the problem which has to be satisfied by v —g. Noteworthy
exceptions to this approach are contained in the papers by Grubb and Solon-
nikov [5], [6] and by Grubb [7]-[10]. These authors study nonhomogeneous
Navier-Stokes equations, considering Neumann and other boundary conditions
as well, by pseudodifferential techniques in anisotropic Sobolev spaces.

The solution spaces in all those papers are small enough to admit bound-
ary traces, which seems necessary for a straightforward interpretation of (0.1).
However, in [11] the case of less regular data has been investigated in a natural
weak setting, requiring continuity with respect to the time variable. In this
paper we are interested in situations in which f and g merely satisfy integra-
bility conditions with respect to time and being, as well as v°, possibly singular
distributions in the space variables.

It should be mentioned that Navier-Stokes equations with nonhomogeneous
data possessing little regularity are not only interesting for their own sake but
also in relation to problems from control theory (e.g., [12], [13]), for example.

To give a precise meaning to a solution of (0.1) in a weak setting and to
describe our main results we need some preparation.

We use standard notation and employ the following convention: If F(Q, R?)
is a vector space of R3-valued distributions on 2 then we simply denote it by .
If X is a subset of R® different from 2 then we put F(X) := F(X,R®). For
example, D, resp. D(1), is the space of smooth R*-valued functions having
compact support in Q, resp. Q, and Wy (T") is the Sobolev-Slobodeckii space of
R3-valued distributions on T'.

We always assume that ¢,r € (1,00). Then H and Bj ,, 1< p < oo,

are the usual Bessel potential and Besov spaces, respectively, (of R®-valued
distributions on Q) for s € R. (See [4] for more detailed explanations.) We set

(v,w) := / v-wdz, v,w € D(Q),
Q
and, denoting by do the volume measure of T,

(v, w)r ::/U-wda, v,w € C(I).
r
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We also use (-, -) to denote the standard duality pairings between various spaces
of (scalar- and vector-valued) distributions without fearing confusion. Similar
conventions hold for (-,-);.. We write 0, for the derivative on I" with respect
to the outer unit normal v, denote by v the trace, and by 7, the normal trace
operator, that is, v,u = v - yu.

We set
{ueHj; yu=0}, 1/¢<s<2,
o tue @) ; supptu) c 1y, s=1/q,
H, = s (0.2)
Hy, 0<s<1/q,
(H;s)lv -2 S s < 07

where the dual space is determined by means of the duality pairing (-,-). It
follows (cf. [14, Theorems 4.7.1(a) and 4.8.1]) that

H:=H: -2+1/g<s<1/q (0.3)

(In [14] the case of a bounded € is considered only. However, it is easy to
verify that all results in that book cited here and below continue to hold if it
is only assumed that I" is compact.) In [11, Remark 1.5] it is shown that

Do(Q) := {9 € D(LR) ; 79 =0}

is dense in H for |s| < 2.

We also set D, := {u € D ; V-u=0} and denote by H, the closure of D,
in Ly. Recall (e.g., [2], [15]-[18]) that

Hy={ueL;; V-u=0, u=0}

We put
H’NH,, 0<s<2,
= { H (0.4)

(H ), —-2<s5<0,

the dual spaces being determined by means of the duality pairing (-,-),, ob-
tained by restricting (-, -) to Hy x Hj.

Similarly,
{ueBy,; yu=0}, 1/g<s<2,
o {ueBYIR®) ; supp(u) C 0}, s=1/q, 05)
o By, 0<s<1/g,
(B3°.), —2<5<0,
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the dual space being determined by means of (-, -), and

B; , NHy, 0<s<2,
B, = the closure of D, in Bg’r, s =0, (0.6)
(B, —2<s5<0,

where now the dual spaces are determined by the pairing (-, -)_. Similarly as
for the Bessel potential spaces,

B:, =B —2+1/g<s<1/q. (0.7)

q,m?
In general (see (3.2), (3.7), and Proposition 3.4),
E: < E,, E,e{H;H;, By, B;,;1<r<oo}, s>t

Thus it follows from (0.3)-(0.5) and (0.7) that Hj, resp. Bj ., is the closure
of H, in Hy, resp. B} ., for —2+1/q < s <0.

a4,
Lastly,
Gy = {U €EL,; v=Vm, 1€ Lq,loc(ﬁy]R)}
and
G, := H; NGy, 0<s<2,
whereas
G; is the closure of G, in Hj for —2 <s <0.
We put

1/r if1/r+3/¢g<1,

s(r) :=s(g,r) := { 2/r+3/qg—1 otherwise.

Then we suppose that
o 2<g<o0, 1<r<oo, 2/r+3/¢<3;
o (f,9) € Lyjoc(RY, H; D72 x WM =1/9(T))
with g =0 if s(r) > 1/g;
o o eBNT
We also assume that
if s(r) < 1/q then f = fo + f1 with
e dist(supp(fo),I x R") > 0; (0.9)
o fi € Lyjoc(RY, HJ') for some s; € (—2+1/g,0].
The assumptions on f guarantee that (f, ), a priori making sense for ¢ be-
longing to D(RT, D) only, is well-defined for ¢ € D(R*, Do (2)). Indeed, this is
clear for (f1,¢) since D C Dy(2) and D is dense in Hﬁfl/q = (H, 2 (cf.
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[14, Theorem 4.3.2.1]). Thanks to the presupposed condition on the support
of the distribution

fo € Lrjoc(R*, H; %) C DR, R?),
this fact is also obvious for {fq, ¢).

For simplicity, we assume that g =0 if s(r) >1/q. If s(r) > 1/q then
the trace operator v is well-defined on ]HIZ(T) and, given sufficient smoothness
with respect to the t-variable and suitable compatibility conditions, the case of
nonhomogeneous boundary data can be reduced to the homogeneous problem
as described above (cf. [13]).

Let J be a subinterval of Rt containing 0 such that J := J\{0} # 0, and
set J* := J\{supJ}. The pair (v,w) is said to be a (very weak) L,(H:")-
solution of the Navier-Stokes equations (0.1) on J if

(v,w) € Ly joc(J*, HE x Gi(1)-2) (0.10)
and
/{(8tg0 + Ap,v) +(Vyp,v®@v) } dt
7 (0.11)
= /J{(w,so) —{f,0) + {9, 0v)r } dt — (v°, 9(0))

for all ¢ € D(J*,Do()) and if all integrals and duality pairings occurring
in (0.11) are well-defined.

Clearly, (0.11) is formally obtained from the second differential equation
n (0.1), the momentum equation, by multiplying it by ¢, integrating by parts,
using Green’s formula, the boundary and initial data, and setting w := V.

By admitting in (0.11) standard test functions ¢ only, that is, assuming
that ¢ € D(J*,D) = D(Q x J*), it follows that a very weak solution is a dis-
tributional solution of the momentum equation.

