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Abstract

The present work is devoted to the a posteriori error estimation for 2nd order elliptic problems
with Dirichlet boundary conditions. Using the duality technique we derive the reliable and efficient
a posteriori error estimator that measures the error in the energy norm. The estimator can be
used in assessing the error of any approximate solution which belongs to the Sobolev space H 1,
independently of the discretization method chosen. In particular, our error estimator can be applied
also to problems and discretizations where the Galerkin orthogonality is not available. We will
present different strategies for the evaluation of the error estimator. Only one constant appears in
its definition which is the one from Friedrichs’ inequality; that constant depends solely on the domain
geometry, and the estimator is quite non-sensitive to the error in the constant evaluation. Finally,
we show how accurately the estimator captures the local error distribution, thus, creating a base for
a justified adaptivity of an approximation.
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1 Introduction

A posteriori error estimation has proved to be very essential for reliable scientific computing, and
the literature on this subject is vast (see, e.g., the monographs [2], [5], [21] and also [6], [16]). Many
different methods have been developed over the past decade, each having its own advantages and
drawbacks. Some estimators possess the asymptotic exactness property, i.e. tend to the exact error
with the growth of the dimension of the approximation space, but they may fail to provide a reliable
upper bound for the exact error if some particular (relatively rough) approximation is considered.
In addition, some of those estimators require a sufficient smoothness of the exact solution. Other
estimators are free from the latter requirement and should, theoretically, yield a two-sided bound
for the exact error, but they do not exhibit the asymptotic exactness. In this work we derive the a
posteriori error estimator that has the asymptotic exactness property and, at the same time, provides
a guaranteed upper bound for the exact error. The estimator is also completely independent of any
particular discretization method and, hence, can be used in combination not only with finite element
but also with finite difference or finite volume method, as well as for assessing the error in a post-
processed solution.

In its original form, the estimator (like most existing a posteriori error estimators) is derived under
the assumption that the approximate solution satisfies the Dirichlet boundary condition exactly.
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However, in many practically interesting cases, the essential boundary condition can be satisfied
merely approximately either owing to complicated, e.g., non-polynomial Dirichlet data or because of
accounting the boundary condition in a weak sense, like in fictitious domain methods (see, e.g., [13]).
Thus, the approximate solution does not, in general, belong to the set of admissible functions of
the original problem, i.e. presents a non-conforming approximation to the exact solution (see [20]).
In this paper, we show how the estimator can be modified to take into account the error in the
approximation of the Dirichlet boundary condition. The resulting estimator measuring the error in
the energy norm has a very clear form: it consists of three separate terms, the first of which controls
the boundary condition error, the second corresponds to the error in the duality relation (“the error
in the constitutive law”), and the third represents the error in the equation for the dual variable (“the
error in the equilibrium equation”). The estimator could be very useful for adaptive improvement
of approximations on the domains with complicated structures (see, e.g., [14]).

The a posteriori error estimation for the non-homogeneous Dirichlet problem has been recently
investigated in [1] but with a different technique, namely, in the framework of the equilibrated
residual method. In this paper, we will focus on Poisson’s model problem but emphasize that our
approach has the potential of being extended to more general elliptic problems and further types of
the discretization error, such as the error in the geometric approximation of the domain (see [10], [12]
concerning the estimation of the geometric error). These topics will be addressed in a forthcoming
paper.

The paper is organized as follows. We start in Section 2 with the preliminaries on the primal and
dual variational formulations and the links between them, and obtain the basic estimate for the energy
norm of the error in the primal variable. Then, in Section 3, we proceed with deriving the a posteriori
error majorant for approximate solutions exactly satisfying the boundary condition. We also discuss
the strategy for evaluating the majorant and the estimation of the local error distribution. Next, in
Section 4, we present the modified error majorant capable of estimating the error for non-conforming
approximations. Finally, we illustrate the developed theory by numerical examples (Sections 5.1–
5.3), discuss the computational complexity of the estimator (Section 5.4) and draw the conclusions
(Section 6).

2 Preliminaries

Let Ω be a bounded domain with Lipschitz continuous boundary Γ. Consider the Dirichlet problem:
Find a function u such that

−∆u = f in Ω , (2.1)

u = u0 on Γ , (2.2)

where the trace of the given function u0 ∈ H1(Ω) defines the boundary condition on Γ. Throughout
this paper, we assume that

f ∈ L2(Ω).

Let V0 := H1
0 (Ω) and V0 + u0 := {v ∈ H1(Ω) | v = u0 + w, w ∈ V0}. A weak formulation of the

problem (2.1), (2.2) is: Find u ∈ V0 + u0, such that
∫

Ω

∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈ V0 . (2.3)

It is well known that the solution to this problem exists and is unique. This solution can be charac-
terized equivalently as the minimizer of the following variational problem:

Problem P. Find u ∈ V0 + u0 such that

J(u) = inf
v∈V0+u0

J(v) ,
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where

J(v) =
1

2

∫

Ω

| ∇v |2 dx −

∫

Ω

fv dx .

To derive the dual variational formulation we employ the relation

J(u) = inf
v∈V0+u0

sup
y∗∈L2(Ω,

�
n)

∫

Ω

(

∇v · y∗ −
1

2
| y∗ |2 −fv

)

dx .

Then we have
Problem P∗. Find p∗ ∈ Q∗

f such that

I∗(p∗) = sup
q∗∈Q∗

f

I∗(q∗) ,

where

I∗(q∗) =

∫

Ω

(

∇u0 · q
∗ −

1

2
| q∗ |2 −fu0

)

dx

is the dual variational functional and

Q∗
f := {q∗ ∈ L2(Ω,

� n) |

∫

Ω

q∗ · ∇w dx =

∫

Ω

fw dx ∀w ∈ V0} . (2.4)

Both problems P and P∗ have unique solutions u and p∗, which satisfy the duality relations (see,
e.g., [15])

J(u) = I∗(p∗) , (2.5)

∇u = p∗ . (2.6)

In view of (2.3), we have

J(v) − J(u) =
1

2

∫

Ω

| ∇(v − u) |2 dx +

∫

Ω

∇u · ∇(v − u) dx

−

∫

Ω

f(v − u) dx =
1

2

∫

Ω

| ∇(v − u) |2 dx ∀v ∈ V0 + u0 .

