
QUASILINEAR PARABOLIC PROBLEMS
VIA MAXIMAL REGULARITY

Herbert Amann
Institut für Mathematik, Universität Zürich
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Abstract. We use maximal Lp regularity to study quasilinear parabolic
evolution equations. In contrast to all previous work we only assume
that the nonlinearities are defined on the space in which the solution
is sought for. It is shown that there exists a unique maximal solution
depending continuously on all data, and criteria for global existence are
given as well. These general results possess numerous applications, some
of which will be discussed in separate publications.

Introduction

In this paper we develop a general existence, uniqueness, continuity, and
differentiability theory for semilinear parabolic evolution equations of the
form

u̇ + A(u)u = F (u) on (0,T), u(0) = x, (0.1)

where T is a given positive real number. This problem has already been
treated by many authors, including ourselves (e.g., [1], [13], [14], [16], and
the references therein). The main new feature of our present work, which dis-
tinguishes it from all previous investigations, is the fact that we use maximal
Lp regularity in its full strength. This means that A and F are defined on
the smallest possible space only, namely on that class of functions, more pre-
cisely: distributions, in which the solution of (0.1) is being sought for. Thus,
in contrast to the earlier work, where the maps A(·) and F (·) are assumed
to be defined on larger spaces carrying weaker topologies than the solution
spaces, there is only one domain space over (0,T) entering the investiga-
tion of (0.1). This fact allows for great flexibility in concrete applications,
encompassing, in particular, problems being nonlocal in time, and leads to
optimal results.
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To be more precise we need some notation. Throughout, we assume that

E0 and E1 are (real or complex) Banach spaces such that E1
d

↪→ E0, where
↪→ denotes continuous injection and the superscript d indicates that E1 is
also dense in E0. (This notation is also used in the case of general topological
spaces.) Henceforth, we always suppose that 0 < T ≤ T and put JT := [0, T )
as well as J := JT. We also use J to denote any one of the intervals JT with
0 < T ≤ T.

Throughout we suppose that 1 < p < ∞. By H1
p

(
J̊ , E0

)
we denote the

Sobolev space of all u ∈ Lp

(
J̊ , E0

)
whose first order distributional derivative

is in Lp

(
J̊ , E0

)
as well, endowed with its usual norm. Then we put

H1
p

(
J, (E1, E0)

)
:= Lp(J,E1) ∩H1

p

(
J̊ , E0

)
.

We also set
E := (E0, E1)1/p′,p,

(·, ·)θ,r denoting the real interpolation functor of exponent θ ∈ (0, 1) and
(integrability) parameter r ∈ [1,∞]. It is known that

H1
p

(
J, (E1, E0)

)
↪→ C

(
J,E

)
, (0.2)

(cf. [2, Theorem III.4.10.2]).
As usual, if X and Y are Banach spaces (more generally, locally convex

spaces), then we write L(X,Y) for the space of all continuous linear maps
from X into Y, and L(X) := L(X,X). Recall that L(X,Y) is a Banach space
with the standard uniform operator norm, if X and Y are Banach spaces.

Given a map A : J → L(E1, E0), we identify it with its point-wise exten-
sion

EJ
1 → EJ

0 , u 7→ Au,

defined by
(Au)(t) := A(t)u(t), u ∈ EJ

1 , t ∈ J.

Then it follows that
L∞

(
J,L(E1, E0)

)
↪→ L

(
Lp(J,E1), Lp(J,E0)

)
↪→ L

(
H1

p

(
J, (E1, E0)

)
, Lp(J,E0)

)
.

(0.3)

We assume that

A(u) ∈ L∞
(
J,L(E1, E0)

)
, u ∈ H1

p

(
J, (E1, E0)

)
.

Note that this means that the linear map

H1
p

(
J, (E1, E0)

)
→ Lp(J, E0), v 7→ A(u)v
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is for each u ∈ H1
p

(
J, (E1, E0)

)
a local operator, whereas the nonlinear func-

tion u 7→ A(u) may be nonlocal.
We also assume that A(u) has for each u ∈ H1

p

(
J, (E1, E0)

)
the property

of maximal Lp regularity, meaning that the linear evolution equation

v̇ + A(u)v = f on (0,T), v(0) = 0,

has for each f ∈ Lp(J, E0) exactly one solution v ∈ H1
p

(
J, (E1, E0)

)
.

We further assume that

F (u) ∈ Lp(J, E0), u ∈ H1
p

(
J, (E1, E0)

)
,

and that (A,F ) is suitably Lipschitz continuous in a sense made precise
below and implying, in particular, that F is subordinate to A.

These assumptions imply that u̇ + A(u)u− F (u) is for each u belonging
to H1

p

(
J, (E1, E0)

)
a well defined element of Lp(J, E0). In order to obtain a

reasonable evolution problem we have to add one more assumption. Namely,
we suppose that A and F are Volterra maps which means that the restriction
of

(
A(u), F (u)

)
to any J depends on u |J only.

Given these assumptions, we show that (0.1) possesses a unique maxi-
mal solution and we give conditions for global existence. In addition, we
prove that, under natural continuity hypotheses, the solution depends con-
tinuously — or even differentiably — on all data. This fact, which is in the
present setting much more difficult to obtain than under standard hypothe-
ses, is important for qualitative studies, in particular in connection with
control problems.

Quasilinear parabolic evolution equations in the framework of maximal
Lp regularity have already been studied by Clément and Li [9] (in a particular
concrete setting) and by Prüss [15]. However, these authors assume that A(·)
and F (·) are local maps from E into E0 (in which case the Volterra property
is automatic, of course). These assumptions impose serious restrictions in
concrete applications which are not necessary by employing our approach.
We also refer to Clément and Simonett [10] for a study of (0.1) using maximal
regularity in continuous interpolation spaces, extending and improving on
earlier results of Da Prato and Grisvard [11] and Angenent [7], as well as
to the book by Lunardi [14] who bases her studies on maximal regularity
in Hölder spaces (also see [2, Chapter III] for a detailed exposition of the
various maximal regularity theories). In all those papers, as well as in many
others devoted to concrete parabolic equation, it is always assumed that A
and F are local operators mapping the corresponding trace space (or an



4 Herbert Amann

appropriate superspace thereof) into E0. Such a setting precludes the study
of problems which are nonlocal in time.

This paper consists of two parts. In Part 1 we introduce precise hypotheses
and present our general abstract results. It is the purpose of this paper to
lay the abstract foundations for the local theory of quasilinear parabolic
problems. Our abstract results possess numerous applications in various
concrete settings. The general continuity and differentiability theorems are
of particular importance in qualitative considerations and control theory. In
order not to overburden this paper, applications will be presented in separate
publications (also see [4], [6]). The second part contains the proofs of the
abstract theorems.

Part 1. Main results

First we introduce precise assumptions before, in the second section, we
present the existence and uniqueness theorem for problem (0.1). Section 3
is devoted to the continuity theorem. In the next section we describe the
correct concept of differentiability in locally convex spaces and formulate the
third main result of this paper, guaranteeing that the solution of (0.1) de-
pends continuously differentiably on all data, provided, of course, the latter
are suitably smooth. In Section 5 we give some simple extensions of our
general results to systems.

For the sake of relatively simple statements, throughout this paper we use
rather condensed notation which requires quite a bit of attention from the
reader.

1. Assumptions

Since (E0, E1) is fixed during this part, we put

H1
p(J) := H1

p

(
J, (E1, E0)

)
.

Suppose that
B ∈ L

(
H1

p(J), Lp(J,E0)
)
.

Given f ∈ Lp(J,E0) and x ∈ E, by a solution of the linear Cauchy problem

u̇ + Bu = f on J̊ , u(0) = x (1.1)x

we mean a strong (Lp) solution, that is, a function u belonging to H1
p(J)

and satisfying (1.1)x. Recall that each u ∈ H1
p (I̊ , E0) is an absolutely contin-

uous E0 valued function, and its derivative u̇ in the a.e. sense coincides with
its distributional derivative ∂u, (e.g., [8, § 2]). Thus the differential equation
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in (1.1)x can be understood either in the sense of E0 valued distributions
on J̊ or in the a.e. sense. The initial condition is meaningful, due to (0.2).

The map B is said to possess (the property of) maximal (Lp) regularity
on J (with respect to (E1, E0)) if (1.1)0 has for each f ∈ Lp(J) exactly one
strong Lp solution on J . We denote by

MRp(J) := MRp

(
J, (E1, E0)

)
the set of all B ∈ L∞

(
J,L(E1, E0)

)
possessing the property of maximal

Lp regularity on J with respect to (E1, E0).
We write MR(E1, E0) for the set of all C ∈ L(E1, E0) such that the con-

stant map t 7→ C belongs to MRp

(
J, (E1, E0)

)
. (This notation is justified

since the property of maximal regularity for constant maps is independent
of (bounded) intervals and of p; see [5, Remarks 6.1(d) and (e)]). It is
known (see [12]) that each C ∈MR(E1, E0) is the negative infinitesimal
generator of a strongly continuous analytic semigroup on E0. Furthermore,
A ∈ C

(
J,L(E1, E0)

)
belongs to MRp

(
J, (E1, E0)

)
iff A(t) ∈MR(E1, E0)

for each t ∈ J (cf. Proposition 7.1 in [5]). This shows that the maximal
regularity hypothesis restricts the class of evolution equations being studied
here to (abstract) parabolic equations.

