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Abstract. Itis a standard assumption in the error analysis of finitmel& methods that the underlying
finite element mesh has to resolve the physical domain of theeled process. In case of complicated
domains appearing in many applications such as ground fiates this requirement sometimes becomes
a bottleneck. The resolution condition links the compotz complexity a priorily to the number (and
size) of geometric details. Therefore even the coarsedtbi@adiscretization can lead to a huge number
of unknowns. In this paper, we will relax the resolution cind and introduce coarse (optimal order)
approximation spaces for Stokes problems on complex danaime described method will be efficient
in the sense that the number of unknowns is only linked to tiopgrties of the solution andot to
the problem data. The presentation picks up the conceptrapaosite finite elements for the Stokes
problem presented in a previous paper of the authors. Here, priori error and stability analysis of the
proposed mixed method is generalized to quite generaklipgand leak boundary conditions that are of
great importance in practical applications.
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1 Problem setting

We consider the stationary Stokes equations
—Au+0Op =
dvu = 0
describing the motion of a viscous incompressible fluid inoarwled Lipschitz domaif under the
general mixed boundary conditions proposed by Navier [25]

} inqcRe (1.1)

Ay +(1=Ay)(T(u,p)-v), = 0
Atlg+ (1= A (T(U,p)-v), = O }0”‘99' (1.2
Thereby we use the following notation
Q bounded Lipschitz domain iRY,
d €{2,3} dimension,
u :Q—Rd velocity field,
p :Q—R pressure distribution,
f :Q—-RI given force density,
v outer normal of the domaif,
vy = (V)y:=(v,v)v  normal component of € RY, (1-3)
Vi =(V)ri=Vv—Vvy tangential component afc RY,
Av,Ar 10Q —[0,1]] coefficient functions,
Du :=2(Ou+(0Ou)") symmetric gradient,
| d x d identity matrix,
T(u,p) :=2Du-—pl stress tensor.

Both, the equations (1.1) and the boundary conditions (t&t) be generalized by replacing the zeros on
the right hand sides by some given functions.

In this paper, we are especially interested in the limit sag¢he boundary conditions, i.e., Dirichlet
(Avy = A¢ = 1), Neumann A, = A; = 0), slip @, = 1,A; = 0) and leak 4, = 0,A; = 1) boundary
conditions. In particular, we assume the boundary= dQ to consist of four relatively closed disjoint
parts

F=TpUlsUluUln, whereliNF;=0Vi,je{D,s|,N}:i#]j. (1.4)

The leak and slip partSs andl; are supposed to be of clags. We define the coefficient functions from
(2.2) in the following way:

. )1, xelpUrlsg )1 xelpurl
’\”(X)'_{o, xeMury AT(X)'_{O, xeTsUMy (1.5)

This choice leads to the following set of boundary condgion

u = 0, onlp,
(uv) = 0, (Du-v), = 0, onls, (1.6)
u—(u,v)v = 0, 2(Du-v,v) = p, only, '

2Du-v = pv, only.



While the mathematical literature on Dirichlet and Neumaoandary conditions is vast, leak and slip
boundary conditions have been studied less extensivelyveler, they are of great practical interest.
For theoretical studies of these boundary conditions wer tef[38; 13; 34] and for some applications to
[19; 20].

The Sobolev space that contains those velocity fields whitfhl the essential parts (conditions on
the left in (1.6)) of the boundary conditions is denoted by

Hessi= {u e HY(Q) | u|r, =0, uy|r, =0, ur|r, = 0 in the sense of tracés (1.7)

The (mixed) weak formulation of problem (1.1) together vilib boundary conditions (1.6) readsnd
(u,p) € Hisx L2 such that

CL(U,V) + b(V, p) = <f7V>L2(Q) ’ v e Héss (1 8)
b(u,q) =0, Ve L(Q). -
The bilinear formsi : HY(Q) x HY(Q) — R andb : HY(Q) x L?(Q) — R are defined by
a(u,v) = 2/ Du:Dv, b(v,q):= —/ qdivv. (1.9)
Q Q

In general, problem (1.8) is not uniquely solvable. Theneiir forma has a nontrivial kernel given by
the set of rigid body motions

Z = {A-+b| A e R?4 skew symmetrich € R%}. (1.10)

Moreover, every € Z is divergence-free, i.e. the paifgq), g € R, is a solution of the homogeneous
Stokes problem. Thus, a solution of (1.8) can only be uniquiowelements oHl N .%.

Remark 1. To assure unigue solvability of problefh.8) we assume the essential boundary to have a
positive measure, i.e.
IFpulsul| >0. (1.11)

If [Fp| = || =0, we further have to exclude domaifishaving rotational symmetries (cf. [42; 43]).
Unigueness in the pressure variable of the solution can belgchieved up to constants if no additional
constraint is given through the boundary condition, sinice pressure component appears only as a
gradient in the equationgl.1). That is why we assume boundary parts containing pressurstiGints
to have a positive measure as well:

IFiurn| > 0. (1.12)

As an alternative to the assumptiafis11)and(1.12)weak formulations with respect to suitable quotient
spaces or additional constraint formulations could be ¢dased.

Under the assumptions (1.11) and (1.12) there exists a @miglution(u, p) € Hi . x L2(Q) for all
right hand side$ in the dual spacell. of Hl, The unique solvability and regularity of the continuous
problem (1.8) has been discussed in detail for the diffdsenndary conditions for instance in [40], [38],
[34] and [29]. The theory therein bases mainly on Korn's secmequality and its variants (cf. [26],
[22], [11], [29)).

The classical finite element discretization approach isefgace the continuous spaceg.s and
L2(Q) in the weak formulation (1.8) by suitable finite dimensiosabspaceX ., and M.,. That means
that the essential boundary conditions are incorporatedgly in the velocity part of the approximation
space. This is the standard procedure for the treatmenedditfichlet boundary condition. An analysis
for slip boundary conditions can be found in [42; 4; 21]. Tally, X , and M, contain continuous



4 1. Problem setting

(a) Domain with a rough bound- (b) Resolving shape regular (c) Coarse overlapping mesh.
ary. ball. mesh.

