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Abstract

In this paper, we will present a new approach for solving boundary integral equa-
tions with panel-clustering. In contrast to all former versions of panel clustering, the
computational and storage complexity of the algorithm scales linearly with respect
to the number of degrees of freedom without any additional logarithmic factors.
The idea is to develop alternative formulations of all classical boundary integral
operators for the Laplace problem where the kernel function has a reduced sin-
gular behaviour. It turns out that the application of the panel-clustering method
with variable approximation order preserves the asymptotic convergence rate of the
discretisation and has significantly reduced complexity.

Key words: Boundary integral equations, panel-clustering method, Galerkin
boundary element method, alternative representations

1 Introduction

In this paper, we will present some new methods for the numerical solution of
elliptic boundary value problems on three-dimensional domains. We employ
the method of integral equations to transform the elliptic differential equation
into a boundary integral equation on the surface of the domain. Galerkin’s
method with boundary elements is used for its discretisation.

As a consequence of the non-localness of boundary integral operators, the basis
representation of these operators leads to a fully populated coefficient matrix.
This fact was considered as the major drawback of this approach until the
panel-clustering representation and the multipole method in the mid eighties
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were introduced and have reduced the computational and storage complexity
of the boundary integral equation from O (N2) to O (N logκN), where N
denotes the number of unknowns and κ ≈ 4 − 7. The asymptotic gain of
the method is obvious as, for N → ∞, the term logκN becomes negligible
compared to N . However, in practical applications the number of unknowns,
typically, ranges from 5 × 103 to 105 and, hence, the constant in the O (·)
estimate and the term logκN are not negligible.

The idea of the panel-clustering method is to approximate the kernel function
of the integral operator by a degenerate kernel where the coupling of the
variables is factorised. The approximation is constructed piecewise on each
element (called block) of a partitioning of the surface Γ (more precisely of
Γ × Γ) which is graded towards the diagonal where x = y. For the largest
blocks, the order of the kernel approximation has to be chosen proportionally
to logN to preserve the convergence order of the discretisation. In all versions
of the panel-clustering method, the expansion order is chosen constant on all
blocks and, since the total number of blocks is O (N), the complexity estimate
O (N logκN) results.

In [12], the variable order panel-clustering method was introduced. The idea is
to replace the kernel function of the integral operator on small surface blocks
by low-order approximations and on larger surface blocks by approximations
with increasing order. By choosing the slope of the order distribution as an
affine function it turns out that, for the classical double layer potential on
smooth surfaces in R3 discretised by piecewise constant boundary elements,
the computational and storage complexity of the method is O (N) without
any logarithmic terms.

The variable order panel-clustering method cannot be applied to more general
integral operators or higher order boundary elements directly without any
loss of accuracy since, in these cases, the (strong) singular behaviour of the
kernel function reduces the accuracy of the approximation with variable order
significantly.

In this paper, we will overcome this difficulty by developing alternative rep-
resentations of all classical integral operators corresponding to the Laplace
problem. The order of singularity in the kernel function is significantly re-
duced, and the variable order panel-clustering method can be applied to these
new formulations without any loss in the convergence order.

Thus, all integral operators related to the Laplace problem which are discre-
tised with low-order boundary elements can be solved numerically with O (N)
computational complexity without any logarithmic terms.
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2 The Boundary Element Method

The goal of this paper is to present efficient numerical methods for solving el-
liptic boundary value problems on a domain in R3. Since the integral equation
method is employed to transform these elliptic partial differential equations
into integral equations on the surface of the domain, we restrict here to lin-
ear and homogeneous equations with constant coefficients. Hence, the Laplace
problem serves as the adequate model problem to develop the new methods.
The formulation of these boundary value problems requires the introduction
of some notations.

Let Ω− ⊂ R3 be a bounded, piecewise smooth Lipschitz domain with boundary
Γ and Ω+ := R \Ω−. The outer normal vector relative to Ω− is denoted by n.

The space of continuous functions on Γ is denoted by C0 (Γ) and the space of
k-times continuously differentiable functions on a domain Ω by Ck (Ω).

The space of all measurable functions f : Γ → R which are square integrable
with respect to the surface measure ds is denoted by L2(Γ). For 0 < s < 3/2
we define the Sobolev space Hs(Γ) as the space of traces on Γ of functions

in H
s+1/2
loc (R3), and H−s(Γ) is the dual space of Hs(Γ). The scalar product in

L2(Γ) is denoted by 〈. , .〉L2(Γ) and identified with its continuous extension to
the dual pairing 〈. , .〉Hs(Γ)×H−s(Γ) and 〈. , .〉H−s(Γ)×Hs(Γ).

2.1 Model problems

In our paper we shall consider the numerical solution of boundary value prob-
lems for the Laplace equation. We start with the classical (strong) formulation
of these problems.

ID: Given gD ∈ C0(Γ), find u ∈ C2(Ω−) ∩ C0(Ω−) such that

∆u = 0 in Ω−,

u = gD on Γ.
(1)

IN: Given gN ∈ C0(Γ), find u ∈ C2(Ω−) ∩ C1(Ω−) such that

∆u = 0 in Ω−.

∂u/∂n = gN on Γ.
(2)
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ED: Given gD ∈ C0(Γ), find u ∈ C2(Ω+) ∩ C0(Ω+) such that

∆u = 0 in Ω+,

u = gD on Γ,

|u(x)| ≤ C‖x‖−1 as ‖x‖ → ∞.
(3)

EN: Given gN ∈ C0(Γ), find u ∈ C2(Ω+) ∩ C1(Ω+) such that

∆u = 0 in Ω+.

∂u/∂n = gN on Γ,

|u(x)| ≤ C‖x‖−1 as ‖x‖ → ∞.
(4)

Remark 1 Note that, for exterior problems, the decay condition

|u (x)| ≤ C ‖x‖−1 as ‖x‖ → ∞

has to be imposed in order to guarantee uniqueness. For the interior Neumann
problem, the right-hand side gN must satisfy

∫
Γ gNds = 0 for existence and the

solution
∫

Ω− udx = 0 for uniqueness. For details, we refer to [4].

2.2 Boundary integral equations for the model problems

These boundary value problems can be transformed into boundary integral
equations (BIEs) on Γ by using either the direct or the indirect method. We
will restrict here to the direct method and refer for the indirect method to
[5] and [8]. For the numerical methods presented in this paper it is important
to emphasise that the arising integral operators for the indirect method are
contained in the set of integral operators corresponding to the direct method.

The fundamental solution of the Laplace operator in R3 is given by

G(z) =
1

4π‖z‖
. (5)

The following four bilinear forms are related to this fundamental solution or
certain Gâteau derivatives of it.

(1) Single layer potential.
The bilinear form aV : H−1/2(Γ)×H−1/2(Γ)→ R related to the classical

single layer potential operator is given by

aV (u, v) :=
∫

Γ×Γ
v(x)G(x− y)u(y) dsydsx. (6)

(2) Double layer potential.
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The bilinear form aK± : L2(Γ)× L2(Γ)→ R corresponding to the clas-
sical double layer potential operator is given by

aK±(u, v) := ±1

2

∫
Γ
u(x)v(x) dsx+

∫
Γ×Γ

v(x)
∂

∂ny
G(x−y)u(y) dsydsx. (7)

The “+”-sign corresponds to the Laplace problem on Ω+ and the “−”-
sign to the interior problem.