Of course, MRp

(
J,L(E1, E0)

)
and MR(E1, E0) are given the topolo-

gies induced by L∞
(
J,L(E1, E0)

)
and L(E1, E0), respectively. We assume

throughout that MR(E1, E0) 6= ∅.
Let X and Y be nonempty sets. A function f : XJ → Y J is a Volterra

map (or has the Volterra property) if, for each T ∈ J̊ and each pair u, v ∈ XJ

with u |JT = v |JT , it follows that f(u) |JT = f(v) |JT . For a given space F
of maps XJ → Y J we denote by FVolt the subset of all Volterra maps in F.

Let X and Y be metric spaces. Then C1-(X, Y ) is the space of all maps
from X into Y which are bounded on bounded sets and uniformly Lips-
chitz continuous on such sets. If Y and Y0 are Banach spaces such that
Y ↪→ Y0, then we denote by C1-(X;Y,Y0) the set of all f : X → Y0 such
that f − f(0) ∈ C1-(X, Y). Note that C1-(X;Y,Y) = C1-(X, Y). If X is finite
dimensional, then C1-(X,Y) = C1-(X,Y), the space of all (locally) Lipschitz
continuous maps from X into Y.

After these preparations we can introduce the following hypotheses:

• A ∈ C1-
Volt

(
H1

p(J),MRp(J)
)
;

• p < q ≤ ∞;

• F ∈ C1-
Volt

(
H1

p(J);Lq(J, E0), Lp(J, E0)
)
.

 (1.2)
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2. Existence and uniqueness

Consider the quasilinear Cauchy problem (0.1). By a solution on J we
mean a u ∈ H1

p,loc(J) such that u |JT belongs to H1
p(JT ) for each T ∈ J̊ and

is a solution of the linear Cauchy problem

v̇ + A(u)v = F (u) on (0, T ), v(0) = x.

A solution is maximal if it cannot be extended to a solution on a strictly
larger interval. In this case its domain is a maximal interval of existence
for (0.1). A solution is global if it is defined on all of J.

Now we can formulate the following general existence and uniqueness re-
sult whose proof is given in Section 10.

Theorem 2.1. Let assumption (1.2) be satisfied. Then (0.1) possesses a
unique maximal solution u. The maximal interval of existence, Jmax, is
open in J. If u ∈ H1

p(Jmax), then Jmax = J.

Recall that the maximal solution u belongs to H1
p,loc(Jmax). The last part

of Theorem 2.1 shows that Lp integrability of u and u̇ on Jmax guarantees
already that u is global. The following corollary gives further sufficient
conditions for global existence which are useful in concrete applications.

Corollary 2.2. Let u be the unique maximal solution of (0.1). If
(i) A(u) ∈MRp(Jmax),
(ii) F (u) ∈ Lp(Jmax, E0),

then Jmax = J.

Proof. Assumptions (i) and (ii) guarantee that the linear Cauchy problem

v̇ + A(u)v = F (u) on Jmax, v(0) = x

has a unique solution v ∈ H1
p(Jmax) (cf. Lemma 6.1). The Volterra property

of A and F and Lemma 6.2 imply that u |JT is for each T ∈ J̊max the unique
solution of

ẇ + A(u)w = F (u) on JT , w(0) = x. (2.1)
Due to the Volterra property, we also see that v |JT is a solution of (2.1) as
well. Thus v |JT = u |JT for T ∈ J̊max. Hence u = v ∈ H1

p(Jmax). �

3. Continuity

The unique maximal solution of (0.1), whose existence is guaranteed by
Theorem 2.1, depends Lipschitz continuously on all data. For a precise
formulation of this result we introduce concise notation.
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We write BX for the open unit ball in the Banach space X. Hence, using
standard notation, BX(x, r) := x + rBX is the open ball in X with center at x
and radius r > 0. We also set BT := BH1

p(JT ).
Henceforth, we fix q ∈ (p,∞], put

Φ(J) := C1-
Volt

(
H1

p(J),MRp(J)
)
× C1-

Volt

(
H1

p(J);Lq(J,E0), Lp(J,E0)
)
,

and denote a general point of Φ(J) by ϕ = (A,F ). We also set

Zr(J) := L∞
(
J,L(E1, E0)

)
× Lr(J,E0), p ≤ r ≤ ∞,

and Z(J) := Zp(J). Given ϕ ∈ Φ(JT ) and R > 0, there exists K > 0 such
that

‖ϕ(0)‖Z(JT ) ≤ K (3.1)
and

‖ϕ(u)− ϕ(v)‖Zq(JT ) ≤ K ‖u− v‖H1
p(JT ), u, v ∈ RBT . (3.2)

The set of all such ϕ is denoted by Φ(JT ;R,K). For ϕ0 ∈ Φ(JT ) and ε > 0
we write V(JT ;ϕ0, R, K, ε) for the set of all ϕ ∈ Φ(JT ;R,K) satisfying

sup
u∈RBT

‖ϕ(u)− ϕ0(u)‖Z(JT ) ≤ ε.

Given ϕ ∈ Φ(J), we denote the unique maximal solution of (0.1) by u(ϕ, x),
write J(ϕ, x) for the corresponding maximal interval of existence, and put

t+(ϕ, x) := supJ(ϕ, x).

Then J(ϕ, x) =
[
0, t+(ϕ, x)

)
by Theorem 2.1.

Now we can formulate the following general continuity result whose proof
is given in Section 11.

Theorem 3.1. Assume (ϕ0, x0) ∈ Φ(J)× E. If u(ϕ0, x0) belongs to H1
p(J),

then put S := T. Otherwise fix any positive S < t+(ϕ0, x0). Set

u0 := u(ϕ0, x0) |JS .

Then, given R > ‖u0‖H1
p(JS), there exist positive constants K, ρ, and ε such

that

J(ϕ, x) ⊃ [0, S], (ϕ, x) ∈ V(JS ;ϕ0, R, K, ε)×BE(x0, ρ).

Moreover, there is a κ such that, setting uj := u(ϕj , xj),

‖u1 − u2‖H1
p(JS) ≤ κ

(
‖(ϕ1 − ϕ2)(u1)‖Z(JS) + ‖x1 − x2‖E

)
(3.3)

for (ϕ1, x1), (ϕ2, x2) ∈ V(JS ;ϕ0, R, K, ε)×BE(x0, ρ).
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Remark 3.2. Observe that Φ(J) is a subset of the Fréchet space

C1-
(
H1

p(J), L∞
(
J,L(E1, E0)

))
× C1-

(
H1

p(J);Lq(J,E0), Lp(J,E0)
)
, (3.4)

which is continuously embedded in the Fréchet space

C
(
H1

p(J), L∞
(
J,L(E1, E0)

)
× Lp(J,E0)

)
= C

(
H1

p(J),Z(J)
)
, (3.5)

where C is the space of continuous functions which are bounded on bounded
sets. Thus Φ(J) carries the C1- topology induced by (3.4) as well as the
weaker C topology induced by (3.5). Using these topologies, Theorem 3.1
shows that the solution map (ϕ, x) 7→ u(ϕ, x) is locally Lipschitz continuous
in the following sense: For each ϕ0 ∈ Φ and x0 ∈ E there exists a C1- neigh-
borhood V of ϕ0 in Φ and a neighborhood W of x0 in E such that

V ×W → H1
p(JS), (ϕ, x) 7→ u(ϕ, x)

is well defined and uniformly Lipschitz continuous with respect to the C topol-
ogy on V. �

Corollary 3.3. The maximal existence time, that is, the map

t+ : Φ(J)× E → (0,T],

is lower semicontinuous with respect to the C1- topology on Φ(J).

4. Differentiabiliy

Given slightly stronger continuity requirements for ϕ, the solution map is
even Gateaux differentiable. For this we need further explanation.

We denote by L2(X,Y) the Banach space of all continuous bilinear maps
from X into Y, equipped with its usual norm.

Let A : H1
p(J) → L

(
H1

p(J), Lp(J,E0)
)

be differentiable at u0 ∈ H1
p(J).

Then DA(u0), its derivative at u0, is a bounded linear operator from H1
p(J)

into the space L
(
H1

p(J), Lp(J,E0)
)
. Hence

DA(u0)[u, v] :=
(
DA(u0)u

)
v ∈ Lp(J,E0), u, v ∈ H1

p(J).

Thus, by identifying DA(u0) with (u, v) 7→ DA(u0)[u, v], it follows that

DA(u0) ∈ L2
(
H1

p(J), Lp(J,E0)
)
.

If A is differentiable in a neighborhood U of u0 in H1
p(J), then it is contin-

uously differentiable if

DA :=
(
u 7→ DA(u)

)
∈ C

(
U,L2

(
H1

p(J), Lp(J,E0)
))

.
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Let W be an open subset of some locally convex space W. Then a function
f : W → X is G differentiable at w ∈ W if there exists Df(w) ∈ L(W,X)
such that

Df(w)ω = lim
s→0

(
f(w + sω)− f(w)

)/
s, ω ∈ W.