Figure 1: A fitted and an unfitted mesh for a complicated domain.

functions that are piecewise polynomial with respect to esdriangulation.7 of the domainQ, as for
instance the Mini element (cf. [8]) or the modified Taylorddbelement (cf. [6]). The latter first order
methods fulfill the classical error estimate

[U=Uzlhg A+ IP—P7ll2q < infuex, lU—=Vlhz +infq,ememe[[P— a7 2q), (1.13)

ess

where the hidden constant depends only on the bilinear fermsd b, i.e., on their continuity, the
coercivity ofa and the infsup property @&. However, for the following reasons, the conformity corudtit
X 7 x M, C HIx L2(Q) which requires to resolve the details of the boundary exactin be too
restrictive:

1. The triangulation7 of the physical domaif needs to be “almost” exact, which can only be true
for polygonal domains.

2. The approximation of general curved domains by simplicieshes causes additional problems in
the numerical treatment of leak or slip conditions, sinaedbter normal is not sufficiently well
approximated by the (piecewise constant) outer normaleptilygonal mesh.

3. Due to 2. problems with leak and slip boundary are in geriestable with respect to boundary
perturbations. This fact has been investigated by Verfi#i2h Therefore, polygonal approxima-
tions to general domains and approximations to the outenalonave to be chosen carefully.

4. Due to 1. to 3., the mesh density of suitable (shape réguiangulations is determined by the
domain geometry (cf. Figure 1b) amdt by the local approximation properties of the finite ele-
ment space. For domains containing a huge number of geengetiails such as holes or rough
boundaries, the number of vertices in a suitable trianguiatand therefore the dimension of a
suitable approximation space, will be at least proporfitméhe number of details.

5. In practice, one is often interested in an only moderatairacy, that should be achieved at a
moderate effort. In addition, a mathematical model andigisrdtization is only an approximation
of a real world process meaning that in general there are lingdend discretization errors any-
way. Therefore it is possible to relax the boundary conditidgthout increasing the overall error
significantly.

In case of a piecewise smooth boundary isoparametric eksnaea often employed for its approxima-
tion. If the domain is not smooth then other approaches habe thosen. One alternative is to impose



Notations 5

the essential boundary conditions weakly as a side conditi@ saddle point formulation [2; 42; 41].
Another approach is to incorporate boundary conditiongeigalization (cf. [27; 1]). This is commonly
used in Discontinuous Galerkin Methods for the Stokes gmlsee for instance [12]), and also the basis
of Fictitious Domain Methods [15] and Immersed Boundary héels [28]. All these methods might be
used with (overlapping) computational grids that are ntadito the physical domain as depicted in Fig-
ure 1c (cf. [18; 5]). However, mesh compatibility conditiohave to be imposed and boundary integrals
that enter the variational formulations need to be evatuatkich is problematic on very complicated
domains, especially in three spatial dimensions.

In this paper, we will generalize the concept of compositiésfilements [17; 16; 32; 36] to problems
on complicated domains with Dirichlet, Neumann, slip, agakl boundary conditions. The concept of
composite finite elements is as follows:

1. They are a generalization of classical finite elementespadich allow that boundary conditions
on rough boundaries are resolved not necessarily by a varynfagsh and a huge number of de-
grees of freedom but allow the adaptation of the shape ofribata functions to the characteristic
behavior of the solution via slave nodes.

2. To control this enrichment process in a problem-adapiay & posteriori error estimators should
be employed which allow to decide whether new degrees ofifnes are locally needed to reduce
the error or whether it is enough to adapt the shape of thezahgactions locally by using slave
nodes..

3. A local a priori analysis allows to set up a (quasi-) optirearichment strategy based on the
indications of the a posteriori error estimator.

In this paper we will concentrate on 1. and the derivationrologal a priori analysis. In a forthcoming
paper this will be combined with an appropriate error esttimgsee also [31] for the application in linear
elasticity). By now, composite finite elements have beerl ssecessfully for Stokes problems with
Dirichlet and slip boundary conditions [29; 30] where tteamposite mini elemeiias been introduced.
Here, we will generalize the theory to the Stokes problenh witxed Dirichlet, slip, leak and Neumann
boundary conditions.

The paper is organized as follows. In Section 2 we introdheeebmposite mini element formulation
of the problem. Section 3 will contain the main a priori erbmund and its detailed proof. Finally, in
Section 4 we will present some numerical experiments.

In this paper, various notations and conventions will bedude order to improve readability, we
have collected below the most relevant ones along with attirikeir first appearance.

Notations

Br largest ball inscribed in the simpléx, 8

Cf] ,Cf ,Cf mesh related constants, 8

Cf constant related to the local relative boundary
length, 19

Cgn, Cgess constants from Lemma 4, 20

Cext constants related to the modified Stein extension
operator, 16

Cint constant from interpolation error estimates, 15

Chp: Csize: Caist constants related to the neighborhood property, 15
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Lipschitz constant of the outer normal, 18
Constant related to the outer domain normal, 18

extension operators, 9
boundary projection, 9
continuous velocity space, 3

nodal interpolation operator with respect to the
vertices of the triangulatiot¥” or the simplexT,
15

coefficient functions, 2
a<b&dC>0:a<Ch4

normal component, 2

outer normal of the domai, 2
Sobolev norms, 14

Sobolev semi norms, 14

bounded Lipschitz domain, 8

union of all elements of79f 8

neighborhood od the simpl@xdefined in Lemma
1,16

union of all elements of”, 8

ratio that measures the refinementToE .7 in
<7@33 19

shape regularity constants, 8

shape regularity constant of the simplex15
set of rigid body motions, 3

standard conformin@; finite element space, 9
compositeP; finite element spaces, 9, 10

projection onta7 %', 9
tangential component, 2
vertex sets, 9

coarse overlapping mesh, 8
inner part of.7 and.7 resp., 8
submesh of7, 8

boundary parts of/ and.7_¢, 8



2 Composite mini element formulation

The choice of a suitable mixed finite element space for thblpro (1.8) follows the concept of compos-
ite finite elements introduced in [17], [32] for Poisson desbs and in [29] and [30] for Stokes problems.
Instead of using conventional resolving triangulationswilé define the composite mini element space
with respect to an overlapping (and possibly structuredifaming triangulation.7 (in the sense of
Ciarlet [9]). . contains closed simplices. Typically] is a quasi uniform triangulation which does not
contain extra boundary resolution. This technique alldwesdefinition of coarse spaces even for very
complicated geometries (see also Figure 1b). We mark theesd@f°" of the triangulation containing
all triangles that are properly contained@ Next, the finite element shape function will be defined
with respect to7 %°f and extended (smeared) to the remaining (outer).g&l¢:= .7 \ .79 in such a
way that the essential parts of the boundary conditionsudfiéefd in an approximative way. To be more
precise, let7 = 79ty 7sae{yfill the subsequent conditions:

Overlap QCQz :=int(Ures T),
Shaperegularity dps >0 : dian(Br) > ps dian(T), VT € 7,

0+ g7 dof C 7 and gslave_ & \ g dof
Quof.— INt(Utcga0 T) CQ,

3¢/ : distt,0Q) <C; diam(t), vt € TSl
3¢y dist(t, Q") < diant), vt € Fslve

Admissible  split-
ting

(2.1)
In order to resolve the boundary part where essential bayrmtenditions are imposed we will employ
a submeshZ,¢,which arises from7 by standard finite element refinement patterns (cf. [32].siS
refined toward the essential parts of the boundary in suchyahed the subsequent assumptions hold:

Submesh property  .F9%:= gdof C 7
Shaperegularity Ip7..> 0 dian(B;) > pg, diamt), Vt € Fsq

Admissibility 3cy : distt,0Q) <CJ dian(t), vt € FZve:— g\ 79

(2.2)

In Figure 2 a typical choice of an admissible triangulati@nand .7, is visualized, some remarks are

in order.