Hence, using (2.5), one can derive

1

2
‖∇(v − u)‖2 = J(v) − I∗(p∗) = J(v) − sup

q∗∈Q∗

f

I∗(q∗)

= J(v) + inf
q∗∈Q∗

f

{−I∗(q∗)} = inf
q∗∈Q∗

f

{J(v) − I∗(q∗)} ,

and, since

J(v) − I∗(q∗) =
1

2

∫

Ω

| ∇v − q∗ |2 dx +

∫

Ω

q∗ · ∇v dx −

∫

Ω

q∗ · ∇u0 dx

−

∫

Ω

fv dx +

∫

Ω

fu0 dx =
1

2

∫

Ω

| ∇v − q∗ |2 dx ,∀v ∈ V0 + u0 , ∀q∗ ∈ Q∗
f ,
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we obtain
‖∇(v − u)‖2 = inf

q∗∈Q∗

f

‖∇v − q∗‖2 ∀v ∈ V0 + u0 . (2.7)

From (2.7) we immediately deduce the estimate

‖∇(v − u)‖2 ≤ ‖∇v − q∗‖2 ∀v ∈ V0 + u0 , ∀q∗ ∈ Q∗
f , (2.8)

showing that ∇(v−u) in the L2-norm (which may be viewed as the approximation error) is majorized
by the L2-norm of the difference (∇v − q∗) with any q∗ ∈ Q∗

f . However, if q∗ does not belong to Q∗
f ,

the L2-norm of the difference (∇v − q∗) does not, in general, provide an upper bound for the error.
This means that any numerical approximation of q∗ should satisfy the constraint q∗ ∈ Q∗

f with very
high accuracy in order to guarantee a reliability of the error estimate; thus, the estimate (2.8) is
not very useful for practical application. Our further efforts will be focused on finding a computable
upper bound for the right-hand side of (2.8).

3 Error majorant for conforming approximations

Functional-type a posteriori error majorants for conforming approximations have been derived by
using general minimax theorems of convex analysis in [18], [19]. For linear elliptic problems under
consideration we will present in this section a much simplified way of deriving functional-type a
posteriori estimates using a variant of the Helmholtz decomposition for the space L2(Ω,

� n).

Theorem 3.1 Let u ∈ V0 + u0 be the solution to the problem (2.1), (2.2) and v any function from
V0 + u0.
Then

‖∇(v − u)‖2 ≤ (1 + β)‖∇v − y∗‖2 + (1 +
1

β
)C2

Ω‖div y∗ + f‖2 , (3.1)

where β is an arbitrary positive number, y∗ is any function from H(Ω,div) := {y∗ ∈ L2(Ω,
� n) |

div y∗ ∈ L2(Ω)} and CΩ is the constant from Friedrichs’ inequality for the domain Ω.

Proof. Let us first consider the homogeneous equation, i.e. the problem

−∆u = 0 in Ω , (3.2)

u = u0 on Γ . (3.3)

After repeating the derivations of the preceding section with f ≡ 0 we obtain (see (2.8))

‖∇(v − u)‖2 ≤ ‖∇v − q∗‖2 ∀v ∈ V0 + u0 , ∀q∗ ∈ Q∗
0 , (3.4)

where Q∗
0 := {q∗ ∈ L2(Ω,

� n) |
∫

Ω

q∗ · ∇w dx = 0 ∀w ∈ V0}.

In order to estimate the right-hand side of (3.4) for any fixed v ∈ V0 + u0, we take an arbitrary
function y∗ from the space H(Ω,div). As y∗ ∈ L2(Ω,

� n), we have for y∗ the Helmholtz orthogonal
decomposition y∗ = q∗ + ∇w, where q∗ ∈ Q∗

0 and w ∈ V0 (see, e.g., [17] for this particular variant of
the Helmholtz decomposition). Since y∗ ∈ H(Ω,div), we conclude that ∆w = div y∗ ∈ L2(Ω). Then,
using Young’s inequality, we obtain

‖∇v − q∗‖2 ≤ (1 + β)‖∇v − y∗‖2 + (1 +
1

β
)‖∇w‖2 ∀β > 0 . (3.5)

Since w ∈ V0 and ∆w ∈ L2(Ω), the second term on the right-hand side of the last inequality can be
estimated by

‖∇w‖2 =

∣

∣

∣

∣

∣

∣

∫

Ω

(∆w)w dx

∣

∣

∣

∣

∣

∣

≤ ‖∆w‖‖w‖ ≤ CΩ‖∆w‖‖∇w‖, (3.6)
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that is
‖∇w‖ ≤ CΩ‖∆w‖ , (3.7)

where CΩ is the constant in Friedrichs’ inequality for the domain Ω. As ∆w = div y∗, we arrive at
the inequality

‖∇v − q∗‖2 ≤ (1 + β)‖∇v − y∗‖2 + (1 +
1

β
)C2

Ω‖div y∗‖2 ∀β > 0 . (3.8)

Using (3.4) we finally obtain the a posteriori error estimate

‖∇(v − u)‖2 ≤ (1 + β)‖∇v − y∗‖2 + (1 +
1

β
)C2

Ω‖div y∗‖2 , (3.9)

∀β > 0 , ∀y∗ ∈ H(Ω,div) ,

which is valid for any approximate solution v from V0 + u0.
To derive an analogous estimate for the general inhomogeneous equation, i.e. for the problem

(2.1), (2.2), we consider an auxiliary problem

−∆ū = f in Ω , (3.10)

ū = 0 on Γ . (3.11)

Then the solution to the problem (3.2), (3.3) is given by ũ = u− ū. Applying (3.9) to any ṽ ∈ V0 +u0

we obtain

‖∇(ṽ − u + ū)‖2 ≤ (1 + β)‖∇ṽ − ỹ∗‖2 + (1 +
1

β
)C2

Ω‖div ỹ∗‖2 , (3.12)

valid for any ỹ∗ ∈ H(Ω,div) and for any β > 0.
The solution ū is related to the solution p̄∗ of the corresponding dual problem by

∇ū = p̄∗ . (3.13)

However, in this case, p̄∗ belongs not to Q∗
0, but to the affine manifold Q∗

f (see (2.4)). The inequality
(3.12) can be rewritten in the form

‖∇(ṽ − u + ū)‖2 ≤ (1 + β)‖∇(ṽ + ū) − (ỹ∗ + p̄∗)‖2 + (1 +
1

β
)C2

Ω‖div ỹ∗‖2 . (3.14)

Note that v := ṽ + ū ∈ V0 + u0 and y∗ := ỹ∗ + p̄∗ ∈ H(Ω,div). Then

div ỹ∗ = div y∗ − div p̄∗ = div y∗ + f , (3.15)

and

‖∇(v − u)‖2 ≤ (1 + β)‖∇v − y∗‖2 + (1 +
1

β
)C2

Ω‖div y∗ + f‖2 .

�

Since u is the exact solution of the problem (2.1), (2.2), v is any function from V0 + u0 and y∗

is any function from H(Ω,div), the estimate (3.1) is an a posteriori error estimate valid for any
conforming approximation of the problem (2.1), (2.2).

Corollary 3.1 Let u ∈ V0 + u0 be the solution to the problem (2.1), (2.2) and v any function from
V0 + u0.
Then

‖∇(v − u)‖ ≤ M(v; y∗) ∀y∗ ∈ H(Ω,div) , (3.16)

where M(v; y∗) = ‖∇v − y∗‖ + CΩ‖div y∗ + f‖.
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Proof. Since (3.1) is valid for any β > 0, we can minimize the right-hand side of (3.1) with respect
to β. This immediately leads to the estimate (3.16).

�

Remark 3.1 It is evident that the error majorant M(v; y∗) is not only always reliable (as far
as y∗ ∈ H(Ω,div)) but also possesses the property of asymptotic exactness in the sense that, if
y∗ → p∗ = ∇u in H(Ω,div), the majorant M(v; y∗) tends to the exact error ‖∇(v − u)‖.