If s(r) < 1/q then it has been shown in [11] that
s(r)—2 ~ s(r)—2 s(r)—1
HM72 2= =2 5 ys=1/a(r), (0.12)

Thus, in this case, H Z(T)_Q is not a space of distributions on 2 but contains
also distributions being supported on I'. This explains why there is no compat-
ibility condition for g guaranteeing that g is a tangential vector field. Indeed,
a possible nontrivial normal component of g is compensated by the ‘boundary
part’ of the (generalized) pressure gradient w.

In Section 5 we see that (0.9) can be replaced by f € Ly 10c(R*, Hz(r)’z).
However, due to (0.12), in this case f ‘contains a part on I’ which should be
covered by g. For this reason it is much more natural to assume that f takes
values in H:™ 2. Since, in this case, {f, ) is not defined for ¢ € D(J*,Do(Q)),
in general, we decided to impose condition (0.9) in this introduction. The
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case of an arbitrary f € L, joc(R, H:™ ™) with s(r) < 1/q is considered in
Remark 5.1(a).
Set
’D(),U = {u GD()(ﬁ) 3 Vu:O}
Then v is said to be a (very weak) LT(HZ(T))—solution of the Navier-Stokes
equations (0.1) if
v € Lijoo(J*, H;™)
and

/J{<8t‘P + Ap,v) + (Vo,v ®v)} dt

= /J{—<f, @) + (g, 00)r } dt — (v°,(0))
for all ¢ € D(J*,Do,5).

Ifw € Lyjoe(J*, G5 72) then (p, w) = 0 for each ¢ € D(J*, Do ) (see [11,
Theorem 2.2]). Thus, if (v,w) is an LT(H;(T))—solution on J of (0.1) then v is
an LT(]HI;(T) )-solution on J of the Navier-Stokes equations. It follows from the

(0.13)

considerations in Section 5 that the converse is also true: If v is an LT(HZ(T) )-
solution on J of (0.1) then there exists a unique w € Ly 10c(J*, G5 2) such

that (v,w) is an L.(H, (T))—solution on J of the Navier-Stokes equations. Con-
sequently, similarly as in the well-known regular case, it suffices to study the
Navier-Stokes equations in its ‘reduced’ very weak setting (0.13) in which the
pressure gradient is eliminated.

Clearly, each one of the above solutions is maximal if there does not exist
another solution of the same type being a proper extension of it.

Now we can formulate the main result of this paper whose proof is given in
Section 5. In the remainder of this section we write Vz for w without fearing
confusion.

Theorem. Let assumptions (0.8) and (0.9) be satisfied. Then the Navier-

Stokes equations (0.1) possess a unique mazimal LT(H;(T))—solution, (v, V).
The interval of existence, J* := dom(v, V), is open in Rt . Moreover,

ve C(IT B2y N Ly oo (ST, HE™)
and
(0, V) € Lyjoo(J T, HM 2 x G5 72),
If Jt # R then v is not uniformly continuous on J+.
If Q is bounded and the norm of (v°,(f,g)) in

B2/ % L (RY, HW=2 x W0 =1/9(T)) (0.14)

is sufficiently small then (v,V7) is a global solution, that is, J*T = RY.
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Remarks. (a) Of particular interest is the ‘classical’ case ¢ = r = 2. Here,
setting d(z) := dist(z,T) A 1,
By} = HY? .= {ue H'?; d?ue Ly} (0.15)

with the obvious norm, where, of course, H® := Hj. Here and below, = means
‘equal, except for equivalent norms’. Thus the Navier-Stokes equations with ho-
mogeneous boundary conditions, that is, with g = 0, possess a unique maximal
Ly(H?/?)-solution, (v, V), provided

(W0, f) € HY/2 X Ly e (RY, H~1/2),
where H'/2 = H'/? N H,. Moreover,

v € C(JT,HY2) N Ly o (J T, H3?)
and

(9, V) € Lyjoc(JH, H /2 x G, '/?).

PrOOF. First recall that B , = H® for s € R (cf. [14, Theorem 4.6.1(b)]).
Thus (0.15) is a consequence of [14, Remark 4.3.2.2]. Now the assertion follows
from the Theorem. O

(b) Another ‘classical’ case of interest occurs for ¢ = 3. Here the Theo-
rem guarantees the existence of a unique maximal Ls(H3)-solution, (v, V),
provided g = 0 and

(’Uo,f) € IB(3)’2 X L2,IOC(R+7H3_1)‘

Furthermore,

v € C(JF, B3 5) X Lo oc(J5, H3)
and

(0, V) € Lajoc(J5, H™' x G5 1).
If, instead,

(W, f) € 153273 X L3,100(R+:H3_4/3)
then

v e CJF,BY,) x Lajoe(J5, Hy'®)
and

(9, V) € Laoe(Ji, HZ ¥/ x G;*/%).
Observe that B , LN AN B 5.

PROOF. This follows from the Theorem and B, < Lz < B9 ;. O
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(c) For 1 < p < oo and 1 <p < oo we denote by L, , the Lorentz spaces
(e.g., [14], [19]). We also write L,, , for the closure of D, in Ly, ,. Then

Hy <5 Lo, <> B30 p>q>3, (0.16)
and
L, < Lp,c0 N B4, ¢>p>3. (0.17)

Hence, if 1/r + 3/q > 1, that is, s(r) = 2/r + 3/¢q — 1, then the Theorem guar-
antees the unique solvability of the Navier-Stokes equations for initial values in
Lorentz spaces, provided the additional restrictions for ¢ and r in (0.16), and
for ¢ in (0.17), respectively, are satisfied.

PROOF. Suppose that 1 < p < gand fix p; € (1,00) and 8 € (0, 1) such that
I/p=00—=0)/po+0/p1,  s;:=3(1/¢—=1/p;) <0, j=0,1.

Then
Ly, < ngﬁoo — Bji, j=0,1,
and, consequently,
Lpp = (Lpo, Lp,)o,0 = (Bghs Bgli)e.p = Bg,(;}/q_l/p) (0.18)

for 1 < p < o0, where the injection is dense if p < 0o. Recall that

d d
Lpy = Lp,po = Lp,p, = Lp,oo, 1 <po < p1 < oo,

and L, = L, »,. Hence we infer from (0.18) that

LS Ly, S B r>q>3,
as well as
Ly < Lpoo < B3Q/171/P) oy Bo143/0 > p> 3,
thanks to 3(1/p—1/q) > —1+ 3/q and well-known embedding properties of
Besov spaces. Now the assertion is obvious. O

(d) Suppose that 2 = R® and neglect any reference to I' in the definition of
spaces and solutions given above. In particular, H; = H; and B; . = B} _ for
alls,and H) ={u€ H; ; V-u=0}aswellas B, , ={u€Bj,; V-u=0}.
Then the Cauchy problem for the Navier-Stokes equations

V-v=0 .
in R x (0, 00),
v+ (v-Vv—Av=-Vr+f (0.19)
v(-,0) =0 on R3,

possesses a unique (very weak) L, (Hg(r))—solution, (v, V), provided

2<g<o0, l<r<oo, 2/r+3/¢g<3
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and
(0%, f) € BT 7" X Lyjoe(RY, HI M%), V-0 =0.
The maximal interval of existence, J1, is open in Rt. Moreover,
v € C(T*, BiD™M) 0 Lyjoc(J*, H™)
and
(6, V) € Lyoc(JT, Hy )72 x Hy(M72).
If J # Rt then v is not uniformly continuous.
In particular, given

(anf) €H1/2 XLZ,IOC(R,H_1/2), V"UO:O,
problem (0.19) has a unique maximal Ly (H3/?)-solution, (v, V), and
ve C(JT, HY?) N Lajoo(JF, H3/?)

as well as
(0,V7) € Lajoc(JT, H™Y? x H™1/?).

