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Abstract. It is shown that translation-invariant operators with operator-valued symbols act con-
tinuously on Besov spaces of Banach-space-valued distributions. This result is then used to extend
and complement the known theory of vector-valued Besov spaces. In addition, its power is demon-
strated by giving applications to a variety of problems from elliptic and parabolic differential and
integrodifferential equations.

Introduction

Fourier multiplier theorems provide one of the most important tools in the study
of partial differential and pseudodifferential equations. Among them Mikhlin’s theo-
rem, guaranteeing the continuity of pseudodifferential operators on Ly-spaces, plays a
predominant réle.

The simplest case of a pseudodifferential operator is provided by a translation-
invariant operator which can always be written in the form

a(D) := F~'aF

where a, the symbol of a(D), is a sufficiently smooth function on IR", and F denotes the
Fourier transform. We are particularly interested in the case where a takes its value in
a Banach space E. Then we say that a belongs to the symbol class S™(IR", E), where
m € R, if a € C"*1(IR™\{0}, E) and there exists a constant ¢ such that

0%a(@)lp <c@+[E)™1,  aeN", |o|<n+1.

It is a well-known consequence of Mikhlin’s theorem that a(D) is a bounded linear
operator from L,(IR") into itself, where 1 < p < oo, if a € S°(R", C). In fact, in this
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‘scalar’ case the requirements for a can be considerably weakened (e.g., [H6r60], [H6r83,
Section 7.9]).

In connection with an operator-theoretical approach to differential equations one
is naturally led to study translation-invariant operators in L,(IR", E), that is, in
L,-spaces of vector-valued functions. Thanks to the work of BOURGAIN [Bou83|,
BURKHOLDER [Bur83], MCCONNELL [McC84], and ZIMMERMANN [Zim89] it is known
that a(D) maps L,(IR", E) continuously into itself for 1 < p < oo, provided a belongs
to S°(IR™, C) and E is a UMD space. The latter condition implies the reflexivity of E.
Thus it restricts the class of admissible Banach spaces considerably. In particular, it
rules out the use of Holder spaces which are of great importance in the theory of
nonlinear differential equations.

However, even if we are willing to restrict ourselves to the class of UMD spaces,
the above generalization of Mikhlin’s theorem is not sufficient for many purposes.
In practice there occur naturally pseudodifferential operators with operator-valued
symbols, that is, symbols in S™(IR", L(E, F)), where L(E, F) is the Banach space
of all bounded linear operators from E into the Banach space F'. This is the case,
for instance, in the systematic study of pseudodifferential operators on manifolds
with singularities carried out, in particular, by B.-W. SCcHULZE and his coworkers
(e.g., [Sch91], [Sch94a]).

An inspection of that research shows that the authors always restrict themselves to a
Hilbert space setting. This is necessary since they use in an essential way Plancherel’s
theorem which is known to be valid in Hilbert spaces only, that is, if E is a Hilbert
space and p = 2.

For the study of nonlinear problems a Hilbert space Lo-setting is too narrow for many
purposes. It would be very useful to be able to work in an L,(IR", E)-setting with gen-
eral p and an arbitrary Banach space. Unfortunately, this is impossible due to a result
of G. PISIER. In fact, that author proved — but did not publish — more than fifteen
years ago that, if Mikhlin’s theorem holds on L,(IR, E) for L(E, E)-valued symbols,
then E is isomorphic to a Hilbert space (private communication; also see [LLLM96]
for a proof). Thus there is no Mikhlin-type theorem on the scale of Bessel potential
spaces H;(IR",E) for 1 < p < oo and general FE, since those spaces are isomorphic
to L,(R", E).

From the theory of function spaces it is known that, besides the scale of (scalar)
Triebel-Lizorkin spaces, that contains the Hj-scale as a subscale, there is a second gen-
eral scale of function spaces possessing similar properties, namely the scale of (scalar)
Besov spaces (e.g., [Tri83]). This scale subsumes, in particular, the important Sobolev-
Slobodeckii spaces of noninteger orders, as well as the scale of Hélder spaces. It is also
known how to define vector-valued Besov spaces, and that many properties of the
scalar spaces carry over to the vector-valued setting (cf. [Sch86] for the most complete
results published so far).

In this paper we show that, given arbitrary Banach spaces £ and F' and any
a € S™(R",L(E,F)), the operator a(D) maps the Besov space Byt™(R", E) contin-
uously into the Besov space By (IR", F'), where s € R and p, g € [1,00] are arbitrary
(see Section 5 for the definition of these spaces). Furthermore, similar assertions are
true if these spaces are replaced by certain closed subspaces thereof that are of impor-
tance in applications. Thus in a vector-valued setting it is of advantage to use the scale
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of Besov spaces instead of the Bessel potential scale. Although general Besov spaces
are somewhat complicated to describe, and not too easy to handle, there are rather
precise embedding theorems relating them to the more familiar spaces L,(IR", E),
1< p< oo, BUC(R™ E), and Co(IR", E). Thus our operator-valued multiplier theo-
rem can be used to derive continuity results of translation-invariant operators on those
spaces as well, provided one is willing to sacrifice ‘optimal regularity’.

In order to be able to define a(D) in the operator-valued case on sufficiently gen-
eral spaces of distributions we have to employ L. Schwartz’ theory of vector-valued
distributions and, in particular, a rather sophisticated version of his abstract kernel
theorem (cf. [Sch57b], [Sch57a]). These results and some of their consequences that
are important for our problems are collected in the first three sections without proofs.
A detailed exposition including full proofs will be given in [Ama97].

The basic multiplier theorems are proven in Section 4, where they take a preliminary
form since we introduce general Besov spaces in Section 5 only. In that section we
collect the known results on vector-valued Besov spaces and use some simple versions of
our multiplier results to derive useful representations for some Besov spaces and some
of their important subspaces. In addition, we present without proofs some deeper new
results which show that — using appropriate interpretation — vector-valued Besov
spaces possess virtually the same properties as their scalar counterparts. This is true
without any restriction on the Banach space F, except for the duality assertion where
we have to require that E' possesses the Radon-Nikodym property, which is certainly
not surprising. Since we do not use most of these deeper properties we do not give
proofs but refer again to [Ama97]. It should be mentioned, however, that they rely in
an essential manner on the multiplier theorems of Section 4. In Section 6 we prove the
Besov-space-version of the operator-valued multiplier theorem, namely Theorem 6.2.

The remaining two sections are devoted to applications. In Section 7 we prove some
general isomorphism theorems and resolvent estimates for translation-invariant oper-
ators on Besov spaces. These results imply, among other things, that those operators
generate analytic semigroups on Besov spaces. Using suitable embedding theorems we
then infer that they generate C*°-semigroups on the classical function spaces.

Finally, in Section 8 we present a variety of applications of the preceding general
results. Besides of showing, by means of simple model problems, how to obtain easily
solvability results for degenerate elliptic and parabolic differential equations on cylin-
ders, we derive some new maximal regularity theorems for general operator-valued con-
volution equations comprising, in particular, integrodifferential equations of parabolic
type on the line and on the half-line. We also give almost trivial proofs of a maximal
regularity theorem due to DA PRATO and GRISVARD [DG75] and of an existence re-
sult of LUNARDI [Lun95] for bounded solutions of parabolic evolution equations. In
addition, we extend these results to encompass wider classes of spaces. Lastly, we show
how our results can be used to treat the Poisson equation on a general cone in IR",
which is a simple model problem for elliptic boundary value problems on manifolds
with singularities. It is hoped that the results of this paper open a way to attack these
problems in a non-hilbertian framework.

Notations and Conventions In this paper all vector spaces are over IK := IR or C. If
in a given formula there occur explicitly (as, for example, in the Fourier transform) or
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implicitly (as, for example, in the resolvent set of a linear operator) complex numbers,
it is always understood that this formula refers to the complexified spaces if IK = IR.

If Z is a nonempty subset of some vector space, we put Z7:=Z \{0}.

Let V and W be locally convex spaces (LCSs). Then L£(V,W) is the LCS of all
continuous linear operators equipped with the bounded convergence topology, and
L(V):=L(V,V). We denote by Lis(V,W) the set of all isomorphisms in L(V, W),
and Laut(V) := Lis(V, V). We write V — W if V is a linear subspace of W and the

canonical injection is continuous. We replace — by ci) if V is also dense in W.
The dual space of V is denoted by V' and is given the strong topology so that
V' = L(V,K). Then (-, -),, : V' x V = K is the V'-V-duality pairing, that is, (v', v)v
is the value of v' € V' at v € V.
Throughout this paper E, Ey, F1,E>,... denote Banach spaces whose norms are
denoted by |-|, if no confusion seems likely. Moreover,

(01) E1 X E2 — EO y (61,62) = €1 @€

is a multiplication, that is, a continuous bilinear map of norm at most 1. Important
examples of multiplications are:
(i) ordinary multiplication if E is a Banach algebra and E; = E, j=0,1,2;
(ii) multiplication with scalars: IK x E — E, (a,e) — ae;
(iii) the duality pairing E' x E — K, (€',e) — (€', e)p;
(iv) the evaluation map L(E;, Ey) X E1 — Ey, (A, e) — Ae;
(v) composition L(E;, Es) x L(Ey, E1) — L(Ey, E2), (S,T) — ST.
In general, if b: E; x Ea — Ej is a nontrivial continuous bilinear map then

Ei x By = Ey, (e1,e2) = ||b]| 7" b(e1, e2)

is a multiplication. The trivial map E; x E», (e1,ez) — 0 is a multiplication as well.
Hence it is no restriction to presuppose the existence of a multiplication (0.1) on the
spaces Ey, E1, and E, (as long as we do not specify a particular one, of course).

1. Spaces of Vector-Valued Distributions

In this section we collect some basic facts about vector-valued distributions and in-
troduce further notation. The results are ‘elementary’ in the sense that the usual ‘scalar
proofs’ carry over to the vector-valued setting by using obvious modifications only.

Let X be a nonempty open subset of R". We write D(X, E) for the space of
all E-valued test functions on X, that is, the set of all u € C*°(X, E) having com-
pact supports in X, endowed with the usual inductive limit topology. We also put
E(X,E) := C>®(X,E), equipped with the Fréchet topology of compact convergence
of all derivatives. Furthermore, S(IR", E) is the Schwartz space of rapidly decreas-
ing E-valued smooth functions on IR™ with the standard Fréchet topology. Lastly,
Oum(IR™, E) denotes the space of slowly increasing smooth E-valued functions on R",
that is, ¢ € O (IR™, E) if for each a € IN" there exist ¢, and m, € IN such that

|0%p(z)] < o1+ |2])™ z €R".
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It is a LCS with the topology induced by the family of seminorms

{orllpd®alle ; ¢ € S(IR",K), a € N" } .
Of course, we set 0% = 0" --- 03~ for a = (a1, ...,a,) € IN", where 0; := 0/0x; for
1<j<n,and ||| is the supremum norm.

To simplify the writing we agree to put
(1.1) 3(X,B) =3(R",E)  if§e{S,0um},
that is, if § is one of the letters S and Op;. Moreover,
FX) =3 X, K), F€{D,ES8,0u} .

Then we set
3I(X7E) :‘C(S(X)JE) ) 3€{D,E,S,OM} )

so that §'(X,K) = F(X)'. Thus D'(X, E) is the space of E-valued distributions on X,
and S8'(R", E) is the space of E-valued temperate distributions on IR™. The support
of an E-valued distribution is defined as in the scalar case. The scalar proof carries
over to show that £'(X, E) is the set of all E-valued distributions having compact
supports in X.

As usual, we identify u € Lj j0c(X, E) with the E-valued distribution

o ulp) = /X p@)u(z)dzr, e DX).

Then Ly 10¢(X, E) is the space of regular E-valued distributions on X which is given
the obvious Fréchet topology. It follows that

D(X,E) % Lij0c(X, E) < D'(X, E) .
Moreover,
D(X,E) S £(X,E) S D(X,E), D(X,E)<S &'(X,E) S D(X,E),
and
D(R", E) <5 S(R™, E) <5 Oy (R, E) <5 8'(R", E) <5 D(R™, E) .
For u € D'(X,E) and a € IN" we define 0%u by
0%u)(p) := (-D)I*u(d%0) , e DX).
Then 0 € L(D'(X, E)). Similarly, (au)(y) := u(ayp) for a € £(X), u € D'(X, E), and
¢ € D(X). Then ‘point-wise multiplication’
E(X)xD'(X,E) > D'(X,E), (a,u)w— au
is a well-defined bilinear map which is hypocontinuous, that is, continuous in each

variable, uniformly with respect to the other one restricted to bounded sets. It follows
that (u — au) € L(S'(R™, E)) iff a € Op (R™).
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Let G(X, E) be a LCS such that G(X, E) — D'(X, E). Then G(X, E) is said to be
a space of E-valued distributions, an ‘E-valued space of distributions on X’, and we
put G(X) := G(X,K) if no confusion seems possible.

If m €N and 1 < p < oo then W™(X, E) is the Sobolev space of all E-valued dis-
tributions on X such that 0%u € L,(X, E) for |a| < m. It is a Banach space with its
usual norm which is denoted by ||-||m,p- If 1 <p < oo and 6 € (0,1), we put

lu(z) — u(y)|P
ulh) = / ——= d(z,y) .
luloy xxx |z —y|vtoP (=:9)
Then, given p € [1,00) and s € IRT\IN, the Slobodeckii space W, (X, E) consists of all

u € Wf] (X, E) such that [0%u],_[5p, < oo for |a| = m, where [s] is the integer part
of s. It is a Banach space with the norm

1/p
wes fullap = (lullfy, + 32 0oy ,) " -
]

ler|=[s

It follows that ;
D(X,E) — W;(X,E) — D'(X,E)

and

S(R™, E) <5 W (R", E) <> §'(R", E)

forse RT and 1 < p < 0.