(3) Adjoint double layer potential.
The bilinear form aK′± : L2(Γ)× L2(Γ)→ R is given by

aK′±(u, v) := ∓1

2

∫
Γ
u(x)v(x) dsx+

∫
Γ×Γ

v(x)
∂

∂nx
G(x−y)u(y) dsydsx. (8)

(4) Hypersingular integral operator.
The bilinear form aW : H1/2(Γ) × H1/2(Γ) → R associated with the

hypersingular integral operator is given by

aW (u, v) :=
∫

Γ
v(x)

∂

∂nx

∫
Γ

∂

∂ny
G(x− y)u(y) dsydsx. (9)

By using these operators, the boundary value problems (1)-(4) can be trans-
formed into a variational formulation.

ID: Given gD ∈ H1/2(Γ), find u ∈ H−1/2(Γ) such that

aV (u, v) = aK+(gD, v), ∀v ∈ H−1/2(Γ).

IN: Given gN ∈ H−1/2(Γ), find u ∈ H1/2(Γ) such that

aW (u, v) = −aK′−(gN , v), ∀v ∈ H1/2(Γ).

ED: Given gD ∈ H1(Γ), find u ∈ L2(Γ) such that

aK′−(u, v) = −aW (gD, v), ∀v ∈ L2(Γ).

EN: Given gN ∈ H−1/2(Γ), find u ∈ L2(Γ) such that

aK−(u, v) = aV (gN , v), ∀v ∈ L2(Γ).

The transformation of boundary value problems to BIEs is by no means
unique. In this paper we focus on the numerical solution of the abstract vari-
ational problem

a(u, v) = F (v), ∀v ∈ H(Γ), (10)

where a is one of the four bilinear forms aV , aK± , aK′± or aW . For a complete
listing of the arising equations see for instance [5, Section 8.4] or [14]. For
existence and uniqueness results we refer to [8], [9], [14].
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2.3 Galerkin discretisation

We consider the discretisation of (10) by the Galerkin method. The infinite
dimensional Sobolev space Hs(Γ) is replaced as usual by a finite dimensional
subspace. Let G = {τ1, . . . , τn} be a surface mesh with open and disjoint panels
τi satisfying Γ = ∪τ∈Gτ . The panels are either (possibly curved) triangles or
quadrilaterals. More precisely, we assume that, for any τ ∈ G, there exists a
sufficiently smooth chart χτ : Q→ τ , where Q is either the unit square in R2

or the unit triangle (with vertices (0, 0), (1, 0), (1, 1)).

The boundary element spaces are defined by lifting polynomial spaces on the
reference element Q to the surface mesh. Let S0 (Q) denote the space of all
constant functions on Q and

S1 (Q) :=

 span {1, x1, x2} if Q is the unit triangle,

span {1, x1, x2, x1x2} if Q is the unit square.

Let us introduce the discontinuous, piecewise constant and the continuous,
piecewise linear boundary element space

S0 :=
{
u ∈ L∞ (Γ) | ∀τ ∈ G : u|τ ◦ χτ ∈ S

0 (Q)
}
,

S1 :=
{
u ∈ C0 (Γ) | ∀τ ∈ G : u|τ ◦ χτ ∈ S

1 (Q)
}
.

(11)

We use S as the general notation if no confusion is possible. Throughout
the paper we restrict to conforming subspaces satisfying S ⊂ H. For the
hypersingular operator, this implies S = S1, while, for the single and the
double layer potential, both choices S = S0 and S = S1 are possible.

The standard nodal basis functions on S are denoted by bi, i = 1, . . . , N , so
that the basis representation of a function uG ∈ S is given by

uG(x) =
N∑
i=1

uibi(x). (12)

The coefficient vector of uG is denoted by u = {ui}Ni=1. The Galerkin discreti-
sation of (10) is defined by seeking uG ∈ S such that

a(uG, v) = F (v), ∀v ∈ S. (13)

Problem (13) is equivalent to solving the system of linear equations

Au = f , (14)

where A ∈ RN×N and f ∈ RN are given by

Ai,j := a(bi, bj), fi := F (bi),
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The solutions u and uG are related via (12).

From the theoretical point of view, the Galerkin boundary element method
is the method of choice since stability and convergence can be proved for a
much larger class of integral equations and surfaces than, for instance, the
collocation and the Nyström method.

Since the nineties, efficient techniques have been developed for the computa-
tion of the coefficients of the Galerkin system matrix and the panel-clustering
method has been extended to the Galerkin discretisation [7], [3], [2], [13].
As a consequence, the computational complexity of the Galerkin method has
become comparable to the collocation and Nyström method (cf. [3]).

The complexity of the Galerkin method with numerical quadrature and panel
clustering is of order N logκN with κ ≈ 4−7. More precisely, the computation
of the coefficients of the nearfield matrix (which is related to pairs of panels

with small distance) requires O
(
log4 N

)
quadrature points per matrix entry

and the cost sums up to O
(
N log4 N

)
for the nearfield matrix.

Furthermore, the approximation of the kernel function of the integral operator
by the panel-clustering method requires O (N logκN) quantities to be stored
and O (N logκN) arithmetic operations for their computation.

Although this is a substantial improvement compared to theO(N2) complexity
of classical matrix-oriented methods, the constant in the complexity estimate
and the logκ(N) terms are still large.

We address two issues in this paper. In Section 3 we will present alternative
representations of the boundary integral operators ((6)-(9)) that reduce the
degree of singularity of the kernel functions. As a consequence, the entries
of the nearfield matrix can be computed with O (1) quadrature points per
coefficients and, furthermore, the integral kernel can be approximated by the
panel-clustering method with O (N) quantities. The resulting fully discrete
Galerkin method will be presented in Section 4. Finally, in Section 5 the
results of some numerical experiments are reported.

3 Alternative Representations

We will introduce alternative representations of the bilinear forms associated
with the integral operators introduced in Section 2. The idea behind these
reformulations is to express the kernel functions as derivatives of kernels with
reduced singular behaviour and to approximate the antiderivative of these
kernels. The regularity of the solution of the BIE can be employed in the error
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analysis by partial integration yielding an optimal convergence rate.

3.1 Double Layer Potential

Let G be as in (5). It is well known, e.g. [5, Section 8.2.4.3], that the solid
angle of Γ with respect to an observation point x is given by

ΥΓ(x) := −
∫

Γ

∂

∂ny
G(x− y) dsy, x ∈ Γ. (15)

The function Υ is in L∞(Γ) and equals 1/2 almost everywhere on Γ. The
bilinear form aK± can then be rewritten as

aK±(u, v) =
(
±1

2
+

1

2

) ∫
Γ
u(x)v(x) dsx

+
∫

Γ×Γ
v(x)(u(y)− u(x))

∂

∂ny
G(x− y) dsydsx.

(16)

Remark 1 The difference u(y)− u(x) in (16) reduces the singular behaviour
of the integrand in (16) if the solution u has some regularity, i.e. u ∈ Hs(Γ)
for some s > 0.