Remark 3.2 It immediately follows from (3.16) that

M(v; y∗) ≤ ‖∇(v − u)‖ + ‖y∗ − p∗‖ + CΩ‖div (y∗ − p∗)‖ . (3.17)

This indicates that, if y∗ is close enough to the exact dual variable p∗ in H(Ω,div)-norm, the error
majorant M(v; y∗) provides also a reasonable lower bound for the exact error.

Although the estimate (3.16) is more practical than (2.8) (since y∗ should belong not to the set
Q∗

f but to the much wider space H(Ω,div)), it is still useless as long as one has no good choice for
y∗ at hand. Next, we will present three strategies for finding a good choice of y∗:
(a) If, in addition, the dual problem is discretized, we may directly plug the approximate dual
solution in the error majorant, hence, obtaining a good error estimate;
(b) The much cheaper way is to project ∇v, where v ∈ V0 + u0 is the found approximate solution to
our problem, onto the space H(Ω,div) by virtue of some suitable projection procedure. This leads to
the well-known gradient recovery based error estimation (see [7], [22], [23]), but, unlike the standard
estimators of that class, our majorant provides a guaranteed upper bound for the exact error owing
to the presence of the additional, residual term CΩ‖div y∗ + f‖. The success of a gradient recovery,
however, heavily relies on the superconvergence phenomenon that, in turn, can be observed only if
the exact solution has a sufficient regularity;
(c) Another way of obtaining a good choice for y∗, which is less costly than solving the dual problem
and does not require an additional smoothness of the exact solution, is given by the following

Theorem 3.2 Let M 2(v; y∗, β) denote the right-hand side of the inequality (3.1), i.e. M 2(v; y∗, β) :=
(1 + β)‖∇v − y∗‖2 + (1 + 1

β )C2
Ω‖div y∗ + f‖2.

Let y∗β ∈ H(Ω,div) be the minimizer of M 2(v; y∗, β) for any fixed v ∈ V0 + u0 and β > 0

(M2(v; y∗β, β) = inf
y∗∈H(Ω,div)

M2(v; y∗, β)).

Then y∗β converges to p∗ = ∇u in H(Ω,div) as β → 0, and moreover

‖y∗β − p∗‖ ≤ Cβ1/2 ,

‖div (y∗β − p∗)‖ ≤ Cβ ,

where the constant C depends only on f , v and CΩ.
(The theorem implies that ‖y∗

β − p∗‖H(Ω,div) = O(β1/2) when β → 0 )

Proof. First, we see that for any fixed v ∈ V0 + u0 and β > 0 the functional M 2(y∗) := M2(v; y∗, β)
is continuous, strictly convex and coercive on H(Ω,div), which immediately implies the existence of
the unique minimizer y∗

β ∈ H(Ω,div). This minimizer satisfies the Euler equation for the functional

M2(y∗)

(1 + β)

∫

Ω

y∗β · z∗ dx + (1 +
1

β
)C2

Ω

∫

Ω

(div y∗β + f)div z∗ dx =

(1 + β)

∫

Ω

∇v · z∗ dx , ∀z∗ ∈ H(Ω,div) ,
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that can be rewritten in the form
∫

Ω

y∗β · z∗ dx +
1

β
C2

Ω

∫

Ω

(div y∗β + f)div z∗ dx =

∫

Ω

∇v · z∗ dx , ∀z∗ ∈ H(Ω,div) . (3.18)

In the preceding section it has been proved (see (2.7)) that p∗ is the minimizer of the functional
F (q∗) := ‖∇v − q∗‖2 on the set Q∗

f (the minimizer is obviously unique). The corresponding Euler
equation for the functional F reads

∫

Ω

p∗ · q∗ dx =

∫

Ω

∇v · q∗ dx , ∀q∗ ∈ Q∗
0 . (3.19)

Now we consider the function (y∗
β − p∗) ∈ H(Ω,div). Exactly as it has been done above in this

section, we may use the Helmholtz decomposition (y∗
β − p∗) = q∗ + ∇w, where q∗ ∈ Q∗

0 and w ∈ V0,

∆w = div (y∗β − p∗) ∈ L2(Ω), to obtain from (3.19)

∫

Ω

p∗ · (y∗β − p∗) dx −

∫

Ω

p∗ · ∇w dx =

∫

Ω

∇v · (y∗β − p∗) dx −

∫

Ω

∇v · ∇w dx . (3.20)

If we substitute (y∗
β − p∗) instead of z∗ into (3.18) and subtract (3.20) from the resulting equation,

we obtain

‖y∗β − p∗‖2 +
1

β
C2

Ω‖div (y∗β − p∗)‖2 = −

∫

Ω

fw dx +

∫

Ω

∇v · ∇w dx . (3.21)

The fact that div p∗ = −f in L2(Ω) has been also used to derive this equation.
We can estimate the right-hand side of (3.21) from above by means of the Cauchy-Schwarz

inequality, Friedrichs’ inequality for w ∈ V0 and the inequality (3.7) to obtain

‖y∗β − p∗‖2 +
1

β
C2

Ω‖div (y∗β − p∗)‖2 ≤ C2
Ω‖f‖ ‖∆w‖ + CΩ‖∇v‖ ‖∆w‖ , (3.22)

from where, using the fact ∆w = div (y∗
β − p∗), we deduce

‖y∗β − p∗‖2 +
1

β
C2

Ω‖div (y∗β − p∗)‖2 ≤ (C2
Ω‖f‖ + CΩ‖∇v‖) ‖div (y∗β − p∗)‖ .

It immediately follows that

‖div (y∗β − p∗)‖ ≤ (‖f‖ +
1

CΩ
‖∇v‖)β

and, consequently,

‖y∗β − p∗‖2 ≤ C2
Ω(‖f‖ +

1

CΩ
‖∇v‖)2 β ,

yielding the statement of the theorem.
�

Remark 3.3 Theorem 3.2 suggests that, taking a small value β0 of the parameter β, we can obtain
a reasonably good y∗

β0
to be used in the error majorant M . This y∗

β0
is found simply by minimizing

the quadratic functional M 2(v; y∗, β0) with fixed v and β0. It is important to note that, unlike in
the penalty method for solving the dual problem, we do not have to set β0 very small as it is not
necessary for our purposes to strongly enforce the constraint div y∗ = −f in L2(Ω). The majorant
provides an upper bound for the exact error as long as y∗ ∈ H(Ω,div), and it is close to the exact
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error if the term CΩ‖div y∗ + f‖ is dominated by the other term ‖∇v − y∗‖ in the majorant. The
optimal value of β0 should, obviously, depend on the chosen discretization. By setting the value of
β0 only moderately small, the typical problems of a penalty method, like a severe deterioration of
the condition number and the locking effect for the discretized problem, can be circumvented.