We denote by BUC™(X, E), m € IN, the Banach space of all v € C(R", E) such
that 0%u is bounded and uniformly continuous on X for |a| < m, equipped with the
norm ||-||m,00- If 8 € RT\IN then BUC*(X, E) is the Holder space of all u belonging
to BUC®l(X, E) such that 0“u is uniformly Hélder continuous of exponent s — [s] for
|| = [s]. It is a Banach space with the norm

wis ulloso o= lulligoo + max [0%ul, 4
|a|=[s]
where fu(z) — u(y)|
u(z) —u(y
= = 8 _—
[ulp == [u]s,x zllepx oyl
z#y
Clearly,

BUC*(X,E) = WEI(X,E) > D'(X,E), seR*t.

We also introduce the ‘little Holder spaces’ buc®(X, E) as follows: if s € IN then
buc®(X, E) := BUC*(X,E) ,

and if s € RT\IN then it is the closed subspace of BUC*(IR", E) consisting of all u
such that max|q|—[5)[0%u]s—[5,y — 0 as diam(Y’) — 0.
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Lastly, we denote by C§(X, E) the closure of D(X, E) in BUC*(X, E). Then

1.2)  S(R™,E) <% C3(R™, E) < buc*(R", E) — BUC*(R", E) — S'(R", E)

for s € R™. It follows that u € C*(X, E) for m € N iff u € C™(X, E) and, given any
€ > 0, there exists a compact subset K of X such that |0%u(z)| < € for z € X\ K and
|a| < m, that is, 0%u ‘vanishes at infinity’ for |a| < m.

Obviously, W = L, and ||-|lo,, = ||-[lp, and we omit the superscript s in BUC*®
and Cf§ if it equals 0.

We denote by F the Fourier transform, and set ¢ := Fy for ¢ € L;(IR", E). The
Riemann-Lebesgue lemma asserts that

F € L(Li(R™, E),Cy(R™, E)) .

For ¢ € S(R") and u € S'(R", E) we put u(p) := u(®) and Fu :=u. Then it fol-
lows that

(1.3) F € Laut(S(R", E)) N Laut(S'(R™, E))
and
(1.4) Flu=@mn) ™i=2r)""a, ueS(R"E),

where ¢(z) := ¢(—z) and 4(p) := u(p) for p € S(R™) and u € S'(R™, E).
Setting D; := —i0; for 1 < j < n we obtain

(1.5) Dow=¢"%, feu=(-1)*D*4, weS(R"E), aecl".
We define dilation oy for ¢t > 0 by

oup(x) := p(tz) , (ow)(p) :=t""u(o1/:%)

for p € SR™) and u € S'(R", E). Then {0y ; t > 0} is a group of automorphisms of
S(R™, E) and of S'(R", E), and (0;)~! = 01 /;. Moreover,

(1.6) Foor=t "oy40F, 8% ooy = t1%g, 00 | aelN", t>0.

It is also easily verified that L,(IR", E) is invariant under the group {o; ; ¢ >0} of
dilations and that

(1.7) lovully =t "7 |lull, ,  u€L,(R"E), 1<p<oco, t>0.

Suppose that u € D'(IR, E) and supp(u) C IR". Also suppose that there exists w € R
such that e~ ¢u € S'(IR, E) for each ¢ > w, where (¢, z) = &z, of course. Then

(1.8) (=E+in () = (e 8u) () ,

the Laplace transform of u, is a well-defined analytic function on [Re ¢ > w] which is
polynomially bounded in the sense that there are constants ¢ and k such that

[a(Q)| < e(1+ )", Re(>w.

Conversely, if @ is a polynomially bounded analytic function on [Re{ > w] for some
w € R then it is the Laplace transformation of a distribution « € D'(IR, E) whose
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support is contained in IR™. This is a special case of a more general Paley-Wiener
theorem. It is easily seen that e=(¢u € S'(IR, E) for each ¢ >0 if u € S'(R, E)
with supp(u) C R*.

2. Point-Wise Multiplications

Suppose that a € £(X, Ey). Then point-wise multiplication (with respect to multi-
plication (0.1)) with a regular E»-valued distribution u is defined by

(2.1) aeu(z) :=alx)eu(z), aa.r€X .

Clearly, a ® u is a regular Ey-valued distribution, and this definition is consistent with
the definition of multiplication of a smooth function with a distribution if £; = IK and
e denotes multiplication with scalars. However, if u is a general Es-valued distribution,
it is far from being obvious how to define a ‘point-wise multiplication’ that reduces to
(2.1) if w is regular. In order to do this we have to rely on the general theory of the
topological tensor products and a rather general version of Schwartz’ kernel theorem as
given in [Sch57b] (also see [Sch57a]). Whereas Schwartz considers distributions with
values in general LCSs, we restrict ourselves to the Banach-space-valued case. This
simplifies the theory to some extent. For a complete presentation in this framework,
as well as for further results, we refer to [Ama97, Chapter VI] where, in particular,
proofs for the statements of this and the next section can be found (also see [DL90]
and [Fat83] for some parts of the theory in ‘one variable’).

Suppose that § € {D,D',&,E',S,S',Om} and recall convention (1.1). Then we set
p®e:=pe for p € F(X) and e € E. Consequently, the tensor product

FMR") ®E :=span{p®e; p e FR"), ec E}

has a meaning, where the span is taken in F(IR", E). It follows that D(X) ® E is dense
in (X, E). Given a:= p ® e; and u := ¢ ® ey, where p,1 € D(X) and e1,es € E, it
is natural to put a e u := Y1) ® (€1 ® e2). Then one would like to extend this definition
to all (a,u) € £(X, Ey) x D'(X, E2) by density and continuity. This is indeed possible
as the following fundamental result shows.

Theorem 2.1. There exists a unique hypocontinuous bilinear map
E(X,E1) xD'(X,Ey) »D'(X,E) , (a,u)—~aeu,
called point-wise multiplication induced by (0.1), such that

(p@er)e(P@ez) =Y @ (e10e2)

fora:=p®e € D(X)QE; andu:=1) Q e3 € D(X) ® Es. It restricts to a hypocon-
tinuwous bilinear map

§1(X, Er) x §2(X, Ez) = §o(X, Eo) ,

where (F1,82;80) stands for any one of the triplets (£,D; D), (£,E;E), (Om,S;S),
(Om,Om;0m), (€,E5E"), or (Om,S"58").
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Remarks 2.2. (a) Since Es X E; — Ey, (es,e1) — e1 @ es is a multiplication as
well, the assertions of Theorem 2.1 are ‘symmetric’ with respect to F; and E,, that is,
the roles of E; and Fs can be interchanged. This fact will often be employed in the
following, usually without further mention.

(b) Point-wise multiplication induced by (0.1), as defined in Theorem 2.1, coincides
on regular distributions with point-wise multiplication defined in (2.1).

(¢) Leibniz’ rule is valid: if p is a polynomial in n indeterminates then

pO)asw = Y 5(0%) o 17 O)u
5

for a € £(X, Ey) and u € D'(X, Ey), where p'®) := 8°p. In particular:

0%(aeu) = Z (g)(@ﬂa) e Py, a€l(X,E), ueD(X,E).
B<La

(d) If (a,u) € E(X, Ey) x D'(X, E2) then supp(a ® u) C supp(a) N supp(u).
(e) Suppose that there are multiplications

E1 XE2 E2 XE3
Ey x E3 Ey x Ey
\E5/

all denoted by e, which are associative, that is, (e; eez) e ez =e; o (e3 ®e3) for
e; € E;, j=1,2,3. Then point-wise multiplication is associative as well, when de-
fined, that is,

(urouz)eus =ure(uzouz),  u; €F;(X,E;), j=1,2,3,

where (31;32733) = {(S,E,D’),((’)M,OM,S’)}. o

Suppose that § € {D, &, S}. Then it is reasonable to expect that there is a ‘duality
pairing’
F(X,E') x§(X,E) - K
that is a natural extension of the §'(X)-§(X)-duality pairing. It is a corollary to the
following more general theorem that this is true indeed. In this theorem we put §" := §

for § € {D, &, S}. This is consistent with F(X)" = F(X) as follows from the reflexivity
of F(X) for § € {D,&,S}.

Theorem 2.3. Suppose that § € {D,E,S,D',E",S'}. Then there exists a unique
hypocontinuous bilinear map

F'(X,E) xF(X,Es) = Ey, (u,u)— (ueu)z,
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the scalar product induced by multiplication (0.1), such that

((p@er) e (Y ®er)): = (p,¢)p(er o e2)
for p,p € D(X) and e; € E;, j=1,2.

Remarks 2.4. (a) Suppose that u € L1 10¢(X, E1) and v € D(X, E»). Then

(uov)p = / u(z) e v(z)dz .
X
(b) Parseval’s formula is valid, that is,
(uep)s = (2m) (@ e §)s = (Fu, Flu)s
for u € S'(IR™, Ey) and ¢ € S(R", E»). |
Corollary 2.5. Let § € {D,£,S}. Then there exists a unique hypocontinuous bilin-

ear map
F(X,E)xFX,E) =K, (u,u)— (u', u)z(x,E) >

the duality pairing between §'(X,E') and §(X, E), such that
(W s = [ (o) u(@)) y do
b's
foru' € D(X,E") and u € D(X, E).

Proof.Let Ey := E', Ey := E, and Ep := K, and put e; e e2 := {e1, e2) g. Then the
assertion follows from Theorem 2.3 and Remark 2.4(a). |

Remark 2.6. It is also true that
(' u)p(x,p) = / <u'(m),u(x)>Ed:c , (u',u) € L110c(X, E') x D(X, E) ,
X
and

(') s ) =/ (W' (@), u(@) ydo,  (u',u) € L(R", E') x SR™, E) ,

n

where 1 < p < 0. O

3. Convolutions

For u; € D(R", E;), j = 1,2, we can define the convolution induced by multiplica-
tion (0.1) by

B wrn@ = [ we-y)ewo)d= [ 6w eue-)d

n

for x € R™.
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The following theorem extends this definition to vector-valued distributions.

Theorem 3.1. Suppose that either u; € D'(R",Ey) and us € E'(R"™, Ey), or
that u; € S(IR™, E1) and us € S'(R™, Ey). Then there is a unique distribution in
D'(R"™, Ey) or in Op(IR™, Ey), respectively, the convolution of u; and us with
respect to multiplication (0.1), denoted by uy *e u2, such that

(pr®e1) e (p2®ex) = (pr*p2)®(e10€2) , 1,92 € DR"), e; €E;,

for j = 1,2, and such that the ‘convolution maps’ (u1,us) — uy *e uz are bilinear and
hypocontinuous:
D'(R™, Ey) x £'(R™, E;) — D'(R™, Ep)

and
S(R", Ey) x S'(R", E3) — Op(R™, Ey)

respectively.

Similarly as in Remark 2.2.(a) we see that the réles of E; and E, can be interchanged.
This is often used without further mention.

Suppose that m > 2. Then the distributions u; € D'(IR", E;), 1< j < m, are said
to satisfy condition (X) if the map

m
Hsupp(uj) —TR", (Z1,---,Tm) > T1+- "+ 2T
Jj=1

is proper, that is, preimages of compact sets are compact. This is the case, for example,
if m — 1 of them have compact supports, or if there exists a proper closed convex cone I'
of R" containing supp(u;) for 1 < j < m.

Let u; € D'(R", E;), j =1,2, satisfy condition (). Then for each bounded open
subset X of IR™ there exists p > 0 such that

(z; € supp(u;), =1 + 22 € X) = (|zj]| <p, j=1,2) .

Fix ¢; € D(R"™), j = 1,2, with ¢; | (pIB") = 1, where IB" is the open unit-ball in IR".
Then ¢;u; € E'(IR", E;) so that (1)1u1) *e (2u2) is well-defined. It can be shown that
there exists a unique ug € D'(IR", Ey) that is independent of X and of the choice
of 1), such that ug|X = (Y1u1) *e (¢Y2u2)| X. Moreover, uy coincides with wug x4 us
whenever that convolution is well-defined. For this reason we put also in this case
U1 *e Uz 1= ug and call u; *, us again convolution of u; and u, with respect to
multiplication (0.1).

Remarks 3.2. Unless explicit restrictions are given, we suppose that either u; be-
long to D'(IR", E;) for j = 1,2 and satisfy condition (X), or that u; € S'(IR", Ey) and
u2 € S(]Rn,E2).

(a) U1 *e u2(p) = uy * (ug * $)(0) = (uy @ (2 * @), for p € D(R™).

(b) If u; € L1,1,c(IR"™, E;) satisfy condition (X) then uq *e us € L1 10c(IR", Eg) and
U1 *¢ u2(x) is given by (3.1).
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(c) Associativity Let the associativity hypotheses of Remark 2.2(e) be satis-

fied and suppose that either u; € D'(R", E;), j =1,2,3, satisfy condition (X), or
u; € S'(R", Ey) and ug, € S(IR™, Ey,), k=2,3. Then

Uy *o (U ko U3) = (U] %o U2) *e U3 -

(d) Commutativity Suppose that E; = E» =: E and multiplication (0.1) is symmet-
ric. Then u1 *¢ Us = Uy *¢ U1.