3.2 Hypersingular Operator

In order to rewrite the bilinear form aW associated with the hypersingular op-
erator, we have to introduce some surface differential operators. For a more de-
tailed description of these operators we refer to [10]. For functions u ∈ H1/2(Γ)
and surface vector fields v having componentwise differentiable extensions ũ
and ṽ, respectively, in H1(U), where U is some three-dimensional neighbour-
hood of Γ, we define the tangential gradient ∇Γu and the surface divergence
divΓ v as restrictions of their related operators to the surface Γ

∇Γu := ∇ũ
∣∣∣
Γ
, divΓ v := div ṽ

∣∣∣
Γ
.

This enables us to introduce the tangential rotation of u as

−−→
curlΓu := curl(ũn)

∣∣∣
Γ

= −n×∇Γu

and the surface rotation as

curlΓ v := 〈n, curl ṽ〉
∣∣∣
Γ
,
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where 〈. , .〉 denotes the Euclidian scalar product in R3. The composition of
surface and tangential rotation leads to the Laplace-Beltrami operator

∆Γu := − curlΓ
−−→
curlΓu =

∆ũ−
(
∂

∂n

)2

ũ

. (17)

Note that an index z in ∆Γ
z indicates differentiation by the z-variable.

Using these notations, aW can be rewritten as follows

aW (u, v) =

1

4π

∫
Γ×Γ

〈−−→
curlΓv(x),

−−→
curlΓu(y)

〉(
∆Γ
y‖y − x‖ −

〈ny, y − x〉2

‖y − x‖3

)
dsydsx,

(18)
cf. [1].

3.3 Single Layer Potential

To reduce technicalities, we assume that Γ is the surface of a Lipschitz poly-
hedron with disjoint open plane faces Γ(i), 1 ≤ i ≤ q, and

Γ =
q⋃
i=1

Γ(i).

Then, aV can be rewritten as

aV (u, v) =
1

4π

∫
Γ×Γ

v(x)u(y)∆Γ
y‖y − x‖ dsydsx

− 1

4π

∫
Γ×Γ

v(x)(u(y)− u(x))
〈ny, y − x〉2

‖y − x‖3
dsydsx

−
q∑
i=1

∫
Γ(i)
〈ny, y − x〉Υ(i)

Γ (x)v(x)u(x) dsx,

(19)

where Υ
(i)
Γ denotes the spherical angle of Γ(i) with respect to x ∈ R3, cf. (15).

Cf. [1] for details.

Remark 2 The kernel functions of the transformed bilinear forms, cf. (16),
(18) and (19), are combinations of the kernel functions

k1(x, y) :=
∂

∂ny
G(x− y), k2(x, y) := 〈ny, x− y〉

∂

∂ny
G(x− y),

k3(x, y) :=
1

4π
∆Γ
y‖x− y‖,

(20)
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i.e. all kernels are a derivative either of the fundamental solution or of the
Euclidian distance ‖x− y‖.

4 The panel-clustering algorithm

The matrix representation (14) of the finite dimensional bilinear form in (10)
leads to a coefficient matrix A which is fully populated so that the complexity
of the resulting algorithm is at least O(N2). The idea of the panel-clustering
algorithm is to employ an alternative representation of the discrete problem.
A matrix-vector multiplication can be formulated in the panel-clustering rep-
resentation which is the most time consuming step in any iterative solver like
GMRES. In this section we will present the panel-clustering method and give
an algorithm for the matrix-vector multiplication.

The procedure of the panel-clustering algorithm consists of three basic phases

(1) The panels of the surface mesh G are clustered hierarchically to larger
surface pieces (clusters) yielding the cluster tree T .

(2) By employing a suitable admissibility condition, pairs of clusters will be
combined to blocks which will define a covering of Γ× Γ which is graded
towards the diagonal.

(3) The near-diagonal part of the discrete integral operator is represented by
a sparse matrix and the farfield part by replacing the kernel on blocks
by a degenerate kernel and by using an alternative representation of the
discrete farfield operator.

4.1 The cluster tree

The panel-clustering algorithm starts with the generation of a cluster tree T ,
which is split into two steps:

• The iterative subdivision of the minimal, axis-parallel bounding box box (Γ)
containing Γ into congruent sub-boxes resulting in the virtual cluster tree.
• Association of geometric portions (clusters) of Γ to the generated sub-boxes.

The algorithm for the construction of the cluster tree T requires some no-
tations which will be introduced first. As usual in graph theory, the tree T
consists of a set of vertices V and a set of oriented edges E ⊂ V ×V . The root
of T is denoted by root(T ) and the power set of T by P(T ). In the context of
panel clustering, the vertices of the tree are called clusters. For every cluster
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c ∈ T we introduce the set of sons

sons : T → P(T ), sons(c) := {c̃ ∈ T | (c, c̃) ∈ E},

which is generated during the construction of the cluster tree, cf. Procedure 1.
The level of a cluster in T is defined as the mapping

level : T → N0, level(c) :=

0 for c = root(T ),

level(c̃) + 1 for c ∈ sons(c̃), c̃ ∈ T.
(21)

We also denote the set of leaves of T by

L := {c ∈ T | sons(c) = ∅}.

Furthermore, the minimal and maximal depth of T is

dmin := min{level(c) | c ∈ L}, dmax := max{level(c) | c ∈ L}, (22)

and the set of all clusters of level l is given by

Tl := {c ∈ T | level(c) = l}.

It follows from (21) that T0 = {root(T )}.

The cluster tree T is assembled by a recursive subdivision of box(Γ). As a
convention we assume that box(Γ) and all its sub-boxes are closed sets. To stop
the recursion, we introduce the function refine : T × N0 → {true, false},

refine(c, l) :=


true ∃τ ∈ G :

area(τ ∩ c) > 0 ∧ diam(τ) ≤ 2−l diam(box(Γ)),

false otherwise.

In other words, the stopping criterion halts the refinement if the diameter of
a box is smaller than the size of the inscribed panels.

The cluster tree T is built by initialising root(T ) := box(Γ), sons(root(T )) :=
∅ and calling build cluster tree(0), cf. Procedure 1. We emphasise that
Procedure 1 builds only the abstract tree structure while the link of tree
nodes to the geometry will be generated afterwards.

In the next step, we link clusters in T to portions of the surface Γ and intro-
duce, in this light, an abstract function σ : T → Γ. As a short-hand, we write
cΓ := σ(c).

In our concrete applications, two choices of σ will appear.
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Procedure 1 build cluster tree(l)

for c ∈ Tl do
if refine(c, l) = true then /* Refine c or stop recursion */

subdivide c into eight congruent sub-boxes ci, i = 1, . . . , 8
for all i = 1, . . . , 8 do

if there is a τ in G s.t. area(ci ∩ τ) > 0 then
sons(c) := sons(c) ∪ {ci}, sons(ci) := ∅

Tl+1 := Tl+1 ∪ sons(c) /* Assemble next level */
if Tl+1 6= ∅ then /* Descend to next level */
build cluster tree(l + 1)

Remark 3 Let Mω denote the centre of mass of a subset ω ⊂ R3. The choice

σ1(c) := {τ ∈ G |Mτ ∈ c}, (23)

will be considered in the context of a discontinuous panel-clustering approxi-
mation, while

σ2(c) := c ∩ Γ (24)

will be used for the construction of a continuous panel-clustering approxima-
tion, cf. Section 4.4. We will indicate the concrete choice of σ where necessary.