Remark 2. 1. In order to resolve the boundary in such a way that optinmadreastimates are pre-
served, the local mesh-width 6f.in a neighborhood of \ I'y (i.e. close to essential boundary
conditions) has to be of order(3-1.1) (cf. Theorem 1), where h denotes the maximal mesh
width of the initial meshZ and r € [0, 1] is a parameter reflecting the regularity of the solution.

2. The resolution condition from 1. does not lead to an insecaf degrees of freedom since it only
restricts the choice of the submespyswhich only contains slave nodes.
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3. The submesl¥ . will appear in practical computations only during the assdynof the system
matrix and needs to be computed only locally.

4. The constantsﬁ C2 C3 and pz will be crucial in our analysis of the method, while the
conditionsQ®f C Q and.79°f C .7 ..can be relaxed.

5. The theory can be generalized to the case whgrecontains hanging nodes as depicted in Figure
2b.

We summarize further notations and definitions in connactidh the meshes:

Set of vertices of7 O,
Set of vertices of a simplek  V(T),
Vertices of.79f — gdof  gdof
Slave nodes ©%3¢:= (QU B,y \ O,
Maximal mesh-width in7  hg := max-c s diam(T), (2.3)

Al .eslave O
* )

Boundary projectioh
x — X e arginfesqdist(x,y),

Projection to the Ty :@8ve . grdof

closest inner triangle X — Txeargminczdaordistx,T).

Our space definition is based on continuous piecewise affimgtibns and vector fields with respect to
a triangulation:

Sy :={veC’Qz)|VT €T V[ €P1}, Sz :=(Sz)". (2.4)
The composite finite element space (cf. [17; 16])
S = &N (Syae) (2.5)

is defined as the image &4t under a simple linear extension operator which is chanaetrby
specifying its values at the nodal points explicitly by

(2.6)

. . q X 7 X e ed0f7
&N Szat — Sz C S-%ss’ (gNQ) (x) == { q'(l'x ()X), X € Eslave

This space is suitable for the use with Neumann boundaryitonsl as we will see later. In case of
Dirichlet boundary conditions the space

§9 D - =& (Sydof) (27)

is an appropriate choice (cf. [32; 29; 30]), whef8 : Sar — Sz, is defined by

a(x), x € @,
(5009~ { 4 qus0) = (un ), o 28

1The minimizer might not be unique and we fix one of them in tlisec



In contrast tos’N, the operatoes’® is defined with respect to the refined me$i¥sS Shape functions
in S?}‘fD are not necessarily piecewise affine with respec#tdut composed of piecewise affine finite
elements on the submesfy,; This composite construction allows to approximate thersasl zero
boundary condition in a very flexible way. For the definitiohtloe approximation spaces that fulfill
the essential parts the boundary conditions we will intlrieothe vector valued versior®" and &P

of (2.6) and (2.8) point-wise in the slave nodes with respedhe coefficientsA,, and A, to define
&% S ot — Sz, by

u(x), x € @dof
(gessu)(x) = AV(XF)(éDDU(X))V(X'—) + (1_)‘V(Xr))(‘§Nu(X))V(X ) X € Oslave (2.9)
FA () (EPU(0) gy + (1= A ONENU))rry © S

In the special case of slip boundary conditions for the uisit the extrapolation procedure is shown for
an example in Figure 3.
The operator’®**can be rewritten explicitly (cf. (1.5)) by

U(X)7 X € (adof7
u(x), x € O3 x" e I'p,
(éaesi*')(x) = ( X))v NU(X))T(Xr), x € O3 ¥ c Ty, (2.10)
(EMUX)) )+ (EPUX)) o), X € OFEXT €T,
¢Nu(x), x € @3ave x™ e Iy.
We assume that
{x € OFF°|x" €MpUTsUM}#0 and {xe€@L®|X eMNUT}#0, (2.11)

which can be seen as a discrete analogue to the conditial) @nd (1.12) of Remark 4. S‘i}eess'—

éaess(Sydof) will form the piecewise affine part of the composite mini etarhvelocity space. In order to
stabilize the method we will use simplex bubble functionst ¢mly) on.7 9

B :=span{yr : T € 790 yr = (d+ 21" [ by (2.12)
yev(T)

whereby, y € V(T), denote the barycentric coordinatesTaf The composite mini element space is
defined by
XFex MGP€:= (SC "essD B grdor) X S‘; (2.13)

Dueto (2.11) no quotient spaces have to be considered iB)(lbte that, in general, the composite mini
element is nonconforming because the Dirichlet boundangition is satisfied only in an approximate
way. This nonconformity can be controlled in an a priori @spectively, in an a posteriori way by the
local mesh size 732 Note that there is no nonconformity arising from the presgart of the space.
A pair (u, p) € X'®x MG defines the composite mini element approximation if it fldfthe discrete
variational system:

a(u,v) +b(v,p) = (f,V) 2(q), VVEXTE

b(u,q) =0, vge MP© (2.14)

2|n the case of pure slip/Neumann boundary conditions wetiaddily have to make the technical assumption: If a rigid
body motionr € # fulfills (r(x"),v(x")) =0, vx" eV :={x |x € O34 xI" € I}, thenr =0.
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AN o
AN

(a) Marked coarse overlapping mesh = (b) Refined mestygg
,7d°fu gslave_

Figure 2: Admissible composite mini element triangulation of the domain from Figure 1b.

’ " e T B
| = — T oy : —— T “
’ v & ’ '." {

(a) Vector fieldu defined in the degrees of freedom. (b) Extension ofl to the slave vertices. The extended vec-
tor field is almost tangential to the boundary of the circle.