Remark 3.4 The constant CΩ stemming from Friedrichs’ inequality is related to the smallest
eigenvalue λΩ of the Laplace operator in Ω (equipped with the homogeneous Dirichlet boundary
condition) by the expression λΩ = C−2

Ω . Calculating the smallest eigenvalue in a larger domain leads
to a lower bound for λΩ, and, consequently, to an upper bound for the constant CΩ. It is worth
noting that CΩ depends solely on the domain geometry, and, thus, must be evaluated only once for
the particular domain.
In the majorant M(v; y∗

β0
) the constant CΩ is multiplied by the term ‖div y∗

β0
+f‖ = ‖div (y∗β0

−p∗)‖
which is of order of β0 according to Theorem 3.2. Thus, the majorant is generally not sensitive to
possible errors in the constant evaluation.

Next we will investigate the local estimation properties of our error majorant.

Evaluation of local errors by the error majorant

The function
ε(x) =| ∇(v(x) − u(x)) |2

gives the actual distribution of the energy error in the points of the domain Ω. As a matter of fact,
this function provides the information needed, e.g., for performing an adaptive mesh refinement.
However, since u is unknown, this function is not at our disposal. The theorem we prove below
shows that ε(x) can be successfully approximated by an explicitly computable function stemming
from our error majorant.

Define the function

µβ(x) := (1 + β) | ∇v(x) − y∗
β(x) |2 +

(

1 +
1

β

)

C2
Ω | div y∗β(x) + f(x) |2 ,

where y∗β is the minimizer of M 2(v; y∗, β) as in Theorem 3.2. Define, also, for any σ > 0 the set

Ωσ = {x ∈ Ω | | µβ(x) − ε(x) |≥ σ} .

Then the following theorem holds true:

Theorem 3.3 For any σ > 0
meas (Ωσ) → 0 as β → 0 .

Proof. For almost all x ∈ Ω, we have

| µβ(x) − ε(x) | ≤
∣

∣(1 + β) | ∇v(x) − y∗
β(x) |2 − | ∇(v(x) − u(x)) |2

∣

∣

+

(

1 +
1

β

)

C2
Ω | div y∗β(x) + f(x) |2 ≤ β | ∇v(x) |2 +2 | (1 + β)y∗β(x) −∇u(x) |

· | ∇v(x) | +
∣

∣(1 + β) | y∗β(x) |2 − | ∇u(x) |2
∣

∣+

(

1 +
1

β

)

C2
Ω | div y∗β(x) + f(x) |2 .

Since, according to Theorem 3.2,

‖y∗β −∇u‖ = O(β1/2) ,

‖divy∗β + f‖ = O(β) ,
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it is easy to see that
∫

Ω

| µβ(x) − ε(x) | dx → 0 as β → 0 . (3.23)

As
∫

Ω

| µβ(x) − ε(x) | dx ≥

∫

Ωσ

| µβ(x) − ε(x) | dx ≥ σ meas (Ωσ) ,

the statement of the theorem follows from (3.23).
�

The theorem shows that µβ(x) may essentially differ from ε(x) only in ”small” subdomains,
whose Lebesgue measure will tend to zero if y∗

β becomes sufficiently close to the exact dual variable
p∗. From the practical viewpoint, this means that the function µβ(x) standing under the integral
sign in M 2(v; y∗β, β) can be used as an indicator of local errors.

Below we discuss this issue more precisely. Let

Ω =

N
⋃

k=1

Ωk ,

where {Ωk} is a certain collection of subdomains. The problem of our interest is to evaluate the
quantities

ek :=

∫

Ωk

ε(x) dx ,

which provide necessary information for further improvement of the finite-dimensional approxima-
tion. For this purpose, we can use the quantities

mβ
k :=

∫

Ωk

µβ(x) dx .

The accuracy of the representation of the quantities ek by mβ
k can be measured by the local effectivity

indices

(ieff)βk =

(

mβ
k

ek

)1/2

∀k = 1, N ,

if ek 6= 0.

Corollary 3.2 Let y∗
β be the same as in Theorem 3.2.

Then, for any given sampling {Ωk}
N
k=1 of the domain Ω and for any k = 1, N , we have

mβ
k → ek (i.e. (ieff)βk → 1 when ek 6= 0) as β → 0 . (3.24)

Proof. In Theorem 3.3 it has been proved that
∫

Ω

| µβ(x)− ε(x) | dx → 0 if β → 0 (see (3.23)). This

means that
∫

Ωk

| µβ(x) − ε(x) | dx → 0 ∀Ωk ,

which implies (3.24).
�

Thus, we see that explicitly computable quantities mβ
k will provide correct information on the

distribution of subdomain errors once y∗
β and the respective parameter β are appropriately defined.

Remark 3.5 It is evident that everywhere above we could replace the function µβ(x) with the
simpler function | ∇v(x) − y∗

β(x) |2, where y∗β → p∗ in L2(Ω,
� n) as β → 0. Theorem 3.2 addresses

the possible way of constructing such y∗
β.
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4 A posteriori error estimate for functions that do not exactly

satisfy the Dirichlet boundary condition

Consider the problem (2.1), (2.2) and assume that v is any function from H 1(Ω) that satisfies the
boundary condition (2.2) only approximately. Then, our aim is to control this additional error by
an a posteriori error estimate.

First, we introduce the following notation:

m2
0(v) := inf

ṽ∈V0+u0

‖∇(v − ṽ)‖2 , (4.1)

m2
d(v, y∗) := ‖∇v − y∗‖2 , (4.2)

m2
f (y∗) := ‖div y∗ + f‖2 . (4.3)

The required a posteriori error estimate is given by

Theorem 4.1 Let u ∈ V0 + u0 be the solution to the problem (2.1), (2.2) and v any function from
H1(Ω).
Then

‖∇(v − u)‖ ≤ M(v; y∗) ∀y∗ ∈ H(Ω,div) , (4.4)

where M(v; y∗) = 2m0(v) + md(v, y∗) + CΩmf (y∗).

Proof. In view of Young’s inequality, we have

‖∇(v − u)‖2 ≤ (1 +
1

α1
)‖∇(v − ṽ)‖2 + (1 + α1)‖∇(ṽ − u)‖2 , (4.5)

where α1 is any positive number and ṽ any function from V0 + u0. For the second term on the
right-hand side of (4.5) we can apply the estimate (3.1)

‖∇(ṽ − u)‖2 ≤ (1 + β)‖∇ṽ − y∗‖2 + (1 +
1

β
)C2

Ω‖div y∗ + f‖2 (4.6)

yielding

‖∇(v − u)‖2 ≤ (1 +
1

α1
)‖∇(v − ṽ)‖2 + (1 + α1)(1 + β)‖∇ṽ − y∗‖2

+ (1 + α1)(1 +
1

β
)C2

Ω‖div y∗ + f‖2 . (4.7)

This is valid for all ṽ ∈ V0 + u0 and y∗ ∈ H(Ω,div). The right-hand side represents the error
majorant, and, evidently, if ṽ → u in H1(Ω) and y∗ → ∇u in H(Ω,div), we can choose α1(ṽ, y∗) so
that the majorant will converge to the exact error.