The (geometric) size of a cluster is defined via the function σ.

Definition 4 For a given mapping σ : T → Γ, the radius ρc of cluster c is

ρc :=
1

2
diam(box(σ(c)))

and the cluster box box (c) is the minimal axis-parallel box containing σ (c).

4.2 Block decomposition of Γ× Γ

The approximation of the bilinear form a requires the construction of a cover-
ing of Γ×Γ. This will be done by constructing the block cluster tree P ⊂ T×T .
Its elements b = (c1, c2) ∈ P will be called blocks. Application of the function
σ as in Definition 4 to the components c1, c2 of a block yields a covering of
Γ× Γ. We will use the notation bΓ := (cΓ

1 , c
Γ
2 ).

The generation of the block cluster tree P is based on an admissibility condi-
tion controlling the relative distance of two clusters.

Definition 5 Let η ∈ (0, 1). A block b = (c1, c2) ∈ P is called η-admissible if

max(ρc1 , ρc2) ≤ η dist(box(c1), box(c2)). (25)
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If it is clear from context, we will write “admissible” short for “η-admissible”.

The set of admissible blocks in P is called farfield Pfar while the complement
Pnear := P \ Pfar is the nearfield.

Using the notation s̃ons(c) := sons(c) if c ∈ T \L and s̃ons(c) := {c} otherwise,
we can define the sons of a block (c1, c2) as

sons((c1, c2)) :=

s̃ons(c1)× s̃ons(c2) if (c1, c2) /∈ L× L,

∅ otherwise.
(26)

After initialising the nearfield Pnear := ∅ and the farfield Pfar := ∅, Procedure 2
is called by divide((box(Γ), box(Γ)), Pnear, Pfar). The surface portions bΓ, b ∈
P , then form a minimal, disjoint covering of Γ× Γ.

Procedure 2 divide((c1, c2), Pnear, Pfar)

if (c1, c2) is admissible then
Pfar := Pfar ∪ {(c1, c2)}

else if (c1, c2) ∈ L× L then
Pnear := Pnear ∪ {(c1, c2)}

else
for all (c̃1, c̃2) ∈ sons((c1, c2)) do
divide((c̃1, c̃2), Pnear, Pfar)

4.3 Abstract formulation of the panel-clustering algorithm

4.3.1 Panel-clustering representation of boundary integral operators

The approximation of a boundary integral operator K with kernel function k
is based on three assumptions:

(1) The approximation is semi-separable. On a farfield block b = (c1, c2) we
assume the general form

k(x, y) ≈ k̃b(x, y) =
∑

(ν,µ)∈Ib

κν,µ(b)Φ(ν)
c1

(x)Ψ(µ)
c2

(y), (27)

where Ib ⊂ Nd0×Nd0 is a finite set of pairs of multi-indices. The parameter
d depends on the chosen approximation system. For Γ ⊂ R3, we usually
have d = 3, while in special cases d = 2 is possible.

(2) The function systems
{

Φ(ν)
c

}
ν∈Lc

,
{

Ψ(µ)
c

}
µ∈Rc

with suitable index sets

Lc,Rc ⊂ Nd0 have a hierarchical structure. We require the expansion func-
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tions on clusters c ∈ T \ L to fulfill the refinement relations

Φ(ν)
c

∣∣∣
c̃Γ

=
∑
ν̃∈Lc̃

γΦ
ν,ν̃,c̃Φ

(ν̃)
c̃ , ∀c ∈ T \ L, ∀ν ∈ Lc, ∀c̃ ∈ sons(c),

Ψ(µ)
c

∣∣∣
c̃Γ

=
∑
µ̃∈Rc̃

γΨ
µ,µ̃,c̃Ψ

(µ̃)
c̃ , ∀c ∈ T \ L, ∀µ ∈ Rc, ∀c̃ ∈ sons(c),

(28)
with some shift coefficients γΦ

ν,ν̃,c̃, γ
Ψ
ν,ν̃,c̃ ∈ R. The index sets Lc,Rc ⊂ Nd0

will be specified in Definition 10. Via the refinement relations we are able
to represent the expansion functions on larger clusters recursively by their
restrictions to smaller ones.

(3) The kernel approximation k̃b possesses a local approximation property on
each farfield block b = (c1, c2), i.e. there exist s ∈ R, η ∈ (0, 1) and
positive constants C1 <∞, c2 < 1 such that, for m ∈ N, the estimate

|k(x, y)− k̃b(x, y)| ≤ C1c
m
2 dist−s(c1, c2), ∀(x, y) ∈ b

holds.

Remark 6 If the kernel function of an integral operator is the sum of kernel
functions, the panel-clustering approximation is applied separately to each part
of the sum.

Example 7 Let

Θc :=
{
θ(ν)
c ∈ R3 | 0 ≤ νi ≤ m, i = 1, 2, 3

}
denote the set of (m + 1)3 equidistant interpolation points on a cluster c.
Let Λ(ν)

c be the three-dimensional Lagrange polynomial normalised to c corre-
sponding to point θ(ν)

c . The interpolant Ib[k] of the fundamental solution of the
Laplacian k (x, y) := G (x− y) with G as in (5) on a farfield block b = (c1, c2)
is given by

Ib[k](x, y) :=
∑

ν,µ≤m(b)

k
(
θ(ν)
c1
− θ(µ)

c2

)
Λ(ν)
c1

(x)Λ(µ)
c2

(y), (29)

where the notation “ν, µ ≤ m(b)” is short for (ν, µ) ∈ Ib and the index set Ib

is given by

Ib :=
{

(ν, µ) ∈ N3
0 × N3

0 | 0 ≤ νi, µi ≤ m(b), i = 1, 2, 3
}
. (30)

Since block b is admissible, the clusters c1 and c2 are well separated, and the
expansion coefficients κν,µ := k

(
θ(ν)
c1
− θ(µ)

c2

)
are well defined. The Lagrange

polynomials fulfill the refinement relations (28) with shift coefficients

γν,ν̃,c̃ := Λ(ν)
c

(
θ

(ν̃)
c̃

)
. (31)
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Example 8 Since the kernels of boundary integral operators are suitable Gâteau
derivatives of the fundamental solution, we may apply these derivatives to the
expansion of the fundamental solution in order to obtain an approximation to
the integral kernels.

Example 9 For the Laplace operator, it is well known that the multipole
expansion coincides with the three-dimensional Taylor series in appropriate
two-dimensional coordinates. Hence, in these coordinates a two-dimensional
approximation of the integral kernels corresponding to the Laplace problem
can be derived. For details, we refer to [11].