(e) Support Theorem Suppose that u; € D'(R", E;), j = 1,2, satisfy condition ().
Then supp(u1 *e u2) C supp(u1) + supp(us)-
(f) 6a+ﬁ(ul *q u2) = 0% *, 6EU2, Oé,,B e IN".
(g) Let 7, denote translation by a € IR™ (defined as usually). Then
Ta(ul *o UQ):(Taul) ko U2 = UL *¢ ToU2 , aEIRn s
and (uy *e Ug)” = Uy *e Us-

(h) Suppose that a € Ey and v € D'(IR", E»). Then
0%[(6®a)*eu] = (0%0®a) xeu=aedu =0%(aeu)
for « € IN", where ¢ is the Dirac distribution.

Given a nonempty subset K of R", we put

D (R"™,E):={ueD(R",E); supp(u) C K }

and D!, (E) := D+ (R, E). We observe that Dy (IR", E) is a closed linear subspace
of D'(R", E).

Example 3.3. Suppose that u; € D!, (E;) are regular distributions. Then the con-
volution u; *, uy belongs to D, (Ey) and is a regular distribution as well, and

¢
U1 *q uz(t) =/ ui(t — s) e uz(s)ds , aa.teRT .
0

Proof. This is an easy consequence of Remarks 3.2(b) and (e). O

In the following theorem we collect some of the properties of convolutions in a
particularly important setting.

Theorem 3.4. Suppose that § € {D,S,E', D}, where T is a proper closed convex
cone in IR™. Then convolution is a well-defined hypocontinuous bilinear map
3(RH,E1) X S(]RH,EQ) — S(IR”,E()) , (’Lbl,UQ) > Uy ke U2
possessing the associativity and commutativity properties of Remarks 3.2(c) and (d),
respectively. If (E,e) is a [commutative] Banach algebra then (F(R",E),*.) is

also a [commutative] algebra, a convolution algebra. If (E,e) has a unit eqg and
§ € {&',D}}, then (F(R™, E),*.) has a unit as well, namely § ® eo.



Amann, Operator-Valued Fourier Multipliers 13

The next theorem is of particular importance for the remainder of this paper. It
guarantees the existence of convolutions if support restrictions are replaced by suitable
integrability or boundedness conditions. Its proof does not rely on any deep theory of
vector-valued distributions but is literally the same as in the scalar case.

Theorem 3.5. Suppose that (F1,82;0) is any one of the triplets
(BUC, L1; BUC), (Co, L1; Co), (Lp, L1; Lp), (Leo, L1; BUC), (Lq, Lg; Co)

where 1 <p < 0o and 1 < g < oco. Then convolution with respect to multiplication (0.1)
extends from §1(R", E1) x D(OR", E5) to a multiplication

$1(IR", Eq) x §2(IR™, E) = §o(IR", Ey) .
It is given by (3.1).
Assuming the hypotheses of Theorem 3.5 we see that the estimate
llur *o u2llgomn o) < llualls, mr ey) llu2llg, (wme gy)

is valid for u; € §;(R",E;), j = 1,2. This is Young’s inequality for convolutions
(in the vector-valued setting).

Lastly, it is most important that the convolution theorem carries over to the vector-
valued situation.

Theorem 3.6. If u; € S'(R", E;) and us € S(R™, E2) then (uy *e u2)” = Uy ® Us.

Remark 3.7. Given a € Oy (IR™, Ey), we put
a(D)u = FlaeFu:= F ' (aei), u € S'(R", Es) .
Then (1.3) and Theorem 2.1 guarantee that
(3.2) a(D) € L(SR", E,),S(R", Eo)) N L(S'(R", E,),S'(R", Ey)) .

Moreover, a(D)u = F 1(a) ¢ u for u € S(IR™, E»), thanks to Theorem 3.6. In the
following, we put

a(D)u := F lagFu:= F 1(a) xe u

whenever a € S'(IR", E;) and u € S'(IR"™, E») are such that the convolution product
on the right-hand side is well-defined. Then a(D) is called translation-invariant
(pseudodifferential) operator with symbol a (related to multiplication (0.1)). O

Throughout the remainder of this paper we simply write au and a * u for a e u and
a %4 U, since it will always be clear from the context which particular multiplication
we are using in a given formula.
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4. Fourier Multipliers

Suppose that § € { BUC,Cy, L, ; 1 <p < oo}. Then FIR",E) = S'(R", E) and
we can ask for conditions on a € S'(IR", E;) such that a(D) is well-defined and belongs
to L(F(R", E»),§(IR", Ep)). In this case a is said to be a Fourier multiplier for §.
On the basis of Theorem 3.5 we can give an easy criterion for this to happen.

We put

FL(R™,E) = ({u € SR"B); Flue LR E) }, |7z, |
where
(4.1) lullr, = IF ulls -

It is clear that FL,(IR", E) is a Banach space, and the Riemann-Lebesgue lemma, the
density of S in Ly, and (1.3) imply that

(4.2) S(R™, E) <% FL(R™, E) < Co(R™, E) .
Moreover, if E is a Hilbert space and k > n/2 then
(4.3) WER", E) <% FL,(R",E) .

In fact, the standard scalar proof carries over to the vector-valued situation — thanks
to the validity of Plancherel’s theorem in Lo(IR", E), if E is a Hilbert space — to give
the estimate

[4
1-6
lulls, < cllully” (max 0%ull)” < cllully , — we WHR",B)

a

where 6 := n/(2k) (cf. [BL76, Lemma 6.5.1]).
The reason for introducing the space FL; is the following simple multiplier result.

Theorem 4.1. Suppose that § € { BUC,Co,L, ; 1 <p<oo}. Then
[a+ a(D)] € c(le(]R",El),L(S(R",Ez),S(IR",Eo))) -
Moreover,
[a— a(D)] € E(}'Ll(IR",El),E(LOO(]R",EQ),BUC(IR",EO))) .
The norms of these linear maps are bounded by 1.

Proof. This is an immediate consequence of Theorem 3.5 and Remark 3.7. O

In the remainder of this section we establish sufficient conditions for a distribution to
belong to FL;. For this we fix a radial function 1 satisfying the following conditions:

(4.4) Y e DR, ¢|B"=1, supp(yp) C2B"=:Q.
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Then we put 9 1= 1) — o21) = p — (2 - ) and
45) o=, Yri=od =9(27F) g ), keN,

and

(4.6) nj = oa-sh =277 ) — (27t jEeZ.
We also let
(4.7) Q=< g <2, keNN,
and
(4.8) S= [ < g <2V, jeZ.
Then it follows that
(4.9) Yr,n; € D(R™) , supp(¢) C Qx , supp(n;) C Iy
for k € IN and j € Z. Moreover,
(4.10) Do) =92 ™), E(€R', meN,
k=0
and
(4.11) > om(@ =v@ETmO - p@" e,  EeR", mm eN.
j=—m’
Consequently,
(4.12) S =1, ¢eR",
k=0

and
(4.13) dYoni©)=1, ¢e@),

j=—0o0

where for each £ € (IR™)" at most two terms in the above series are different from zero.
Thus (Y) := (Yr)kew and (n;) := (n;);ez are resolutions of the identity on IR" and
on (R™)", respectively, the dyadic resolutions of the identity induced by 1.

Letting 11 := 0, put

(4.14) Xk = V-1 + Vr + Vrg1 kelN.

Then it is an easy consequence of (1.6) and (4.4)—(4.9) that

(4.15) Y =vrxk, kelN,

and

(4.16) 2kl 0%y | < (o, P)xe, ,  kEN, aelN™,

where x x is the characteristic function of the set X.
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Given any ¢ € S(R") and o € IN",
lp0*(09-mtp = 1)[lc =0 asm — o0,

where 1 := xgr». Consequently, o5-m1 — 1 in Op(IR™) as m — o0, so that we infer
from (4.10) that

k=1 inOy(R").
k=0

Thus, given u € §'(R", E), it follows from Theorem 2.1 that Y 72 9,% =4 in the
topology of S'(IR", E). Hence we obtain from (1.3) that

(4.17) Y Yp(Du=u inS'(R",E), uecS(R"E).
k=0

In the following, we denote by |§|‘0‘| u the function & — €% u(€), that is, [£]l* is
interpreted as a multiplication operator, without fearing confusion.

Lemma 4.2. Suppose that a € D'((IR")", E) and all its derivatives of order less than
or equal to n + 1 are regular distributions.

(i) Given j € Z, suppose that

Wy = laﬁr%zzlgiln |¢]e! 60‘(1”00’& <o0o.

Then nja € FLi(IR",E) and
||77ja||fL1 < Clj

where ¢ = ¢(n, ) is independent of a and j.
(i) If a € W2 (Qq, E), then ¢a € FL;(R™, E) and

lvallzL, < cllall,i1 0000
where ¢ is independent of a.
Proof. (i) Since nja = (03— ¥)a = 09-i (Yosia), it follows from (1.6) that
F (nja) = 205 F (Y0ia) .
Now we obtain from (1.3) and (4.1) that
(4.18) Injallre, = llboziallrr, -

Leibniz’ rule and (1.6) imply

aa(ﬂzazja) = Z (§)2"'ﬂ‘(am65a)aa*%_

BLa
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Thus, since supp(8® A1) C o, it follows that

0% (Woria)(€)] < e Y 21°110%(27€)| x40 (€) < ejxsa (€)

BLa
for o] <n+1 and a.a. £ € R™. Hence 8*(¢osia) € Li(IR", E) and
10 (Wozia)ly <epj,  la| <n+1.
Consequently, by (1.4), (1.5), and the Riemann-Lebesgue lemma,
2 F 1 (Pogia) = F1 (D% (Poyia)) € Co(R™, E)

and

(4.19) |2 F ' (Yogia)(x)| < cp;, z€R™, |o/<n+1.

Since, by the multinomial theorem,

(4.20) ok = (@3 +-+22)9) " <elkyn) 3 2%, keN,
lal=k

it follows from (4.19) that
(4.21) |F Y (Woma)(@)| <cp;lz|™™",  ze(R™).
Hence, thanks to (4.19) and (4.21),

Wossallrs, = N7 Gzl < on| [

lz[<1

1dm+/ || dx] =cp; .
|| >1

Now the assertion is a consequence of (4.18).
(ii) From Leibniz’ rule we infer that

0%(Wa)l < e Y~ 10%al xap < ellally o0 X2
BLa

for |a| < n+ 1. Now the arguments of (i) apply if we replace ¥ by ¢ and set j := 0
and pg := ||alln41,00,0- O

Theorem 4.3. Suppose that a € Loo(IR", E) and all derivatives of order at most
n + 1 are regular distributions on (R"™)'. Put

. lot| ;
Hi = Iar\%%rl” N aaanoo,ﬁj ’ JEeL,
and
Xo = max [|0%l|co,00 -
o/ <n+1

Also suppose that

n::(i /.Lj)/\()\0+§lij)<00.

j=—00

Then a € FL1(IR™, E) and ||a||rL, < ck, where ¢ is independent of k and a.
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Proof. Given ¢ € S(IR"™), it follows from (4.11) and Lebesgue’s theorem that

k

(3 ma)) = [ ale™) - o 1)pds ~ alp)

=k’

as k, k' — oco. Thus the Banach-Steinhaus theorem and the fact that S(IR™) is a Montel
space imply

(4.22) Z nja=a in S'(R™, E) .
j=—00
Similarly,
(4.23) Y Yra=a  inS'(R"E).
k=0

Lemma 4.2 gives

k [}
> lmjallrr, <e Y ny

=k j=—c0
and, thanks to ¢; = n; for j € IN,

k oo
> llkallro, < Ao+ pj
j=0 7=0

for k, k' € IN. Hence the series on the left-hand sides of (4.22) and (4.23) converge in
the Banach space FL;(IR", E) if the right-hand sides in the corresponding estimates
are finite. Now the assertion follows from the continuous injection of FL;(IR", E) in
S'(IR"™, E) and from (4.22) and (4.23), respectively. O

Corollary 4.4. Suppose that a € W2 (IR", E) and there ezists € > 0 such that

llallnt1,00 + \arlrgfiln |€]lel+e 9%l <p<oo.

Then a € FLi(IR", E) and the estimate ||a||rr, < cu holds, where c:= c(e,n) is in-
dependent of p and a.

Proof. Note that Ao < ||a||n+t1,00 < p and

max [€|*[0%(§)| < plé|™",  aa fe(B")".
lal<nt1
Hence p; < p2-0=Y¢ for j € N so that & < p[l+ (1 —279)71]. O

For m € IR we say that a belongs to the space S™(IR", E) of E-valued symbols of
degree m on R" if a € C" ™' ((IR")", E) and there exists a constant ¢ such that

(424)  |Pra@© <c+lE)™ ", Ee(®"), la|<n+1.
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We also put A(€) := (1 + |¢[?)'/? for £ € R™ and

lallsm == max [|AI*7"8%]|
la<n+1

for a € S™(IR", E). Then ||-||s= is a norm and S™(IR", E) is a Banach space. These
symbol spaces will be important in the following sections. In the moment, we re-
strict ourselves to the case m = 0 and prove the following simple but important mul-
tiplier result.

Proposition 4.5. Suppose that ¢» € D(IR™) with ¢|IB" =1 and supp(y)) C 2IB",
and let () be the dyadic resolution of the identity on R" induced by 1. Also
suppose that

§€{BUC,Cy,L,; 1<p<oo}.

Then
(wka) (D) € ‘C(g(IR‘na E2)7 S(IR‘na EO))

and

(¢ka)(D) € E(LOO(IRTL,EQ),BUC(IR”,E()))
for a € S°(R", E,), and

sup [|(Yka) (D)l < cllallso ,  a € S°(R",E1) ,
keEIN

where ¢ is independent of a.