Figure 3: Extension of a vector field U € Sdor in case of slip boundary conditions imposed on the unit circle. The

small arrows represent the extended outer normal field of the domain. (The inner zone g dof containing the degrees
of freedom is kept small for visualization purposes.)



3 Error analysis

The main result of this paper concerning the unique soliglof the discrete problems (2.14) and
optimal order a priori error is stated in the subsequentrdrao

Theorem 1. The discrete problenf2.14) has always a unique solutiofu, p) € X9 x MG, Fur-
thermore if(u*, p*) € (HiNH(Q)) x (LA(Q)NH'(Q)), r € [0,1], is the solution of(1.8) then the

ess
following a priori error estimate holds:

U = ullpa) + [1P" = Pllzq) < CH (Iu™[[hir @) + 1P lhr@)

where the constant € C(Q,r) does not depend on the mesh width parameter #nz}xdiarT(T).
S

The underlying submest,;can be chosen equal t&" in a neighborhood of . In a neighborhood
of '\ 'y (i.e. close to essential boundary conditions) the local meglth of 7 . has to be of order

hmax(3-1.1) to ensure the above error estimate.
The proof of Theorem 1 deserves some theoretical prepasatiod is left to the subsequent sections.
Remark 3. We will add some remarks related to Theorem 1:

1. The unique solvability does not depend on the choice @fdhessible refinement,g, i.e. it holds
even in the case/ = Jq

2. Note, that resolution condition on the submesh does mrikon the domain geometry but only
on the mesh-width parameter h of coarse overlapping niésh

3.1 Proof of Theorem 1

Theorem 1 is based on the general theory of (nonconforminiggdrfinite element approximation as
presented for example in [8]. The discrete problem (2.14iniguely solvable if the bounded bilinear
form a is coercive with respect to the velocity part of our finiteneént spacexX 7', i.e.

3¢ >0 a(u,u) > collulfyg)  YueXFS (3.1)
and the bounded bilinear formfulfills an inf-sup conditioR, i.e.
ce > 0Vpe MZ3u e XT: b(u, p) = Col|ulluyq)llPllz(q)- (3.2)

Both properties cannot be inherited from the continuouslleshere such inequalities hold (cf. [11],
[26], [14]). We will prove (3.1) and (3.2) in Section 3.2.3n€e these conditions are fulfilled the error
of the composite mini element approximation can be estidchlaye(cf. [8]):

Ju = penepe-+ [P Pz S ik, Ju = Vi) + it [P dlluag)+ s (33

cme cme
vexXy eEMT

3(3.2) is known as Baliika-Brezzi-, Ladyshenskaja-Batka-Brezzi- or LBB-condition.
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where a(U,v) + b(p.V) — (F.V) gy |
a(u,v)+b(p,v) — (f,v
Ji= sup P (@)

Ovexeme VIl

(3.4)

reflects the nonconformity in the approximation space. Ictie 3.2.1 we will investigate the first two
terms of the error bound (3.3) and prove the approximalplibperties of our space under the assumption
(u, p) € H¥(Q) x HY(Q)

VE'Q%neHU ~Vlhyo) S hlulyzq) and qek@]e” P—dllLzg) < hIPlHyq)-
This is indeed the same asymptotic error as for the cIassia?llized]P’l X P;-elements. It remains to
estimate’?". If the solution is sufficiently smooth, i.€u, p) € H2(Q) x Hz(Q), .#" can be estimated as
follows:

#< sup [Av (v, V) + A (VS T 2y 1T (U PV L2y
™ opvexere V]I

We will show in Section 3.2.2 tha¥” can further be bounded in terms of the mesh-width parameter:
<
A S0l 5 0 1P ) (3.5)

which finishes the proof of Theorem 1 for the case 1. Finally the interpolation theory of Sobolev
spaces (see for instance [7, Theorem 12.3.3]) allows t& tetasmoothness assumptions, since the error
can always be bounded trivially by

Ju— UcmeHHl(Q) +1p— pcmeHL2(Q) S Ul + HpHLZ(Q)7

which leads to the (optimal) fractional convergence ratdis Tinishes the proof of Theorem 1. The
following section is devoted to proofs of the referred statats.

Note that classical stabilize@h x P1-elements require a finite element mesh that resolves atidsou
ary details in order to fulfill and error bound as (3.5).

3.2 Proof of the partial statements

We will now prove the assertions from the proof sketch of thevipus section. Thereby we will use
the following short notation for the norms in the Sobolevcaﬂvr';(Q) containing functions with weak
derivatives up to ordek in LP(Q):

[ lpo =1 HW,‘}(Q)? | lpo = fwg(sz)-
ForH(Q) = W¥(Q) we will write

- llke =1 HHK(Q)7 |- lko =" !HK(Q).

3.2.1 Approximability

In this paragraph, we will show that solutions of the weak8sgproblem (1.8), i.e. elementstdf x L2
can be approximated by composite mini element functionsoumterror that decreases linearly in the
maximal mesh-widthh. Usually, a piecewise affine (quasi) interpoladt- with respect to the mesh
Z is used to prove this property. However, this is not posdibleur situation because the vertices in
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Ts1ave do not correspond to degrees of freedom, i.e. the interpoka® not contained in our space, in
general. But we will prove that the extension operators @tiSe 2 are accurate enough to preserve the
approximability properties with respect to the whole mesh.

Let us first recall some basic tools that we will use in the sghent analysis:

Standard interpolation. Itis well known (cf. [9, Theorem 16.1]) that, for an arbiyaimplexT C RY,
d = 2,3, with shape regularity constapt, there exists a consta@i: = Cint(m, p,d) such that
Cint . _d,d_
u Frtlmpr < o diam(T) @25 Uy, vue HA(T), (3.6)
whereme {0,1} and 1< p < », provided Wi(Q) C H2(Q) 4. #ru € P1(RY) denotes the linear
interpolant ofu in the vertices off .

Inverse estimate. Forme {0,1} andp € NU {} it holds that

2\M (d_
|q|m,p:f<E> 0> dlomr Vo€ Pa(R) (3.7)
and
gor < (2) Y max ja)—aw)| vae By (3.8)
g1 < or T xyeomm) q aly qel’; . .