ProoF. This follows by modifying the arguments of this paper in the ob-
vious way omitting all references to T'. O

(e) Let v be the unique maximal L,(H;"))-solution of (0.1). Then v
belongs to Lyg 10c(J T, Ly, ) for all go > ¢ and 7o > r satisfying 2/rg + 3/go = 1.

Note that this means that v satisfies a Serrin-type condition. Consequently,
v (and hence V) is smooth, provided f is smooth and g = 0 (or g is smooth
and satisfies appropriate compatibility conditions).

PROOF. The first assertion follows from Theorem 3.3. For details concern-
ing the regularity statements we refer to [4, Sections 9-11]. O

(f) By employing Remarks 2.3 it is easy to give blow-up estimates for

the maximal LT(]HIZ(T) )-solution, v, provided v® and (f, g) possess appropriate
additional regularity. O

Navier-Stokes equations with low-regularity data have been thoroughly inves-
tigated in [4]. In contrast to the present paper, in that one it is assumed that
f is continuous with respect to the time-variable (except possibly for ¢ = 0),
and that v° belongs to the little Nikolskii space n;(l)jf/ 7 of solenoidal vector
fields (see [4] for a precise definition of the latter space and observe that in
that paper Hy is denoted by H, ;70,0). The results obtained there are optimal in
that setting. Thus it is interesting to compare the Theorem with the results
in [4] in a case where both theories apply. To reduce technicalities we restrict
ourselves to the ‘classical’ case ¢ =r = 2.
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Hence suppose that g =0 and
(°, f) € H'/? x C(R, H'/?).

Then we know from Remark (a) and the observations after (0.13) that the
Navier-Stokes equations (with g = 0) have a unique maximal L (TH?®/?)-solution,
v, and

v € CTH )N Lyjoc (T, HE2) MW 100 (JH, 1),

From this and Theorem 3.3 it follows that v € Lgjoc(JT,H!). On the other
hand, we infer from [4, Theorems 6.1, 7.2, and 8.2] that there exists a unique
maximal ) )
we CUIT H/2YnCUt, H)nCH I+, H )
satisfying
o g1/4 _
lim /% [[u(?) [ = 0

and (0.13). Consequently, u € L, 1oc(I7,H') for 1 < p < 4. The results in [4]
also imply that u D v. Thus we see that, even in the case where f is continuous
in the t-variable, the Theorem implies better integrability properties of the
solution than the earlier approach, which is not applicable if f is not continuous
in ¢.

If ¢ =0 then the Theorem complements, similarly as above, the results
in [11], where continuity of (f, g) with respect to ¢ is assumed.

As mentioned in the beginning, nonhomogeneous Navier-Stokes equations
with integrable low-regularity data have been investigated by Grubb and Solon-
nikov and, in particular, by Grubb, in anisotropic Bessel potential and Besov
spaces. In her most recent paper, Grubb [10] concentrates on Dirichlet bound-
ary conditions. Then, given suitable regularity hypotheses on (f, g), she proves
a local solvability result, provided v° € B? ., where 0 >0 and o > —1+3/q

4,97
(we refer to that paper for precise statements and definitions of the anisotropic

spaces). Observe that we admit initial values in Bi() =2/

s(r)—2/r=-1+4+3/q if 1/r+3/g>1.

Also note that s(r) —2/r < 0 if ¢ > 3. The main advantage of our approach,
leading to the better results, lies in the fact that we can separate space and
time regularity, whereas in the work of Grubb and Solonnikov r = gq.

, where

Similarly as in our previous papers on Navier-Stokes equations, we employ
a semigroup approach. This has been done by many authors, almost always
by taking into consideration the singular behavior of the Stokes semigroup at
t = 0, using a device which can be traced back to the work of Kato [20]. That
approach has become standard in this field (see the references in [4]).

In contrast to this, the proofs in this paper are different. Namely, we
employ the maximal regularity property in Lebesgue spaces of the Stokes semi-
group. This allows us to develop the above L, (H, (T))—results which are optimal
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in the sense that all terms, including the nonlinearity, are of the same strength
as the Stokes operator, so that we cannot take advantage of any smoothing
properties. (See [21], [22] for related, though different, uses of maximal reg-
ularity theory.) It should be observed that, even in the well-studied case of
homogeneous boundary conditions, our approach gives new results, for exam-
ple, the ones exhibited in Remarks (a), (b), and (d).

Navier-Stokes equations with initial data in Lorentz spaces have been stud-
ied by Kozono and Yamazaki (cf. [23]-[25] and the references therein; also
see [21]). These authors are mainly interested in the space L3 o, which is
excluded in Remark (c), due to the fact that we are dealing with solutions
belonging to L, with respect to t.

In the next section we collect some basic facts from interpolation and semi-
group theory. In particular, we present the fundamental maximal regularity
result and prove an important abstract embedding theorem (Theorem 1.3). In
Section 2 we derive a general existence and uniqueness theorem for semilinear
evolution equations by means of maximal regularity techniques. Motivated by
our applications in this paper, we restrict ourselves to the case of quadratic
nonlinearities. However, as pointed out at the end of that section, the proof
extends straightforwardly to locally Lipschitzian nonlinearities. These abstract
results are of independent interest.

In Section 3 we investigate interpolation and embedding properties of the
relevant function spaces. Section 4 is devoted to the study of mapping proper-
ties of the nonlinearity, and Section 5 contains the proof of the Theorem.

1. Interpolation spaces, analytic semigroups,
and maximal regularity

Let E and F be Banach spaces. Then L(E,F) is the Banach space of all
bounded linear operators from E into F, and L(E) := L(E,E). Moreover,
Lis(E, F) is the set of all isomorphisms in £(E, F). If E is continuously em-

bedded in F' then this is expressed by £ — F, and E i) F means that E is
also dense in F. (These notations are used for locally convex spaces as well.)

We write [-, -], for the complex and (-,-)g,p, 1 < p < oo, for the real inter-
polation functors of exponent 6 € (0,1) (see [26, Section 1.2], for example, for
a summary of interpolation theory, and [19] or [14] for proofs).

