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Abstract

In this paper, we will present a new method for evaluating high order
divided differences for certain classes of analytic, possibly, operator values
functions. This is a classical problem in numerical mathematics but also
arises in new applications such as, e.g., the use of generalized convolution
quadrature to solve retarded potential integral equations. The functions
which we will consider are allowed to grow exponentially to the left com-
plex half plane and the interpolation points are scattered in a large real
interval. Our approach is based on the representation of divided differ-
ences as contour integral and we will employ a subtle parameterization
of the contour in combination with a quadrature approximation by the
trapezoidal rule.
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1 Introduction

In this paper, we consider the stable and efficient evaluation of high order divided
differences via contour integrals. The interpolation points xi, 1 ≤ i ≤ N , for
the divided differences of a function f are assumed to be positive and contained
in an interval I = [m,M ] with 0 < m < M . The function f is assumed to be
analytic in a half plane

Cσ := {z ∈ C | Re z > σ}
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for some σ < −1. We allow exponential growth to the left complex half plane
and polynomial growth to the right half plane. The problem of evaluating high
order divided differences or high order derivatives for such type of functions
arise, e.g., when the convolution quadrature method [17], [18], [12], [4], [3] with
variable step size [15] is employed to approximate convolution operators, in
particular, for hyperbolic differential equations [10], [2], [17].

Another application is the expansion of a function into an interpolating
polynomials via Newton’s divided differences. For a real sequence xi, 1 ≤ i ≤
N + 1, of interpolation points with given function values fi, 1 ≤ i ≤ N + 1 the
interpolating polynomial of degree N can be written in the form

N+1∑
i=1

([x1, x2, . . . , xi] f)ω1,i−1

with the Newton polynomials

ω1,i (x) =
∏i

k=1 (x− xk) . (1)

Its evaluation at some point x requires the accurate and efficient evaluation
of the product ([x1, x2, . . . , xi] f)ω1,i−1 (x). However, the evaluation of high
order divided differences by Newton’s table becomes very unstable if N becomes
large and/or the ratio M/m increases. Furthermore, the interpolation points xi,
possibly, are generated recursively, e.g., by an adaptive time stepping scheme,
and their multiplicity can be high and varying. In the latter case, significant
parts of Newton’s table for computing divided differences have to be recomputed
in each step for new interpolation points. An additional difficulty arises if the
distances between the interpolation points are very small causing again severe
roundoff problems.

As an alternative to Newton’s table for computing divided differences we
will employ here their representation as contour integrals and a discretization
by the trapezoidal rule. However, the choice of the contour is very delicate if
the ratio M/m is large. As our contour, we choose here a circle about M with
radius M . However, the simple parametrization by M (1 + exp (2πα)) results
in a very slow convergence if the ratio M/m becomes large. A much better
behavior is obtained by using a translation and dilation of a composition of a
Jacobi elliptic function with a Möbius transform – this idea was used in [13] to
compute matrix functions via contour integrals. Our numerical experiments will
show that this choice leads to an exponentially convergent approximation. The
theory will be based on classical quadrature estimates for the trapezoidal rule
for periodic functions which can be extended analytically to some complex strip
around the integration interval. Since a Jacobi elliptic function is involved the
error analysis requires some technical estimates of this function. The choice of
our integration contour ensures that severe problems with roundoff errors which
often arise when integrating highly oscillatory functions are avoided.

The evaluation of divided differences is a classical problem in numerical anal-
ysis. However the accurate evaluation of high order divided differences for quite
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general and, possibly, adaptively selected nodal points with changing multiplic-
ities is still a challenging problem. For the evaluation of divided differences for
the exponential function this is well known; in [19] an improved procedure is
presented which combines the traditional recurrence with special properties of
the exponential function. This method has been further developed in [5] for the
matrix exponential propagator, while fast versions of the traditional recurrence
are presented, e.g., in [21] an [9]. However, as explained above, our applications
[15, 16] involve more general functions and quite general, possibly, highly non-
uniform and adaptively selected nodal points with varying multiplicities and do
not fit into the classes of functions which are considered in these references.

The paper is organized as follows. In Section 2 we will present the new
method for computing divided differences via contour integrals and the partic-
ular choice of the contour. Section 3 is devoted to the error analysis for the
approximation of contour integrals by the trapezoidal rule and will be based on
analytic function theory. In Section 4 we will analyze the width of the complex
neighborhood of the contour where the function f can be extended analytically.
This involves some technical estimates for Jacobi elliptic functions. Finally, in
Section 5 we will present some numerical experiments which show the efficiency
of our approximation method.