The panel-clustering approximation of integral operator K is given by

〈v,K[u]〉L2(Γ) ≈
∑

b∈Pnear

∫
bΓ
v(x)k(x, y)u(y) dsxdsy

+
∑

b∈Pfar

∑
(ν,µ)∈Ib

κν,µ(b)
∫
cΓ1

Φ(ν)
c1

(x)v(x) dsx

∫
cΓ2

Ψ(µ)
c2

(y)u(y) dsy

=: anear(u, v) + afar(u, v).
(32)

Note that the integrals are defined over the portions bΓ ⊂ Γ × Γ which are
linked to the block b via the function σ (cf. Definition 4).

We abbreviate the farfield integrals by

L(ν)
c [v] :=

∫
cΓ
v(x)Φ(ν)

c (x) dsx, R(µ)
c [u] :=

∫
cΓ
u(x)Ψ(µ)

c (x) dsx, ∀c ∈ T.
(33)

These quantities are the farfield coefficients.

The nearfield part anear is evaluated in the usual, matrix-oriented way, yielding
a sparse matrix. For an efficient evaluation of the matrix-vector multiplication
we will rewrite the farfield part afar in (32).

Observe that the farfield coefficients R and L can be computed independently,
and the coupling in x and y takes place in the summation over the farfield
blocks. To decouple the computation of the integrals, we need to introduce
one-sided restrictions of the index set Ib.

Definition 10 For b ∈ P we define one-sided restrictions of Ib ⊂ Nd0 × Nd0
by

Lb :=
{
ν ∈ Nd0 | ∃µ ∈ Nd0 : (ν, µ) ∈ Ib

}
,

Rb :=
{
µ ∈ Nd0 | ∃ν ∈ Nd0 : (ν, µ) ∈ Ib

}
,

Rb(ν) := {µ ∈ Rb | (ν, µ) ∈ Ib}.
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The multi-index sets on a cluster c ∈ T are then given by

Lc :=
⋃

c′∈T :(c,c′)∈Pfar

L(c,c′), Rc :=
⋃

c′∈T :(c′,c)∈Pfar

R(c′,c). (34)

We also introduce the one-sided restriction of the farfield

Pfar(c) := {c′ ∈ T | (c, c′) ∈ Pfar}, ∀c ∈ T.

The definition implies the inclusions

Ib ⊆ Lc1 ×Rc2 , ∀b = (c1, c2) ∈ P,
Lc̃ ⊆ Lc, Rc̃ ⊆ Rc ∀c̃ ∈ sons(c).

(35)

These splittings induce a splitting of the sums (27), (32). Using this nota-
tion, (27) can be rewritten as

k̃b(x, y) =
∑
ν∈Lb

Φ(ν)
c1

(x)
∑

µ∈Rb(ν)

κν,µ(b)Ψ(µ)
c2

(y), (36)

and the bilinear form afar now takes the form

afar(u, v) =
∑
c1∈T

∑
c2∈Pfar(c1)

∑
ν∈L(c1,c2)

L(ν)
c1

[v]
∑

µ∈R(c1,c2)(ν)

κν,µ((c1, c2))R(µ)
c2

[u]. (37)

To obtain a proper structuring of the matrix-vector multiplication, we intro-
duce the intermediate quantity

B(ν)
c1

[u] :=
∑

c2∈Pfar(c1)
s.t. ν∈L(c1,c2)

∑
µ∈R(c1,c2)(ν)

κν,µ((c1, c2))R(µ)
c2

[u], (38)

and derive, by interchanging the second and third summation in (37), finally

afar(u, v) =
∑
c∈T

∑
ν∈Lc

L(ν)
c [v]B(ν)

c [u]. (39)

This representation will be used for the evaluation of the panel-clustering ap-
proximation which is needed for the matrix-vector multiplication. The only
missing part of the panel-clustering algorithm is the introduction of a hierar-
chical procedure to compute the farfield coefficients L(ν)

c , R(µ)
c which will be

the topic of the next section.

4.3.2 Construction of the expansion system

Since the farfield coefficients (33) have to be computed for every evaluation of
the panel-clustering approximation, an efficient computation of the integrals
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in (33) is essential for the performance of the algorithm and we will employ
the hierarchical structure of both the cluster tree (built in by construction)
and the expansion functions (assumption (28)).

Note that the refinement relation (28) in the case of polynomial expansion
systems will in general not hold if the approximation orders are different on
different levels of the cluster tree, i.e. Φ(ν)

c |c̃Γ /∈ spanν̃∈Lc̃

{
Φ

(ν̃)
c̃

}
and Ψ(ν)

c |c̃Γ /∈
spanν̃∈Rc̃

{
Ψ

(ν̃)
c̃

}
. Thus the construction of the approximation system is per-

formed in two steps. We start with a reference approximation system which
satisfies the approximation property but is not necessarily nested. If, e.g., the
approximation of the kernel is based on polynomial interpolation the reference
approximation system is given by Φ̌(ν)

c = Λ(ν)
c with Λ(ν)

c as in Example 7.

The final variable order approximation system is obtained by using (28) as the
definition of the expansion functions on clusters c ∈ T \ L.

Definition 11 Let Φ̌ and Ψ̌ denote the expansion functions given by the ref-
erence approximation system. Then the expansion functions for the variable
order panel-clustering algorithm are given by the recursion

Φ(ν)
c := Φ̌(ν)

c , ∀c ∈ L, ∀ν ∈ Lc,
Ψ(µ)
c := Ψ̌(µ)

c , ∀c ∈ L, ∀µ ∈ Rc,

and

Φ(ν)
c

∣∣∣
c̃Γ

:=
∑
ν̃∈Lc̃

γΦ
ν,ν̃,c̃Φ

(ν̃)
c̃ , ∀c ∈ T \ L, ∀ν ∈ Lc, ∀c̃ ∈ sons(c),

Ψ(µ)
c

∣∣∣
c̃Γ

:=
∑
µ̃∈Rc̃

γΨ
µ,µ̃,c̃Ψ

(µ̃)
c̃ , ∀c ∈ T \ L, ∀µ ∈ Rc, ∀c̃ ∈ sons(c),

(40)

where the shift coefficients γΦ
ν,ν̃,c̃, γ

Ψ
µ,µ̃,c̃ are defined as in (28).

The resulting approximation systems
{

Φ(ν)
c

}
ν∈Lc

,
{

Ψ(µ)
c

}
µ∈Rc

can be regarded

as an approximation of the reference expansion system.

All standard cluster methods for BEM are using a fixed approximation order
for all farfield blocks b ∈ Pfar. On the other hand it was shown in [12] for the
classical double layer potential on smooth surfaces that a linear growth of the
approximation order towards the root of the cluster tree suffices to preserve the
optimal convergence rate while yielding an optimal time and storage complex-
ity. The approach utilizes the fact that on small blocks lower approximation
orders yield sufficient accuracy to preserve the asymptotic convergence rate.
Here, the size of a block is determined by the size of the larger cluster which
in turn is correlated directly with its level in the cluster tree. The functional
dependence of the approximation orders on the blocks is defined below.
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Definition 12 The order distribution function m : Pfar → N0 is given by

m(b) := dα(dmin −min{level(c1), level(c2)})+ + βe, (41)

where α, β ∈ R≥0, dmin as in (22) and

(·)+ := max{0, ·}, dxe := min{z ∈ Z | z ≥ x}.