However, it is difficult to minimize the majorant from (4.7) with respect to two functions ṽ and
y∗, and we use once again Young’s inequality to eliminate the function ṽ from the majorant. Indeed,
we have

‖∇ṽ − y∗‖2 ≤ (1 +
1

α2
)‖∇v − y∗‖2 + (1 + α2)‖∇ṽ −∇v‖2 , (4.8)

where α2 is any positive number. Inequalities (4.7) and (4.8) imply the estimate

‖∇(v − u)‖2 ≤ M2(v; y∗, α1, α2, β) , (4.9)
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where

M2(v; y∗, α1, α2, β) := (1 +
1

α1
+ (1 + α1)(1 + α2)(1 + β))

· inf
ṽ∈V0+u0

‖∇(v − ṽ)‖2

+ (1 + α1)(1 + β)(1 +
1

α2
)‖∇v − y∗‖2

+ (1 + α1)(1 +
1

β
)C2

Ω‖div y∗ + f‖2 . (4.10)

By using the notations (4.1)–(4.3), the latter inequality can be rewritten as

‖∇(v − u)‖2 ≤ (1 +
1

α1
+ (1 + α1)(1 + α2)(1 + β))m2

0(v)

+ (1 + α1)(1 + β)(1 +
1

α2
)m2

d(v, y∗)

+ (1 + α1)(1 +
1

β
)C2

Ωm2
f (y∗) . (4.11)

Minimizing the right-hand side of (4.11) over the parameters α1, α2 and β we obtain (4.4); the
corresponding optimal values of the parameters are given by the formulae

α1 =
m0(v)

m0(v) + md(v, y∗) + CΩmf (y∗)
, (4.12)

α2 =
md(v, y∗)

m0(v)
, (4.13)

β =
CΩmf (y∗)

m0(v) + md(v, y∗)
. (4.14)

�

According to the above theorem, the error majorant consists of three terms in the general case of a
non-conforming approximation. The term m0(v) is non-negative and vanishes if and only if v exactly
satisfies boundary condition (2.2). Thus, it is a measure of the error in the boundary condition. The
quantity md(v, y∗) is a measure of the error in the duality relation for the pair (v, y∗) and mf (y∗)
measures the error in the equation for the dual variable (“equilibrium equation”).

It is also easy to verify that the estimate (4.4) is consistent in the sense that its right-hand side
tends to zero when v → u in H1(Ω) and y∗ → p∗ in H(Ω,div).

Remark 4.1 The quantity m2
0(v) cannot, in general, be computed directly, but one can estimate it

from above, for example, by choosing the function ṽ ∈ V0 + u0 as ṽ(x) = Φ(x)
Φ0

v(x) + (1 − Φ(x)
Φ0

)u0(x)
in the domain {x ∈ Ω |Φ(x) ≤ Φ0} and ṽ ≡ v on the rest of Ω, where Φ(x) is the distance from x to
Γ and Φ0 > 0 is some fixed number.

5 Numerical examples

In this section we consider several numerical examples highlighting different features of the proposed
error estimator.

In Section 5.1, we investigate systematically the approximation properties of the error majorant
in dependence on the parameters such as the polynomial degree of the dual variable and the number
of iteration steps for minimizing the majorant. In order to study these dependencies we have chosen
a very simple model problem which allows us to vary diverse approximation parameters; the problem
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is also well-suited to validate the convergence of the error majorant to the exact error, since it is
possible to reach the “asymptotic range” of the approximation.

In Section 5.2, we apply the error estimator (with parameter choices found in Section 5.1) to
the discretization of the Poisson model problem by the penalty/fictitious-domain method taking into
account the error in the approximation of Dirichlet boundary conditions.

We compare our error majorant with some standard residual-based error estimator in Section 5.3
and address the issue of computational complexity for our error estimator in Section 5.4.

5.1 The parameter studies. Error estimation for non-Galerkin approximate so-
lution

5.1.1 Model problem

Consider the 2D model problem:

∆u = 1 in Ω (5.1)

u = 1 on Γ1 (5.2)

u = 0 on Γ2 , (5.3)

where Γ1 is the unit circle with the center at the origin, Γ2 is the circle with the same center and of
the radius 0.5, Ω is the domain bounded by Γ1 and Γ2. Since the exact solution in polar coordinates
depends only on ρ, i.e. u = u(ρ), it can be found explicitly:

u(ρ) =
1

4
(ρ2 −

1

4
) + C1 ln(2ρ) , (5.4)

with C1 = 13/(16 ln 2).
As the approximate solution we take

v(ρ) =

n1
∑

k=0

vkρ
k , (5.5)

with n1 = 2, and choose the coefficients vk (k = 0, 1, 2) by the conditions v(1) = 1, v(0.5) = ε and
v′(1) = 0.5, where ε is some given number. We see that while the Dirichlet boundary condition
on the boundary piece Γ1 is satisfied exactly, the condition on Γ2 is violated; the magnitude of the
corresponding error, i.e. the parameter ε, will be varied in the numerical tests reported below.

The variable y∗ is sought as a polynomial

y∗(ρ) =

n2
∑

k=0

y∗kρ
k , (5.6)

and we have chosen different values for the polynomial degree n2.
In the present case, the term m0 can be computed directly:

m2
0(v) =

2π

ln 2
v2(0.5) . (5.7)

5.1.2 Choice of constant CΩ

In the light of Remark 3.4, we have evaluated the smallest eigenvalue of the Laplace operator in the
circular domain Ω̃ = {x ∈

� 2 | |x| < 1} (Ω̃ ⊃ Ω) to obtain the estimate CΩ ≤ 1/3. We emphasize
that the overestimation of the constant is not only harmless for the reliability of the majorant (this
is obvious) but, also, does not pollute the majorant’s efficiency, see Remark 3.4. The last statement
is clearly confirmed by numerical experiments.
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5.1.3 Minimization of error majorant M 2

To find a good y∗-approximation, we minimize the “squared error majorant” M 2(v; y∗, α1, α2, β) (see
(4.10)) with respect to the last four variables. The algorithm of the minimization is given below:

Set α
(0)
1 = α

(0)
2 = β(0) = 0.5

For n = 1, 2, ... :

Minimize M 2(v; y∗, α
(n−1)
1 , α

(n−1)
2 , β(n−1)) w.r.t. y∗ =⇒ y∗(n)

Using y∗(n), update α
(n)
1 , α

(n)
2 , β(n) with (4.12)–(4.14) ,

where the minimization problem can be solved in a standard way since the majorant M 2 is a quadratic
functional with respect to y∗. The minimization is performed over the set of the polynomial functions
(5.6) of fixed degree n2. Just one or two iterations were found to be sufficient for a reasonable accuracy
of the error majorant. Below we will present a detailed study demonstrating the dependence of the
majorant quality on the number of iterations.