It is continuously G differentiable in W if it is G differentiable at each
w ∈ W and

Df :=
(
w 7→ Df(w)

)
∈ C

(
W,L(W,X)

)
,

where L(W,X) is given the topology of uniform convergence on bounded
subsets of W. If W is a Banach space, then, as is well known, f is continuously
G differentiable iff it is continuously differentiable in the usual (Fréchet)
sense.

We denote by C1
(
X,Y) the vector space of all f : X → Y such that f be-

longs to C(X,Y) and Df to C
(
X,L(X,Y)

)
. It is a Fréchet space with the

topology of uniform convergence on bounded sets of the functions and their
derivatives. Note that

C1(X,Y) ↪→ C1-(X,Y), (4.1)

as follows from the mean value theorem.
Now, recalling (0.3), we can formulate the differentiability theorem for

solutions of (0.1). Its proof is postponed to Section 12.

Theorem 4.1. Suppose that (ϕ0, x0) ∈ Φ(J)× E. If u(ϕ0, x0) is in H1
p(J),

then put S = T. Otherwise fix any positive S < t+(ϕ0, x0). Also suppose
that ϕ0 ∈ C1

Volt

(
H1

p(JS),Z(JS)
)
, set u0 := u(ϕ0, x0) |JS, and assume that

B0(u0) := A0(u0) + DA0(u0)[·, u0]−DF0(u0) ∈ L
(
H1

p(JS), Lp(JS , E0)
)

(4.2)
has the property of maximal Lp regularity.

Then there exists a neighborhood U of (ϕ0, x0) in C1
(
H1

p(JS),Z(JS)
)
× E

such that problem (0.1) has for each (ϕ, x) ∈ U a unique solution u(ϕ, x)
in H1

p(JS). The solution map

U → H1
p(JS), (ϕ, x) 7→ u(ϕ, x) (4.3)

is continuously G differentiable. Given (ϕ, x) ∈ U and any (ϕ̂, x̂) belonging
to C1

(
H1

p(JS),Z(JS)
)
× E, the G derivative of (4.3) at (ϕ, x) in the direc-

tion (ϕ̂, x̂), that is, Du(ϕ, x)(ϕ̂, x̂), is the unique solution in H1
p(JS) of the
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linearized Cauchy problem

v̇ + A
(
u(ϕ, x)

)
v + DA

(
u(ϕ, x)

)[
v, u(ϕ, x)

]
= F̂

(
u(ϕ, x)

)
+ DF

(
u(ϕ, x)

)
v − Â

(
u(ϕ, x)

)
u(ϕ, x)

on (0, S), with v(0) = x̂.

Remarks 4.2. (a) In general, B(u0) /∈ L∞
(
JS ,L(E1, E0)

)
so that the max-

imal regularity assumption (4.2) does not say that B(u0) ∈MRp(JS).
(b) If (ϕ, x) ∈

(
Φ(J)× E

)
∩ U then, by uniqueness, the solution u(ϕ, x)

of Theorem 4.1 coincides with the restriction to JS of the corresponding
maximal solution of (0.1) guaranteed by Theorem 2.1. Thus it is justified
to use the symbol u(ϕ, x) in either case.

(c) It should be observed that there are no additional requirements like
the Volterra property, for example, for the elements in U\

{
(ϕ0, x0)

}
. �

Remark 4.3. Suppose that X is a nonempty subset of E and that we are
only interested in solving (0.1) for x ∈ X . Then it is not necessary that ϕ
be defined on all of H1

p(J). To be more precise, set

H1
p(J;X ) :=

{
v ∈ H1

p(J) ; v(0) ∈ X
}
,

endowed with the metric induced by the norm of H1
p(J). Assume, instead of

(1.2), that
• A ∈ C1-

Volt

(
H1

p(J;X ),MRp(J)
)
;

• p < q ≤ ∞;

• F ∈ C1-
Volt

(
H1

p(J;X );Lp(J, E0), Lq(J, E0)
)
.

Then Theorems 2.1–4.1 as well as Corollaries 2.2 and 3.3 remain valid, with
the obvious modifications, if x is restricted to belong to X . In particular,
the value 0 in (3.1) and the ball RBT in (3.2) have to be replaced by an
arbitrary, but fixed, u0 ∈ H1

p(JT ;X ) and the ball u0 + RBT , respectively.

Proof. This follows from the proofs of those theorems. �

5. Systems

In this section we present simple but useful extensions of the preceding
results to systems.

Let E0,j and E1,j be Banach spaces such that E1,j
d

↪→ E0,j for j = 1, . . . , N .
Set Ek :=

∏N
j=1 Ek,j for k = 0, 1, endowed with the `2 norm. Then E0 and E1

are Banach spaces satisfying E1
d

↪→ E0.
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Suppose that 1 < pj < ∞ for j = 1, 2, . . . , N and put

H1
~p(J) := H1

~p

(
J, (E1, E0)

)
:=

N∏
j=1

H1
pj

(
J, (E1,j , E0,j)

)
,

L~p(J,E0) :=
N∏

j=1

Lpj (J,E0,j), E :=
N∏

j=1

(E0,j , E1,j)1/p′j ,pj
.

Note that (0.2) implies

H1
~p

(
J, (E1, E0)

)
↪→ C

(
J,E

)
.

For B ∈ L
(
H1

~p(J), L~p(J,E0)
)

we define the property of maximal L~p reg-
ularity as in Section 1 by (formally) replacing everywhere the index p
by ~p. Then

MR~p(J) := MR~p

(
J, (E1, E0)

)
is the set of all B ∈ L∞

(
J,L(E1, E0)

)
possessing the property of maximal

L~p regularity on J .
We assume that

• MR(E1,j , E0,j) 6= ∅, j = 1, 2, . . . , N.

We also assume that
• A ∈ C1-

Volt

(
H1

~p(J),MR~p(J)
)
;

• ~p < ~q ≤ ~∞;

• F ∈ C1-
Volt

(
H1

~p(J);L~q(J, E0), L~p(J, E0)
)
,

 (5.1)

where ~p < ~q means pj < qj for 1 ≤ j ≤ N , and ~∞ := (∞, . . . ,∞).

Theorem 5.1. Let (5.1) be satisfied. Then Theorems 2.1, 3.1, and 4.1,
as well as Corollaries 2.2 and 3.3 and Remark 4.3 hold (with the obvious
modifications) in this case also.

Proof. The reader will verify that the proofs of Sections 6–12 are easily
adapted to give the assertion. �

Our next proposition gives a sufficient condition for B ∈ L∞
(
J,L(E1, E0)

)
to possess the property of maximal L~p regularity. For this we note that
each such B possesses a unique N ×N operator matrix representation,
B = [Bjk], where

Bj,k ∈ L∞
(
J,L(E1,k, E0,j)

)
, 1 ≤ j, k ≤ N.

Clearly, B is ‘upper triangular’ if Bj,k = 0 for 1 ≤ k < j ≤ N .
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Proposition 5.2. Suppose that B ∈ L∞
(
J,L(E1, E0)

)
is upper triangular

and
Bj,j ∈MRpj

(
J, (E1,j , E0,j)

)
, 1 ≤ j ≤ N.

Then B ∈MR~p

(
J, (E1, E0)

)
.

Proof. Suppose that f = (f1, . . . , fN ) ∈ L~p(J,E0). Then, by the upper tri-
angularity, the Cauchy problem

u̇ + Bu = f in (0, T ), u(0) = 0 (5.2)

is equivalent to

u̇j + Bj,juj = fj −
N∑

k=j+1

Bj,kuk, 1 ≤ j ≤ N. (5.3)j

From this, the maximal regularity property of Bj,j , and by solving (5.3)j

from ‘bottom to top’, we see that (5.2) has a unique solution u ∈ H1
~p(J). �

By combining this proposition with the perturbation theorems of [5] we
easily obtain sufficient conditions for operators B with ‘fully occupied’ ma-
trices [Bjk] to possess the property of maximal L~p regularity, provided the
subdiagonal entries Bj,k, 1 ≤ j < k ≤ N , are suitably ‘subordinate’. Details
are left to the interested reader.

Part 2. Proof of the general theorems

In this part we prove the general theorems formulated in Part 1. Since
we assume only that A and F are defined on H1

p(J), and not on C
(
J, E

)
, the

proofs are rather more complicated than in the ‘classical’ situation. First,
we cannot carry out an iteration process (i.e., Banach’s fixed point theorem)
with the usual choice of the constant function u0(t) := x as starting point,
since this function does not belong to H1

p(J), in general, if x ∈ E. Second,
since (A,F ) is defined on the fixed space H1

p(J), we have to prove suitable
uniform extension theorems for H1

p(JT ) functions. Lastly, the proof of the
(global) continuity theorem is rather delicate also since the norms of the
elements of H1

p(JT ) do not converge to zero in a uniform fashion as T tends
to zero.

In Section 6 we collect the basic facts on maximal regularity used be-
low. Section 7 contains simple but most important extension theorems for
H1

p functions. Section 8 is of preparatory nature containing technical esti-
mates needed in the proofs of the existence and continuity theorems given in
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Sections 9–11. The last section is devoted to the proof of the differentiability
theorem.

Throughout this part p is a fixed number in (1,∞) and, for abbreviation,
we put

H(J) := H1
p(J), L(J) := Lp(J,E0),

as well as

Lr(J) := Lr(J,E0), 1 ≤ r ≤ ∞, L := L(E1, E0).