Let Ey and E; be Banach spaces with E; i) Ey. Then Epg) := [Eo, Er]e
and Eg p, := (Eo, E1)gp for 1 <p < oo and 0 < 6 < 1. Recall that

E1 ‘i) Ea,l ‘i) E97q ‘i) Eg’T — Eg’oo ‘i) E,g’l ‘i) EO (].].)
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forl<g<r<ooand <49 <8 <1. Moreover,

Eg’l ‘i) E[g] — E@,oo; 0<f<1. (1.2)
For convenience, we set Ej; := Ej, := Ej for j =0,1and 1 < p < co.
For T > 0 we put Jr :=[0,7], and we use I to denote a subinterval of Rt
containing 0 such that I # 0.
We set
W}, (I, (Eo, El)) = LT(I, El) n W,,.I(I, E())
Note that
W (I, (Bo, Er)) = ({u € L(I,E) ; due L,(I,E)}, ||-||m),

where 0 is the distributional derivative, and

lullwe == llwllz.z,2:) + 10Ul ,(1,E0)-

It is well-known (e.g., [27, Section 1.2.2] that u € W,}(I, Ey) iff u is locally
absolutely continuous (in the sense specified in [26, Subsection II1.1.2]) and u
as well as the point-wise derivative 4 belong to L,(I, Ey). (We adopt the usual
convention not to distinguish (notationally) between a measurable function and
its equivalence class modulo functions vanishing almost everywhere.) In this
case Ou=1u. If u € W:(I,(Ey, Ey)) then interpolation theory guarantees a
better continuity result, namely

Wi (I, (Eo, El)) — BUC(I,Ey; ) (1.3)
(see [26, Theorem I11.4.10.2]).

We assume that A € H(E, Ey), that is, A € L(E1, Ey) and —A, consid-
ered as a linear operator in Ey with domain F;, generates a strongly continu-
ous analytic semigroup, denoted by {U(t) ; t >0} or {e~4; t >0}, on FEy,
that is, in L£(Ep). We set Uz := U(-)z for z € Ey. Recall (e.g., [26, Proposi-
tion I11.4.10.3]) that

(z = Uz) € L(Ey )y, W (I, (Eo, E1))), (1.4)
provided U is exponentially decaying if I = R*.
We also put

t
U *u(t) :=/ Ult—7u(r)dr,  u€ Lioe(l, Bo), tel,
0

provided these integrals exist. Then Ux is the map u +— U *u.

Fix a real number T >0 and put J:= Jy. Then we use the following
conventions: For T € J let X7 and Y7 be Banach spaces of Egp-valued distri-
butions on Jr, being continuously embedded in L (Jr, Eg). Also suppose that
B € L(X7,Yr) with B(X1) C B(Yr). Then, given £ € R, we write

T"B € L(XT,YT) J-uniformly,
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if T%||B||z(xp,vy) < cforal T e J. Here and below, we denote by ¢ generic
positive constants, perhaps differing from occurrence to occurrence, but being
always independent of the free variables in a given equation or inequality.

In [28, Lemma 4] it is shown that, given a € (0,1),

Ux € L(L,;(Jr, Ba,o0), Wr (J1, (Eo, E1)))  J-uniformly. (1.5)

Furthermore, (1.5) remains valid if J is replaced by R, provided the semigroup
is exponentially decaying.

We denote by BZP(E) the set of all closed and densely defined linear
operators A in E for which there exist constants w > 0, N > 1, and ¢ € [0,7/2)
such that { z € C; Rez > 0} belongs to the resolvent set of 4, :=w + A and

A || ooy < Ne M, teR,
(see [26, Section II1.4.7] for more details).
Now we introduce the following assumption:
Ey is a UMD space,
Ae H(El,Eo) N BIP(Eo), }

where we refer to [26, Section II1.4.5] for precise definitions and examples.

(1.6)

The reason for this hypothesis is the following ‘maximal regularity’ result,
a consequence of the Dore-Venni theorem [29]. Here

Yo : Wy (J,(Eo, E1)) = Eijprry,  u s u(0)
is the trace operator (at ¢ = 0), being well-defined by (1.3).
Theorem 1.1. Let (1.6) be satisfied. Then

(0 + A, v0) € Lis(WL(J, (Eo, Ev)), Lr(J, Eo) X Ey/pr ). (1.7)
Furthermore,
O+ A,v0) Hz,9) =Uz+Uxg (1.8)
and
Ux € L(Ly(Jr,Eo), W, (Jr, (Eo, E1))) J-uniformly. (1.9)

PROOF. Assertion (1.7) follows from [26, Theorem I11.4.10.8], and (1.8) is
a consequence of [26, Theorem IIT.1.5.2]. Hence there exists a constant &
such that

1U * gllwe (3,(B0,51)) < K 9llL.(3,E0)5 g € L, (J, Ey). (1.10)
For g € L,.(Jr, Ep) let g € L.(J, Ep) be the extension of g by zero. Then

109l (1. 0,00) < IV Gl 00,20y 191l2,0,20) = N9z (72 20)

which, together with (1.10), imply (1.9). O
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Remark 1.2. Suppose, in addition to (1.6), that U is exponentially de-
caying. Then Theorem 1.1 remains valid if J is replaced by R*.

ProoF. This follows from [26, Theorem II1.4.10.7]. O
Next we prove a basic embedding theorem.

Theorem 1.3. Let (1.6) be satisfied and suppose that 1/r' < a < 1. Then
W(I, (Bo, Er)) < Lp(I, Bp),  1/r>1/p>a—1/r'.

PROOF. (i) Suppose that 1/p = a — 1/r' and assume, without loss of gen-
erality, that U is exponentially decaying. Then it follows from (1.7), (1.8), and
Remark 1.2 that

u=Uyu+Ux*(0+ A, u € W, (I,(Eo, Ey)).
Thus, since
0+ A,v) € L(W, (I,(Ey, Er1)), L, (I, Ey) x Ey/pr ),
it remains to show that
U € L(Eijp LI, Ey)), Ux€ L(L(I,Eo),Ly(I, Eyy)). (1.11)
We denote by [(Es, Ag); s € R] the interpolation-extrapolation scale gen-
erated by (Fo, A) and [-,-],, 0 < @ <1 (see [4, Section 1] for a short summary

of the theory of interpolation-extrapolation spaces, and [26, Chapter V] for
details). Then [26, Theorem V.1.5.4] implies, thanks to hypothesis (1.6), that

Eo 1 =[E 1,E]ay2, Ea=[E 1, Ei](14a)/2-
From this we obtain by the reiteration theorem (e.g., [26, (1.2.8.5)]) that
(Ea—1,Ea)o,r = ([E-1, Er]ay2; [E—I,EI](1+a)/2)0,T (1.12)
= (E_1, E1)(a+0)/2,r
for 0 < 8 < 1. Similarly,
Eyjpr = (Eo, Er) 1/ = ([E—1,E1]1/2,E1)1/T,,T = (E_1, E1) 141/ /2,0
Hence it follows from (1.12) that
Eijr v = (Ba—1,Ea)1/p r = (Ba—1,Ea)1/p ps (1.13)
where the continuous injection is a consequence of p > r and (1.1).
From [26, Theorem V.2.1.3] we know that

Ag_1 € H(Ey,Eq_y), e tAa-15U(), t>0.
Thus interpolation theory guarantees that
(t = e==1) € L((Baz1, Ba)1/p o W (I, (Baz1, Ea)))
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(cf. [26, Proposition I11.4.10.3]). So the first part of (1.11) is implied by (1.13),
thanks to E, = Ejy). Since Eg = [Eq 1, Ea]i—a, the second part is a conse-
quence of (1.2) and (1.5).
(i) If 1/p>a—1/r" then we fix § > a with 1/p> g —1/r". Tt follows
from [28, Theorem 3] that
W (I, (Eo, E1)) — Lyp(I, B o).