Proof. If a € S°(R™, E) then ||al|n+1,00 < ||al|se and p; < ||al|so for j € IN. Hence
the assertion follows from Lemma 4.2 and Theorem 4.1. |

Multiplier theorems of the type of Theorem 4.3 and its corollary are well-known in the
scalar case (e.g., [BL76, Exercise 6.8.3] or [Hie91, Lemma 3.3]). In this case the proof
is usually based on (4.3) so that the order of differentiation can be reduced from n + 1
to [n/2] + 1. This requires, however, the use of Plancherel’s theorem which is valid
only if E is a Hilbert space. We emphasize that in Corollary 4.4 and Proposition 4.5
we do not have to impose restrictions on the Banach space E.

After having finished this paper we learned that L. WEIS announced an analogue
to Proposition 4.5, which he obtained in collaboration with M. JUNG, provided the
resolution (¢r)ren of the identity on IR"™ is replaced by the resolution (1;);cz of the
identity on (IR™)". This implies that these authors can obtain an analogue of Mikhlin’s
theorem for homogeneous Besov spaces, whereas our result enables us to prove the
analogue of Mikhlin’s theorem given in Theorem 6.2 that is valid for nonhomogeneous
Besov spaces. Note that the latter spaces are invariant under diffeomorphisms which
is not true for homogeneous Besov spaces. Finally, it should be mentioned that, by
using facts from Banach space geometry, JUNG and WEIS can reduce in their result
the number of derivatives in estimate (4.24), provided E belongs to suitably restricted
classes of Banach spaces.
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Remark 4.6. Corollary 4.4 is close to being optimal in the sense that we can-
not expect to obtain a similar result with € = 0. Indeed, suppose that a belongs to
Lo(R™) NC™ 1 ((R™)") and is a Fourier multiplier for F(IR"), where § is any one of
the symbols BUC, Cy, L1, or L. If a is positively homogeneous of degree 0 then a is
constant. This has been shown by D. GUIDETTI [Gui93, Lemma 1.10] if § = L;. The
same proof applies to the other cases. |

5. Besov Spaces

Fix any radial ¢ € D(IR") satisfying (4.4) and denote by (¢x) the dyadic resolution
of the identity on IR™ induced by . Given s € IR and p, q € [1, 0], the Besov space
By (R", E) of E-valued distributions on IR" is defined to be the vector subspace of
S'(R™, E) consisting of all u satisfying

(5.1) lullsg, == || (2% 1k (D)ull, @ ) e [, < 00 -

It is a Banach space with respect to the norm defined by (5.1), and different choices
of v lead to equivalent norms.

Throughout this section n and E are arbitrarily fixed. Thus, in order to simplify
the writing, we usually omit (IR", E) in the notation of the spaces of E-valued dis-
tributions on IR™, that is, we simply write S or B, , for S(IR", E) or B; (R", E),
respectively, etc.

If —00 < s < 81 < o0 and p,qo,q1 € [1,00] then

(5.2) S—= By, =B —=S.

Moreover,

(5.3) By o = By s selR, 1<gp<qg<x,

and

(5.4) By, = B, —00< 80 <81 <00, Po,p1,qE[1l,00],

provided s; — n/p1 = so — n/po.
Put Ay:=7—1fort € R. For p € [1,00), g € [1,00], and 8 € (0,1) set

[u]o,p,q == Z”tig |A¢e; ull L, (m~,B) “Lq(l.R+,dt/t)
j=1

and

n
[u]l,p,q = Z”t_l ||A§eju||Lp(]R",E) “Lq(I.R-*-,dt/t) .
j=1
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Then it can be shown that

(5.5) (2 lorallg + Y oy,

lo|<[s] le|=Is]

is an equivalent norm on B ,, provided s € RY\IN. If s € IN then
1/p
(5.6) u— ( Yo eculiz+ Y [aau]';,p,q)
|a|<s—1 |a|=s—1

is an equivalent norm on B .
Besov spaces are stable under real interpolation. More precisely, if 0 < 8 < 1 and
—00 < 89 < 81 < ¢ then

(57) (B;?QO,B; Q1) = B;()}q B)so-+61 3 P,q,P0,90 € [1500] )

where (-, -)g,q is the standard real interpolation functor of exponent 6. They are related
to classical function spaces as follows: if s € IRT\IN then

Wws 1<p< >
5.8 B? = P - ’
(58) pp {BUCS, p=00,
where = means ‘equivalent norms’. However, Bf  # W} for 1 <p < oo and k € IN

unless p = 2 and E is a Hilbert space, and B%  # BUC* for k € IN. Moreover, if
0 < s<mand m € IN then

(59) Bgs),q = (Lpamm)s/m,q ) 1 <p<oo, 1 <g< 0.

Lastly, the spaces B, ,, coincide — except for equivalent norms — for s >0 and
1 < p < oo with the N1kol’sk11 spaces (cf. [KJF77], for example, for definitions).

The above definition of B, , and the stated properties of these spaces are literally the
same as in the classical scalar case, for which we refer to [Tri83]. Vector-valued Besov
spaces have been studied by several authors. In particular, GRISVARD [Gri66] used
(5.9) as defining relation to introduce vector-valued Besov spaces and deduced many
of their properties by interpolation techniques. The most common way of introducing
vector-valued Besov spaces (of positive order) is to define them via the norms (5.5)
and (5.6) (e.g., [Mur74], [Prii93]).

In the scalar case the definition of Besov spaces through (5.1) goes back to PEE-
TRE [Pee67]. We refer to [Pee76], [Tri83], and [KJF77] for further historical remarks. It
has been shown by SCHMEISSER [Sch86] that this approach can be carried over to the
E-valued case if 1 < p < 0o. Given the latter restriction, SCHMEISSER established most
of the properties stated above. For a coherent treatment (including the case p = 00)
and for further results we refer to [Ama97, Chapter VII].

We also set .
B?, = = B, ,(R", E) := closure of S in B, |

pq
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and we define the ‘little Besov spaces’ by
b, == b5 ,(R", E) := closure of BJt! in B},

for s€ IR and 1 < p,q < co. It will be shown below that

(5.10) B, ,=B,,, seR, 1<p,g<oo,
and it follows from (1.3) and (5.8) that
(5.11) Bl ,=0C5, seR"\N.
Below we also show that
B, 1<p,g< 0,
(5.12) by, =14 2 P
’ B, 1<p<oo, qg=00,

for s € R. We refer to [Ama97, Chapter VII] for a proof of the fact that, given 0 < 0 < 1
and —oo < 89 < 81 < 00,

(5.13) (B3, By B30, b5t )9 o = B Do+

)8,00 = (
P,30° ' P,q1/6,00 P,30° P,q1

for p,qo,q1 € [1,00], where (-, -)2700 denotes the ‘continuous interpolation functor’ of
exponent # introduced by DA PRATO and GRISVARD in [DGT79] (cf. [Ama95, Sec-
tion I1.2] for a brief description of the basic facts from interpolation theory). From this
we infer, in particular, that b; ., coincides for s >0 and 1 < p < oo with the ‘little
Nikol’skii space’ introduced (in the scalar case) in [DGT9, Section 6].

In [Ama97, Chapter VII] it is also shown that, given —oo < s < $1 < 00,
(5.14) [Bzo B3t g = B{L-Osotbsr 4 e [l,00], 0<O<1,

21 Rt 21} p.q

for B € {B,b}, where [-, -], is the standard complex interpolation functor of expo-
nent 6. Moreover,

(5.15) B, S wh LB . 1<p<oo,
and

(5.16) Bt <5 BUCH S bk,

as well as

(5.17) BE S ok SBE

provided k € IN. In addition, if B € {B, B,b} and m € IN then

(5.18) ueB,, <= JweB, ", |a<m,
and
(5.19) urs > [10%ul|ggm

la|<m

is an equivalent norm on B; , for s € IR and 1 < p,q < co.
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Furthermore, it is shown that F; — Ej implies

(5.20) B;,q(IR",El) — B;,q(]R",EO)
and
(5.21) B (R",E1) = B2 (R", Ep) , b5 (R, Er) = bS ,(R", Ep)

for s € R and p,q € [1,00]. If E; is also dense in Ep then the injections (5.21) are
dense as well.

Lastly, the following duality result is valid: if E is reflexive or E' is separable (more
generally: if E' possesses the Radon-Nikodym property) then

(5.22) (B; ,(R",E)) =B, (R"E), se€R, pq€l, o],
with respect to the §’-S-duality pairing, that is,

(ulv,U/)E;)q(IR",E) = (ulau)S(]R”,E) ) ul € B;?q’ (IR‘nvE) ) u € S(IR”,E) -
In fact, if p = oo then (5.22) holds without any restriction on E.

It should be remarked that the duality Theorem (5.22) relies heavily on Corollary 2.5.
Indeed, without that corollary, Theorem (5.22) cannot even be properly formulated.

In order to prove Fourier multiplier theorems for B, ,, where B € {B, B, b}, we need

another representation of these spaces. For this we introduce the Banach spaces £;(E),
s €IR, 1< ¢ < oo, to be the subspace of EN consisting of all u := (uy) satisfying

llulles(my = 1127 ur)le, < oo,
endowed with the norm [|-|¢s (). Furthermore, cj (E) denotes the closed linear subspace
of 5 (E) consisting of all u = (uy,) for which 2*%u; — 0 as k — oc. It is not difficult
to see that
(5.23) 6(B) S 0L(B) S 1L(E) S iy (B) — € (B)
for —o<t<s<oo, 1<p<oo,and 1 <q¢g<r < oo.
Now suppose that § € { BUC,Cy,L, ; 1 < p < oo} and put

63 = 3R E) = {ue SR, E) ; (pu(D)u) € 6(3(R",E)) },

and

lJu

05 = || (vx (D)u)

for s € R and g € [1, 00]. We define c§§ analogously. Note that £;L, = B .

£5(%)
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We endow the sequence space (S')N with the topology of point-wise convergence.
Then it is a consequence of (3.2) that the map

R:S = (SN, ue (Yr(D)u)

is well-defined, linear, and continuous. Note that the diagram

R¢
S, (S/)]N
: J

ez L

is commutative, where 623 C &' means that Eg& is a vector subspace of S’. Observe

that the lower arrow represents an isometry. We also consider the map

R: @) »8, ()~ D xeDv .
»q k

The next lemma shows that R is a well-defined continuous retraction, that is, it pos-
sesses a continuous right inverse, namely R°.

Lemma 5.1. The map R is (that is, restricts to) a continuous retraction from £3(g)
onto £;§ and from cg(J) onto c§, respectively, and R° is a coretraction for R.

Proof. Clearly, R is linear. Put ¢, = 0 for k¥ < 0. Since ¢ x, = 0 for |k — ¢| > 3,

Yk(D)Ro =Y ¢r(D)xe(D)ve = D $(D)Xkrs (D)ore
£

j=2
for v = (vy) € £3(3). Hence we infer from Proposition 4.5 (putting a := 1g) that

2

[r(D)Rollg <e Y llokrslls,  keN, vely(3).
j=-2

This implies
Re L(£(3),£6:5) N L(c5(3),c5F) -
Moreover, thanks to (4.17),
RRw=Y xe(D)r(D)u="Y (Yxs)(D)u=)Y v(Dyu=u
k k k

for u € EZS C &'. Hence R is a retraction and R is a coretraction. O

Using this lemma we can show that the choices § = Lo and § = BUC lead to the
same spaces.

Lemma 5.2. (7L, = £;BUC and cjLo = c§BUC.
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Proof. It is clear that £; BUC is a closed linear subspace of £ Lo,. Given u € £ L,
it follows that ¥ (D)u € Ly for k € IN. Hence xy(D)u € Lo, for k € IN and we infer
from 1y x, = 9 and Proposition 4.5 that

Yr(D)u = ¢y (D)xx(D)u € BUC kelN .

Consequently, u € £; BUC. Now the assertion follows since cg§ is a closed linear sub-
space of £5_§. |

Next we characterize the closure of § in Bf,’q.

Proposition 5.3. The following identities are valid:

B, 1<pg<o0,
s c§Ly 1<p< oo, q=00,
Pe 62007 p=0o0, lsq<00,
c$Co p=g=o00.

Proof. It is clear that the spaces on the right-hand side of the asserted equality are
closed linear subspaces of By , = {7 L, for the given ranges of p and q. Hence it suffices
to show that S is dense in these spaces.

Suppose that u € £5F if 1 < g < oo,oru € ¢§§ if ¢ = oo, where § := L, if 1 < p < oo,
and § := Co if p = oc. Since sequences with compact supports are dense in £;(E) for
1 < ¢ < o0, and in ¢§(E), we can approximate Ru arbitrarily closely in £;(J) if ¢ < oo,
and in ¢§(F) if ¢ = oo, by sequences v € £3(F) if ¢ < oo, and v € ¢§(F) if ¢ = oo, having
compact supports. Since S is dense in §, we can assume that v € S™. Hence we infer
from (3.2) that w := Rv € S and u — w = R(R°u — v). From this and from Lemma 5.1
it follows that S is dense in (3§ if ¢ < 00, and in ¢f§ if ¢ = oo. O

The next proposition characterizes the little Besov space. In addition, it shows that
in the definition of b5 = we could have replaced Bit" by Bf  for any t > s.

Proposition 5.4. The following identities are valid:

B, 1<p<>o, 1<¢g<o0,
bpe =9 Bpoo > 1<p< o, q= o0,
cgBUC p=q=00.
Furthermore,
. t .
(5.24) by, is the closure of B, , in B,

for —00 < s <t < oo and p,q € [1,00].