We also set

MR(J) := MRp(J), MR := MR(E1, E0),

and recall that it is assumed that MR 6= ∅.
Let X be a Banach space. Suppose that 0 < S < T and u maps JS into X.

Given v : JT−S → X, we put

u⊕S v(t) :=

{
u(t), t ∈ JS ,

v(t− S), t ∈ S + JT−S = [S, T ),

so that u⊕S v maps JT into X.

6. Maximal regularity

Let X and Y be Banach spaces. Then Lis(X,Y) is the set of all isomor-
phisms from X into Y. Recall that Lis(X,Y) is open in L(X,Y), and the
inversion map Lis(X,Y) → Lis(Y,X), C 7→ C−1 is smooth. We write γ0 for
the trace operator u 7→ u(0), so that γ0 ∈ L

(
H(J), E

)
by (0.2). We also set

H0(J) :=
{

u ∈ H(J) ; γ0u = 0
}
.

Hence H0(J) is a closed linear subspace of H(J), thus a Banach space.
The following lemma gives simple, but useful, characterizations of max-

imal regularity. Its proof is an almost obvious consequence of the open
mapping theorem (cf. the proof of [3, Proposition 2.1]).

Lemma 6.1. Suppose that B ∈ L
(
H(J), L(J)

)
. Then the following are

equivalent.
(i) B has the property of maximal regularity.
(ii) ∂ + B ∈ Lis

(
H0(J), L(J)

)
.

(iii) (∂ + B, γ0) ∈ Lis
(
H(J), L(J)× E

)
.

(iv) The linear Cauchy problem

u̇ + Bu = f on J, u(0) = x

has for each (f, x) ∈ L(J)× E a unique solution in H(J).
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For κ > 0 we denote by MR(J, κ) the set of all B ∈MR(J) satisfying

‖(∂ + B, γ0)−1‖L(L(J)×E,H(J)) ≤ κ.

The proof of the following lemma is found in [5, Lemma 4.1]. Here and
below, τs denotes left translation, that is, τsv(t) = v(t + s).

Lemma 6.2. There exists κ̂ ≥ 1 such that, given any κ > 0 and B belonging
to MR(JT , κ),

τsB ∈MR(JS−s, κ̂κ), 0 ≤ s < S ≤ T.

The crucial part of this assertion is the fact that the norm of the inverse
of (∂ + B, γ0) can be controlled under restrictions and translations.

7. Extensions

For x ∈ E we set

MT (x) :=
{

u ∈ H(JT ) ; u(0) = x
}
.

For completeness we include a proof for the following simple lemma.

Lemma 7.1. Suppose that u ∈ H(JS) and v ∈ MT−S

(
u(S)

)
. Then u⊕S v

belongs to H(JT ), and ∂(u⊕S v) = ∂u⊕S ∂v. Moreover,

‖u1 ⊕S v1 − u2 ⊕S v2‖H(JT ) ≤ 2
(
‖u1 − u2‖H(JS) + ‖v1 − v2‖H(JT−S)

)
for uj ∈ H(JS) and vj ∈ MT−S

(
uj(S)

)
, j = 1, 2.

Proof. Since u ∈ H1
p (JS , E0) and v ∈ H1

p (JT−S , E0), these functions are ab-
solutely continuous. Thus, given ϕ ∈ C∞(0,∞) having its support in J̊T ,

−
∫ T

0
∂ϕ(u⊕S v) dt = −

∫ S

0
ϕ̇u dt−

∫ T−S

0
τSϕ̇v dt

=
∫ S

0
ϕu̇ dt +

∫ T−S

0
τSϕv̇ dt =

∫ T

0
ϕ(∂u⊕S ∂v) dt

in E0, due to u(S) = v(0). Hence ∂(u⊕S v) = ∂uS ⊕ ∂vS ∈ L(JT ). This
shows that u⊕S v ∈ H1

p (JT , E0). Consequently, u⊕S v ∈ H(JT ). The rest
is obvious. �

In the following basic extension lemma it is important to observe that the
norms of the extension operators are uniformly bounded with respect to T .
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Lemma 7.2. There exist a positive constant κ and, for each T ∈ (0,T],
a map

extT ∈ L
(
H(JT ),H(J)

)
such that

‖ extT u‖H(J) ≤ κ
(
‖u‖H(JT ) + ‖u(0)‖E

)
and extT u ⊃ u for u ∈ H(JT ).

Proof. Fix B ∈MR and set

κ := ‖(∂ + B, γ0)−1‖L(L(J)×E,H(J)) (1 + ‖B‖L).

For u ∈ H(JT ) put

extT u := (∂ + B, γ0)−1
(
((∂ + B)u)∼, u(0)

)
∈ H(J),

where ((∂ + B)u)∼ ∈ L(J) is the extension by zero of (∂ + B)u ∈ L(JT ).
Then extT has the desired properties. �

8. Preliminary estimates

In this section we present estimates which are needed for the derivation
of the existence and continuity theorems. For this we set

η(t) := t1/p−1/q, t ≥ 0.

For u0 ∈ H(J) we put

NS(u0; r, ρ) :=
{

u ∈ H(JS) ; ‖u− u0‖H(JS) ≤ r, ‖u(0)− u0(0)‖E ≤ ρ
}

for r, ρ > 0 and 0 < S ≤ T.

Lemma 8.1. Suppose that (ϕ0, u0) ∈ Φ(J)×H(J). Then, for any R strictly
bigger than ‖u0‖H(J), there exist positive constants K, κ, r, ρ, and ε such
that, given ϕ ∈ V(J;ϕ0, R, K, ε),

τsA(u) ∈MR(Jσ, κ)

and
‖τsϕ(u)‖Z(Jσ) ≤ κ

as well as∥∥τs

(
A(u)−A(v)

)∥∥
L∞(Jσ ,L)

≤ κ
(
‖u− v‖H(Js+σ) + ‖u(0)− v(0)‖E

)
and ∥∥τs

(
F (u)− F (v)

)∥∥
L(Jσ)

≤ κη(σ)
(
‖u− v‖H(Js+σ) + ‖u(0)− v(0)‖E

)
for 0 ≤ s < S ≤ T, 0 < σ ≤ S − s, and u, v ∈ NS(u0; r, ρ).
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Proof. For 0 < S ≤ T and u ∈ H(JS) we put

εS(u) := u0 + extS(u− u0) ∈ MT

(
u(0)

)
if S < T, and εS(u) := u otherwise. By Lemma 7.2 there exists a constant κ0

such that

‖εS(u)− u0‖H(J) ≤ κ0

(
‖u− u0‖H(JS) + ‖u(0)− u0(0)‖E

)
. (8.1)

Fix R > ‖u0‖H(J) and r, ρ > 0 such that κ0(r + ρ) < R− ‖u0‖H(J). Then it
follows from (8.1) that

εS(u) ∈ RBT, u ∈ NS(u0; r, ρ), 0 < r ≤ r, 0 < ρ ≤ ρ, 0 < S ≤ T.
(8.2)

Choose K > 0 such that ϕ0 ∈ V(J;R,K). Then (8.1) and (8.2) imply∥∥A0(εS(u)
)
−A0(u0)

∥∥
L∞(J,L)

≤ K ‖εS(u)− u0‖H(J) ≤ κ0K(r + ρ) (8.3)

for u ∈ NS(u0; r, ρ), 0 < r ≤ r, 0 < ρ ≤ ρ, and 0 < S ≤ T. Since A0(u0)
belongs to MR(J), there exists κ1 > 0 such that∥∥(

∂ + A0(u0), γ0

)−1∥∥
L(L(J)×E,H(J))

≤ κ1.

Now we fix r ∈ (0, r ] and ρ ∈ (0, ρ ] such that κ0K(r + ρ) < 1/4κ1 and set
ε := 1/4κ1. Then we infer from

A
(
εS(u)

)
−A0(u0) = A

(
εS(u)

)
−A0

(
εS(u)

)
+ A0

(
εS(u)

)
−A0(u0)

and (8.3) that∥∥A
(
εS(u)

)
−A0(u0)

∥∥
L∞(J,L)

≤
∥∥A

(
εS(u)

)
−A0

(
εS(u)

)∥∥
L∞(J,L)

+ 1/4κ1.

Thus (8.2) and the choice of ε imply∥∥A
(
εS(u)

)
−A0(u0)

∥∥
L∞(J,L)

≤ 1/2κ1

for ϕ ∈ Vε := V(J;ϕ0, R, K, ε), u ∈ NS(u0; r, ρ), and 0 < S ≤ T. Now we de-
duce from the obvious fact that the injection map L∞(J,L) ↪→ L

(
H(J), L(J)

)
has norm 1 and from a well known perturbation theorem for bounded in-
vertibility, which is based on a Neumann series argument, that(

∂ + A
(
εS(u)

)
, γ0

)
∈ Lis

(
H(J), L(J)× E

)
and that the inverse of this map is bounded by 2κ1 for ϕ, u, and S as above.
The Volterra property guarantees that

τs(A)
(
εS(u)

)∣∣Jσ = τsA(u) |Jσ, 0 ≤ s < S, 0 < σ ≤ S − s.