Neighborhood property. Let T be an arbitrary simplex with shape regularity consgantt be an arbi-
trary simplex with regularity constam. Let the ratio of the diameters bfandT be denoted by
Csize and the distance betwed@nandt relative to the size of by Cyigt, i.€.

dian(t) dist(t, T)

Csize:= ———= and Cgigt:= ———.
2 dian(T) P dian(T)
Furthermore leti € H3(con((T Ut)) and let.#7u € P1(R%) denote the affine interpolation afat
the vertices off . Then, forme {0,1} and 1< p < oo, provided V\%‘(Q) - HZ(Q), there exists a
constanCnp = Cnp(Cint, d, Csize, Caist, 2, 1) > 0 such that
d d
U= FrUlmpt < Copdiam(T) 2~2) diam(t) (™ ju

2,con\(TUt) ’ (3.9)

The proof of (3.9) is given in [30, Lemma 1].

Bounded Extensions. Since in genera®2 C Q », it will be useful to extendl to the larger domaify.
Itis known that, ifQ is bounded and Lipschitz, there exists a continuous, liartnsion operator
¢ : H(Q) — HK(RY), k € Np, such that

Vue HY(Q):  €ulg =u and || €ullyga) < CextUllix(q (3.10)

with a constanCey depending only ork and Q (cf. [39]). It is worth noting that for domains
containing a large number of holes and a possibly rough duatendary, there exists an extension
operator with moderately small norGy; under mild assumptions on the geometry. For all details
including the characterization of the class of domain gada® we refer to [35]. In the following
we always identifyu with its minimal extensiorg&u without mentioning this explicitly. Fol €
79 the approximation results are obvious corollaries of thesital interpolation estimate (3.6).

4The condition W(Q) C H2(Q) restricts the choices ah and p depending on the dimensiah The combinations ofn
and p that will be useful later(m, p) € {(0,2),(0,),(1,2)}) are allowed in two as well as in three dimensions.
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As a first step towards the approximation results we will shioat an arbitrary B(Q)-function u,
can be approximated sufficiently well kg <<,¢gdofu), i.e. by the extension of the piecewise affine
interpolation with respect t&79°, We will give local and global M-estimate.

Lemmal. Let me {0,1}.
There is a constant & C(Cim,py,cf,cf,d) > 0 which does not depend on h such that

[u—&NS oot mT ngian(T)(zfm)]u]ZwT, YueH3(Q4), VT € 7,

wherewr =T for all T € 79" and wr = cony(T U (Uxev(r) Tx)) for slave simplices Te .75
Furthermore, the global estimate

HU— gNj__gdofUHmQ < Ch(zim)‘u‘z’g, Yue HZ(Qy).
holds, where C depends only on the constant of the local ajms, and Gt

Proof. For everyT € .7% the local estimate is simply given by (3.6). Fbre .752¢\ye estimate the
error as follows

lu= NI gaotlmt < Ju=FrullmT + [ AU = ENI a7

< dian(T)|ulzr +dian(T)2 || Aru— & I geotl] oo T

With the help of (3.9) we further get
| #ru—ENI Gaotl]| w1 = Max | FruU(X) — ENI gaoiti(X)|
xeV(T)

29 max | #Tu(X) — AT u(X)|
XeV(T)

(3.9)(2.) »
< dian(T)™ 7 |uloe

and therefore the local estimate follows. The global edénfzllows immediately by summation over all

T € 7 since
(2.1),(3.10)
e = Clpr.Conluifq:
Te.gdof

Finally (3.10) allows to restrict the Hnorm ofu in the error bound to the physical doman O

Lemma 1 can be generalized easily to functiarsH* by replacing the nodal interpolation operator
by some bounded quasi interpolation operdlor : H(Q~) — S as introduced by Scott and Zhang
(see e.g. [37]) or Clément (see [10] and [44],[45]). Instedd3.6) we can use the error estimates
from [37, Theorem 4.1 and Corollary 4.1)] to derive the appration result of the pressure part of the
composite mini element space.

Theorem 2 (Approximation property of M. Let me {0,1}. For all p € H'(Q) there exists a €
M%'® such that

Ip— P ™Ima < Ch*"™|[pllre,
where the constant € C(qum,py,cf,cf,d,Cext) does neither depend on h nor p.

Proof. The proof follows the line of the previous proof witht™®:= &NM ,«rp. For technical details
due to the use of quasi interpolation operators we refer toiidm 4.8 in [29]. O
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To prove a similar estimate in the presence of essentialdaynconditions Theorem 2 cannot be
simply applied component-wise. Its proof and especialyyloof of Lemma 1 is based on the admissi-
bility condition in (2.1), which assumes the distance betwslave triangles and the degrees of freedom
to be comparable to the diameter of the slaves. For essbntialdary conditions, the constahf dete-
riorate with respect to the refined mesh,; Therefore a more precise analysis is required in this case.
On the other hand the essential boundary conditions praddéional information about the functions
to be approximated. This has been worked out in detail in29for H3-functions and the operatat®.

We recall the result in the following Lemma.

Lemma?2. Let me {0,1}.
There is a constant & C(Cim,p,q,cf,cf,d,Cext) > 0 which does not depend on h such that

HU — éDDj__gdofUHm,Q < Ch(zim)‘u‘z’g, Yue HZ(Qy).
holds, where C depends only on the constant of the local @&jm, and Gyt

With the help of Lemma 1 and Lemma 2 we are now able to statepiezimation property of the
velocity space.

Theorem 3 (Approximation property oK9"). Let me {0,1}.
For all u € Hi{Q) NH?(Q) there is au®m® e XM such that

lu—uma <Ch® Mlulag, YueHL(Q)NHA(Qy),

where the constant € C(Ciyt, p7, P C’f,Cf,C‘l’,d) > 0 does neither depend on h nor an

ess’

Proof. Letu € H1(Q)NH?(Q) andu®™®:= £°57 ,4:u. We denote the error bgf™e:= u — ume, |t
can be expressed in termsef:= u — &P .7 yau andeN 1= u — &N 7wl in every slave vertex € Oqqq
in the following way

(2.9)

EMx) =" (€2(0) ey + (1= A0) (€Y (X)) o) 3.11)

+Ar (eD(x))r(Xr) +(1- A7) (N(x)) )
Recall thatA, andA; are piecewise constant coefficient functions defined in) (1rbthe cased, = A;
(|1 = |F¢| = 0) the errore®™® coincides with eitheeP (A, = A; = 1) oreN (A, = A; = 0) and can be
estimated by either using Lemma 2 or Lemma 1.