Now the assertion is a consequence of (1.1) and (1.2). O

2. Evolution equations with quadratic nonlinearities

For a Banach space F' we denote by L2(E, F) the Banach space of all contin-
uous bilinear maps from E x E into F', endowed with its usual norm. Given
B e L*(E,F), we set B(z) := B(z,z) forz € E.

For convenience, we include the short proof for the following simple fixed
point and continuity theorem which is implicit in the proof of [4, Theorem 5.6].
Here B is the closed unit ball in E.

Lemma 2.1. Suppose that 3 >0 and B € L%(E,E) satisfies ||B| < 8.
Set p:= (2 —+/3)/4B and P := (/3 —1)/48. Then, given a € PB, the equa-
tion = a + B(x) has a unique solution, x(a), in a + pB. Moreover,

[|z(a) — z(b)|| < 2]|la—1], a,b € PB. (2.1)
PRrROOF. Suppose that a € PB. Then
M:=a+pBC (P+p)B=(1/45)B.
Hence B(z) — B(y) = B(z —y,z) + B(y,x — y) implies
I1B(z) = By)ll < B(llzll + llyll) llz — yll <llz —yll/2,  z,y€ M.
Thus z — ¢(x) := a + B(x) is a contraction on M. Furthermore,
lp(x) —all < Bll2ll* <1/168 <p, =z €M,

so that (M) C M. Hence Banach’s fixed point theorem guarantees the exis-
tence of a unique fixed point z(a) of ¢ in M. If b € PB then

l2(a) = z@)]| = [[¢(z(a)) = ¢(z(®))]| < lla = bll + || B(2(a)) — B(z(d))|
< la =0l + [|lz(a) — z(D)]I/2,
from which we obtain (2.1). O
Of course, fixed point lemmas of this type have been used (implicitly and

explicitly) by many authors in connection with Navier-Stokes equations (cf.
the proof of Theorem 10.1 in [3], for example, for an early reference).

Suppose that
b€ L>(W) (Jr, (Eo, E1)), Lr(Jr, Ep)) J-uniformly, (2.2)
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and consider the semilinear evolution equation
i+ Au=>bu)+h in), (2.3)

wherg h € L.(J,Ep) is given. Let I be a subinterval of J containing 0 such
that I # 0. By a W -solution (more precisely, a WL, (Ey, E)-solution) on I of
(2.3) we mean an element u € Wi’loc (I,(Eo, Ey)) satisfying (2.3) on I. It is
mazximal if there does not exist another such solution being a proper extension
of it. If dom(u) = J then u is global. If u is a W!-solution of (2.3) on I then
u€ C(I,Ey/p,) by (1.3). Thus, if 2 € Ey /v ., then by a W -solution on I of
the initial value problem

i+ Au=>bu)+h in J, u(0) =z (2.4)
we mean a W:-solution u of (2.3) on I such that u(0) = z.

Theorem 2.2. Let assumptions (1.6) and (2.2) be satisfied. Then:
(i) Problem (2.4) possesses for each
(.fl;,h) S El/rl’,,. X LT(J,E()) (25)
a unique mazimal WL -solution, u := u(z, h), and J(z,h) := dom(u) is
an open subinterval of J.
If J* :=J(z,h) # ) then u ¢ WL (J*,(Eo, E1)) and, equivalently,
u ¢ BUC(J+, El/;,-l’,,-).
(ii) For each T € J there exists R > 0 such that J(x,h) D Jp whenever (z,h)
satisfies

lzlle,,,.. + 1Pl (77, B0y < R-

(iii) IfU is exponentially decaying and J = Rt then there exists R such that
J(z,h) = RY whenever

zlle, ., + 1Pl =+E0) < R (2.6)

Proor. For abbreviation, we set WL (I) := WL (I, (Ey, E1)).
(1) Set B := U xb. Then it follows from (1.9) and (2.2) that
B € L*(W}(J7), Ws (J7)) J-uniformly.

Also put a := Uz + U x h. Then Theorem 1.1 and (2.5) imply that a € WL(J).
Furthermore, u is a W!-solution of (2.4) on I iff u = a + B(u) in WL (I).

Fix # > 0 such that
1B (u, )l 5y < Bllullwa (gr) 10l gy, w0 € Wi(Jr), T €J.

Given T € J, Lemma 2.1 implies the existence of a unique W -solution v on Jr
satisfying |lu — allwz (s,) < p, provided ||a||w: sy < P-
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(2) Since ||a||w(JT) —0asT — 0 we can fix Ty € J with ||a||M(JTO) <P.

Let ug be the unique W.-solution of (2.4) on Jz, satisfying
lluo — allwa (gz)) < p-

Suppose that J\ Jr, # 0 and set J; := (J — Tp) NR*. Define hy € L,(J1, Ep)
by hi(t) := h(t + To). Set y := u(To) and note that y € E,, , by (1.3). Lastly,
put ai := Uy + U xhy. Then a; € W2 (J1) by Theorem 1.1. Hence there exists
Ty € Ji such that lai|lwa (sr,) < P. Thus, similarly as above, there is a unique
W -solution v; on Jz, of

04+ Av=b(w) +hy in Ji, v(0) =y

satisfying |lv1 — a1|lwi(sp,) < p- Define ui on Jri7 by ui|Jr, :==wue and
up(t) == v1(t — Tp) for To < t < Ty + T1. Then we infer from (1.3) that

Uy € C(JTO+T1 , El/r’,r)'

Using this and u|I € WX(I) for I € {Jg,,[To,To + T1]} it is not difficult to
verify that u; € W2 (Jr,+1, ). Moreover, u; solves (2.4) on Jg,t7,. By iterating
this argument we arrive at a maximal extension u := u(z,h) of ug, defined
on J*, such that u € Wy, (JT) and u is a Wy-solution of (2.4).

(3) If J* #J then u ¢ WL (JT). Indeed, otherwise u € BUC(J*, Ey )y ;)
by (1.3), so that u has an extension w € C(J_+, El/r’,r)- Thus we can apply the
above continuation argument with the initial value w(¢*), where ¢t is the right
endpoint of JT, to obtain a contradiction to the maximality of uw. This argu-
ment shows that J* is open in J, that u ¢ W (JT), and that this is equivalent
tou ¢ BUC(JT,Eyp ) if J& # ).