Thus it follows from Lemma 6.2 and the above that

τsA(u) |Jσ ∈MR(Jσ, 2κ1κ̂) (8.4)
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for u ∈ NS(u0; r, ρ), 0 ≤ s < S ≤ T, and 0 < σ ≤ S − s.
From (8.2), (8.4), and Lemma 7.2 we deduce that, given ϕ ∈ Vε,∥∥τs

(
A(u)−A(v)

)∥∥
L∞(Jσ ,L)

=
∥∥τs

(
A

(
εs+σ(u)

)
−A

(
εs+σ(v)

))∥∥
L∞(Jσ ,L)

≤
∥∥(A

(
εs+σ(u)

)
−A

(
εs+σ(v)

)∥∥
L∞(J,L)

≤ K ‖εs+σ(u)− εs+σ(v)‖H(J)

≤ κ0K
(
‖u− v‖H(Js+σ) + ‖u(0)− v(0)‖E

)
(8.5)

for u, v ∈ NS(u0; r, ρ), 0 ≤ s < S ≤ T, and 0 < σ ≤ S − s, due to the fact
that w |Js+σ ∈ Ns+σ(u0; r, ρ) for w ∈ NS(u0; r, ρ). Similarly, using Hölder’s
inequality in addition, we find∥∥τs

(
F (u)− F (v)

)∥∥
L(Jσ)

≤ η(σ)
∥∥τs

(
F (u)− F (v)

)∥∥
Lq(Jσ)

≤ η(σ)
∥∥F

(
εs+σ(u)

)
− F

(
εs+σ(v)

)∥∥
Lq(J)

≤ Kη(σ) ‖εs+σ(u)− εs+σ(v)‖H(J)

≤ κ0Kη(σ)
(
‖u− v‖H(Js+σ) + ‖u(0)− v(0)‖E

)
(8.6)

for u, v, s, σ, and S as above.
Note that

‖u‖H(Js+σ) + ‖u(0)‖E ≤ ‖u0‖H(J) + ‖u0(0)‖E + r + ρ

for u ∈ NS(u0; r, ρ) and s + σ ≤ S. Hence (8.5) and (8.6) imply the existence
of a constant κ2 such that

‖τsϕ(u)‖Z(Jσ) ≤ ‖τsϕ(0)‖Z(Jσ) + κ2, ϕ ∈ Vε.

Since it follows from ϕ ∈ V(J;R,K) that ‖ϕ(0)‖Z(J) ≤ K, we see that

‖τsϕ(u)‖Z(Jσ) ≤ K + κ2, ϕ ∈ Vε. (8.7)

Now, setting κ := max{2κ1κ̂, κ0K, K + κ2}, estimates (8.4)–(8.7) give the
assertion. �

9. Local existence

For abbreviation, we put

MS(x, r) :=
{

u ∈ MS(x) ; ‖u− ex‖H(JS) ≤ r
}
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for 0 < S ≤ T, x ∈ E and r > 0. Observe that MS(x, r) is a closed subset
of the Banach space H(JS), hence a complete metric space. We also set
ZS := Z(JS) for 0 < S ≤ T.

On the basis of the preceding preparations we can now prove the follow-
ing fundamental local existence, uniqueness, and continuity theorem for the
quasilinear Cauchy problem

u̇ + A(u)u = F (u) on J, u(0) = x. (9.1)(ϕ,x)

Proposition 9.1. Suppose that (ϕ0, x0) ∈ Φ(J)× E. Then there exist pos-
itive constants R, K, T , r, ε, and ρ such that (9.1)(ϕ,x) has for each x
belonging to BE(x0, ρ) and ϕ ∈ V(J;ϕ0, R, K, ε) a unique solution u(ϕ, x)
in the set MT (x, r). Moreover, there exists a positive constant κ such that,
setting uj := u(ϕj , xj),

‖u1 − u2‖ ≤ κ
(
‖(ϕ1 − ϕ2)(u1)‖ZT

+ ‖x1 − x2‖E

)
for x1, x2 ∈ BE(x0, ρ) and ϕ1, ϕ2 ∈ V(J;ϕ0, R, K, ε).

Proof. (1) We fix C ∈ H(E1, E0) and put

ex(t) := e−tCx, 0 < t ≤ T, x ∈ E.

Note that (x 7→ ex) ∈ L
(
E,H(J)

)
and that there exists κ̃ ≥ 1 such that

‖ex‖H(JT ) ≤ κ̃ ‖x‖E , 0 < T ≤ T, x ∈ E (9.2)

(cf. [2, Proposition III.4.10.3]).
Set u0 := ex0 and fix R > ‖u0‖H(J). From Lemma 8.1 we know that there

exist positive constants K, ε, and r, ρ ∈ (0, 1], as well as κ ≥ K ∨ κ̃ ∨ 1 such
that, given ϕ ∈ V := V(J, ϕ0, R, K, ε), it follows that

A(u) ∈MR(JS , κ) (9.3)

and
‖ϕ(u)‖ZS

≤ κ (9.4)
as well as

‖A(u)−A(v)‖L∞(JS ,L) ≤ κ
(
‖u− v‖H(JS) + ‖u(0)− v(0)‖E

)
(9.5)

and

‖F (u)− F (v)‖L(JS) ≤ κη(σ)
(
‖u− v‖H(JS) + ‖u(0)− v(0)‖E

)
(9.6)

for u, v ∈ NS(r, ρ) := NS(u0; r, s), 0 < r ≤ r, 0 < ρ ≤ ρ, and 0 < S ≤ T.
In the rest of this proof we always presuppose that

ϕ ∈ V, r ∈ (0, r ], ρ ∈ (0, ρ ], S ∈ (0,T].
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Note that from v = (v − u0) + u0 it follows that

‖v‖H(JS) ≤ r + ‖u0‖H(JS), v ∈ NS(r, ρ). (9.7)

Similarly, ev(0) − v = ev(0) − ex0 + u0 − v implies

‖ev(0) − v‖H(JS) ≤ κρ + r, v ∈ NS(r, ρ), (9.8)

due to (9.2) and κ ≥ κ̃.
(2) For v ∈ NS(r, ρ) we put

G(v) :=
(
A(ev(0))−A(v)

)
v + F (v) ∈ L(JS).

Observe that (9.5), (9.7), and (9.8) imply∥∥(
A(ev(0))−A(v)

)
v
∥∥

L(JS)
≤ κ

(
r + κρ

)(
r + ‖u0‖H(JS)

)
.

Similarly, from F (v) =
(
F (v)− F (u0)

)
+ F (u0) and (9.6) we infer, due to

r, ρ ≤ 1, that
‖F (v)‖L(JS) ≤ 2κη(S) + ‖F (u0)‖L(JS).

Thus, setting

α(S) := 2κη(S) + κ(1 + κ) ‖u0‖H(JS) + ‖F (u0)‖L(JS),

we see that
‖G(v)‖L(JS) ≤ κ(r + κρ)r + α(S). (9.9)

Since, for u, v ∈ NS(r, ρ) with u(0) = v(0),

G(u)−G(v) =
(
A(eu(0))−A(u)

)
(u− v) +

(
A(v)−A(u)

)
v + F (u)− F (v),

we find, similarly, that

‖G(u)−G(v)‖L(JS) ≤ κ
(
2r + κρ + α(S)

)
‖u− v‖H(JS). (9.10)

(3) For x ∈ BE(x0, ρ) and v ∈ MS(x, r) we denote by US := US(v, x) the
unique solution in H(JS) of the linear Cauchy problem

u̇ + A(ex)u = G(v) on JS , u(0) = x.

Due to Lemma 6.1(iii), it is well defined. Thus, by the definition of u0,

(US − u0)
. + A(ex)(US − u0) =

(
C −A(ex)

)
u0 + G(v) (9.11)

on JS , and (US − u0)(0) = x− x0.
Set β(S) := (‖C‖L + κ) ‖u0‖H(JS) + α(S). Using (9.2), we obtain

‖ex‖H(J) ≤ ‖u0‖H(J) + κρ.

By making ρ smaller, if necessary, we can assume that ex ∈ RBT for x be-
longing to BE(x0, ρ). Consequently, ‖A(ex)‖L∞(J,L) ≤ κ, due to (9.4). Hence
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it follows from (9.4) and (9.9) that κ(r + κρ)r + β(S) is a bound for the
L(JS) norm of the right-hand side of (9.11). Hence we infer from (9.3) that

‖US(v, x)− u0‖H(JS) ≤ κ2(r + κρ)r + κβ(S) + κρ.

Similarly, (9.10) implies

‖US(v, x)− US(w, x)‖H(JS) ≤ κ2
(
2r + κρ + β(S)

)
‖v − w‖H(JS)

for x ∈ BE(x0, ρ) and v, w ∈ MS(x, r).
(4) Now we fix r and ρ such that 8κ2r ≤ 1, 8κ3ρ ≤ 1, and 8κρ ≤ r. We

also fix T ∈ (0,T] with 8κ2β(T ) ≤ r, which is possible due to β(S) ↓ 0 as
S ↓ 0. Then it follows from step (3) that

‖US(v, x)− u0‖H(JS) ≤ r/2

and
‖US(v, x)− US(w, x)‖H(JS) ≤ ‖v − w‖H(JS)/2

for x ∈ BE(x0, ρ) and v, w ∈ MS(x, r), and for 0 < S ≤ T . This shows that
U(·, x) maps the complete metric space MS(x, r) into itself and is a strict
contraction. Hence Banach’s fixed point theorem guarantees that US(·, x)
has a unique fixed point, uS(x), in MS(x, r). Clearly, u is a fixed point
of US(·, x) iff it is a solution of (9.1)(ϕ,x) on JS belonging to MS(x, r). From
this we infer that

uS1(x) ⊃ uS2(x), 0 < S2 < S1 ≤ T.