Let us therefore concentrate on one of the remaining cdasesl andA; = 0°. First, we will investigate
the local errorge®™€|; ; with respect to the slave simplices 732"

(3.6),(3.7) 'e
€My S diam(t)2 T max | (€M(x)) — (€M) | + diam(t)|uly
Xyev( (3.12)
(3.12)

<dian(t) 2™ (R, + .4 + dian(t) ul

with
M, = max ‘(eD(X))V(Xr)—(eD(Y))V(yr)

X,YeV(t)

N ._ — (N
i '_XLQ%‘(GN(X))T(xr) (€ W)y

)

5The opposite case can be proved equivalently.
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Noting thateM (x) = .#u(x) — N7 a0 (x) for all verticesx € V (t) the maximum#), can be estimated
as follows:

A0 < max |[eN(x)—eN(y)| + [N y)| [v(X) —v(y")|

T xyevi
FseCl(p.2)
< dian(t)] AU — ENI geot|rer + [|V]|cars dian(t) [ Fiu — ENI oort|o.ey
———

e (3.13)
"dian(t) ™2 A NS et
L tan(t) 9 N1, + dian(t) 2 u.
To estimate 5, we choose a vector field, € Hj(Q) NH?(Q) such that
() = (U (9)uper) = Uy, Yx € 67 and Uy 20 < CHllulloa.  (314)

The vector fieldu,, could be defined by interpolatinq-)v(.r) in the slave nodes usingGt-interpolation
operator as defined for instance in (cf. [7, Theorem 4.4.20Re auxiliary functionu, contains only
the (extended) normal componentwf The constan€y can be bounded in terms of t@&-norm of v
independent fronu. Thereforels is implicitly assumed to be of clag®. This smoothness assumption
on the slip boundary could be circumvented by following thegp of Theorem 4.7 in [29], which makes
only use of the consta;. However, the use of the auxiliary functior simplifies the presentation and
avoids many technical difficulties. Note that

(00) o) = (B00) o) = (U = P 7y ) (x), vx € @22 (3.15)
which leads to

D __ D
3= max (00) e, ().

< max [e(x) — D (y)| + D ()| [v(x") —v(y")|

TOXYEV(t)

rscCl(p.2)
S d|an(t) Lﬂtuv — éDDj__qdova’Loo,t +C¥d|an(t) ’tﬁtuv — ngydova‘O’ogt

(3.7)(3.6)(3.14) 1_d , 2-4d
< duan(t)( 2)\|e5\|1,t+dlan(t)( 2 Uy

(3.16)

Now summing up all the local errors gives the following glbbaund

e lne= > €™ mr=Y > [
TeT TET 1€ Tt CT

(3.12)(3.13)(3.16) _ _ . _
Sy > dian()™ " (lePIf+ €3, + diam(t)** ™ uf3,
TET t€TegstCT

(3.10) . 5
< 0P (D) o + 1€V q) +hPP M uf5 g

Lem.2Lem.1(3.14)
N @M ufZ .

~
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3.2.2 Nonconformity

We have seen at the beginning of Section 3.1 that for eskdmtiandary conditions, the composite
mini element space is honconforming in the sense that thesedary conditions are fulfilled only in
an approximative way. We will now see that this nonconfoyntiain be controlled by the local mesh
refinement in the slave paff’s'2'¢of the meshZ, more precisely, by the ratio

diam(t
R(T) := max : ) . Tegof (3.17)
te Zass T2LAN(FpUT UM 20 dian(T)

which can be assigned to every extrapolation simplex. Refar state the result we introduce the con-

stant

y . ‘rsmT‘
G = @D
€7 diam(T)

which is assumed to be independent of the mesh width paramete
Lemma 3 (Nonconformity) There is a constant G 0 depending op 7, Cf, Cf > 0 and the curva-
ture of FgU | such that

1
[[Av (U, V) + A (U, T) [l 2y ry) < C(T@ggng(T))hquhQ Yu e XT.

Proof. We will only prove the casd, = 1,A; = 0. The opposite cas®, = 0,A; = 1 can be treated
analogously and, = 1,A; = 1 follows by combination of the first two cases. ltet .753€ satisfy
tNdQ # 0. In the proof of Lemma 4.11 in [29] it was shown that

Il (U, V) [|o.c0,rsnt < HgDUHo_pgt +Cdiarr(t) HgNUHomt, (3.18)

where the constar® depends only on the maximal curvaturelafnt. Therefore we can prove the
following local L *-estimate:

(2.8)(3.18)22)
[[ (U, V) [Jo.c0,ryt < dian(t) |0u]| 1.0,

2237 dian(t (3.19)
O TN
diam(T)

~

d
2

whereT € 7% is chosen in such a way th@t = T for somex € V(t). A simple summation gives the
final result:
2 2
U, v) llor, S > PO (U, V) [[§.eo,r
Te T TNIMs#0te Togs T Ot s#0D

(3.19)(3.7) - 2d, o
S Y IFsNTIR(T)“diam(T) ™ "Julf
TeT
(2<-1> IFsNT]
SR ——
7 diam(T)

—C,

max R(T)? | h||ul|? .
max RTP? e
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3.2.3 Discrete stability and coercivity

In this section, we will investigate the unique solvabiliithe discrete composite mini element systems.

Lemma 4. The extension operatoi§N and &*°defined in(2.6) and (2.9) are uniformly bounded, i.e.
there are constants & and Ggess which only onp», d and (f and not on the local mesh-size such that

16N ullma < Conf[ulmaur and [|E*Ulma < Cess|ul | g

forallu € S,y U € S, and me {0,1}.

g7 dofy
Proof. Foru € S;4r andme {0,1} there holds

N, (2 N : dii oN, 12
16Nl < Ul gut + Y |u||mT S H@@ Ullmqer + > diam(T)" [N ulff e 1 (3.20)
Te.Fslave Te.gslave

LetT € .75 Since&Nu|t takes its maximum in a vertexe V (T), there holds

(2.1),(3.7) d|an-(TX) (2.1),(3.7)
1+ H uTx Hm7°°‘,Tx

N _1
6 ey < e {1+ G Sl

whereur, denotes the extension offr, (by itself) toRY. We plug this into (3.20) which finishes the proof
for &N, since the resulting overlap can be bounded in terms of thpestegularity constani .
Next, we prove the boundedness&i defined in (2.8). Fou € S;«f andm< {0,1} there holds

2
1€PulRq < IUllf o+ 16 UlE,

te gslave

3.7 . d—2m
<Nl g+ 5 diam(t) @™ £Pu)2 .,

tegggve 620
R g 5 dianf) "2, '
~ u ,Qd0f+ -7 u 2 ot
m, TegslavetE%%gth dlan'(T) , 0T
d—2m+2>d,(2.1) )
Sl guer
The boundedness @f***follows from the results fo&™™ and&P in a straight forward way. O

Theorem 4 (Stability). XG'®x M3€is a stable pairing, i.e. there is a constait™® which does not
depend on the mesh size h and the choice of the subfigsbuch that

it sup —CWP) o game (3.22)
peMPe0cuexare (Ul 10l Pllo.o

Proof. To keep things clear we will restrict the proof to the case gfiasi uniform triangulatior?, i.e.
h~ dian(T) forall T € . The general case can be proved by using standard localizaihniques.