Proof.If pV g < o0, it follows from S 4 E’;,q = B, , and (5.4) that

¢ d
(5.25) B, < B

pq t>s.
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This implies b, , = By , = E;’s and (5.24) for p V g < co. Next we infer from (5.23) that

Bl ,=lLo 4 Be

00,q ?

t>s, 1<g<o0.
This proves that b5, , = B3, , as well as (5.24) if 1 < g < oc. From (5.23) we deduce that

¢ (L)) S 3Ly, t>s.

Hence we obtain b) ., = c§L, and (5.24) for 1 <p< oo and ¢ = oo from the fact
that ¢§L, is a closed linear subspace of £5,L, = B} . Now the assertion follows from
Lemma 5.2 and Proposition 5.3. O

Remarks 5.5. (a) It may be worthwhile to point out the following dense injections:

. d
(5.26) sS B < By <4 By, =b, =S8, p<oo,

if either s1 = sgp and 1 < ¢1 < qo < 00, or s1 > so and qo V ¢1 < co. Moreover,

(5.27) S B bl B 58, seR.

Proof. The first injection in (5.26) follows from Proposition 5.3. The second one
has already been observed in (5.25), provided s1 > sqo. If 51 = s¢ then it follows from
(5.2) and the density of S in B;9, . The last argument and Proposition 5.4 imply
the third injection. The final embedding in (5.26) is entailed by b3°,, — By, — &'
and the density of S in §’. In (5.27) all but the second injection are now clear Since
égom = c§Co and by, ., = g BUC by Propositions 5.3 and 5.4, respectively, the second
injection in (5.27) is a consequence of (5.23). m|

(b) bl 0o = buc® for s € RT\IN.

Proof. It is known that buc® is the closure of BUCK in BUC® for k € N and
k—1<s<k(eg., [Lun95, Section 0.2] or [Ama97, Chapter VII]). Hence the assertion
follows from (5.16) and (5.24). m|

From the above injection results we see, in particular, that

S t
b, <—>bpq,

BS g Bt

b 0 —o<t<s<oo, pge[l,o].

These density results are the reason for introducing the spaces ;q and b; 4 since
densely injected Banach scales are very useful in applications, for instance in connec-
tion with evolution problems.

The spaces é;,q are well-known in the scalar case (e.g., [Tri83]). In contrast to this

it seems that, so far, little Besov spaces have not been introduced and studied.

6. Multiplier Theorems in Besov Spaces

Throughout this section we fix again n € IN and the Banach space E and omit
(IR™, E) in the notations for the spaces under consideration, if no confusion seems
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possible. We put
J*=A(D)=(1-A)?, seR".

Then we can generalize the ‘lifting theorem’ for scalar Besov spaces to the vector-
valued case, and to the spaces B, , and b}, , as well.

Theorem 6.1. If B € {B,B,b} then J* € Lis(Bytt, B ) and (J*)~' =J* for
s,t € R and p,q € [1,0].
Proof. By means of Leibniz’ rule, it is not difficult to verify that

0°(A*9)| < cloy ) max(A# 02 ]) @ €N

Hence (4.16) implies
A% (A%y)| < e(a, 5)2%° aeN", kelN.
This shows that A%y € S° and
1277 A%pr||s0 < e(s) kelN.
Suppose that § € { BUC, Cy, L, ; 1 < p < o0 }. Then Proposition 4.5 implies
1275 (A*exi)(D)lles) < e(s),  keN.
Hence, using ¢ = X3,

19k (D) T ullg = 25 {1277 (A*4wxa ) (D) xk (D)ullg
1

< e(8)2 xr(D)ully < e(s) Y 2049% |lghyy(D)ull

j=—1

for k € IN, provided 9y(D)u € § for k € IN. From this we infer that

1 Tulles < () llullpereg , weGHE,
and
[ T°ullegg < e(s) llullerg »  uw €T
Thus the assertion follows from Lemma 5.2 and Propositions 5.3 and 5.4. O

Now we are in a position to prove the following Fourier-multiplier theorem for vector-
valued Besov spaces. Observe that there is no restriction whatsoever on the Banach
spaces Ej;.

Theorem 6.2. Suppose that B € {B,B,b} and m € R. Then
(a— a(D)) € L:(Sm(lR",El),L(B;;m(IR",Ez),B;,q(lR",EO)))

for s € R and p,q € [1, ).
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Proof. Note that A~™a € S°(IR", E;) and that a(D) = J™(A~™a)(D). Thus we
infer from Theorem 6.1 that we can assume m = Q.

Suppose that § € { BUC,Cy, L, ; 1 < p < 00 }. Then it follows from Proposition 4.5
and Yra = Yraxy that

lYr(D)a(D)ully < cllallso [Ixe(Pully , keI,
provided xx(D)u € F(IR", E) for k € IN. From this we infer that
(6.1) la(D)ullegg < cllallge lullgg ,  u € LFR™,Es) ,
and
(6.2) la(D)ullgs < cllallso lullegg »  u € GF(R", Es) .

Thus Lemma 5.2 and (6.1) imply
la(D)ullsg . < clallgo lullsg, ,  u€ By (R™,By) .
Since a(D) and J* commute it follows from Theorem 6.1 that
lla(D)ullBy , < cllallso llullBg, ,  we By (R", E) .
From Propositions 5.3 and 5.4 and from (6.1) and (6.2) we also obtain that
la(D)ullsy < cllallgolullsg, ,  we BO,(R", Fy), Be {B,b}.
From this and the fact that J° is an isomorphism from B} , onto Bg,q we deduce
la(D)ullsy , < cllallso llulls;, ,  ue€Bj, (R, E),

hence the assertion. O

Occasionally, the following much simpler multiplier theorem is also useful.

Theorem 6.3. Suppose that B € {B, B,b}. Then
(a+ a(D)) € L(FL(R", B1), £(B (R, B2), By, ,(R", Fy)) )
for s € R and p,q € [1,x)].
Proof. Suppose that § € { BUC,Cy, L, ; 1 < p < ¢ }. Since a(D) and ¢ (D) com-

mute it follows from Theorem 4.1 that
Yk (D)a(D)ullz = |F*(a) * ¢r(D)ullz < llallsy, lvr(D)ullz

for k € IN, provided ¢ (D)u € F(IR", E>). Now the arguments of the proof of Theo-
rem 6.2 give the assertion. O

Corollary 6.4. Suppose that B € {B,é,b} and A"™a € FL1(R", Ey) for some
m € R. Then
a(D) € L(B)E™(IR", E), B} ,(R", Ey))
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and
la(D)llgseim sy < A" all 7,

for s e R and p,q € [1,00].

Proof. Theorem 6.3 guarantees that a(D)J~™ is a bounded linear operator from
B, (R", E») into B, ,(IR"™, Ep), uniformly with respect to all parameters. Now, again,
the assertion follows from Theorem 6.1. O

7. Resolvent Estimates and Semigroups

Throughout the remainder of this paper B € {B, B, b}, s € R, and p,q € [1,00] are
arbitrarily fixed, unless explicit restrictions are given.

Suppose that E; < Ey and m; € RT for 1 <i < £. Then E; := ﬂle E; is a well-
defined Banach space, and E; — E; — Ey for 1 < i < /. For abbreviation we set
mg := 0 and

4
Byhmi = Brimi (R, Ey), 0<j<€,  Bym=()Bm .
i=1
Note that

s+m s+m; L
BIM] = Bpaq = Bpaq ’

1<i</?.

For ¢ € (0,n] we let Sy be the closure of the sector {z € C ; |argz| < ¥} in C,
and Sp := {0}. We denote by p(A) the resolvent set of the linear operator A. If
A€ L(Ey,Ey) and we refer to p(A), it is always understood that A is interpreted
as a linear operator in Ey (with domain E;). Given x> 1 and ¢ € [0, 7], we write
A € P(Ey, Ey;k,0) if A€ L(Ey,Eq) with Sy C p(—A) and

(71) (1 + |)‘|)17] ||(A + A)71||L(E0,Ej) S K, AE 5’19 ) .7 = 0: 1.
We also set
P(E1, Eo;9) := | P(Br, Bosk,9) , P(By,Eo) = | P(BEy, Eg;).
k>1 0<9<m

Using these notations and conventions we can prove the following general resolvent
estimate.

Theorem 7.1. Suppose that
(7.2) b; € S (IRn,ﬁ(Ei,Eo)) , 1< < y4 y

and put b:=by +---+ by. Let there exist k> 1, w € R, and ¥ € [0,n] such that
w + Sy belongs to p(—b(£)) and

(7.3) (1 +[eh™

A+000) sy T A+ D [(A+E) | sy < 5
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forée (R, 1<i<{ and X\ €w+ Sy. Then
w+b(D) € P(BI™, B} ;¢,9) ,

24 0T P.q?

where ¢ := c¢(k) is independent of b. Furthermore,
A+b(D) "= +b)"HD), Aew+Sy.

Proof. Theorem 6.2 implies that b(D) € L(B;*™, B ). Since the inversion map
B +— B! is analytic, we see that

(A+b)7! e C"TH((R™), L(Eo, Ey)) 1<i<l, Aew+Sy.

From 8;(A + b)~t = —(A + b)~1(9;b)(X + b) ™! we infer by induction that 9%(\ + b)~*
is for each o € IN"™ with |a| < n + 1 a finite sum of terms of the form

(7.4) FA+D0)"HOM DA+ b) - (0% b) (A +b) !
for a; € IN" with a1 + - -- + ax = a. Note that (7.2) and (7.3) imply
A [0°Bi () (A +b(E) ooy <€), lal<n+1, £e @),
for 1 < i < £. Hence it follows from (7.4) that
A1) 0% (A +8) Ol ecuumy) < <) A+ Oleiosy » ol <n+1,
for £ € (R™)" and 0 < j < 4. Thus (7.3) implies
(A+b)~teS ™ (R, L(E, Ej)), 0<j<¢,
and
1A+ )l s,y + (L AN IO+ 8) o ) < ()

for 1 <i</fand A € w+ Sy. Now Theorem 6.2 guarantees that

— s s+
(A+b)~'(D) € L(B; ., B;E™)
and
I+D)7 D)l sy ggremy + L+ DA+ 5 D)lleca, ) < ()
for A € w+ Sy.
Lastly,

4
(A+b(D))(A+b) (D) = AA+b)"1(D) + Y _bi(D)(A +b) (D)

i=1

J4
=FTIMA+D)TIF ) F(A+0)7 F
i=1
=F A+ +b) T F =1p,
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and, similarly,
A+b)"HD)(A+b(D)) = lgetm ,  A€w+Sy.
This shows that w + Sy belongs to p(—b(D)) and that (A + b(D))f1 = +b) (D)
for A € w+ Sy, which proves the theorem. O
As a consequence of Theorem 7.1 we obtain solvability results for the equation

[w+ a(D)]u = f in more conventional function spaces.

Corollary 7.2. Let the hypotheses of Theorem 7.1 be satisfied. Then
¢

w+b(D) € P([\ Wt (R, B), Wy (R™, Eo);9) ,  1<p<oo,
=1
and
4
w+b(D) € P(ﬂ bucsms (R",E,-),bucS(IR",EO);ﬁ) :
=1
as well as

£
w+b(D) € P([ C5*™ (B, E:), C5 (R", Eo); )

=1

for s € RY\IN with s + m; ¢ IN for 1 <1i < £. Moreover, given k € IN,

(@+b(D) " € £(WH (R, Bo), (| Wi (R, E)),  1<p<oo,
m; >0
and
(w+b(D)) "€ E(BUC’“(]R”,EO), N buckte: (JR",E,-)) ,
m;>0
as well as
(@+b(D) ™" € £(CER™, By), () CE* (", Ey))
m; >0

for k € IN and 0 < o; < my, provided maxm; > 0.

Proof. The first three assertions are special cases of Theorem 7.1, thanks to (5.8)
and Remark 5.5(b). Since, thanks to (5.15) and Theorem 7.1

o -1
WHIR™, Bo) = BE (R", Ep) 2P, gemage gy 1<i<t,
and since
BH ™ (R™, E;) = BM7(R™, E;) = Wi (R, E;), 0<o;<m,

by (5.2), (5.3), (5.8), and (5.15), we see that the fourth assertion is true. By replacing
in this argument (5.15) by (5.17) we obtain the last assertion. Finally, we infer the
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validity of the fifth assertion by replacing in the above deduction (5.15) by (5.16), and
B by b, respectively. |

Suppose that F; g Ey. Then we write A € H(Ey, Ey) iff A€ L(E1,Ep) and —A,
considered as a linear operator in Ey, is the infinitesimal generator of a strongly contin-
uous analytic semigroup {e~*4 ; ¢ > 0} on Ey, that is, in £(Ep). It is known that this
is the case iff w + A € P(E1, Eo;7/2) for some w € IR. Then there exists ¢ > 7/2 with
w+ A € P(E1, Ey; ). Moreover, there are constants wg < w and M > 1 such that

(7.5) e ™z < Me®t,  t>0,

(cf. [Ama95, Section I.1] for proofs and more details). Using these facts we obtain from
Theorem 7.1 the following generation result for analytic semigroups:

Theorem 7.3. Let the hypotheses of Theorem 7.1 be satisfied with ¥ > 7/2, and
suppose that E; is dense in Ey and B € {B,b}. Then b(D) € H(B:™ B2 ).