The extension of the order distribution function to m : Pfar ∪ T → N0 is given
by

m(c) := max { m(b) | b = (c1, c2) ∈ Pfar and c ∈ {c1, c2}} ∀c ∈ T. (42)

Besides the chosen approximation system itself, the approximation order is the
only parameter that the index sets on the blocks and their restrictions depend
on. Checking back with the requirements on the approximation system and
(34) and (35), we find that the order distribution function implements all the
previously stated properties of the index sets.

4.3.3 Evaluation of the panel-clustering approximation/matrix-vector multi-
plication

To assemble the panel-clustering approximation of the discrete bilinear form,
we replace the test function by the basis functions bi, i = 1, . . . , N , and use
the basis representation (12) of the grid function u.

The nearfield entries are computed by

Anear
i,j :=

∑
c1∈L

∫
cΓ1

bi(x)
∑

c2∈Pnear(c1)

∫
cΓ2

k(x, y)bj(y) dsydsx. (43)

Note that the first sum only contains clusters with area(cΓ ∩ supp(bi)) > 0.
In [12], it was shown that, under moderate assumptions on the mesh, the
nearfield matrix only contains O (N) non-zero entries.

For the evaluation of the farfield part we use the representation (39). It consists
of three phases:

(1) Upward path: Calculate the farfield coefficients R(µ)
c [u] for all c ∈ T and

all µ ∈ Rc using the refinement relation (40).
(2) Block interaction: For all clusters c ∈ T and all ν ∈ Lc add all associated

farfield coefficients multiplied by the expansion coefficients and store the
quantities Bν

c [u], cf. (38).
(3) Downward path: For all clusters c ∈ T and ν ∈ Lc multiply the farfield

coefficients L(ν)[v] with Bν
c [u] and distribute them downwards the cluster

tree to the leaves.
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We explain each step in detail and formulate the algorithms in a pseudo pro-
gramming language.

Upward path:
On the leaves of the cluster tree we have to evaluate and store the basis farfield
coefficients

R(µ)
c [bi] :=

∫
cΓ

Ψ(µ)
c (y)bi(y) dsy, c ∈ L, bi ∈ S, (44)

L(ν)
c [bi] :=

∫
cΓ

Φ(ν)
c (x) bi(x) dsx, c ∈ L, bi ∈ S. (45)

Note that the localness of the standard basis functions implies that for all
leaves c ∈ L only O(1) basis farfield coefficients are nonzero, namely, the ones
with area(cΓ ∩ supp(bi)) > 0.

Using the basis representation (12), the farfield coefficients on a leaf c ∈ L are

R(µ)
c [u] :=

N∑
i=1

ui

∫
cΓ

Ψ(µ)
c (y)bi(y) dsy =

N∑
i=1

uiR
(µ)
c [bi], c ∈ L. (46)

Since the expansion functions on clusters c ∈ T \ L are defined piecewise via
the refinement relation (40), the farfield coefficients (33) are assembled via the
relation

R(µ)
c [u] =

∑
c̃∈sons(c)

∑
µ̃∈Rc̃

γΨ
µ,µ̃,c̃R

(µ̃)
c̃ [u], c ∈ T \ L. (47)

Note that this evaluation is performed upwards the cluster tree starting from
the leaves. The procedure upward path, cf. Procedure 3, summarizes these
steps in algorithmic form. Initialising R(µ)

c [u] := 0, for all c ∈ T, µ ∈ Rc, the
call upward path(u) computes the farfield coefficients for all c ∈ T .

Procedure 3 upward path(u)

for all l = dmax, . . . , 0 do /* loop over tree from leaves to root */
for all c ∈ Tl do

if c ∈ L then /* evaluate (46) on leaves of cluster tree */
for all µ ∈ Rc do

for all bi with area(cΓ ∩ supp(bi)) > 0 do
R(µ)
c [u] := R(µ)

c [u] + uiR
(µ)
c [bi]

else /* evaluate (47) on clusters c ∈ T \ L */
for all c̃ ∈ sons(c) do

for all µ̃ ∈ Rc̃ do
R(µ)
c [u] := R(µ)

c [u] + γΨ
µ,µ̃,c̃R

(µ̃)
c̃ [u]

Block interaction:
Evaluate formula (38) for all clusters c ∈ T .

Downward path:
For the evaluation of the outer integrals (w.r.t. the x-variable) we make again
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Procedure 4 block exchange()

for all c1 ∈ T do
for all ν ∈ Lc1 do

for all c2 ∈ Pfar(c1) do
for all µ ∈ R(c1,c2)(ν) do
B(ν)
c1

[u] := B(ν)
c1

[u] + κν,µ((c1, c2))R(µ)
c2

[u]

use of the refinement relation (40). The idea is to distribute the quantities B
from larger clusters down to the sons until the leaves are reached. As in the
upward path step this can be performed within one sweep over the cluster
tree.

Consider the sum (39) for a fixed cluster c ∈ T \ L. Since (39) is a sum over
all clusters in T , it contains in particular the partial sum∑

ν∈Lc
L(ν)
c [bi]B

(ν)
c [u] +

∑
c̃∈sons(c)

∑
ν̃∈Lc̃

L
(ν)
c̃ [bi]B

(ν̃)
c̃ [u].

The refinement relation (40) allows to represent the farfield coefficients on c
by the ones defined on its sons, yielding

∑
c̃∈sons(c)

∑
ν̃∈Lc̃

L
(ν̃)
c̃ [bi]

B(ν̃)
c̃ [u] +

∑
ν∈Lc

γΦ
ν,ν̃,c̃B

(ν)
c [u]

.
We see that the data is distributed downwards the cluster tree. Hence the
procedure downward path starts at the root of the cluster tree and distributes
the data down to the leaves. Finally we need to multiply the coefficients Bν

c [u],
c ∈ L, with the basis farfield coefficients L(ν)

c [bi]. Thus the i-th component of
the vector v is given by

vi =
∑
c∈L

∑
ν∈Lc

L(ν)
c [bi]B

(ν)
c [u].

Note again that the first sum contains only clusters c with area
(
cΓ ∩ supp(bi)

)
>

0.

Below we summarize all steps of the panel-clustering algorithm.

Input: Mesh G, space S, order distribution function m : P → N, admissibility
constant η
Setup:

(1) Build cluster tree T , cf. Procedure 1 and Definition 4, and compute for
all c in T the minimal boxes box(c).

(2) Compute the minimal covering P by using Procedure 2 and assign ex-
pansion orders to admissible blocks and afterwards to clusters, cf. Defi-
nition (41) and (42).
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Procedure 5 downward path(v)

for all l = 0, . . . , dmax − 1 do /* distribute coefficients to the sons */
for all c ∈ Tl do

for all c̃ ∈ sons(c) do
for all ν̃ ∈ Lc̃ do /* shift Bs from c to c̃ */

for all ν ∈ Lc do
B

(ν̃)
c̃ [u] := B

(ν̃)
c̃ [u] + γΦ

ν,ν̃,c̃B
(ν)
c [u]

for all c ∈ L do /* update v on leaves */
for all bi with area(cΓ ∩ supp(bi)) > 0 do

for all ν ∈ Lc do
v[i] := v[i] + L(ν)

c [bi]B
(ν)
c [u]

(3) Assemble nearfield matrix, cf. (43).
(4) Compute expansion coefficients, cf. Section 4.4, and basis farfield coeffi-

cients (44) and (45).