Note that the pressure part of the composite mini elemerdesp&® can be decomposed in the
following way

MPe= (MPeNLE(Q)) o R,



3.2 Proof of the partial statements 19

where 13(Q) := {ve L%(Q) | [ov=0}. Due to (2.11), it is easy to construct a vector fiald X"e
such that

/ cdivu = c/ divu = c/ (U,v) > BE™clloaullie
Q Q Mol '

for all constant pressures= R. The constanB;™¢ > 0 will depend on the relative length 6§ UT.
It is left to bound b
inf sup (u,p)

peMPL3(@) ozuexepre |Ulla [ Plloo

uniformly from below. Recall that the velocity patf}*® of the composite mini element space is the sum
a piecewise affine paf®*{S,«r) and a stabilization pam ,«r containing simplex bubble functions
with respect to the elements with degrees of freedom (ci.3]2. We define a mapping’s : Mf;/”},?,f N

L3(Q) — B st by
Z8(P)(¥) = > (@pr)grx),

T e g dof

whereyr denotes the normalized simplex bubbleTodefined in (2.12). We can boundg by

126 (P)E0 = | Z6(P)Equr = > [IOPUGwTlIwr(ir

o e (3.23)
(3.7),Poinc. inequ. 2 2 cme 2
< (Co) Pl ger VP EMTNLG(Q).
Since
Co|T| S/wn (3.24)
T
we can estimate
b (@0l =| 3 (0o [ Za®)|= 5 10pflfer [ ur
Teydof T Teydof T (325)

( Lem.4Poinc. ineq. C2

3.24) 2
Z CZHDpHO’Qdof >

> C—éWHpH(Z),Q >0

for all pe M%'®NL3(Q). Although (3.25) does not imply stability of the mixed sp&guor x (MSeN
L3(Q)), it guarantees that the problem

a(u,v)+b(v,p) =0, YV € B zdof,

3.26
b(u.) —g(d), vacMPNLEQ). (329
has a unique solutiofug, pg) for all g € (MS"®NL3(Q))". Furthermore, we get
B ,dor CH3(Q),Korn ineq,(3.26)
lugl% o < o I9llwezeyl[Pgllo, (3.27)
(3.25)Cyn (3.26)(3.23)C1Cyn .
HngaQ < ——1[6(ZB(Pyg); Pg)l < h~HugllrallPglloc (3.28)
C2 C2
and therefore
327)3.28)C1Cen
[Ugllre = Coox h HQH(Mg."eng(Q))/v (3.29)
~—

=C3
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It is well known (cf. [14, Lemma 3.2]) that the inf-sup condit holds on the continuous level, i.e.

Vp € L§(Q)Iup € Hged Q) : b(up, p) > Bllupllal pllog- (3.30)

Let pe MI®NLE(Q) andu, € Hi{Q) denote the associated velocity field according to (3.30). By
ugm®we denote the projection af;, onto the piecewise affine paft®>YSswr) of XIS, We deduce from
Theorem 2 by simple interpolation arguments (cf. [7, Theol.3.3]) that

[Jup—up™o.e < Cahllupllra. (3.31)

Based orug we choose the functionale (MG LE(Q))’ from (3.26) by

cme

). (3.32)

There is a uniquelg € B such thab(ug,q) = g(q) for all g€ MI"®NL3(Q) and

g(q) :=b(up—

(329)
lUgllLe < Csh™7|gll memeniz(q)y

<Gt sup UQ<Dq7UD_U%me>|+ | Jaga{up—ugmev)|

geEMNL3(Q) allo 3133
peH?! Poinc. ineq. cme cme (3.33)
< CpCsh™? (lup —ug™lo.0 + [lup—up Hf%,ag)
peH! trace th. 4 cme (3.31)
< CpCCrh ™ Jup—up™foa < CpCsCsCy |Up|l10-
Finally, we estimate
(3.27) (3:31)
b(up™+ug, p) "= "b(Up™, p) +9( ) b(up, p)
(3.25) ) B
> BHUleszPHOQ > —1+ [ug™+ Ugll1.allPllog
|

Next, we have to investigate the coercivity of the bilineam a with respect to the discrete space
XG'. Due to the assumption (1.11) coercivitycois fulfilled with respect to the discrete spaces

Ja >0: a(u,u) > allullrg, YueHis (3.34)

We refer to [26; 22; 11; 29] for a proof of (3.34). Sin&&M® ¢ Hithis result needs to be extended to a
certain neighborhood d42., This neighborhood will be controlled in terms of thé-norm of the trace.

Lemma 5 (Equivalent norms itHl.). For all u € Hi,there holds
HUHm S a(u,u) + [|Avuy +)\rUrHc2),aQa
where the hidden constant does not depend.on

Lemma 5 is a straight forward generalization of Lemma 4.1R8], where the cases of Dirichlet
and slip boundary conditions are discussed. The case obleakdary conditions can be proved in an
analog way. The pure Neumann was excluded by Remark 1. Lenimpligs thata is coercive on the
composite spac¥ 9 if the violation of the essential boundary conditions is toat large.

Finally, we will discuss coercivity of the bilinear formf-,-) with respect to the discrete space.
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Theorem 5 (Discrete coercivity) There is a constar °™¢that does not depend on h such théai, u) >
a®™u||Z g for all u e XGPe,

Proof. In Lemma 3 we have seen that the nonconformity in the velapce can be controlled by the
ratios RT). As a consequence,is coercive on the composite spacg", if the submesh is fine enough.
However, here we want to avoid constraints ofT IRto ensure well-posedness of the discrete problem
2.14 independently from the choice O

Z(T) (cf. (3.17)) is bounded by a constadtindependent of the mesh sikeand the right hand
side in Lemma 3 is always bounded ﬁy/ﬁ. In view of Lemma 5, there is almy such that the bilinear
form is coercive for all triangulations” with mesh sizeh < hy. The caséh > hg is discussed in what
follows. The bilineara has a nontrivial kernel given by the finite dimensional set@ifl body motions
Z (cf. (1.10)) and it is therefore coercive ¥%¢if and only if X7'*N % = {0}. The latter has already
been proved for Dirichlet boundary conditions in [30]. Tlse of leak boundary conditions follows by
similar arguments. The generalization to the c@seJ M| > 0 is straight forward. In the case of pure
slip/Neumann boundary conditions, i.Ep Ul =0, letu € XJ', A € RY*9 be skew symmetric and

b € RY such thau(x) = Ax+ b. Then, by definition (2.9), we get
(AX" —b,v(x")) =0, WX eV :={X |x €O x cl}. (3.35)
Under the assumptions 2.11 the latter implies that 0 andb = 0. O

Theorem 4 and 5 imply the unigue solvability of the discratebfem (2.14). Note that this result
does not depend on the choice of submé&gk,and remains true foZ,,= .7 . The dependence on the
mesh.7 is only minimal.