P.q 27Ppsq

Proof. The assertion is an immediate consequence of Theorem 7.1 and the above
remarks, provided we show that B;i}m is dense in Bj ;.
Since E1 — E; for 1 < i < ¢, we infer from (5.2), (5.20), and (5.21) that

8 n d £l
B, ,(R", Ey) — Bt™ B (R",E) = B

p.q 3 t > s+ maxm; ,

thanks to the density of E; in Ey. This implies that B;:m is dense in Bj . O

Corollary 7.4. Let the hypotheses of Theorem 7.1 be satisfied with 9 > 7 /2, and
suppose that E, is dense in Ey. Then

J4

b(D) € H((\Wyt™ (", B), Wy (R™, By)) ,  1<p<oo,
i=1
and ,
b(D) € ([ buc™ ™ (R", E7), buc* (R", Ey)) |
i=1
as well as

£
b(D) € 1[N Co+™ (™, By), C3 (R, Eo))

i=1
for s € RY\IN with s + m; ¢ N for 1 <i < (.
Remark 7.5. Suppose that w <0 (or, equivalently, replace b by w + b). Then we

deduce from (7.3) that —b(&) generates an exponentially decaying strongly continuous
analytic semigroup {e~*®) ; t >0} on Ey for ¢ € (R™)". Thus

e ™ € Loo (R", L(Ep)) — S'(R™, L(Ep))



Amann, Operator-Valued Fourier Multipliers 33

and, consequently, F '(e ) is well-defined in S'(R",L(Fp)). In [Ama97, Chap-
ter VII] the following representation theorem is proven:

e_tb(D) — f_le_tb]: = }'_l(e_tb) *x t Z 0 )

if the hypotheses of Theorem 7.1 are satisfied with w <0 and ¥ > «/2, and if
E; is dense in Ey. Thus F '(e *) € 8'(L(Ey)) is the ‘kernel’ of the semigroup
{e D) s t>0}. O

Suppose that A is a closed linear operator in E such that w 4+ Sy C p(—A) for some
w e R and ¥ € (7/2, 7). Also suppose that there exist a € (0,1] and ¢ > 0 such that

(7.6) IO+ A) " llem S c@+AD™,  Aew+S.

Denote by I' the negatively oriented boundary of Sy. Then

1
(7.7) et = — eMA+A) tdreL(E), t>0,
27‘-@ w+1"

and
(tm e ™) e C((RY), L(B)) .

Moreover, im(e~*4) C dom(A*) and 9*Fe~t4 = (—1)* Ake~*4 with
||6k€_tA||L(E) S C(k, a)ta—k—lewt

for t >0 and k € IN. Also, putting e=%4 := 1p, it follows that {e ?4; t >0} is a
semigroup on E satisfying

ez s rast—0, x € dom(A4) ,

(cf. [Kre72, § 1.3] and [Ama95, Lemma I1.4.1.1]). From (7.7) we infer that (A +w + 4)~!
is the Laplace transform of {e~#«+4) = ¢=wte=t4 . ¢ > 0} for A € Sy. This implies
that the semigroup { e~*4 ; ¢ > 0 } uniquely determines the infinitesimal generator —A.
Note, however, that this semigroup is not strongly continuousat t = 0ifa < 1.Ifa =1
then (7.6) defines an analytic semigroup in the sense that the function ¢ — et has
a holomorphic extension over the sector Sy_, /2 (e.g., [Lun95, Proposition 2.1.1]). In
this case {e *4 ; + >0} is a strongly continuous semigroup iff A is densely defined.

For easy reference we say that —A generates a C*-semigroup {e™*4; t >0} on E
of singular type « if A is a closed linear operator in E satisfying (7.6) for some w € R.
In this case it is always understood that the semigroup is defined by (7.7).

Using the above definition and the corresponding convention we can now easily prove
a generation theorem for some more conventional function spaces.

Theorem 7.6. Let the hypotheses of Theorem 7.1 be satisfied with 9 > w/2 and
maxm; > 0, and let k € N and a € (0,1). Then —b(D) generates a C*®-semigroup of
singular type a on each one of the spaces ka (R™, Ey), 1< p<oo, BUCKIR", Ey),
and CE(R", Ey).
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Proof. Set B:= B if §* € {C§, W} ; 1<p< oo}, and B:=b if ¥ = BUC* for
ke IN. Also put r:=p if §* = Wk, and r := oo otherwise. From (5.15)—(5.17) we
know that

(7.8) B (R™, Ep) <5 §*(R™, Eo) < B (R™, Ey) -

Theorem 7.1 implies that b(D) is a closed linear operator in Bf  (IR", Ep) such that
w+ Sy C p(=b(D)) and

(7.9) I3+ (D)) HE(BL“,OO(IR",EO),B’:,_Z?"(IR",Ei)) sc
and
(7.10) L+ ) (A +b(D)) ”L(B,’E,OO(IR",EO)) sc

for A € w+ Sy and 1 < i < £. From (5.2), (5.20), (5.21), and (7.8) we infer that
BELM(R™, By) = B (R", o) = §*(R", Eo) ,

provided 0 < o; < m;. Hence we see from (7.8)—(7.10) that the §*(IR", Eo)-realization
of b(D), which we again denote by b(D), is a closed linear operator in F*(IR", Eo) with
w+ Sy C p(=b(D)), satisfying the estimate

[(x+ b(D))_l ”L(s’c,ij"i) +A+AD[[(x+ b(D))_l ||£({§’“,B’,§’oo) sc
for A € w+ Sy, provided 0 < o; < m;, where we have set §* := g* (R™, Ep) and, sim-

ilarly, By , := B} ,(R", Ey). Fix 0 <& < § < my, assuming without loss of generality
that m; > 0. Then, using (5.2) once more, we infer from the last estimate that

—1 -1
(7.11) | (A + b(D)) Ha@ﬁﬁ%+(L+MDWA+MDn H“@ﬁﬁﬂfc
for A € w+ Sy. Thanks to (5.7) and (5.14) we see that
lellgese < cle,0) Mol Nellfuss @ € BT,
where 6 := 2¢(e + 6) 7. Consequently, by (7.11),
-1 —1 e— =
IO +B(D)) ey < ele) [+ BD)) | g ey < e )L+ ANV
for A € w+ Sy. Thus, given a € (0,1) and § € (0,m1), we obtain the estimate
—1 _a
| (A +b(D)) “zz(gk) <ec(l+|A)™*, Aew+ Sy,

by putting € := (1 — a)d/(1 + «). Since we can assume that ¢ > 7/2, the assertion
follows. |

Remarks 7.7. (a) From Theorem 7.1 we infer that —b(D) generates an analytic
semigroup on BF (IR", Ey) if ¥ > m/2, which is strongly continuous iff E; is dense
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in Ey. It is obvious that the C*-semigroup on F*(IR™, Ey) is the restriction of this
analytic semigroup if maxm; > 0.
(b) Suppose that § € {BUC,Cy, L, ; 1 < p < oo}, and that

(uoaf) € S(]R",Eo) X C(IR'_’_a&'(IR"aEO)) )
for example. Consider the evolution equation
(7.12) a+b(Du=ft), t>0, u(0) = u®,

where the hypotheses of Theorem 7.1 are satisfied with ¢ > 7/2 and maxm; > 0. Then
one can, in principle, consider (7.12) as an equation in F(IR", Ey) and use Theorem 7.6
to derive solvability results for (7.12) (cf. [Yag89]).

On the other hand we can use the fact that

S(]RlnaEO) — Bg,oo(]R‘naEO) ’

where r := oo and B:=bif § = BUC, and r := 00 and B := Bif § = Cy, and where
r:=pand B:= Bif § = L,, and consider equation (7.12) as an evolution equation in
BE,OO(IR", Ey). Assuming, for simplicity, that F'; is dense in Ey, we can appeal to Corol-
lary 7.4 which tells us that —b(D) generates a strongly continuous analytic semigroup
on B (IR™, Ep). Thus we obtain existence and regularity for equation (7.12) by invok-
ing the well-established theory of linear parabolic evolution equations (e.g., [Paz83],
[Tan79], [Ama95]). That approach has two advantages. First: it relies completely on
the ‘classical’ theory of parabolic evolution equations that is well-understood. Second:
the domain of the generator is explicitly known, thanks to Corollary 7.4. The latter
fact is particularly important in connection with quasilinear problems for which equa-
tion (7.12) occurs by linearization. Of course, given suitable regularity assumptions
for u® and f, the final solvabiltity result can be formulated without any reference
to BE’OO(]R", Ey), that is, completely within the framework of ‘conventional’ function
spaces.

Suppose that By < E < Ey and 0 < 0 < 1. Then we write E € Jy(FEo, E1) if there
exists K € R" such that

1-6
(7.13) lzlle < kllzllg,” el , =€ B

It is known that this is the case with 6 € (0,1) iff (Eo, E1)p1 — E (e.g., [BL76, Sec-
tion 3.5]). Moreover,

(7.14) B € P(E, Ey) = Eo(B) := (dom(B), | B-||g,) € Jo(Eo, E1)

for 0 < 8 <1 (cf. [Ama95, Theorem V.1.2.4]).
Using this concept we can now prove a simplified version of Theorem 7.1.

Theorem 7.8. Suppose that Ey — E; — Eqy and there are numbers 0; € [0,1) with
E; € Jy,(Eo, Ey) for 2 <i < (L. Also suppose that

(715) b; € S™ (IRn,ﬁ(E,,Eo)) , 1<i</t y
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where 0 < m; < 8;my for 2 < i < L. Finally, let there be k1 > 1 and ¥ € (0, 7] such that
(7.06) (L4 E)™ |3+ b))~ Olowsony + (14 MDA+ 5~ Oy <
for £ € R™)" and X € Sy. Then there exists w > 0 such that

w+b(D) € P(BZH™ (R, By ), B, (R", Fp); 9) .

Proof. Let p; be a bound for the supremum norm of (1 + |£|)~™ |bi|L(E,-,E0) for
2 < i < /. Then, denoting by &; the constant in (7.13) belonging to E;, it follows from
(7.13), (7.15), and (7.16) that

D (A + b1) "H(E) | £(mo) < Krpiki(1+ AT, 2<i<t, X€Sy.
Hence
(b2 + -+ + b)) A+ b1) ooy < Kalpake + -+ + pere) (L+ M)

for A € Sy and £ € (IR™)", where 6 := max6;. Fix o € (0,1) and put

(7.17) w(0) = ([ra(uara + -+ pere) 0] /77 1)

Then
A+b) = (14 (bo+---+b)(A+b1)"") (A +b1)

implies that w(o) + Sy C p(—b(€)) and
(A + 07O e(mo,my < (1 =) A +0) T (E)lero,py »  1<i< L,

for £ € (IR™)" and A € w(o) + Sy. We infer from (7.16) and E; < E; that

(A +b) 7 Ole(mopny <cA+EN™, £€ ("), Aew+ Sy,
so that (7.3) is satisfied. Now the assertion follows from Theorem 7.1 thanks to the
fact that (5.2), (5.20), and (5.21) imply By'™ = B3t™ (R", E1). o

Clearly, w(o) is an upper bound for w. Thus (7.17) can sometimes be used to show
that w can be taken to be zero.

8. Applications

In this section we illustrate the preceding general results by some model problems.
In concrete examples we do not strive for the most general formulations but rather
choose simple settings. The reader will have no problem seeing the underlying general
structure which will enable him to obtain further applications in the same spirit.
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A. Degenerate Boundary Value Problems

Let X be a bounded open subset of IRd, which is smooth, that is, X is a d-dimensional
C*-submanifold of IR" with boundary 60X, and let v be the outer unit-normal vector
field on &X. Suppose that a, 5 € C®(X) for a € IN¢ with |a| <2, and 8 € N" with
|8 <1, and set

(8.1) A= 82 =N+ Y Y ans(@)00
la|<3 |BI<1L

where z € X and y € IR™. Consider the boundary value problem (BVP) on the cylin-
der X x R™:

(8.2) Au=fin X x R", u=38,u=0o0n0X xR".
Fix r € (1,00), denote by ~5 the trace operator on 90X, and put
Wi (X):={veW!(X); yvov=08,v=0}, t>2.
Proposition 8.1. Put IEo:= B} ,(R",L,(X)) and IE, :=B3? (]R",VV;%,: (X)).
Then A € P(IE1,IEg;¥) for 0 < 9 < m. In particular, A € H(IE1,IEy) if B € {B,b}.
Proof. Set

Eo:=L.(X), E:=W!

Tk

(X), Ep=WiL(X).

Then E; i) E, i) Ejo. By aresult of SEELEY [See72] it is known that E» = [Eo, E1]3/4.
Consequently, Es € J3/4(Eo, Ey).
Denote by B the Ep-realization of the elliptic BVP {A2;75,8,} on X, that is,
Bv:= A% , veWh(X).
Then it is well-known that
(83) BE,P(El,E();’lg) s O<d<m.
Set by (n) := A?(n)B for n € R"™ and observe that
b € S*(R", L(E:, Ey)) -
We infer from (8.3) that
_ _ _ -1
(4 b0) 7 ) 2o,y = A7) [(MT20) + B) ™ 1
<A () (L+ N Am) T

forn e R™, XA € Sy, and j =0,1. Hence b, satisfies (7.16) with m; := 2.
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Next we put

ba(m) == > > nlasp0g .

la|<3 [B[<1

It is obvious that
by € St (]R",,C(EQ,E())) .