This proves the first assertion.
(5) Set U := V ×BE(x0, ρ) and suppose that (ϕj , xj) ∈ U for j = 1, 2. Let

uj be the unique solution of (9.1)(ϕj ,xj) on JT belonging to MT (xj , r). Then

(u1−u2)
.+A1(u1)(u1−u2) =

(
A2(u2)−A1(u1)

)
u2+F1(u1)−F2(u2) (9.12)

on JT , and (u1 − u2)(0) = x1 − x2. Note that

A2(u2)−A1(u1) = A2(u2)−A2(u1) + A2(u1)−A1(u1)

implies, due to (9.5) and (9.7),∥∥(
A2(u2)−A1(u1)

)
u2

∥∥
L(JT )

≤ κ
(
r + ‖u0‖H(JT )

)(
‖u1 − u2‖H(JT ) + ‖x1 − x2‖E

)
+ κ∗ ‖(A1 −A2)(u1)‖L∞(JT ,L)

with κ∗ := 1 + κ ‖x0‖E , where ‖u0‖H(JT ) has been estimated by (9.2). Sim-
ilarly,

F1(u1)− F2(u2) = F1(u1)− F2(u1) + F2(u1)− F2(u2),
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and (9.6) imply

‖F1(u1)− F2(u2)‖L(JT )

≤ κη(T )
(
‖u1 − u2‖H(JT ) + ‖x1 − x2‖E

)
+ ‖(F1 − F2)(u1)‖L(JT ).

Thus, due to the choice of r and ρ, the L(JT ) norm of the right-hand side
of (9.12) is estimated from above by

1
2κ

‖u1 − u2‖H(JT ) + κ̂
(
‖(ϕ1 − ϕ2)(u1)‖ZT

+ ‖x1 − x2‖E

)
,

where κ̂ := κ
(
κ∗ + η(T )

)
. Now, setting κ := 2κ

(
κ̂ + 1

)
, the last assertion

follows from (9.3). �

10. Global existence and uniqueness

By a more or less obvious extension procedure we can now prove our main
existence and uniqueness result.

Proof of Theorem 2.1. (1) Fix (ϕ, x) ∈ Φ(J)× E. Proposition 9.1 guaran-
tees the existence of T0 in (0,T] and r0 > 0 such that (9.1)(ϕ,x) has on JT0

a unique solution belonging to MT0(x, r0).
(2) Suppose that 0 < S < T and w ∈ H(JS) is a solution of (9.1)(ϕ,x)

on JS . For u ∈ MT−S

(
w(S)

)
put

ϕS,w(u) := τSϕ(w ⊕S u) ∈ ZT−S .

Also set u0 := w ⊕S ew(S) ∈ H(J). Fix positive constants R and K with
u0 ∈ RBT and ϕ ∈ Φ(R,K). It follows from Lemma 8.1 that there exist
κ ≥ 1 and r > 0 such that

‖ϕS,w(u)‖Zσ ≤ κ,

and
‖AS,w(u)−AS,w(v)‖L∞(Jσ ,L) ≤ κ ‖u− v‖H(Jσ)

as well as
‖FS,w(u)− FS,w(v)‖L(Jσ) ≤ κη(σ) ‖u− v‖H(Jσ)

and
AS,w(u) ∈MR(Jσ, κ)

for 0 < σ ≤ T− S and u, v ∈ Mσ

(
w(S), r

)
.

Now obvious modifications of steps (2)–(4) of the proof of Proposition 9.1
(replacing NS(r, ρ) by Mσ

(
w(S), r

))
imply the existence of r > 0 and S1 be-

longing to (S, T] such that the Cauchy problem

u̇ + τSA(w ⊕S u)u = τSF (w ⊕S u) on JS1−S , u(0) = w(S)
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possesses a unique solution u1 ∈ MS1−S

(
w(S), r

)
. By Lemma 7.1 it is easily

verified that w ⊕S u1 is a solution of (9.1)(ϕ,x) on JS1 belonging to H(JS1).
(3) Let 0 < S1 ≤ S2 ≤ T and let uj ∈ H(JSj ) be a solution of (9.1)(ϕ,x)

on JSj . Set

τ := max
{

t ∈ [0, S1] ; u1(s) = u2(s) for 0 ≤ s ≤ t
}
.

Suppose that τ < S1. Then the preceding step guarantees the existence
of σ0 in the interval (0, S1−τ ] and r > 0 and, for each σ ∈ (0, σ0], of a unique
v ∈ Mσ

(
u1(τ), r

)
such that u1 ⊕τ v is a solution of (9.1)(ϕ,x) on Jτ+σ. Choose

σ ∈ (0, σ0] such that uj(·+ τ) ∈ Mσ

(
u1(τ), r

)
for j = 1, 2. Then uniqueness

implies
u1 |Jτ+σ = u1 ⊕τ v = u2 |Jτ+σ.

Since this contradicts the definition of τ , it follows that u1 ⊂ u2.
(4) Denote by t+ the supremum of all S ∈ (0,T] such that (9.1)(ϕ,x)

has on JS a solution uS ∈ H(JS). Step (1) implies that t+ is well de-
fined, and from step (3) it follows that uS is uniquely determined. Thus
u(·, x) ∈ Hloc

(
0, t+

)
can be defined by u(·, x) |JS := uS for 0 < S < t+. Then

u(·, x) is the unique solution of (9.1)(ϕ,x) on
[
0, t+

)
=: Jmax.

Suppose that u(·, x) ∈ H
(
Jmax

)
. Then x := u

(
t+, x

)
is well defined in E,

due to (0.2). If t+ < T, then step (2) shows that we can extend u(·, x) to a
solution of (9.1)(ϕ,x) on JS belonging to H(JS) for some S > t+. Since this
contradicts the definition of t+, it follows that Jmax = J. This proves the
theorem. �

11. Proof of the continuity theorem

In this section we give a proof of the continuity theorem which guarantees
that the solution of (9.1) depends Lipschitz continuously on (ϕ, x).

Proof of Theorem 3.1. Let S be fixed as prescribed.
(1) Fix R > ‖u0‖H(JS). By replacing J in Lemma 8.1 by JS we find con-

stants K, r0, ρ0, ε0 > 0 and κ ≥ 1 such that∥∥τs

(
A(u)−A(v)

)∥∥
L∞(Jσ ,L)

≤ κ
(
‖u− v‖H(Js+σ) + ‖u(0)− v(0)‖E

)
(11.1)

and∥∥τs

(
F (u)− F (v)

)∥∥
L(Jσ)

≤ κη(σ)
(
‖u− v‖H(Js+σ) + ‖u(0)− v(0)‖E

)
, (11.2)

as well as
τsA(u) ∈MR(Jσ, κ) (11.3)
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for
0 ≤ s < S, 0 < σ ≤ S − s, u, v ∈ Ns+σ(u0; r0, ρ0),

ϕ ∈ Vε0 := V(JS ;ϕ0, R, K, ε0).
(2) Fix r, ρ0 ∈ (0, 1] such that

3r ≤ r0, 16κ2r ≤ 1, 16κ2ρ0 ≤ r. (11.4)

We claim that
if u(ϕ, x) ∈ Bs(u0, r/2)

for some s ∈ (0, S) and (ϕ, x) ∈ Φ(JS)× E,

then u(ϕ, x)⊕s v ∈ Bs+σ(u0, r0) for 0 < σ ≤ S − s and

v ∈ Qσ(s, ϕ, x) := Mσ

(
u(ϕ, x)(s)

)
∩ Bσ(τsu0, r).

 (11.5)

Indeed, using u0 = u0 ⊕s τsu0, we deduce from Lemma 7.1 that

‖u(ϕ, x)⊕s v − u0‖H(Js+σ) ≤ 2
(
‖u(ϕ, x)− u0‖H(Js) + ‖v − τsu0‖H(Jσ)

)
≤ 3r.

Hence (11.4) implies the assertion.
(3) Suppose that

s ∈ (0, S) and (ϕ, x) ∈ Vε0 × E satisfy u(ϕ, x) ∈ Ns(u0; r/2, ρ0). (11.6)

Set

ϕx,s(v) := τs

[
ϕ
(
u(ϕ, x)⊕s v

)]
, v ∈ Qσ(s, ϕ, x), 0 < σ ≤ S − s.

Then (11.1) and (11.5) guarantee that

‖Ax,s(v)−Ax,s(w)‖L∞(Jσ ,L) ≤ κ ‖v − w‖H(Jσ) (11.7)

for
v, w ∈ Qσ(s, ϕ, x) and 0 < σ ≤ S − s. (11.8)

Put A := A0(u0) and observe that

τsA−Ax,s(v) = τs

(
A0(u0)−A

(
u(ϕ, x)⊕s v

))
= τs

(
A0(u0)−A(u0)

)
+ τs

(
A(u0)−A

(
u(ϕ, x)⊕s v

))
.