(4) Suppose that v is a WL-solution of (2.4) on some interval I C J such
that v v Then

T':=max{tel; ult)=vt)in Eyp, }
is well-defined and I' := (I — T') N R* is a nontrivial subinterval of R* con-
taining 0. Set z := w(T") and k(¢) := h(t +T") and consider the initial value
problem )

W+ Aw =b(w)+k in I, w(0) = z.
It has the two distinct Wt-solutions wy := u(- + T") and ws := v(- +7") on I".
Put @’ :=Uz + U %k and note that |lw; — a'[lw.(s,) = 0 as T — 0. Hence
there exists Tj € I’ such that ||w; — a/||w Trg) < p. Now the uniqueness asser-
tion of (1) implies w1 = wa in C(Jry, E1 /) which contradicts the definition
of T'. This proves the uniqueness of u. Thus assertion (i) has been shown.

(5) Since
lallwe ) < c(llzllB,,.0, + 1P|z 0.82))

by Theorem 1.1, assertion (ii) is an immediate consequence of (1).
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(6) Suppose that U is exponentially decaying and J = R*. Then Remark
1.2 and step (1) show that there exists a unique W:-solution on R*, provided
llallw (r+) < P. Since the norm of a in W} (R") is majorized by a constant
multiple of the left-hand side of (2.6), assertion (iii) follows. O

For completeness, we add some further properties of the W -solution u of (2.4),
although they are not used in this paper.

Remarks 2.3. (a) Suppose that r <p < occ. Then there exists £ such

that J*(2,h) D Jr whenever T € J and (z,h) € By o X Lp(J, Eo) satisfy
TV VP (|2l B,y o + |y (2, 50)) < 5
ProOOF. We infer from [28, Lemma 4(ii)] that
IUz|lws g7y < cTY/r=1/p lzlle,,,. . J-uniformly.
From Hélder’s inequality it follows that
Bl Lo im0y < TP 1Bl Lyr ) T el
Hence we deduce from Theorem 1.1 that
U % Bllwe gy < TV P B|Lyar,m)  J-uniformly.
Consequently,
lallw 7y < TV 2 (l2llg, 0 o + 0l e B), T €D,

and the assertion is also a consequence of part (i) of the preceding proof. O

(b) If the hypotheses of (a) are satisfied and ¢+ := sup J* < T then

lim [u(®)le, .. = o0

PROOF. Suppose that there is a sequence (t;) in (0,t%) converging to-
wards t* such that [|u(t;)[g,,,, ., < c<ooforj€N. Set h;(t) := h(t +t;) for
t € J with t +¢; € J, and h;(¢) := 0 for the remaining ¢ € J. Then h; belongs
to L,(J, Ep) and

Wil z,1,20) < IPllL,1,E0)-
Hence we infer from (a) and the translation argument used in step (2) of the
proof of Theorem 2.2 that there exists T > 0 such that J* D [0,t; + T] N J for
j € N. This contradicts t+ < T and proves the stated property. O

(c) Using the continuity assertion (2.1) it is not difficult to prove that
u(z, h) depends continuously on (z, h).

(d) Suppose that b is a function mapping Wy (J, (Ey, Ey)) into L,(J, Eo)
such that, given any T € J, its restriction to WL (Jr, (Eo, E1)) maps into the
space L,(Jr, Ep) and is uniformly Lipschitz continuous on bounded sets. Then
Theorem 2.2 and the preceding remarks (a)—(c) continue to hold.
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PRroOF. This follows by an obvious modification of the above proofs. [

3. Interpolation-extrapolation scales

We put Ag := —A|H 3, that is, Ay is the negative Dirichlet-Laplacian, consid-
ered as an unbounded linear operator in L,. It is known that

Ao € H(H?,L,) N BIP(L,) (3.1)

(see [30], for example).

Let [(Fa, Ay); aE€ R] be the interpolation-extrapolation scale generated
by (Lg, Ag) and [-,-],, 0 <8 < 1. Then it follows from [4, Theorem 2.2] that
F,=H 3"‘ for |a| < 1. This implies, in particular, that

s 4 ]
H S H, —2<t<s<2. (3.2)
Moreover, we know from [26, Theorem V.1.5.4], thanks to (3.1), that
[Hy, Hj'lg = HY, —2<s<s85 <2, 0<6<1, (3.3)

where sg := (1 — 6)sqg + 0s1.

Now we put A, := A,/ for —2 < 5 < 0. Then (see Theorem V.2.1.3 and
Proposition V.1.5.5 in [26])

A, e H(H; H)NBIP(H), -2<s<0,

and
A, DA, e tAs0 5 g7t —2<359< 8 <0. (3.4)

Recall that Do () is dense in H for |s| < 2. Since Do (1) is a core for A,

that is, Ao is the closure of its restriction to Do (), it follows from (3.2) and
(3.4) that Dy(0) is also a core for A, for —2 < s < 0. This shows that A, is
‘essentially’ independent of ¢ in the sense that A; is uniquely determined by
Ag|Do (). For this reason we do not indicate the g-dependence of A,. (Of
course, for similar reasons we could omit the index s. However, for the sake of

clarity we continue to indicate the s-dependence.)
Lemma 3.1. Suppose that —2 < s9 < s1 < 2 and
s1—3/q1 >80 —3/q, 1>1/q1>1/go>0.
Then H3 < H?.
PRrOOF. (Cf. the proof of [4, Theorem 3.10].)

(i) If 50 > 0 and s; # 1/g; then H’ is a closed linear subspace of Hyi.
Thus the assertion follows in this case from the corresponding embedding the-
orem for Bessel potential spaces.
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(ii) If 51 < 0 then we obtain the assertion from what has just been shown
by duality (and reflexivity).

(iii) If so < 0 < 51 with s; # 1/¢ then we obtain the desired result from (i)
and (ii) by embedding H}} in L, and L, in HJ).

(iv) The remaining case is now covered by interpolation, thanks to (3.3).

O

It has been proved by Solonnikov [3] (also see [2], [15], [17], [18], [31]) that
the Helmholtz decomposition
L, =H, G, (3.5)
is valid. We denote by P := P, the Helmholtz projection, that is,
P=P*e€L(L,), im(P)=H,, ker(P)=G,,
and recall that (P,)' = P,.
We write Ay for the Stokes operator in L, that is,
Ao == PAg|H2. (3.6)
Then
Ao € H(H,,H,) N BIP(H,).
In fact, it follows from [3] that —Ay generates an analytic semigroup (also see
[31]-[34]). Giga [35] proved that Ay has bounded imaginary powers if Q is
bounded; in [36] this result is extended to exterior domains.
Let [(Ga, B,); a€ R] be the interpolation-extrapolation scale generated
by (Hy,A) and [-,-],, 0< 6 < 1. Then [4, Theorem 3.4] guarantees that
Go = H2* for |a| < 1. Thus, similarly as above,

S, —2<t<s<2, (3.7)
and
[HZ°, H' o = HL?, —2<s<s <2 0<b<I1. (3.8)
Furthermore, setting A; := B/, for —2 <5 <0,
A, € H(HP? 1Y) N BIP(H), -2<s5<0, (3.9)
and
Agy DAy, e o 5 tha —2<s9<s1<0. (3.10)

From Theorem 2.2 in [11] we know that Hj possesses the direct sum de-
composition
H, =H; ®Gj, ls| < 2. (3.11)
We denote by P; the projection onto Hj parallel to Gj, that is,