It is worth noticing that the convergence of the iterational algorithm is not a primary issue
here; we use one or two iterations only to improve the y∗-approximation. Indeed, one can easily

see that M 2(v; y∗(i), α
(i)
1 , α

(i)
2 , β(i)) ≤ M2(v; y∗(j), α

(j)
1 , α

(j)
2 , β(j)) for any i ≥ j, and, consequently,

M(v; y∗(2)) ≤ M(v; y∗(1)), if the algorithm does not stop because of the degenerate situation when

either α
(1)
2 or β(1) is zero. Thus, y∗

(2) is, usually, a better approximation than y∗
(1), although the

quality of y∗(1) can already suffice in many cases.
We may also note that, if the Dirichlet boundary conditions are satisfied exactly, the term m0

simply vanishes and the majorant M 2(v; y∗, α1, α2, β) reduces to the functional M 2(v; y∗, β) defined
as the right-hand side of inequality (3.1). While one or two iterations will still yield a good result in
this case, one can gain a better majorant accuracy by chosing a suitable, moderately small value of
β(0) (see Remark 3.3); then only one iteration is, in fact, needed.

5.1.4 Choice of polynomial degree for y∗ and asymptotic exactness of the majorant

In all tests presented here the iterations of the algorithm were done until

| M2(v; y∗(n−1), α
(n−1)
1 , α

(n−1)
2 , β(n−1)) − M2(v; y∗(n), α

(n)
1 , α

(n)
2 , β(n)) |< 10−4 ,

so as to eliminate the influence of the iteration error. The numerical results corresponding to three
different values of the error ε in the Dirichlet boundary condition on Γ2 are presented in Figure 1
(left). They clearly indicate that an improvement of the approximation to the y∗-variable leads to a
very accurate error estimation by the majorant M . For small values of ε, i.e. when the total error
is dominated by the errors in the domain, the asymptotic exactness of the majorant with respect
to the y∗-approximation is observed (the effectivity index M(v; y∗)/‖∇e‖, where e := v − u is the
exact error, tends to 1 with increasing polynomial degree n2); for larger values of ε the influence
of the boundary error becomes more pronounced. The overestimation can be possibly explained by
the factor 2 in front of the term m0(v) in the majorant M : it occured as a result of the repeated
application of the triangle inequality and, thus, in many cases, exceeds the optimal value of the
factor. It is noteworthy, however, that the effectivity index monotonically decreases (down to the
value ≈ 1.6 when ε = 0.1) with increasing accuracy of the approximation of y∗; since M cannot be
smaller than the norm of the exact error, the reliability of our error estimator is always preserved,
i.e. the estimator always provides an upper bound for the norm of the error.

Figure 1 (left) clearly shows that the improvement in the effectivity index caused by the increase
of degree n2 from 1 to 2 is apparently greater than the improvement due to the increase of n2 from
2 to 3 (the relative decrease of the effectivity index is about 20% in the first and only 5% in the
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second case). This suggests that the value n2 = 2 = n1 for the polynomial degree of y∗-variable is
optimal from the viewpoint of both the accuracy and computational cost, as a further increase of n2

does not bring a significant merit.

1 2 3 4 5 6 7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

 n
2
 

 M
/||

∇
 e

|| 

1 2 3 4 5
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

 number of iterations

 M
/||

∇
 e

|| 

Figure 1: (left) The effectivity index vs. the polynomial degree n2 of the y∗-approximation: the error
in the Dirichlet boundary condition ε = 0.1 (4), ε = 0.01 ( � ), ε = 0.001 (◦); (right) the effectivity
index vs. the number of iterations done for minimization of majorant M 2 (here ε = 0.1): 1st degree
y∗-approximation (4), 2nd degree (◦), 3rd degree ( � ).

5.1.5 Choice of the number of iterations for minimization of the error majorant M 2

In Figure 1 (right) the dependence of the effectivity index on the number of iterations done for

minimization of M 2 is shown. We experimented with different initial values α
(0)
1 , α

(0)
2 and β(0)

and found that, for any α
(0)
1 , not too small α

(0)
2 (i.e., roughly, α

(0)
2 > 10−2) and not too large β(0)

(roughly, β(0) < 102), already the first iteration yields the effectivity index exceeding by only 15%
its minimal value for the chosen degree n2 (this minimal value was normally reached within 5–6
iterations). The second iteration brought further ≈ 8% decrease of the effectivity index, and the
relative decrease of the effectivity index due to the third iteration was about 4%. Thus, just one
iteration can be recommended in all cases, and the second iteration may be used when one needs an
improved accuracy of the error estimation; the third iteration brings too small accuracy improvement
to pay off the increased computational cost.

5.1.6 Asymptotic behavior of the weights α1, α2, β in the majorant

Here we analyze the behavior of the parameters α1, α2 and β depending on the polynomial degree
n2 of the y∗-approximation for the case ε = 0.1. The parameters α1 and α2 remain nearly constant
for all values of n2, which reflects the fact that the term m2

0(v) is completely independent of y∗ and
the term m2

d(v, y∗) is practically independent of the degree of y∗-approximation (it was observed
in numerical experiments). Figure 2 (left) illustrates the behavior of β and of the term m2

f (y∗) in
dependence on the degree n2. It is clearly seen that the parameter β is monotonically decreasing
and becomes very small when the approximation of y∗ is sufficiently good; the term m2

f (y∗) behaves

like O(β2) in a full agreement with the predictions of Theorem 3.2.
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Figure 2: (left) Dependence of the parameter β (dash-dot line) and of the term m2
f (y∗) (solid line)

on the polynomial degree n2 of the y∗-approximation; (right) the exact energy error (solid line) and
its estimate produced by the majorant (drawn as functions of ρ): 2nd degree approximation of y∗

( � ), 3rd degree (4), 5th degree (∗).

5.1.7 The local error representation by the majorant

The majorant reproduces the local behavior of the exact error with a good quality, as can be seen
in Figure 2 (right). The error in the boundary condition on Γ2 was taken small here (ε = 0.001). In
the figure we plot the functions | ∇v −∇u |2 (the exact energy error) and (1 + α1)(1 + β)(1 + 1

α2
) ·

| ∇v − y∗ |2 + (1 + α1)(1 + 1
β )C2

Ω | div y∗ + f |2 (the integrand in the majorant M 2(v; y∗, α1, α2, β))
as functions of the variable ρ. One can see that even with the 2nd degree y∗-approximation the
qualitative behavior of the exact energy error is captured correctly, while the 5th degree yields also
the quantitatively correct behavior of the error.

5.1.8 Some conclusions concerning the selection of control parameters

Having in mind the obvious trade-off between the accuracy of the error estimation and the compu-
tational cost of evaluating the majorant, we can summarize the main results of the presented above
numerical experiments:

• it can be recommended to choose the polynomial degree of approximation for the dual variable
y∗ equal to the degree for the primal variable v;

• one or two iterations are generally sufficient for minimizing the error majorant M 2, and, hence,
for obtaining a good y∗-approximation.

In addition, we observed that, if the Dirichlet boundary conditions are satisfied precisely, the asymp-
totic exactness of the error majorant is achieved with an increase of the polynomial degree for y∗.