Hence we deduce from (11.1), (11.4), (11.5), and (11.7) that

‖τsA−Ax,s(v)‖L∞(Jσ ,L)

≤ 2κ
(
‖u0 − u(ϕ, x)‖H(Js) + ‖τsu0 − v‖H(Jσ)

)
+ κ ‖x− x0‖E

+
∥∥τs

(
(A−A0)(u0)

)∥∥
L∞(Jσ ,L)

≤ 3κr + κρ0 +
∥∥τs

(
(A−A0)(u0)

)∥∥
L∞(Jσ ,L)

(11.9)



24 Herbert Amann

if σ and v satisfy (11.8). Similarly, it follows from (11.2) that

‖(F0)x0,s(τsu0)− Fx,s(v)‖L(Jσ)

≤ 2κη(σ)
(
‖u0 − u(ϕ, x)‖H(Js) + ‖τsu0 − v‖H(Jσ)

)
+ κη(σ) ‖x− x0‖E +

∥∥τs

(
(F − F0)(u0)

)∥∥
L(Jσ)

≤ 3κη(σ)r + κη(σ)ρ0 +
∥∥τs

(
(F − F0)(u0)

)∥∥
L(Jσ)

,

(11.10)

provided σ and v satisfy (11.8).
(4) Let (11.6) and (11.8) be satisfied. Put

Hs(ϕ, x, v) :=
(
τsA−Ax,s(v)

)
v + Fs,x(v) ∈ L(Jσ).

Since
‖v‖H(Jσ) ≤ ‖v − τsu0‖H(Jσ) + ‖τsu0‖H(Jσ)

≤ r + ‖τsu0‖H(Jσ)
(11.11)

we infer from (11.5), (11.9), and (11.10) that

‖Hs(ϕ, x, v)− (F0)x0,s(τsu0)‖L(Jσ)

≤ r3κ
(
r + ‖τsu0‖H(Jσ) + η(σ)

)
+ κρ0

(
1 + η(σ)

)
+ β ‖(ϕ− ϕ0)(u0)‖ZS

,

(11.12)

where β := 1 + ‖u0‖H(J). Similarly, from

Hs(ϕ, x, v)−Hs(ϕ, x, w)

=
(
τsA−Ax,s(v)

)
(v − w) +

(
Ax,s(w)−Ax,s(v)

)
w + Fx,s(v)− Fx,s(w),

(11.1), (11.2), and (11.9) we deduce that

‖Hs(ϕ, x, v)−Hs(ϕ, x, w)‖L(Jσ)

≤ κ
(
4r + ρ0 + ‖τsu0‖H(Jσ) + η(σ)

+ ‖(ϕ− ϕ0)(u0)‖ZS

)
‖v − w‖H(Jσ).

(11.13)

(5) Suppose that (11.6) and (11.8) hold. Denote by V (v) := V (s, ϕ, x, v)
the unique solution in H(Jσ) of the linear Cauchy problem

u̇ + τsAu = Hs(ϕ, x, v) on Jσ, u(0) = u(ϕ, x)(s).

Then w := V (v)− τsu0 ∈ H(Jσ) satisfies

ẇ + τsAw = Hs(ϕ, x, v)− (F0)x0,s(τsu0) on Jσ,

and w(0) = u(ϕ, x)(s)− u0(s). Thus (11.3) and Lemma 6.1(iii) imply

‖w‖H(Jσ) ≤ κ
(
‖Hs(ϕ, x, v)− (F0)x0,s(τsu0)‖L(Jσ) + ‖u(ϕ, x)(s)− u0(s)‖E

)
.
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Hence we deduce from (11.12) that

‖V (v)− τsu0‖H(Jσ) ≤ r3κ2
(
r + α(s, σ)

)
+ κ2ρ0

+ κ
(
β ‖(ϕ− ϕ0)(u0)‖ZS

+ ‖u(ϕ, x)(s)− u0(s)‖E

)
,

where
α(s, σ) := ‖τsu0‖H(Jσ) + 2η(σ).

Similarly, since(
V (v)− V (w)

).
+ τsA

(
V (v)− V (w)

)
= Hs(ϕ, x, v)−Hs(ϕ, x, w)

on Jσ, and
(
V (v)− V (w)

)
(0) = 0, we obtain from (11.13) that

‖V (v)−V (w)‖H(Jσ) ≤ κ2
(
4r+ρ0 +α(s, σ)+‖(ϕ−ϕ0)(u0)‖ZS

)
‖v−w‖H(Jσ).

Now we fix positive numbers ε ≤ ε0, ρ ≤ 1, and σ = σ(s) such that

16βκ2ε ≤ r, 4κρ ≤ r, 12κ2α(s, σ) ≤ 1.

Then, recalling (11.4), we see that

‖V (v)− τsu0‖H(Jσ(s)) ≤ r

and
‖V (v)− V (w)‖H(Jσ(s)) ≤ ‖v − w‖H(Jσ(s))/2

for 0 < σ(s) ≤ σ ∧ (S − s), provided

ϕ ∈ Vε, u(ϕ, x) ∈ Ns(u0; r/2, ρ0), ‖u(ϕ, x)(s)− u0(s)‖E ≤ ρ. (11.14)

Thus V (ϕ, x, ·) maps the complete metric space Qσ(s)(s, ϕ, x) into itself
and is a strict contraction. Hence it has a unique fixed point, v(s, ϕ, x),
in Qσ(s)(s, ϕ, x).

(6) Suppose that 0 < s < S and (ϕ, x) ∈ Vε × E satisfy (11.14), and fix
σ(s) with 0 < σ(s) ≤ σ ∧ (S − s). Note that v(s, ϕ, x) is a solution of

u̇ + As,x(u)u = Fs,x(u) on Jσ(s), u(0) = u(ϕ, x)(s).

Thus we infer from Lemma 7.1 that u(ϕ, x)⊕s v(s, ϕ, x) is a solution of
(9.1)(ϕ,x) on Js+σ(s). Hence Theorem 2.1 implies

u(ϕ, x)(s)⊕s v(s, ϕ, x) = u(ϕ, x) |Js+σ(s).

This shows that J(ϕ, x) ⊃
[
0, s + σ(s)

]
, provided (11.14) is true.

(7) Now we claim that there exists τ > 0 such that

12κ2α(s, τ) ≤ 1, 0 < τ ≤ τ ∧ (S − s), s ∈ [0, S). (11.15)
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To prove this, it suffices to show that for every ξ > 0 there exists δ > 0 such
that, denoting by χD the characteristic function of a subset D of JS ,

‖u0χD‖p
Lp(JS) + ‖u̇0χD‖p

Lp(JS) < ξ

for every measurable set D ⊂ JS with measure, |D|, less than δ. Suppose this
to be false. Then there exists for each j ∈ N a measurable subset Dj ⊂ JS

satisfying |Dj | < 2−j and

‖u0χDj‖
p
Lp(JS) + ‖u̇0χDj‖

p
Lp(JS) ≥ ξ. (11.16)

Set Cn :=
⋃

j≥n Dj and C :=
⋂

n≥0 Cn. Then Cn and C are measurable
subsets of JS satisfying |C| ≤ |Cn| ≤

∑
j≥n 2−j = 2−n+1 for n ∈ N. Hence

|C| = 0 and χCn ↓ 0 a.e. as n →∞. Since ‖u0χDj‖Lp(JS) ≤ ‖u0χCj‖Lp(JS) for
j ∈ N, it follows from Lebesgue’s theorem that the left-hand side of (11.16)
converges to zero as j →∞, which is impossible. This proves (11.15).

(8) We set τ(s) := τ ∧ (S − s) and suppose that

0 < s < S, (ϕj , xj) ∈ Vε ×BE(x0, ρ0),

u(ϕj , xj) ∈ Bs(u0, r/2),

‖u(ϕj , xj)(s)− u0(s)‖E ≤ ρ, j = 1, 2.

 (11.17)

Then we put uj := u(ϕj , xj) and vj := τsuj . It follows from steps (5)–(7)
that vj ∈ Qτ(s)(s, ϕj , xj) and that

(v1 − v2)
. + τsA1(u1 ⊕s v1)(v1 − v2)

= τs

[
A2(u2 ⊕s v2)−A1(u1 ⊕s v1)

]
v2

+ τs

[
F1(u1 ⊕s v1)− F2(u2 ⊕s v2)

] (11.18)

on Jτ(s) with (v1 − v2)(0) = (u1 − u2)(s). Since v2 satisfies (11.11), we see,
similarly as in step (4), that the L(Jτ(s)) norm of the right-hand side is
estimated from above by

2κ
(
r + α(s, τ(s))

)(
‖u1 − u2‖H(Js) + ‖v1 − v2‖H(Jτ(s)) + ‖x1 − x2‖E

)
+ β ‖(ϕ1 − ϕ2)(u1)‖Zs+τ(s)

.

Due to 2κ
(
r + α(s, τ(s))

)
≤ 1/2κ, by (11.4) and (11.15), it follows from

(11.18) and (11.3) that

‖τs(u1 − u2)‖H(Jτ(s))

≤ ‖u1 − u2‖H(Js) + ‖x1 − x2‖E

+ 2κ
(
β ‖(ϕ1 − ϕ2)(u1)‖Zs+τ(s)

+ ‖u1(s)− u2(s)‖E

)
.