P, = (P,)’ € L(H}), im(P,)=H,6 ker(P,)=G. (3.12)
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Theorem 2.2 and Corollary 2.3 of [11] imply
P.=Py,=P, P,OP, -2<t<s<2. (3.13)

Note that the first equality in (3.13) means that (3.11) coincides for s = 0 with
the Helmholtz decomposition (3.5). Thus it follows from (3.6), (3.7) and (3.9),
(3.10) that

A, = P,A,, -2<s<0. (3.14)

Lemma 3.2. Suppose that —2 < sg < 57 < 2 and

31—3/q1280—3/q0, 1>1/q121/q0>0.
d
Then Hj} — H .
PRrOOF. This is an immediate consequence of (3.13) and Lemma 3.1. O
It should be remarked that Lemma 3.2 coincides with [4, Theorem 3.10]. How-
ever, the proof in that paper is rather more complicated since we had to work
with a quotient space representation of Hj for —2 <'s < 0. For this reason we

decided to include the elementary proof of Lemma 3.2 which is now possible
thanks to the generalized Helmholtz decomposition (3.11).

Next we observe that
Hy is a UMD space for [s| < 2. (3.15)

Indeed, HJ is isomorphic to the closed linear subspace Hj of the UMD space L.
Thus (3.15) follows from basic facts on UMD spaces (see Theorem I11.4.5.2
in [26]).

After these preparations we can prove the following embedding theorem
which is important for our approach. To simplify the writing, we henceforth set

Wi (I H) := W, (I, (H; 7%, H)).

Theorem 3.3. Let I be a nontrivial subinterval of Rt containing 0. Sup-

pose that 0 < 51 <2 and s1 —2 < s9 < s1 with
$1—2/r1 —3/q1 2 80— 2/r0 — 3/qo, (3.16)
and
1>1/¢1>21/ge >0, 1>1/ry >1/ro>0.
Then J
W, (I, HGY) = Ly (I HD).

PROOF. Set (E07E1) = (HZ} 72,H;i) and A := Asl 2. Then (39) and

(3.15) guarantee that (1.6) is satisfied. Put
s:=8 —2(1/r1 —1/rg), 6:=1—(s1—8)/2.
Then (3.8) implies
HG, = [HG, 2, Hgtlo = [Eo, Br]y = Eyg)-
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Since 1/rg =6 — 1/r] > 0, it follows from Theorem 1.3 that
d
W) (LHEY) < Lo (ILHE ). (3.17)

From (3.16) we see that s — 3/q1 > so — 3/go. Thus H;, i He by Lemma 3.2.
This and (3.17) imply the assertion. O

In the next proposition we collect the relevant properties of the spaces BZ,T
and B} .

Proposition 3.4. (i) If —2<s9<s51<2and 0<8 <1 then
By, = (HY H ), B = (H°,H)g. (3.18)

(ii) If s <1 then D, is dense in B} .
(iii) Suppose that —2 < 59 < 51 < 2 and
51—3/q1230—3/q0, 1>1/Q121/Q()>0, ].>]./'I‘12]./7'0>0.
Then
B, S B, Bl S BD
q1,71 90,70’ q1,71 q0,70"

PROOF. (i) Denote by [ (Es, Aq) ; @ € R] the interpolation-extrapolation
scale generated by (Lg, Ao) and (-,-)g,r for 0 < 8 < 1. Then we infer from [4,
Theorem 2.2] that

B = (H Hyor, By = (Hy, Hoo,r.
Since H 2 =[H q_z, H 3]1 /2 by (3.3), the reiteration theorem implies
B;$+26 = (H;27 [H(;27 H3]1/2)9’T = (H;27 H§)0/2,T

and
20 - —2 gp2 2 . —2 12
B, = ([Hq 7Hq]1/27Hq)9,r = (Hq 7Hq)(1+9)/2,r

for 0 < @ < 1. Furthermore, thanks to the interpolation characterization of
Bessel potential spaces (e.g., [14, Theorem 4.3.1]), we deduce from (0.3) that,
given 7 € (0,1/qA1/q"),

Bg,r = Bg,r = (Hq_TaH;-)l/Zr = (Hq_Ta H‘Iq—)l/2,r-
Thus, using (3.3) and the reiteration theorem once more,
0 . —2 2 —2 2
By, = ([H,*, Hylorya [Hy " Hylorr)/4) )., (3.19)
= (Hq_23H3)1/2,7"
This shows that

B, = (H?,H)@ys)/am  —2<8<2. (3.20)
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Now suppose that —2 < s < s1 < 2. Then we infer from (3.3) and the reiter-
ation theorem that

(H Hy o = ((H”, Ho)24s0) /4 [H . Hil2451)/4) 5,
= (H® HY) 2400) /4
for 0 < 6 < 1. By comparing this to (3.20) we obtain the first relation in (3.18).

Suppose that 0 < sg < s; < 2. Then, by (0.6) and by what has just been
shown,
IBZ?T’ = BZ?T‘ n ]HL] = (HEOJHZI)G,T N Hq = (HZO;Hzl )6,7‘
for 0 <6 <1, thanks to Hy = Hy NH, for 0 < s <2 and to (3.11) (cf. [14,
Theorem 1.17.1.1]). Due to (0.2) and (0.6) we now obtain the second relation
in (3.18) for —2 < sp < 81 <0 by duality. Suppose that 0 <7 < 1/gA1/q".
Then (3.11) and (3.19) imply, thanks to [26, Proposition 1.2.3.3], that
Bg,r = Bg,r = (H;Ta H;)1/2,7‘ = (H(;TvH;)l/Zr @ (G(;T7 G2)1/2,T'
Hence
B), NHG = (H, ", H)y o, N E.
Since HJ is dense in (H, 7, H] ), /5, and Hy is contained in BJ , it follows that
(H, ™ ,H )12, is the closure of Hj in BY .. Hence the density of D, in Hj and
(0.6) imply that
Bg,r = (H;TJH;)I/Q,T-
Now we obtain the second relation in (3.18) from (3.8) and the reiteration
theorem, by the arguments of the first part of this proof.
(i) It is well-known that D, is dense in Hj (e.g., [37, Section IIL.4] and
the references therein). Since H! is dense in (Hf,]HI}I)@,T for 0 < 8 <1 the
assertion follows from (i).