5.2 Error estimation for penalty/fictitious-domain finite element method

Consider the problem

−∆u = f in Ω , (5.8)

u = u0 on Γ1 , (5.9)

u = 0 on Γ2 , (5.10)
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where Ω = (0, 1)× (0, 1) \ ω̄, ω = {(x; y) ∈
� 2 : (x−0.5)2

(0.2)2
+ (y−0.5)2

(0.1)2
< 1}, Γ2 = ∂ω, Γ1 is the boundary

of the square (0, 1) × (0, 1) (see Figure 3), having the exact solution

uexact(x, y) = x



1 − e
−0.5

�
1−

(x−0.5)2

(0.2)2
−

(y−0.5)2

(0.1)2 � 2


 .

The solution is shown in Figure 3; the function u0 is specified as

u0(x, y) = x on Γ1 . (5.11)

We have to note that uexact satisfies the condition (5.11) with the error ≈ 10−8 that can be considered
negligible in the present numerical tests.
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Figure 3: (left) The domain geometry and computational mesh; (right) the exact solution uexact.

To approximate the problem (5.8)–(5.10) we make use of the so-called penalty/fictitious-domain
method which is rather popular in computational fluid dynamics community (see, e.g. [3], [4] and
the references therein). The penalized problem reads as follows:

−∆uε + 1
εχω uε = f̃ in (0, 1) × (0, 1) , (5.12)

uε = u0 on Γ1 , (5.13)

where χω is the characteristic function of the domain ω, and f̃ is the original right-hand side f
extended into ω (for example, by some constant value; we set f̃ = 30.0 in ω). The main peculiarity of
the method, rendering it as particularly attractive for computing the flows with moving solid objects,
is that the mesh does not have to be adjusted to the curvilinear parts of the domain boundary (see
Figure 3). However, this convenience is accompanied by the unavoidable error in the approximation
of the Dirichlet boundary condition on the curvilinear parts, where the condition is satisfied in a
weak sense only. It is also worth noting that the finite element solution of the penalized problem does
not, in general, possesses the Galerkin orthogonality property with respect to the original problem
(which is a requirement of most existing error estimators).

We start with ε = 10−7, which is small enough to make the “boundary error” (m0) almost
negligible as compared to the “domain error” (md +CΩmf ), and observe the convergence rate of our
majorant with respect to the mesh width in Figure 4 (left). Obviously, the majorant decreases with
optimal rate for both � 1 and � 2 finite elements (we used the same approximation for the primal and
dual variables and a uniform mesh refinement).
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Figure 4: (left) The logarithmic plot of the decrease rates for the exact energy error ‖∇e‖ and for the
majorant M (ε = 10−7): the dash-dotted lines correspond to � 1 and the solid lines to � 2 elements,
“◦” and “4” correspond to the majorant M ; (right) the logarithmic plot of the convergence rate for
the exact energy error ‖∇e‖ (solid line) and for the majorant M (dash-dotted line) with respect to
ε ( � 1 elements, h = 1/240).

In Figure 5 the local error distribution delivered by the elementwise computation of the md term
of the majorant is shown. It agrees very well with the exact error distribution. The addition of the
residual term CΩmf slightly spoils the local picture, hence, we use a simple error indicator md in
accordance with Remark 3.5.

Next, we investigate the influence of the boundary error by taking sufficiently rough penalty
parameter, namely ε = 10−1. We can obtain a detailed information on the local distribution of the
error near the boundary Γ2 by computing the term m0 elementwise in the narrow band around Γ2

(see Remark 4.1). The evaluated local distribution of the boundary error is depicted in Figure 6
together with the exact error distribution obtained via the H 1/2-norm of the approximate solution
on Γ2 (the exact solution is zero on Γ2).

The detailed information delivered by the term m0 can be used to adaptively improve the ap-
proximation near Γ2 until the boundary error will become smaller than the error in the domain.

In Figure 4 (right) we demonstrate the convergence of the majorant with respect to the penalty
parameter ε, when the mesh size is sufficiently small (h = 1/240). The convergence rate is slightly
better than theoretically predicted O(ε1/4) (see [3] and [4]). The most important fact is that the
majorant obviously provides a reliable upper bound for the exact error even when the error in the
approximation of boundary conditions is very large.

5.3 Comparison with the residual error estimator

In order to assess the computational efficiency of our error majorant, we compare it with the standard
residual-based error estimator on the model problem in the L-shaped domain. Namely, we consider
the problem (2.1), (2.2) with u0 ≡ 0 and f ≡ 1 in the domain Ω = (−1, 1) × (−1, 1) \ [0, 1] × [0, 1]
(see Figure 7).

Let T be a regular triangulation of Ω̄ and v the Galerkin finite element solution to the problem,
v ∈ S0 := {v ∈ C0(Ω̄) | v

∣

∣

T
∈ � 1 ∀T ∈ T , v = 0 on Γ}. The residual-based a posteriori error
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estimator (see, e.g., [2], [5], [8], [21]) states

‖∇(v − u)‖ ≤ c1

(

∑

T∈T

h2
T ‖f + ∆v‖2

)1/2

+ c2

(

∑

E∈E

hE‖J(∇v · nE)‖2
L2(E)

)1/2

, (5.14)

where hT is the diameter of triangle T , hE the length of edge E of T (E being the set of all edges),
J(. . . ) the jump across E and nE the normal to E. While the estimator is easy-to-use and became
very popular, its real performance strongly depends on the evaluation of the constants c1 and c2.
In [8] it is shown that c1 and c2 in (5.14) can be estimated from the constants in the Clément
interpolation estimates (see [11]) which depend on the geometry of Γ and on the triangulation T
(namely, on the shape of the triangles of T ). The rigorous analysis of [8] provides the explicit
upper bounds for c1 and c2; these bounds were used in [8] for evaluating the effectivity index of the
estimator (5.14).

We consider here the same model problem as in Section 6 of [8] and evaluate the effectivity index
of our error majorant. In accordance with the conclusions of Section 5.1.8, we utilize the equal-order� 1 approximation for the primal variable v and the dual variable y∗ and, starting with the initial
value of the parameter β equal 0.5, perform only one iteration for the minimization of the majorant
M2.

For a sequence of uniform meshes, Table 1 displays the number N of degrees of freedom, the
energy norm of the exact error e = v−u, the value of the error majorant M(v; y∗) and the effectivity
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index M(v; y∗)/‖∇e‖. The 3rd and the 5th columns of the table illustrate the convergence rate:
for two subsequent meshes with N1 and N2 degrees of freedom, the 3rd (resp. the 5th) column
contains the ratio of − log(‖∇e1‖/‖∇e2‖) (resp. − log(M1/M2)) to log(N1/N2), where the index
“1” corresponds to the first and the index “2” to the second mesh. The results of Table 1 indicate
that the Galerkin scheme with a uniform mesh refinement converges like O(h2/3), i.e. O(N−1/3),
where h = O(N−1/2) is the mesh width; this agrees with the well-known theoretical predictions for
the problems with re-entering corner. The error majorant decreases with the same rate and the
effectivity index remains between 1.06 and 1.22. This is in a contrast to the effectivity index of the
residual-based error estimator (see Table 8 in [8], where the results for exactly the same numbers N
are presented); the index of the latter estimator is in the range of 26 to 35. Thus, the residual error
estimator overestimates the exact error at least in ≈ 20 times more than our error majorant does.