2 Divided Differences via Contour Integrals

Let a finite sequence of positive points (xi)
N
i=1 be given which satisfies1

1 ≤ m := min
1≤i≤N

xi. (2a)

For fixed c0 ∈ (0, 1), we choose

M ≥ max

{
max

1≤i≤N
xi,

1

1− c0
m

}
(2b)

such that the inverval I := [m,M ] contains all points xi and the quotient
q := M/m satisfies

q − 1 ≥ c0q. (2c)

Remark 1 Our quadrature error estimates typically will contain a factor q/ (q − 1)
which is large if M is chosen very close to m, i.e., if q is close to 1. To cir-
cumvent this theoretical artifact, we have therefore taken the freedom to choose
M large enough such that all nodal points are contained in I and q/ (q − 1) is
bounded from above by the fixed constant c−1

0 . We emphasize that this choice
obviously covers also the case that all nodal points are equal since the choice
M = m/ (1− c0) is then admissible.

1We have chosen here the condition m ≥ 1 instead of m > 0 to reduce technicalities.
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For a function f : I → V with values in some normed linear space V we
denote by

δ1,N (f) := [x1, x2, . . . , xN ] f (3)

the divided difference of f with respect to these points with standard modifi-
cations for points with multiplicities larger than 1 (see, e.g., [22]). Our goal
is to present a fast and stable method to evaluate δ1,N (f) for a certain class
of functions. As outlined in the introduction, the direct evaluation of (high
order) divided differences becomes very unstable because of roundoff effects if
the distances between the mesh points xi become very small or N becomes
large. In addition, the points xi might be generated recursively so that they
are, typically, not ordered and they change their multiplicities. This requires
some recursive reordering of the Newton table for computing divided differences
and the new computation of substantial parts of the Newton table for a newly
generated point xN .

Definition 2 For σ ∈ R, p ∈ R, α > 0, β ≥ 0, the set A (σ, p, α, β) contains
all functions f : Cσ → V that satisfy

1. f is analytic in Cσ

2. f satisfies the growth estimate

|f (z)| ≤ α
(
1 + e−βRe z

)
(max{1, |z|})p ∀z ∈ Cσ.

For the set of points (xi)
N
i=1, the Newton polynomial is defined (cf. (1)) by

ω1,N (z) =
N∏
i=1

(z − xi) .

From [22, p. 54] we conclude that the divided difference can be written in the
form

δ1,N (f) =
1

2π i

∫
C

f (z)

ω1,N (z)
dz, (4)

where C is any closed contour in Cσ which contains I and is oriented counter-
clockwise. Our approach for approximating divided differences is based on the
approximation of the contour integral by a trapezoidal rule.

Remark 3 The choice of the contour and its parametrization is a very delicate
problem if the quotient q = M/m becomes large. If C is “too” close to the interval
I then the denominator in (4) becomes very small and numerical quadrature will
suffer. If C is “too” far from I – in particular if C enters the left half of the
complex plane, the exponential growth of the term e−βRe z for Re z ≪ 0 will
spoil the quadrature accuracy.
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As a compromise we have chosen C as the circle CM about M with radius M .
For an interval J = AB ⊂ C with length |J | := |B −A|, let γM : J → CM denote
a |J |-periodic parametrization of CM which can be extended analytically in a
complex neighborhood of J . Then the approximation of the divided difference is
given by applying the trapezoidal rule for periodic functions to the parametrized
integral

δ1,N (f) =
1

2π i

∫
J

f ◦ γM (σ)

ω1,N (γM (σ))
γ′
M (σ) dσ

≈ |J |
2π iNQ

NQ−1∑
ℓ=0

f ◦ γM (tℓ)

ω1,N (γM (tℓ))
γ′
M (tℓ) =: δ̃1,N (f) , (5)

where tℓ = A+ ℓ
NQ

(B −A).

Next, we will introduce the concrete choice of the parametrization γM being
motivated by the quadrature error analysis for analytic periodic functions. For
the sake of simplicity we assume that ImA = ImB and, for ρ > 0, we define
the extension of the parameter interval J = AB to a complex horizontal strip

sρ (J) := {t+ i v : t ∈ J ∧ −ρ ≤ v ≤ ρ} . (6)

We assume that γM can be extended analytically to sρ (J) for some ρ > 0
and we define the mapped region under γM by

CM,ρ := {γM (σ) : σ ∈ sρ (J)} . (7)

An important quantity in the error estimate is the modulus

MM,ρ (f) := sup
z∈CM,ρ

∣∣∣∣ f (z)

ω1,N (z)

∣∣∣∣ . (8)

Since we allow that f grows exponentially with increasing negative real part of
z the parametrization γM should be chosen such that

µ (M,ρ) := min {Re z : z ∈ CM,ρ} (9)

grows “relatively” slowly to the negative half plane as a function of ρ. Note that
the standard parametrization of CM by γ (t) := M

(
1 + e2π i t

)
, t ∈ [0, 1] leads

to a prohibitive large number of quadrature points if the ratio M/m is large.
This is due to the restricted width ρ of the analyticity strip sρ (J), which turns
out to be limited by m/M , and to the “too” fast growth of µ (M,ρ) to the left
half of the complex plane as ρ increases.