(iii) Thanks to (i), we obtain these assertions from Lemmas 3.1 and 3.2,
respectively, by interpolation. ([

4. Bilinear estimates
We put
B(u,v) :=—(u-V)v=V-(uQ®v), u,vEIHIZ, (4.1)

and study some mapping properties of this bilinear operator. Here and below,
we use the same letter to denote various continuous extensions of B over su-

perspaces of H2.
Lemma 4.1. Suppose that ¢ > 2 and o € [0, 2] satisfy
0<3/q, -1+4+3/¢<20<1+3/q.
Then B € L*(HZ , H.°~'73/1).
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ProoF. This follows from the proof of Theorem 4.2 in [4] by omitting
there the projection P. O

Henceforth, we denote the Nemyts’kii operator induced by B again by B, that
is, B(u,v)(t) = B(u(t),v(t)) for t € J, etc.
Proposition 4.2. Suppose that q € [2,00), 7 € (1,00), and s € [0,2] are
such that
—14+2/r+3/¢g<s<1/r+3/q (4.2)
and
2/r<2s<1+2/r+3/q. (4.3)
Then
B e L*(W; (Jr, H; ), L (JT, H;72+a(5))) J-uniformly,
where a(s) :=s+1—2/r—3/q and J = R" is admitted.
PROOF. Set o :=s—1/r. Then (4.2) and (4.3) imply 0 < o < 3/q and
—1+43/¢ <20 <1+ 3/q. Also note that 20 —1 —3/q = s — 2+ a(s). Hence,
by Lemma 4.1,

B € L2(H, Hi ooy, (4.4)
Since s —2/r —3/q = 0 —2/(2r) — 3/q we infer from Theorem 3.3 that
WHRT,H) < Ly, (RT,HY ). (4.5)

Denoting by & the norm of the map (4.4), it follows from Holder’s inequality
and (4.5) that there exists kg > 0 such that

1B, 0)ll e+ prz-2+ey < K llull Ly, wrmg) [0llLo, e m) (46)
< o [lullwa+ms) [10llwa z+ms)

for u,v € WiH(R', HE).
Now suppose that 0 < T < T. Given u € W} (Jr, H), define @ by
u on Jr,
{ V()u(T) on J\Jr,
where V (t) := e~(t=T)(0+A-2) for t > T. Thenw € W}(R*,H) by (1.4). Thus,
given u,v € W} (Jr,H), it follows that @ and v satisfy (4.6), where kg is inde-

pendent of the particular extensions @ and ¥ of u and v, respectively. Hence,
by restriction, we see that

U=

1B(u, )|l ( 1y mrz-2+aty < o [lullwior mg) 0w e 1)
for u,v € W} (Jp,HE) and 0 < T < T. O

It should be noted that the restriction ¢ > 2 has been imposed for simplicity. By
employing [4, Theorem 4.2] in its full strength, the case ¢ < 2 can be handled
as well.
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5. Proof of the Theorem

Let assumptions (0.8) and (0.9) be satisfied.
If s(r) > 1/q then it follows from (0.3) and (0.8) that
f € Lyjoo(RY, HEM72), (5.1)

Thus suppose that s(r) < 1/q. Then (0.9) and the remarks following it imply
that (5.1) is true in this case also.

By the trace theorem
2-s(r) 1/q—s(r)
81/ € E(qu ,Wq, (F)) i
Hence
Ry = -(8,) € E(I/I/:IS(T)—l/q(F),Hz(r)_z),

thanks to the duality properties of the Sobolev-Slobodeckii spaces on I'" and
0 (0.2). Consequently, (5.1) and (0.8) guarantee that

F+Ryr)9 € Lytoo(RY, HM72). (5:2)
From Proposition 4.2 we infer that
Be L2(WH(Jr, ™), L(Jr, H{" ™)) J-uniformly. (5.3)
Thus we can consider
b+ Agry_ov = —w+ B(v) + f + Remg inJ, v(0) = 2°. (5.4)
Then (v, w) is said to be an L, (H:)-solution of (5.4) on J iff
(0, W) € W ool LHE ™) X Ly joe(J*, G5V 2) (5.5)
and (v, w) satisfies (5.4). Set
b:= PB, h:=P(f+Ry)9)-
Then (3.12) and (5.3) imply

be L2(W, (Jr, ™), L, (Jp, X %)) J-uniformly, (5.6)
and it follows from (3.12) and (5.2) that
h e L,(J,H"2). (5.7)
Furthermore, (3.11)—(3.14) show that (5.4) is equivalent to
0+ Ag(ry—2v = b(v) + h, tel, v(0) =1 } (5.8)
w=(1-P)(—As)—20 + B(v) + f + Ry(r)9)-

Thanks to (5.6) and (5.7) we can apply Theorem 2.2 to the first equation
in (5.8). Then it follows that this equation has a unique maximal solution

u €W}, (JT, ]HIZ(T) ). Consequently, w, defined by the second equation in (5.8),
belongs to LT,loc(J‘*,GZ(T)*Z). Hence (v,w) satisfies (5.5) with .J := J*. This
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shows that (5.4) has a unique maximal L, (H:")-solution. Furthermore, it has

the properties stated in the Theorem.

If Q is bounded then the Stokes semigroup {e "t ; ¢+ > 0} is well-known
to be exponentially decaying. It follows from [26, Theorem V.2.1.3] that this
is also true for { e~ -2 ; ¢+ > 0}. Hence we deduce from Theorem 2.2 that
(v,w) is a global solution if Q is bounded and the norm of (v°,(f,g)) in the
space (0.14) is sufficiently small.

On the basis of [26, Theorem V.2.8.3] we can modify the arguments of
the last part of [11, Section 3] in the obvious way to show that (v,w) is an
L, (H:™)-solution of (5.4) on J iff it satisfies (0.10) and (0.11). These argu-

ments and (5.8) show that this is the case iff v is an L, (H:"™ )-solution of the
Navier-Stokes equations (0.1). Then w is determined by the second equation
in (5.8). This proves the Theorem.

Remarks 5.1. (a) Suppose that s := s(r) < 1/q. Set § := —8,,|H3,_5 and
fix 6° € £(W, *TV/*(T), H3 ) satistying 68° = 1 and 70° = 0. Then the map
pq :=1—46° belongs to K(Hgfs) and is a projection onto ﬁI;,_S, parallel
to im(0¢) (cf. [11, Proof of Theorem 1.1]). Setting R(f,g) := pof + Rs(r)9s
it follows from [11, Corollary 1.2] that R is an isomorphism from the space

H: 2% x W4T onto H °~2. Hence the Theorem remains true if assump-
tion (0.9) is omitted, provided (f,¢) in (0.11) and (0.13), respectively, is re-
placed by (f, pay).

Assumption (0.9) guarantees that we can choose the coretraction 6¢ for &
in such a way that (f,pay) = (f, ).

PRrOOF. It suffices to replace f + R,(;)g in (5.2) by R(f,g). O

(b) Suppose that 1/r +3/q < 1 so that s(r) = 1/r. Then Proposition 4.2
implies that

be L2(WH(Jr, Hy"), L, (Jr, H,*~%/7)) J-uniformly.

Thus, since —1 — 3/q > s(r) — 2, maximal regularity is not needed, provided

(f,9) has values in H V1872 x WS W+A=14(1Y for some B> 0. In this case
the right-hand side of the first equation in (5.8) is subordinate to the operator
Ay(ry—2 so that the smoothing property of the semigroup {e7them-2 5 t >0}

implies better regularity properties of the L, (H:™)-solution for ¢ > 0.

Proor. This follows by replacing (1.9) in the proof of Theorem 2.2 by [28,
Lemma 4]. Details are left to the interested reader. O
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