N ‖∇e‖ − log(‖∇e1‖/‖∇e2‖)
log(N1/N2) M − log(M1/M2)

log(N1/N2) M/‖∇e‖

5 0.28400 0.3032 1.0676
33 0.15801 0.31 0.1844 0.26 1.1670

161 0.08621 0.38 0.1030 0.36 1.1948
705 0.04757 0.40 0.0579 0.39 1.2172

2945 0.02679 0.40 0.0315 0.42 1.1756
12033 0.01539 0.39 0.0182 0.38 1.1802

Table 1: Numerical results for the uniform mesh refinement.

To improve the convergence rate one can use the adaptive meshes; we have generated those
meshes by virtue of the error indicator md

∣

∣

T
= ‖∇v−y∗‖L2(T ) (see Remark 3.5). The triangle T was

marked for the refinement if md

∣

∣

T
≥ 0.5maxT ′∈T md

∣

∣

T ′
(the same refinement strategy was chosen

in [8]). Figure 7 demonstrates some steps of the mesh refinement process, while the results on the
convergence of the exact error and the error majorant are shown in Table 2 (the notations are the
same as in Table 1). Now the convergence rate is improved to the optimal O(h), i.e. O(N −1/2),
for both the exact error and the majorant, which justifies the mesh refinement guided by the error
indicator md

∣

∣

T
. Since we used some Delaunay-type triangulation algorithm that is different from

the one utilized in [8], we could not obtain exactly the same numbers of degrees of freedom as in
Table 9 of [8]; however, the range for N in our experiments was roughly the same as in Table 9 of
[8]. It is clear from Table 2 that the effectivity index of our majorant stays between 1.06 and 1.2,
while the index of the residual-based estimator ranges from 46 to 70 (see [8], Table 9). Hence, with
the adaptive meshes, the overestimation of the residual error estimator is at least 38 times greater
than the overestimation due to the use of the error majorant.

In [9], the constants c1 and c2 were estimated by solving some local eigenvalue problems on
the typical patches of the triangles (the configuration of the patches depends, of course, on the
geometry of the domain boundary and on the particular triangulation). The computations performed
in [9] for the L-shaped domain used the high (typically, 4th) degree elements to solve the local
eigenvalue problems and resulted in the improved values for c1 and c2 as compared to those in [8];
the corresponding effectivity index of the residual-based error estimator was between 2.5 and 3.0
(resp. 2.5 and 3.8) with the uniform (resp. adaptive) meshes. This shows that the effectivity index
of our error estimator is at least 2 times better than the index of the residual-based error estimator,
even when the latter estimator is equipped with the more accurate values of the constants c1 and c2.

5.4 Computational complexity

In order to address the computational complexity of the presented error estimator we denote by
N the total number of degrees of freedom used for the discretization of the primal variable. We
assume that both, the linear system for the primal and for the dual variable, can be solved in linear
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Figure 7: The process of mesh adaptation.

complexity, e.g. by the multigrid method. The polynomial degrees of approximation for the primal
and dual variables are chosen to be equal. Hence, the dimension of the dual system is 2N and the
solver requires C ·2 ·N arithmetic operations for the dual and C ·N operations for the primal system.

The iterative algorithm suggested in Example 5.1 for minimizing M 2 has been shown to yield
a reasonably accurate error majorant after 1–2 iterations. The same number of iterations has been
also used in other numerical examples. Since each iteration requires a solution of the linear system
for the y∗-variable, the total number of arithmetic operations needed for evaluation of our error
estimator ranges between 2CN and 4CN . Thus, we may conclude that the computational cost of
evaluating our error majorant is from 2 to 4 times higher than the cost of computing the solution to
the original problem.

Although, at the first glance, the proposed error estimator may seem to be relatively costly, the
example of Section 5.3 shows that our estimator may be even cheaper than the standard residual-
based error estimator, if we compare the amount of work needed to guarantee a prescribed accuracy
of the solution. This is a consequence of the absence of any discretization-dependent constants in the
estimator: the presented estimator contains a single constant stemming from Friedrichs’ inequality
and, hence, depending only on the domain geometry. The constant can be easily estimated from
above and the estimator is quite non-sensitive to the constant overestimation.

6 Conclusions

The most salient feature of the presented error estimator is its independence of the discretization
method; it may work with any approximate solution that belongs to the Sobolev space H 1. Moreover,
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N ‖∇e‖ − log(‖∇e1‖/‖∇e2‖)
log(N1/N2) M − log(M1/M2)

log(N1/N2) M/‖∇e‖

5 0.28400 0.3032 1.0676
33 0.15801 0.31 0.1844 0.26 1.1670
94 0.09561 0.48 0.1135 0.46 1.1876

167 0.07175 0.50 0.0823 0.55 1.1476
348 0.05230 0.43 0.0612 0.41 1.1709

1217 0.03173 0.40 0.0368 0.41 1.1594
1897 0.02557 0.49 0.0306 0.42 1.1972
4069 0.01728 0.51 0.0202 0.54 1.1675
5166 0.01524 0.52 0.0179 0.51 1.1776
9591 0.01112 0.51 0.0131 0.50 1.1802

11566 0.01002 0.55 0.0120 0.47 1.1927
13624 0.00917 0.54 0.0110 0.53 1.1996

Table 2: Numerical results for the adaptive mesh refinement.

we emphasize that our error estimator is by no means restricted to the discretizations obeying the
Galerkin orthogonality and the Dirichlet boundary conditions as it is required for most other error
estimators. It is also worth noting that the estimator does not use any regularity assumptions
concerning the exact solution.

The other remarkable strength of the proposed error estimator seems to be the guaranteed upper
bound for the exact error. The feature is extremely important for providing the stopping criterion of
an adaptive process as well as for an assurance that the approximate solution has been computed with
the accuracy not worse than the prescribed one. While the indication of the local error distribution
needed for an adaptivity is a strong side of many existing error estimators, the most of them may
fail to provide an upper bound for the exact error when they work with some particular (rough)
approximations. In this respect, the proposed error estimator may be rendered as trully reliable,
since it always provides an upper bound for the exact error. Thus, the estimator can be utilized as
both the error indicator and the stopping criterion for a mesh adaptation.

The future research directions are the extension of the presented method to more general bound-
ary value problems and its combination with more general finite element discretizations (see [14]).

References

[1] Ainsworth, M., Kelly, D.W.: A posteriori error estimators and adaptivity for finite element
approximation of the non-homogeneous Dirichlet problem. Advances in Comp. Math. 15, no.
1-4, 3–23 (2001).

[2] Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. John
Wiley & Sons, New York, 2000.

[3] Amiez, G., Gremaud, P.-A.: On a penalty method for the Navier-Stokes problem in regions
with moving boundaries. Comp. Appl. Math. 12, no. 2, 113–122 (1993).

[4] Angot, Ph.: Analysis of singular perturbations on the Brinkman problem for fictitious domain
models of viscous flows. Math. Meth. Appl. Sci. 22, 1395–1412 (1999).
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