Matrix-Vector Multiplication:

• upward path, cf. Procedure 3
• block interaction, cf. Procedure 4
• downward path, cf. Procedure 5
• nearfield multiplication, cf. (43)

4.4 Panel-clustering approximation via interpolation

So far the panel-clustering algorithm was treated only in a formal fashion
utilising only the three assumptions made at the beginning of Section 4.3. For
a concrete realisation the function systems and the approximation method,
e.g. Taylor, interpolation, projection, and the admissibility constant have to
be selected. We will present here a panel-clustering approximation based on
interpolation with polynomials.

This section is divided into two parts. In the first part we describe the construc-
tion of a discontinuous interpolant which will be used for the kernel functions
k1 and k2, cf. (20). The approximation of the kernel function k3 is more subtle
since it requires a continuous interpolation and will be explained afterwards.

4.4.1 Approximation of k1 and k2

The kernel approximation via interpolation was already introduced in Exam-
ple 7. We use it as the reference approximation system to construct a variable
order panel-clustering approximation.
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The order distribution functionm from Definition 12 is used for the assignment
of the approximation order to farfield blocks. While the index set Ib is given
in (30), the index sets Lb, Rb, Rb(ν), Lc and Rc are as in Definition 10.

To obtain a variable order approximation, cf. Definition 11, approximated La-
grange polynomials are used as expansion functions

Φ(ν)
c := Λ(ν)

c , ∀c ∈ L, ν ≤ m(c),

Φ(ν)
c

∣∣∣
c̃Γ

:=
∑

ν̃≤m(c̃)

γν,ν̃,c̃Φ
(ν̃)
c̃ , ∀c̃ ∈ sons(c), c ∈ T \ L, ν ≤ m(c). (48)

where the shift coefficients γν,ν̃,c̃ are as in (31). The panel-clustering approx-
imation of the kernel functions ki, i = 1, 2, on farfield block b = (c1, c2) has
the representation

k̃b(x, y) :=
∑

ν,µ≤m(b)

κν,µ(b)Φ(ν)
c1

(x)Φ(µ)
c2

(y).

Remark 13 In the case of a discontinuous interpolant we use the function σ1,
defined in (23) for the association of a cluster c ∈ T to portions of the surface
Γ. This choice affects only the computation of the basis farfield coefficients (44)
and (45). The integration is carried out in the standard way over σ1(c), i.e.
the set of all panels τ with Mτ ∈ cΓ.

4.4.2 Approximation of k3

The panel-clustering representation of the kernel function k3, cf. (20), is more
involved in order to preserve the optimal convergence rate of the undisturbed
Galerkin method. Provided the solution u is in H1(Γ), the error estimate
employs a partial integration, shifting the derivatives of the surface Laplacian
to u.

To be more precise, we have to construct a continuous interpolation not to
the kernel function k3 itself but to its antiderivative. Hence, the construction
of the panel-clustering approximation of k3, cf. (20) starts with the function

K(x− y) :=
1

4π
‖x− y‖. (49)

The interpolant I[K] of this function is well defined on R3 × R3. As a conse-
quence we replace k3 not only in the farfield but also in the nearfield by the
panel-clustering approximation. This means that all blocks in P are admissi-
ble.

The blockwise interpolant Ib[K] on b = (c1, c2) is given by (29). It will in gen-
eral not be continuous across the common boundaries of neighbouring blocks
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with different approximation orders. The goal now is to modify the inter-
polant such that the global continuity in combination with the variable order
approximation is retained.

This is possible since all of the expansion functions are defined piecewise as lin-
ear combinations of the expansion functions on the underlying leaves, cf. (48).
The continuity across the boundaries of a block is enforced by a modification
of the expansion coefficients κν,µ.

We say two blocks b and b̃ are neighbours if b∩ b̃ 6= ∅. For two neighbouring
blocks b and b̃ with level(b̃) = level(b) + 1, we introduce the shift operator(

Sb̃,bκ(b)
)
ν̃,µ̃

:=
∑

ν,µ≤m(b)

κν,µ(b)γν,ν̃,c̃1γµ,µ̃,c̃2 . (50)

The operator S can be extended to neighbouring blocks b, b̃ with level(b̃) >
level(b) + 1 by recursive application of S over the series of descendants con-
necting b with b̃ 2 . For a continuous interpolant, the coefficients on block
b̃ = (c̃1, c̃2) ∈ P have to be defined as follows

κν̃,µ̃(b̃) :=


(
Sb̃,bκ(b)

)
ν̃,µ̃

if ∃b ∈ P :

level(b) < level(b̃) ∧
(
θ

(ν̃)
c̃1 , θ

(µ̃)
c̃2

)
∈ b ∩ b̃,

K
(
θ

(ν̃)
c̃1 − θ

(µ̃)
c̃2

)
otherwise.

(51)

Using the notation Pl for the set of blocks b of level l and

U(b) := { b∗ ∈ P | level(b∗) > level(b) and b∗∩b 6= ∅},

for the set of all smaller neighbours of block b, the pseudo algorithm given in
Procedure 6 computes the expansion coefficients for all blocks b ∈ P . Note
that the set of neighbours of a block is given as the Cartesian product of the
sets of neighbours of the involved clusters.

Procedure 6 compute coefficients()

for all l = 0, . . . , dmax do
for all b ∈ Pl do

for all ν, µ ≤ m(b) do
if κν,µ(b) not yet computed then

κν,µ(b) := K
(
θ(ν)
c1
− θ(µ)

c2

)
for all b∗ ∈ U(b) do

for all
(
θ

(ν∗)
c∗1

, θ
(µ∗)
c∗2

)
∈ bΓ ∩ (b∗)Γ do

κν∗,µ∗(b
∗) := (Sb∗,bκ(b))ν∗,µ∗

2 Note that for s̃ons(c) = {c} (cf. (26)), with c ∈ {c1, c2}, we shift only with respect
to one variable.
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The panel-clustering approximation of k3 is finally obtained by blockwise ap-
plication of the surface Laplacian to the interpolant. We have employed the
fact that we can write

∆Γ
y‖x− y‖ = − curlΓ,z (ny ×∇x‖x− z‖)

∣∣∣
z=y

=

〈
ny

∂

∂ny
−∇Γ,y,∇Γ,x

〉
‖x− y‖.

The expansion functions are thus given by applying the respective derivatives
and truncation to the respective approximation order

−→
Φ (ν)
c := ∇ΓΛ(ν)

c , ∀c ∈ L, ν ≤ m(c),
−→
Φ (ν)
c

∣∣∣
c̃Γ

:=
∑

ν̃≤m(c̃)

γν,ν̃,c̃
−→
Φ

(ν̃)
c̃ , ∀c̃ ∈ sons(c), c ∈ T \ L, ν ≤ m(c),

−→
Ψ (µ)
c := (n〈n,∇Γ〉 − ∇Γ)Λ(µ)

c ∀c ∈ L, µ ≤ m(c),
−→
Ψ (µ)
c

∣∣∣
c̃Γ

:=
∑

µ̃≤m(c̃)

γµ,µ̃,c̃
−→
Ψ

(µ̃)
c̃ , ∀c̃ ∈ sons(c), c ∈ T \ L, µ ≤ m(c)

(52)
with shift coefficients γν,ν̃,c as in (31). The final panel-clustering approximation
of k3 reads

k̃b(x, y) :=
∑

ν,µ≤m(b)

κν,µ(b)
〈−→

Φ (ν)
c1

(x),
−→
Ψ (µ)
c2

(y)
〉
,

with κν,µ(b) as in (51) and expansion functions
−→
Φ (ν)
c as in (52).