(11.19)
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(9) Assume that 0 < s < S and that there exist constants ε(s) ∈ (0, ε],
ρ(s) ∈ (0, ρ ∧ ρ0], and µ(s) > 0 such that, setting uj := u(ϕj , xj),

‖u1 − u2‖H(Js) ≤ µ(s)
(
‖(ϕ1 − ϕ2)(u1)‖Zs + ‖x1 − x2‖E

)
(11.20)s

for (ϕj , xj) ∈ Vε(s) ×BE

(
x0, ρ(s)

)
and j = 1, 2.

Let λ(s) be the norm of the trace map H(Js) → E, u 7→ u(s). Then it
follows from (11.20) that

‖u(ϕ, x)(s)− u0(s)‖E ≤ λ(s)µ(s)
(
‖(ϕ− ϕ0)(u1)‖Zs + ρ(s)

)
for (ϕ, x) ∈ Vε(s) ×BE

(
x0, ρ(s)

)
. From this we deduce that there are con-

stants ε1(s) ∈
(
0, ε(s)

]
and ρ1(s) ∈

(
0, ρ(s)

]
such that

u(ϕ, x) ∈ Bs(u0, r/2) (11.21)

and
‖u(ϕ, x)(s)− u0(s)‖E ≤ ρ

for (ϕ, x) ∈ Vε1(s) ×BE

(
x0, ρ1(s)

)
. Thus (11.17) implies that (11.19) holds

for
(ϕj , xj) ∈ Vε1(s) ×BE

(
x0, ρ1(s)

)
.

Now, setting

(ε, ρ)
(
s + τ(s)

)
:= (ε1, ρ1)(s), µ

(
s + τ(s)

)
:= 4

[
βκ +

(
1 + κλ(s)

)
µ(s)

]
,

it follows from (11.20)s and Lemma 7.1 that

‖u1 − u2‖H(Js+τ(s))

≤ µ
(
s + τ(s)

)(
‖(ϕ1 − ϕ2)(u1)‖Zs+τ(s)

+ ‖x1 − x2‖E

) (11.22)s

for (ϕj , xj) ∈ Vε(s+τ(s)) ×BE

(
x0, ρ(s + τ(s))

)
and j = 1, 2.

(10) By Proposition 9.1 we can find constants s0 ∈ (0, S), ε(s0) ∈ (0, ε],
ρ(s0) ∈ (0, ρ ∧ ρ0], and µ(s0) > 0 such that (11.20)s0 holds. Hence step (9)
shows that (11.22)s0 is also true. Now we obtain from step (9) by a finite
induction argument that there are constants ε ∈ (0, ε], ρ ∈ (0, ρ ∧ ρ0], and
κ > 0 such that (3.3) is true. �

12. Proof of the differentiability theorem

Although Theorem 4.1 is essentially a consequence of the implicit function
theorem, we cannot refer to standard results but have to give a direct proof,
due to the fact that our setting involves locally convex spaces and Gateaux
differentiability only.
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Proof of Theorem 4.1. (1) We set Ξ := C1
(
H(JS),ZS

)
× E and denote its

general point by ξ = (ϕ, x). Then we define the map

f : Ξ×H(JS) → L(JS)× E

by

f(ξ, u) :=
(
∂u + A(u)u− F (u), u(0)− x

)
, ξ = (ϕ, x) ∈ Ξ, u ∈ H(JS),

where, as usual, ϕ = (A,F ). It follows from (0.2), (4.1), and the definition of
the topology of C1

(
H(JS),ZS

)
that f is continuous. Note that f(ξ0, u0) = 0.

(2) The map f(·, u) : Ξ → L(JS)× E is for each u ∈ H(JS) Gateaux dif-
ferentiable, and

D1f(ξ, u)ξ̂ =
(
Â(u)u− F̂ (u),−x̂

)
, ξ = (ϕ, x), ξ̂ = (ϕ̂, x̂) ∈ Ξ.

Note that the Gateaux derivative ξ 7→ D1f(ξ, u) is constant. Thus it follows
that

D1f ∈ C
(
Ξ×H(JS),L

(
Ξ, L(JS)× E

))
.

(3) The map f(ξ, ·) : H(JS) → L(JS)× E is differentiable for fixed ξ ∈ Ξ,
and

D2f(ξ, u) =
(
∂ + A(u) + DA(u)[·, u]−DF (u), γ0

)
.

From this we see that

D2f ∈ C
(
Ξ×H(JS),L

(
H(JS), L(JS)× E

))
.

Observe that

D2f(ξ0, u0) =
(
∂ + B0(u0), γ0

)
∈ Lis

(
H(JS), L(JS)× E

))
,

as follows from the assumed maximal regularity and Lemma 6.1.
(4) Set g(ξ, u) := u−

[
D2f(ξ0, u0)

]−1
f(ξ, u). Then f(ξ, u) = 0 is equiva-

lent to g(ξ, u) = u. Thus g(ξ0, u0) = u0.
We deduce from step (3) that g(ξ, ·) is continuously differentiable with

D2g(ξ, u) = 1−
[
D2f(ξ0, u0)

]−1
D2f(ξ, u) ∈ L

(
H(JS)

)
.

Thus there exist r > 0 and a neighborhood U0 of ξ0 in Ξ such that

‖D2g(ξ, u)‖ ≤ 1/2, ‖g(ξ, u)− u0‖ ≤ r, ξ ∈ U0, u ∈ BS(u0, r).

Consequently,

‖g(ξ, u)−g(ξ, v)‖ ≤ sup
0<t<1

∥∥D2g
(
ξ, v+ t(u−v)

)∥∥ ‖u−v‖ ≤ ‖u−v‖/2 (12.1)
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for ξ ∈ U0 and u, v ∈ BS(u0, r). Hence Banach’s fixed point theorem guaran-
tees that g(ξ, ·) has for each ξ ∈ U0 a unique fixed point, u(ξ), in BS(u0, r).
Moreover,

u(ξ)− u(ξ′) = g
(
ξ, u(ξ)

)
− g

(
ξ′, u(ξ′)

)
= g

(
ξ, u(ξ)

)
− g

(
ξ, u(ξ′)

)
+ g

(
ξ, u(ξ′)

)
− g

(
ξ′, u(ξ′)

)
implies, due to (12.1), that

‖u(ξ)− u(ξ′)‖ ≤ 2
∥∥g

(
ξ, u(ξ′)

)
− g

(
ξ′, u(ξ′)

)∥∥, ξ, ξ′ ∈ U0.

This proves the first assertion and the continuity of the solution map.
(5) Set

pR(ϕ, x) := sup
v∈RBS

‖ϕ(v)‖ZS
+ ‖x‖E .

Then there exist R, ρ > 0 such that

UR,2ρ :=
{

ξ ∈ Ξ ; pR(ξ − ξ0) < 2ρ
}
⊂ U0.

Also put U := UR,ρ. For ξ̂ ∈ Ξ fix a positive ε = ε(ξ̂ ) satisfying εpR(ξ̂ ) ≤ ρ.
Then ξ + tξ̂ ∈ U0 for (ξ, t) ∈ U × (−ε, ε). Hence

0 = f
(
ξ + tξ̂, u(ξ + tξ̂ )

)
− f

(
ξ, u(ξ)

)
= f

(
ξ + tξ̂, u(ξ + tξ̂ )

)
− f

(
ξ, u(ξ + tξ̂ )

)
+ f

(
ξ, u(ξ + tξ̂ )

)
− f

(
ξ, u(ξ)

)
.

Thus we infer from steps (2) and (3) and the mean value theorem, due to
the fact that D1f(·, v) is constant for v ∈ H(JS), that∫ 1

0
D2f

(
ξ, u(ξ) + s

(
u(ξ + tξ̂ )− u(ξ)

))
ds

(
u(ξ + tξ̂ )− u(ξ)

)
= −tD1f

(
ξ, u(ξ + tξ̂ )

)
ξ̂.

(12.2)

Set

C(ξ, t) :=
∫ 1

0
D2f

(
ξ, u(ξ) + s

(
u(ξ + tξ̂ )− u(ξ)

))
ds.

Then the continuity of D2f and of u(·) imply that

C(·, ·) ∈ C
(
U × (−ε, ε),L

(
H(JS), L(JS)× E

))
.

Moreover,

C(ξ0, 0) = D2f(ξ0, u0) ∈ Lis
(
H(JS), L(JS)× E

)
.
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Thus the openness of Lis and the continuity of the inversion map C 7→ C−1

imply that we can assume that
[
C(ξ, t)

]−1 exists for (ξ, t) ∈ U × (−ε, ε),
and that

C−1 ∈ C
(
U × (−ε, ε),L

(
L(JS)× E,H(JS)

))
.

Consequently, we infer from (12.2) that(
u(ξ + tξ̂ )− u(ξ)

)/
t = −

[
C(ξ, t)

]−1
D1f

(
ξ, u(ξ + tξ̂ )

)
ξ̂

for (ξ, t) ∈ U × (−ε, ε). Hence, by the continuity of u, C−1, and D1f , it
follows that u is G differentiable in U and

Du(ξ)ξ̂ = −
[
D2f

(
ξ, u(ξ)

)]−1
D1f

(
ξ, u(ξ)

)
ξ̂.

Now the assertions follow. �
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