Hence Theorems 7.3 and 7.8 imply that b(D) € H(IE, IEp), which, thanks to b(D) = A,
proves the theorem. O

It follows from Proposition 8.1, for example, that the initial-boundary value prob-
lem (IBVP)
Ou + Au = f(t) in X xIR",
(8.4) u=90,u=0 on 0X xIR",
u(-,0) = u°

t>0,

has for each f € C?(IR™,IEq), where § € (0, 1), and for each u° € IEy a unique solution
u € C(RY,Eo) N C(IRF,IE;) N CL (IR, IEo)

(cf. [Ama95, Theorem II.1.2.1]). Also see Subsection D for maximal regularity results.
Instead of using Sobolev spaces we could also use little Holder spaces, that is, we
could set
Ey:=bud(X), Ei:=buc®(X), E:=buct?X)

for some @ € (0,1), where the subscript * indicates that appropriate boundary condi-
tions are satisfied. Then, using results from [Ama97], the above proof remains valid
in this case as well. Thus choosing B € {éoo,oo,boo,oo}, we obtain the solvability of
BVP (8.2) and IBVP (8.4) in suitable Holder classes. In addition, we can invoke Theo-
rem 7.6 to derive solvability results from (8.4) in more conventional function spaces. It
should also be noted that the use of perturbation theorems for generators of analytic
semigroups (cf. [Ama95, Theorem [I.1.3.1]) allows for more general lower order terms
than ba(D,). In particular, the coefficients a, g can depend on y € R™ as well. We
leave details to the interested reader (also recall Remark 7.7(b)).

Note that the principal symbol of the differential operator A equals |£]* |n|* for
(¢,n) € R% x R™. Hence A is degenerate elliptic.

B. Operator Convolution Equations on the Line

Suppose that E; — Ey and consider the convolution equation
(8.5) Axu=f in S'(R, Ey) ,
where (A, f) € S'(R, L(E1, Eo) x Eg). More precisely, assume that

(8.6) A=0Ay+ 4, , A;j € S'(R,L(Ej,Ep)), j=0,1.
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Then (8.5) takes the form
(8.7) Agxtu+ Ay xu=f,

where 4 := Ou.
Theorem 8.2. Suppose that A\j are regular distributions such that
(8.8) 4; e S°(R,L(E;,Ey)), j=0,1.

Put a(§) == ’L'gzzl\o(é-) + 4 (&) and suppose that a(€) € Lis(Ey, Ey) for £ € R and

(8.9) sup(l + (€))7 |a_1(f)|£(Eo,E,-) < oo, j=0,1.
celr

Then

(8.10) (us Axu) € Lis(BE (R, Fo) MBS (R, By), B, (IR, Fp))

and the inverse of the map (8.10) is given by v — G * v, where G := F~1(a™1).

_Proof. Set by (&) = i&Ag(€) and ba(€) := A1 (€) for £ € IR. Also set Eo := Ep and
E; .= i—1, 1<1<2:= £. Then (88) implies

b; € S™ (IR,[,(E“E())) R 1=1,2,
where m; := 1 and my := 0. From (8.9) we see that (7.3) is satisfied with 9 := 0 (and

E; replaced by E’,) Hence Theorem 7.1 implies the assertion. O

Corollary 8.3. Let the hypotheses of Theorem 8.2 be satisfied. Then the convolution
equation
Agxtu+ Ay xu=7f

has for each f € Ly(R, Ep), 1< p < 00, a unique solution
u=Gx*feW;R,E) , 0<s<1.

If f € BUC(R, Ep) then G * f € buc*(R, Ey) for 0 < s < 1, and if f € Co(R, Ey) then
Gx f e CER,Ey) for 0 <s<1. In each case the map f — G * f is continuous be-
tween the respective spaces.

Proof. This is an easy consequence of (8.10), the embedding results (5.2), (5.3),
and (5.15)—(5.17), and the characterizations of Besov spaces given in (5.8), (5.11), and
Remark 5.5(b). m|

Note that we have the more precise information v € B, (R, Eo) N By (R, Eo) if
f € L,(IR, Ey). Similar assertions are true in the two other cases.
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Suppose that
Aj=6® A0+ A1, Ajo€L(E;,E), A €S (R,L(E)E))
such that ;{j’l are regular distributions for j = 0,1. Then (8.7) reduces to
(8.11) Ao+ Ao xd+Apu+ A xu=f.
Since (6 ® B)” =1 ® B, we see that (8.8) is equivalent to
(8.12) A;, € S°(R,L(Ej, B)), j=0,1,
and (8.9) takes the form

(8.13) 1+ ept |(i§[A0,0 + 20,1(5)] + A0+ A\l,l(é-))ilh(EO’Ej) <ec<oo

forj=0,1land £ € IR. The situation simplifies considerably if we restrict ourselves to
‘equations of scalar type’, that is, if we assume that Ag; = a1, and A, ; = §;A,
where a; € C and §; € S'(R), for j =0,1, and A € L(E,Ep). In this case The-
orem 8.2 implies the following ‘maximal regularity theorem’ for ‘parabolic integro-
differential equations of scalar type’.

Proposition 8.4. Suppose that A € P(E1, Eo; ) for some ¥ € (0,w). Also suppose
that ag, Bo € C and aq,B1 € S'(R) such that @1, [1 € L1 10c(R) N C%(R) with

(8.14) 07@1(€)| + 07RO <e(L+ e, €eR, j=0,1,2.

Assume that

(8.15) liminf |ap + @1(&)| > 0
ES
and
(8.16) inf [Bo+51(6) >0, (€.
£E€ER

Finally, assume that

. +a .

(8.17) M €Sy, ¢eR
Bo + B1(£)

Then the convolution equation

(818) (10’[1—1—041 *U—l—ﬂoAu—I—ﬁl *AU: f

has for each f € B (R, Eo) a unique solution u € Bit' (IR, Eo) N B; (R, Ey), and
the estimate

[la] Bs ,(R,Eo) T ||U||B;,,q(11>»,E1) <c ”f”B;!q(]R,E‘O)

is valid, where c is independent of f.
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Proof. Since A € P(Ey, Eg;9), it follows from (7.1) and (8.17) that
a(§) :==i&(ao + @1(8)) + (Bo + 31(5))14 € Lis(Ey, Eo)

and

k(160 + Br(&)| + €] law + @1 ()) T, =0,
% 6o+ Br(O), j=1,

for £ € IR. Now we deduce from (8.15) and (8.16) that (8.13) is satisfied. Hence the
assertion follows from Theorem 8.2, thanks to the fact that (8.14) implies (8.12). O

la™ (O c(mo,B) < {

We leave it to the interested reader to formulate the analogue to Corollary 8.3 for
equation (8.18).

It should be noted that conditions (8.15)—(8.17) are trivially true if ag, S > 0 and
@1, 51 > 0. Recall that, thanks to Bochner’s theorem, @1, > 0 iff oy and f3; are
‘positive definite’.

Of course, in concrete situations A can be the L,(X)-realization of an elliptic BVP
on a smooth bounded domain X C IRd, for example. In particular, if A corresponds
to a second order elliptic BVP equation then (8.18) can be interpreted as a heat-
conduction problem with memory (cf. [Prii93, Section 5] for more details and biblio-
graphic references).

Theorem 8.2 and Proposition 8.4 are related to a maximal regularity result of PRUSS
(namely [Prii93, Theorem 12.5]), which gives sufficient conditions guaranteeing that
(8.11) hasfor f € B, (IR, Ep) a unique solution u € By (IR, Eo) with u € B, (IR, Ep),
where s € (0,1) and 1 < p, ¢ < oo. More recently, equations of the form (8.11) have also
been studied by GUIDETTI [Gui96]. This author establishes maximal regularity results
in Slobodeckii spaces W} (R, Ep), for 1 < p < oo and 0 < s < 1, under conditions that
are closely related to (8.12) and (8.13). For earlier maximal regularity results for
linear integrodifferential equations in Holder spaces we refer to [DL88]. Note that
these authors cannot derive solvability conditions from their results corresponding to
Corollary 8.3 since their theorems are restricted to Besov spaces of positive order.

C. Operator Convolution Equations on the Half-Line

In the following we put S’y (E) := S'(IR, E) N D4 (E), and we define the closed linear
subspace B; , . (E) of B (IR, E) by

P9+
B, . (E) = BS (R,E)N S, (E) .

Suppose that By < Ey and (4, f) € S}, (L(E1, Ey) x Ep). Then we consider the con-
volution equation

(8.19) Axu=f inS}(E),

that is, on the half-line IR*. Thus by a solution of (8.19) we mean a distribution
u € 8!, (E,) satisfying (8.19), provided f € S, (Eo) is given. Note that this implies that
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u satisfies the ‘initial condition’ u(0) in some generalized sense. It follows from (5.2)—
(5.4) and (5.16) that B, , — BUC, provided either s >n/p and q € [1,00], or s = n/p
and ¢ = 1. This implies that a solution u of (8.19) satisfies the initial condition u(0) = 0

in the classical sense if u € B | |, (E1) and s, p, and ¢ satisfy the above conditions.

Again we assume that A = 0Ay + A;, where now
(8.20) Aj € S\ (L(Ej, Ey)) j=0,1,
so that (8.19) is the convolution evolution equation
(8.21) Agxi+Arxu=f inS\(E).

It follows from (8.20) that the Laplace transform Zj of A; is well-defined on R* + iR
and holomorphic on Rt + iIR.

The following theorem is the analogue to Theorem 8.2, where we now consider con-
volution equations on the half-line.

Theorem 8.5. Suppose that
A;(i) € S°(R,L(E;, Ey)), j=0,1.
Put
a(z) == 240(2) + A1(2) , z€ (RY+iR),
and assume that a((R™ + iRR)") C Lis(Ey, Ey), that

sup(1+ [nl)' =7 [@™* (in)l cemo,my) <00, §=0,1,
nelR

and that z — [a~(2)|z(g,) s polynomially bounded. Then

(u— Axu) € Lis(BSH (Eo) N B, (B1), B, 1 (Eo)) -

The inverse of this map is given by v — G x v, where
G:=Fa'() €Sy (L(Ey)) -

Proof. Thanks to @(in) = u(n) for n € R and to Theorem 8.2 the assertion follows
from Theorem 3.4, provided we show that supp(G) C IR*. Since the inversion map
B~ B~!is analytic and since @ is analytic on R + i IR, it follows that ! is analytic
onIR* + iIR. Thus the Paley-Wiener theorem theorem guarantees the desired support

restriction. O

It is easy to prove the analogue to Proposition 8.4 for convolution equations of scalar
type on the half-line.
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Proposition 8.6. Suppose that A € P(E;, Eg;9) for some ¥ € (0,7). Also suppose
that ag, fo € C and ay, 1 € S, such that &1 (i-), 1 (i-) € C*(R) with

&, (i) + 10 BuGin) <cQ+[n)) 7, neR, j=0,1,2.

Assume that
liminf |ag + @1 (in)| > 0
[n|—o0

and

(8:22) i (6o + f1(2)] >0,

as well as

(8.23) #(20 +01(2)) Se, Rez>0, 240.
Bo + B1(2)

Then the convolution equation

(8.24) oot + a1 0+ BoAu+ B x Au = f

has for each f € BS , | (Eo) a unique solution u € Byt (Eo) NBs, (E1), and the
estimate

il + g ) < el g

is valid, where c is independent of f.

Proof. From (7.1), (8.22), and (8.23) we infer that
a(2) = z(ao + @1 (2)) + (Bo + i (2))A € Lis(E1, Ep), Rez>0, z#0,

and that [a(-)|z(g,) is bounded on (IR* +iIR)". Since the other assumptions imply
the validity of the remaining hypotheses of Theorem 8.5, that theorem implies the
assertion. O

Corollary 8.7. Suppose that either the hypotheses of Theorem 8.5 or of Proposi-
tion 8.6 are satisfied. Then the convolution equation (8.21) or (8.24), respectively, has
for each f € L,(R*, Ey), 1 <p< oo, a unique solution

ue W, (RY, E) , 0<s<1,

and the estimate
llullw:s o) < cllfllr, m+,E0)
is valid, where c is independent of f.

Proof. This follows from Theorem 8.5 and Proposition 8.6, respectively, by argu-
ments similar to the one in the proof of Corollary 8.3. O

We leave it to the reader to prove and formulate the corresponding results if f belongs
to BUC(RR, Ey) N D! (Eo) or if f € Co(IR, Eg) N D!, (Eyp), respectively.
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There is an extensive literature on operator convolution equations on the half-line,
and much of it is collected, unified, and generalized in the comprehensive treatise
of PrUss [Prii93], to which we refer for details. Theorem 8.5 and Proposition 8.6
are related to — but different from — some maximal regularity theorems of PRUSS
[Prii93, Theorems 7.4 and 7.5] which, in turn, generalize earlier results of DA PRATO-
IANNELLI [DI85], LUNARDI [Lun85], and others. The latter authors consider Volterra
integral equations

(8.25) #) + Bu(t /Ct—s syds=f(t), t>0,

with B € P(Ey, Eg;n/2) and C: R — L(Fy, Ey) satisfying suitable assumptions.
Note that (8.25) is a convolution equation of the form (8.21) if we put Ay := 6 ® 1g,
and Ay := B® dy + C. Again it should be remarked that PRUSS’ theorems are re-
stricted to Besov spaces of positive order so that he cannot deduce from them asser-
tions comparable to the ones of Corollary 8.7.

CLEMENT and DA PRrRATO [CD90] study a heat conduction problem for materials of
fading memory type of the form

(8.26) 8 bou /ﬂt—s )):coAu(t,-), t>0,

in a bounded domain Q C IR™ under zero Dirichlet boundary conditions. By means of
Laplace transformation techniques they investigate existence and regularity questions
where they choose C(f2) as basic space Ey. The obtained results are then used to
handle semilinear perturbations. Similar problems are treated in [Lun90]. The author
of that paper also includes a term of the form

(8.27) /tfy(t —s)Au(s)ds , t>0.
0

We refer to these papers for further references to earlier and related work.