Therefore all assertions from the proof sketch in Sectidrhave been verified.



4 Numerical Experiments

In this section we will report on the results of some numégsperiments. Extensive numerical param-
eter studies which systematically investigate the peréorce of the composite mini element with respect
to the roughness of the domain boundary have been publishi&®; 30]. They clearly show that the
composite mini element is a very robust generalization efstiandard mini element to very coarse, non
resolving meshes. [31; 32; 24)).

Here, we have studied the convergence behavior of the cotapomi element with respect to the
approximation error in case of a small hole that is not resbly the computational grid. We will start
with the following parametrized class of model problems: e 5 < 1 we define#(r) by

—Au+Op=", dvu=0 inQ = #(0)\#;(0), 0< % <1, 4.1)
(uv)=0, (Du-v), =0 onls:=0d%:(0), (4.2)
2Du-v=pv only:=0%/(0), (4.3)
wheref, := —A(uy) is the Laplacian ofi, given by

Ur(X) = (r = XD = IXI])-

Obviously the pair(ur, p) € (HissTH?(Q)) x (LA(Q)NHY(Q)) is a solution of the model problem
A (r) for all constant pressures € R and all radii 0< 5 < 1. The solution flow is visualized for

r = 0.5 in Figure 4. In a numerical computation the non-uniquenegbfe pressure variable can be
fixed by adding a constraint lik&, p = 0 to the system of equations. We will use uniform overlapping
triangulations (cf. Figure 4b) arising from the initialarigulation

7 ={conv{(-1,-1),(1,-1),(1,1)},conv{(1,1),(-1,1),(-1,-1)} }

by uniform refinements. Note that none of the meshes willlvesihe domairQ,, i.e. neither the outer
boundary is resolved nor the hole. Especially for small @slafr the hole will be much smaller than
the mesh width of the finest triangulation. In Figure 5a theveogence history of the composite mini
element method is depicted for different hole sizes. Otlsliguthe optimal order of convergence is
present right from the coarsest levels. This is not summissince the solution remains very smooth in a
neighborhood of the hole whertends to 0. In general, we expect the method to give simisarable
approximations on complicated domains if the solution i®atihn enough to be well represented by the
coarse composite space. Since we only adapt the basis tatimeldry conditions and no additional
degrees of freedom are placed locally at the boundary, tileaués not able to capture local behavior of
the solution within the slave part of the mesh. This can ba gethe second example where the solution
depends crucially on the size of the hole. Ra N, n > 2, we define# (n) by

. ) 2
—Au+0Op=f,, dvu=0 inQ:=%(0)\ %(0), 0<r::m<1, (4.4)
(u,v)=0, (Du-v), =0 onls:=0%(0), (4.5)
2Du-v=pv only:=03d%(0), (4.6)
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wheref,, := —A(uy) is the Laplacian ofi,, given by
un(x) 1= [[x]| (1= [[]|)".

Obviously the pair(u,, p) € (HiNH?(Q)) x (L3(Q)NHY(Q)) is the unique solution of the model
problem.# (n) for all constant pressurgse R. A solution flow is visualized in Figure 4. Using the
same meshes as before, results in the convergence histding @bmposite mini element method as
depicted in Figure 5b. As expected, the local bump of thetiswlus not captured by the composite mini
element approximation until the global mesh size is smalugh. Therefore we observe a suboptimal
convergence depending on the size of the hole. However]lfmvastigated radii optimal convergence
order starts long before the hole is resolved by the meshselraeamples show that small holes might
influence the singular behavior of the solution in some cdsigevin other cases the solution is harmless
and degrees of freedom are not necessary from the view pbiapproximability. As explained in
the introduction composite finite elements, conceptuallpw to enrich the finite element space in an
optimal way. Future research will be directed to control dtiptimal enrichment by a posteriori error
indicators.
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(a) Solution flow (first component) o7, () (r = 3). (b) Solution flow (first component) o#5(15) (r = }).

Figure 4. Model problems: Stokes flows on the unit disc with a circular hole, Dirichlet boundary condition
on the outer boundary, slip boundary condition on the inner circle.
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(a) H-error (velocity) of CME applied to#1(2r) vs. max. mesh (b) H-error (velocity) of CME applied to
width. A1 (N)(r = 125) vs. max. mesh width.

Figure 5: Convergence history of CME applied to the model problems.



5 Conclusion

We have described a mixed finite element method for the Stpkalslem that does not require the
underlying finite element mesh to resolve the physical dam@&@verlapping, and possibly structured,
meshes are used instead. Therefore arbitrary coarse apatan spaces can be defined even if the
domain is very complicated. In contrast to other coarsestrategies (cf. [3; 23; 46]), the asymptotic
error estimates are preserved on the coarse meshes. Futkethe application of the method is not
restricted to the standard Dirichlet and Neumann boundanglitions. Boundary conditions of leak and
slip type can be treated as well. Additionally, our errorlgsia requires only minimal smoothness of the
domain.

Compared to homogenization approaches we did not make aindipitly assumptions. Further-
more, the definition of the basis functions is fully expligib local problems have to be solved. There-
fore the complexity of the method will be proportional to tmeémber of degrees of freedom which can
be chosen almost independent from the geometry. The orfigudi/ lies in the integration over the
intersections of elements and the domain. However, fromaetigal point of view, integration in space
is much simpler then integration over the complicated bamar solving a whole sub-problem on a
fine scale mesh.

In cases where the domain contains rough boundaries or hHuemethod still allows to derive
reasonable approximations at moderate effort. Althoughn atandard finite element methods, details
of the solution that are smaller than the mesh width cannataptured, the composite approximation
will always be a reasonable and cheap initial guess in anti@dggrocess of an adaptive enrichment of
the finite element space driven via an a-posteriori erramasion and mesh refinement (cf. [32; 33]).
As a consequence, geometric details will only be resolveera/ht is required by the solution.
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