Remark 14 In order to preserve the continuity of the interpolation opera-
tor for the approximation of the function K in (49), the integration which is
involved in the definition of the basis farfield coefficients (44), (45) has to be
defined over the intersection c∩Γ. Thus, the function σ2 from (24) is employed
for the association of surface pieces to clusters.

Remark 15 The concept of the panel-clustering algorithm can be applied to
general linear differential equations of second order with constant coefficients.
This is in contrast to the multipole method which is a special technique for
Laplace’s equation (and variants exist for the Helmholtz equation). Since the
multipole method is based on two-dimensional expansions, we expect that it per-
forms more efficiently for Laplace’s equation. The development of a variable
order multipole method for alternative representations and numerical compar-
isons are one topic of future investigations.
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5 Numerical Experiments

In order to validate the expected behaviour for the variable panel-clustering
algorithm as described in this paper and in [12] we have performed a number
of numerical tests for the three-dimensional screen problem

aV (u, v) = f(v) ∀v ∈ S0 (53)

with aV as in (6) and piecewise constant boundary elements on a sequence of
meshes G`, ` = 0, 1, . . .. We write u` for the corresponding Galerkin solution
and uPC,` for the panel-clustering solution. The errors to the exact solution u
are denoted by e` := u− u` and ePC,` := u− uPC,`.

We have used a uniform panelisation of Γ = [0, 1]2 ⊂ R
3 with triangles,

where the mesh was refined by subdividing each triangle into four congruent
subtriangles, i.e. the number of unknownsN on the mesh G` is 2·4`. The farfield
approximation of the kernel function of the bilinear form aV was realised via
Taylor expansion as explained in [12]. The tests were performed on a SUN
SunFire 6800.

For the first set of computations, the right-hand side was chosen such that the
exact solution of (53) is u(x) = x1 +x2. The L2-error ||e`||L2(Γ) of the Galerkin
solution u` over the tested series of meshes is shown in Table 1. The quotients
for time and memory requirements are defined as

ρt,` :=
t`
t`−1

, ρMem,` :=
Mem`

Mem`−1

,

where the times comprise setup and solving of the linear system. For the
memory we counted the entries of the Galerkin matrix respectively the entries
of the nearfield matrix plus the farfield data for the panel-clustering method.
The nearfield integration was performed by the blackbox quadrature described
in [2] and the equation system was solved by GMRES without restart.

` N ||e`||L2(Γ) ρeG,`,` t [sec] ρt,` Mem [KB] ρMem,`

3 128 0.03163 – 55.6 – 128 –

4 512 0.01641 1.93 796.4 14.32 2048 16

5 2048 0.00878 1.87 11974.2 15.04 32768 16

6 8192 0.00492 1.78 182364.7 15.23 524288 16

7 32768 0.00292 1.69 2904170.0 15.93 8388608 16
Table 1
Galerkin solution of (53) for u(x) = x1 + x2

Table 2 confirms the theoretical results which state that for sufficiently high
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(β, α) the panel-clustering algorithm with variable approximation order has
linear complexity in terms of time and memory requirements. The quotients
ρt,` and ρMem,` tend to four with increasing refinement level `. The ratio of the
L2-error of the Galerkin method to the L2-error of the variable order panel-
clustering method

ε` :=
||ePC,`||L2(Γ)

||e`||L2(Γ)

remains constant over the whole series of considered grids. The times include
setup and solving of the system. Due to the very high memory requirements
the undisturbed Galerkin solution could not be computed for level 8, so that
a high order panel-clustering solution was used as reference.

` N ||ePC,`||L2(Γ) ε` t [sec] ρt,` Mem [KB] ρMem,`

3 128 0.03162 0.9997 20.83 – 1864 –

4 512 0.01640 0.9994 101.11 4.85 13258 7.11

5 2048 0.00877 0.9982 469.52 4.64 72462 5.47

6 8192 0.00491 0.9968 2128.12 4.53 345372 4.77

7 32768 0.00291 0.9963 9342.28 4.38 1525198 4.41

8 131072 0.00184 0.9996 39704.70 4.25 6448310 4.23
Table 2
Results for the panel-clustering algorithm with (β, α) = (3, 1) and η = 0.5 for
u(x) = x1 + x2.

While the first example shows that the variable order panel-clustering method
behaves as theoretically predicted, the accuracy requirements in the form of
ε` are much too restrictive for practical applications and, thus, the computing
times too pessimistic. For the second test we have chosen the parameters (β, α)
in the definition of the variable approximation order such that ε` ≤ 2 for all
tested levels `. The admissibility constant was chosen as above as η = 0.5.
The combination (β, α) = (1, 0.8) satisfies this requirement and is optimal
with respect to the computing time.

` N ||ePC,`||L2(Γ) ε` t [sec] ρt,` Mem [KB] ρMem,`

3 128 0.03233 1.0222 19.24 – 347 –

4 512 0.01872 1.1407 85.73 4.46 2270 6.54

5 2048 0.01171 1.3328 367.74 4.29 12272 5.41

6 8192 0.00804 1.6342 1542.82 4.20 58920 4.80

7 32768 0.00610 2.0870 6261.31 4.06 260443 4.42
Table 3
Results for the panel-clustering algorithm with (β, α) = (1, 0.8) and η = 0.5 for
u(x) = x1 + x2.
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Table 3 shows that the chosen parameter combination (β, α) yields much bet-
ter computing times compared to the first example although it does not yield
a constant ratio ε` for the tested series of grids. It appears that this holds only
for sufficiently large β and α where the error is near or equal to the Galerkin
error.

For the third series of tests we chose problem (53) with exact solution u(x) =

x
−1/4
1 . The convergence rate of the Galerkin method is about 0.84, as Table 4

shows. In addition, the table gives the optimal combination (β, α) with ε` close
to one. The admissibility constant was again chosen as η = 0.5.

` N ||e`||L2(Γ) β α ε`

3 128 0.2613 1 0.2 1.0057

4 512 0.2201 1 0.2 1.0325

5 2048 0.1852 1 0.2 1.1175

6 8192 0.1556 1 0.4 1.1096

7 32768 0.1311 1 0.6 1.0033
Table 4
Comparison of Galerkin method and panel-clustering algorithm for u(x) = x

−1/4
1

As we can clearly see, the panel-clustering solution approaches the Galerkin
solution for a very moderate choice of β and α, i.e. the additional error intro-
duced by the panel-clustering approximation is not affected by the smoothness
of the solution.

Acknowledgements: Thanks are due to J.-C. Nédélec for fruitful discussions con-
cerning the regularisation of integral operators.
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