Note that (8.26) has the form (8.21) with Ag := (bg ® § + 3) ® 1g, and 4; ;== R A,
where A is the realization in Ey of —cgA under Dirichlet boundary conditions. Of
course, a term of the form (8.27) can be included by putting A; := (d +7) ® A.

Clearly, Corollary 8.7 is an assertion about generalized solutions if we restrict our-
selves to Lp-spaces only, that is, do not consider Besov spaces at all. However, the use
of Besov spaces allows to obtain rather precise inclusions for the range of the solution
operator f +» u of the convolution equation under consideration.

D. Maximal Regularity for Parabolic Cauchy Problems

As an almost trivial corollary of Proposition 8.6 we obtain the following maximal
regularity theorem for the parabolic Cauchy problem

(8.28) u+Au=f(), t>0, u(0)=0,
where A € H(E\, Ep).
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Theorem 8.8. Suppose that Ey — Eq and A € P(Ey, Eg;w/2). Then

@+ A) € Lis(BSHY (Bo) MBS, (E1),BS., 1 (Eo)) -

P,q,+

If f €B p a, +(E0) N Ll,lOC(]R7 EO) then

(8.29) @+ A)7f1) = /Ot e~ A f(r) dr | t>0,

and it is the unique solution in B;El+(E0) NB; , +(E1) of problem (8.28).

Proof. The first assertion follows from Proposition 8.6 by putting ag = o = 1 and
a1 =1 =0. Set es(t) := et for t > 0, and e4(t) := 0 for t < 0. Then

ea € S, (L(Eo)) and  ea(z)=(z+A4)"', Rez>0.
Hence, letting a(z) := z + A for Rez > 0, it follows that a(z) € Lis(E1, Ep) and
a”l(in) = (in+ A)"' =ex(in) =ea(m), neR,
thanks to (1.5). Thus
@+A)f=F1 (ail(i-)) xf=es*f
and the second assertion is implied by Example 3.3. |

Let IE be a Banach space of E-valued temperate distributions with suports in R™.
Then IE is said to be a space of maximal regularity for A if f € IE implies that (8.28)
has a unique solution u such that @ and Au belong to IE as well, and such that

lalle + |Aulle < cllfllg
where c is independent of f.
Corollary 8.9. Suppose that either s >0, or s =0 and ¢ = 1. Then B, , | (Eo) is
a space if mazximal regularity for A.

Proof. From (5.2) and (5.15)—(5.17) we infer that f € L 1oc(IR, Eo) whenever f be-
longs to Bf,,q(]R, Ey) and either s > 0, or s = 0 and ¢ = 1. Hence the assertion follows
from Theorem 8.8. m|

Theorem 8.8 generalizes — and simplifies considerably the proofs of — earlier results
of DA PRATO and GRISVARD [DG75], D1 BLaAsIO [Bla84], and MURAMATU [Mur90].
Indeed, DA PRATO and GRISVARD established the facts that

W (R, Eo) := WS (IRY,Ep), 0<s<1l/p, 1<p<oo,
and

BUC{(R™, Ey) —{uGBUCS(IR+ Eo); u(0)=0}, 0<s<1,
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are spaces of maximal regularity for A. In [Bla84] it is shown that I7V\ps (R, Ep) is a
space of maximal regularity for A if s € [1/p,1), 1 < p < oo, where

WYP(RY, E) == {u e WYP(RY,E) ; u € L,(R, E;dt/t) }

and
Wy (R*,E) := {ueW;(R",E); u(0)=0}, I/p<s<l.
It can be proven that
W (R",E)=B:, . (E) , 0<s<l, 1<p<oo,

and that

BUC§(R*, E) = B, oo +

(E) , 0<s<1,

(cf. [Ama97]).

Finally, MURAMATU proved that e4 * f belongs to B;f;,l_|r (Eo) whenever f lies in
BS

o+ (E0) N L1 10c(IR, Eop), and that eq * f solves (8.28), provided either s > 1/p, or
s=1/pand ¢ =1.

E. Bounded Solutions of Parabolic Equations

Given a € IR, we define the weighted Besov space
B, = e®B; (R,E) = {ueS'(R,E); e *ueB (RE)},
equipped with the norm
lullooss , = lle=ulls , -
It is clear that e®B; , is a Banach space.
Suppose that E; — Ey and A € L(E1, Eg). We consider the linear evolution equation
(8.30) a+ Au = f(t), teR.

The following proposition gives a sufficient condition for (8.30) to possess a unique
solution in the weighted Besov spaces e®B,, ;.

Proposition 8.10. Suppose that o, 3 € R and 0 € [1/2, 7). Also suppose that 3 + A
belongs to P(Ey, Ey; 6), and that o(—A) N (a+iIR) = 0. Then

(8.31) 0+ A € Lis(e" By (R, Eo) N e® By (R, Ey),e* By, (R, Eo)) -
Proof. Clearly, u solves (8.30) iff v := e {®y solves & + (a + A)v = e~ (*7) f. More-

over,o(—A) N (a+iR) = Qiff o (—(a+ A)) NiIR = 0. Hence, by replacing A by a + A,
we can assume that a = 0. Since 8 + A € P(E}, Eo;0), and since we can assume that
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0 > 7 /2, there exists r > 0 such that i € 8 + Sy for |£| > r. Using this fact, the com-
pactness of i[—r,r] C C, and o(—A) NiIR = (, it follows that

LT+ N1+ Al g(mo,Ey) < € EeR.

Hence, letting by (€) :=ifidp, and by(€):= A for £ € R as well as Ey := E, and
E5 := Ey, we see that the assumptions of Theorem 7.1 are satisfied with £ =2, m; = 1,
mo = 0, and w =9 = 0. Thus that theorem gives the assertion. O

Proposition 8.10 generalizes considerably a result of LUNARDI [Lun95, Theorem 4.4.7
and Proposition 4.4.13], who showed — by a completely different method — that the
above hypotheses imply

0+ A € Lis(e*BUC™* (R, Ey) N e*BUC* (R, E1 ), e* BUC* (IR, Ey))

for0<s< 1.

F. Singular Boundary Value Problems

Suppose that n > 2 and let Q be an open subset of S®~! such that Q is a smooth
(n — 1)-dimensional submanifold of S"~! with boundary 8Q. We assume that 0 is
the disjoint union of I'y and I'y, where I'g and 'y are open and closed in 0€2. Of course,
if I'; = 0 (in particular: if Q = S"!), then any reference to I'; has to be neglected in
what follows.

We denote by Cq the open cone in IR™ with base Q and vertex at zero, that is,

Co:={yeR";r:=yl >0, w:=y/lyle}.
Then we consider the boundary value problem (BVP) for the Laplace operator on CQ
(8.32) —Au=f inCq, d0u+(1-8u=0 ondCq,
where v is the outer unit-normal on dC¢q and

0, CUEF(],
1, wely,

for r > 0. Inserting polar coordinates this BVP transforms into
r2[(rD;)* —i(n —2)rD, — Aglu = f in (R*)' x Q,

u=0 on (R*)" xTq ,
8,u=0 on (RY)' x Ty,

where now v is the outer normal on (IR*)" x T';, and Aq denotes the Laplace-Beltrami
operator on ). By the further substitution z :=logr we arrive at the BVP on the
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cylinder IR x Q:

(D —i(n—2)D, — Ag)v =g inIRxQ,
(8.33) v=0 on R xTy,
o,v=0 on]RxFl,

where
v(z,w) == u(e”,w) , glz,w):=efle",w).

We fix p € (1,00) and put

) LP(Q): j=0,
WPJ’B(Q):: {ueWl(Q); ullo=0}, j=1,
{uEWPQ(Q);uH‘O:O7 6,,u|1"1=0}, ji=2,

where now v is the outer unit-normal on 92 and, of course, integration is performed
with respect to the volume measure of . Similarly, we fix § € (0,1) and set

hj+0(ﬁ) L {UEbch+0(Q)) U|F0:O}, j:(])]-a
B Tl {uebuctt?(Q) 5 ullop =0, dulT1 =0}, j=2.
Then we put either

Fj=W/s(Q) or Fj:=h"@, j=01,2.

We also set ag := —Agq | Fy and a(€) := &2 —i(n — 2)€ + ag for £ € R. Then we refor-
mulate (8.33) as the operator equation

(8.34) a(Djv=g on R .

Concerning its solvability we prove the following isomorphism theorem:

Proposition 8.11. Suppose that p:= 0 if Tg # 0, and p > 0 otherwise. Then
2 .
p+a(D) € P(ﬂ BiH(R, Fy ), B (IR, Fo);7r/2) .
=0

Proof. It is a well-known fact that p + ag € P(Fs, Fo;7/2) and Fi € Jy/2(Fa, Fo)
(e.g., [Ama97]). From this we infer that
(8.35) A+ D2 (A +a0) Hemry <c,  §=0,1,2, Red>w.
Put Ey := Fy and E; := F3_; for j =1,2,3, and

bi(€):==ag, bo(&):=—i(n—2)¢, bs(§):=¢.

Then ‘
b; € SR, L(Ej, Ey)) , j=1,2,3,
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and b:= by + by + bs = a. From (8.35) we deduce that A € p(—b(¢)) for £ € R and
Re A > w, and that

A+ 1E A +8©O) | pimmyy + A+ MDA +O) | sy < €

for £ € R, ReA > w, and j = 1,2, 3. Hence the assertion follows from Theorem 7.1. O

Corollary 8.12. Suppose that B € {B,b}. Then
2 .
a(D) € H( () Byl (R, Fo_j), B} (R, Fy)) -
=0

As an application we obtain a solvability result for the singular parabolic initial-
boundary value problem in Cgq:

Ou—r?Au=f in Cq ,

5 t>0,
(8.36) 00, u+ (1 —98)u=0 on dCq ,
u(-,0) = u° on Cq.

By means of the above transformations we arrive at the Cauchy problem
(8.37) Ow+aDv=g, t>0, v(-,0) =27 .

Thanks to Corollary 8.12 and well-known results concerning parabolic evolution equa-
tions (e.g., [Ama95, Theorem I1.1.2.1]) it follows that problem (8.37) has for each v°
belonging to IFo := B  (Fp) a unique solution

v E C(IR+,F0) N C((IR+).,F1) N Cl((IR+).,F0) s

where IF; := ﬂ?:o Bsti (R, F>_;), provided g € C(R*,TFy), for example. By invoking
Theorem 8.8 we also obtain maximal regularity results for (8.37). In addition, by using
Corollary 7.2 or Remark 7.7(b), respectively, we can formulate solvability results for
equations (8.34) and (8.36) in more conventional function spaces. Lastly, by resubsti-
tuting the original variables we arrive at maximal regularity and solvability results in
suitable weighted spaces on CQ We leave all this to the interested reader.

Elliptic boundary value problems on manifolds with singularities already attracted
much attention, and much of the work is collected in the monographs [Gri85], [Dau88],
[Sch91], [Sch94a], and [NP94]. Problem (8.32) is one of the simplest model problems
and is well understood (see [Gri85] and [NP94]). In particular, the transformation
to an elliptic problem on the cylinder IR x €2 goes back to the pioneering work of
KONDRATIEV [Kon67]. It is the purpose of this subsection to show that our operator-
theoretic approach works in this case as well. Admittedly, it has the drawback that
it does not give maximal regularity results in familiar Sobolev spaces based on L,
as the classical approach does (e.g., [NP94]). However, it has the advantage that it
opens a way to treat pseudodifferential problems with operator-valued symbols in a
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non-hilbertian setting. Pseudodifferential operators with operator-valued symbols have
been very successfully employed by SCHULZE and coworkers (e.g., [Sch91], [Sch94a],
[Sch94b], and [SS94]). However, this approach is restricted to a Hilbert space setting
due to the lack of an operator-valued analogue of Mikhlin’s theorem for vector-valued
L,-spaces. For the investigation of nonlinear problems on manifolds with singularities
such a Hilbert space setting is too narrow.

An operator-valued approach to the Dirichlet problem for the Laplace equation in
a cone has been proposed by GRISVARD in [Gri95]. He obtains maximal regularity re-
sults in L,-Sobolev spaces for 1 < p < oo by employing the Dore-Venni theorem [DV87]
on the closedness of the sum of two closed operators (also see [DV90], [HP95] for a
similar approach in two space dimensions). However, this method has several short-
comings. First: on has to know that the operators under consideration have bounded
imaginary powers. The verification of this fact is rather difficult, in general. Indeed, for
most operators induced by elliptic boundary value problems this is not known, at least
if the coefficients are not infinitely smooth. Second: the underlying Banach spaces have
to be UMD spaces, thus reflexive. This rules out the use of Holder spaces, for exam-
ple. Third: the operators have to commute. (We refer to [Ama95, Section III.4] for an
exposition of the Dore-Venni theorem as well as for the basic results on UMD spaces.)
Such a commutativity property cannot be expected, in general, if we consider differ-
ential operators whose coefficients depend on w € 2, for example. Operators of that
type occur naturally by freezing the radial variable in variable coefficients problems.

Our approach does not require any of these assumptions. But it uses Besov spaces
which are less familiar and more difficult to handle. In this class of spaces it gives
optimal results.

Finally, we mention that the singular parabolic problem (8.36) under Dirichlet
boundary conditions (that is, the case § = 0) in a plane domain has been investigated
in [Ven94] by means of the Dore-Venni theorem.
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