A much better behavior is obtained by using a translation and dilation of a
composition of a Jacobi elliptic function with a Möbius transform – this idea was
used in [13] to compute matrix functions via contour integrals. The definition
needs some preparatory steps.
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For any parameter λ ∈ [0, 1], let pr (· | λ) denote the Jacobi elliptic function
according to the definition in [1, Section 16.1], where p, r is any two of the
letters s, c, d, n. We write short

sn (σ) = sn (σ | λ) , cn (σ) = cn (σ | λ) , dn (σ) = dn (σ | λ) .

The complete elliptic integrals of the first kind are defined by

K (λ) :=

∫ 1

0

dx√
(1− x2) (1− λx2)

(see [11, 8.112 (1.) and (2.)]) (10a)

K ′ (λ) := K (1− λ) (see [11, 8.112 (3.) and 8.111 (2.)]). (10b)

Remark 4 Let 0 < m < M < ∞ and q = M
m ∈ (1,∞). We will consider λ as

a function of q, more precisely,

λ = k2 with k = k (q) =
q −
√
2q − 1

q +
√
2q − 1

. (11)

Note that k is strictly monotonously increasing and 0 = k (1) ≤ k (q) ≤ k (∞) =
1.

For later use we note that the choice of λ = k2 (q) allows the following
estimate

1
√
q
≤
∣∣∣1− λ1/2

∣∣∣ ≤ 2

√
2

q
and

1

2
√
q
≤
∣∣∣1− λ1/4

∣∣∣ ≤ 2

√
2

q
. (12)

We introduce the parameter interval

Jλ := PλQλ with Pλ = −K (λ)+
i

2
K ′ (λ) and Qλ = 3K (λ)+

i

2
K ′ (λ) . (13)

Definition 5 Let λ and k be the functions of q = M/m as in (11). The
parametrization of the integration contour CM is given by γM (σ) = (z ◦ u) (σ),
where

z (u) :=
M

q − 1

(√
2q − 1

λ−1/2 + u

λ−1/2 − u
− 1

)
, u (σ) := sn (σ, λ) , σ ∈ Jλ. (14)

Remark 6 The function γM as in Definition 5 is a parametrization of the circle
CM (cf. Lemma 15). Note that the orientation of γM is clockwise, which by (5)
leads to an approximation of −δ1,N .

With this choice of contour our quadrature approximation reads

δ1,N (f) ≈
NQ−1∑
ℓ=0

wℓ
f(zℓ)

ω1,N (zℓ)
, (15)

with

zℓ = γM (σℓ), wℓ =
4K(λ)

2πiNQ
γ′
M (σℓ), and σℓ = −K(λ) + ℓ

4K(λ)

NQ
, (16)
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for ℓ = 1, . . . , NQ, where

γ′
M (σ) =

M
√
2q − 1

q − 1

2cn (σ)dn (σ)

k(k−1 − sn (σ))2
. (17)

The evaluation of the Jacobi elliptic functions and the elliptic integrals at com-
plex arguments can be performed very efficiently and accurately in MATLAB
by means of Driscoll’s Schwarz–Christoffel Toolbox [7, 8] which is freely avail-
able online. In particular the functions ellipkkp and ellipjc are needed to
compute (16), cf. [13].

3 Error Analysis

The error analysis is based on classical estimates of the trapezoidal rule when
applied to periodic functions which can be extended analytically to a certain
strip around the integration interval.

Remark 7 The derivation of the estimates in this and the next section is rather
technical. We emphasize that all constants are positive real numbers – indepen-
dent of the function f and the parameters m, M , α, β, σ, p, λ, q, ρ. They
are chosen to simplify the expressions which are involved in the statements and
proofs. We have avoided to optimize their choice in order not to further in-
crease technicalities and they should be regarded as a proof that “ such constants
exists”.

In Figure 1 we show how the conformal transformation γM maps parallel
horizontal lines within the analyticity strip.

The following theorem estimates the width of the region CM,ρ.

Theorem 8 Let c0 ∈ (0, 1), m, and M be as in (2) and set C0 := 370
c0

. For any

0 ≤ ρ ≤ (3C0)
−1

min
{
M−1/2,m−1

}
(18)

it holds
µ (M,ρ) := min {Re z : z ∈ CM,ρ} ≥ −1 (19a)

and, for all x ∈ I, we have

dist (x, CM,ρ) ≥
(
1− 2M−1/2 − 2

3
m−1

)
x. (19b)

For the modulus of z ∈ CM,ρ it holds

max {|z| : z ∈ CM,ρ} ≤ C1M with C1 = 10/3.

The proof of this theorem relies on some technical estimates of Jacobi’s
elliptic functions and will be postponed to Section 4 (cf. Theorem 20, Theorem
21, and Corollary 22).

We employ the following quadrature estimate for periodic functions.
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K,

0
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0.5 K,+ ρ
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−K 3K

m M

Figure 1: Illustration of the parametrization γM in Definition 5. Left: Horizon-
tal lines in the σ-domain. Right: The corresponding images in the z-domain.
The outer contour is kidney-shaped while the inner one is egg-shaped.

Theorem 9 Let J = AB ⊂ C and sρ (J) be as in (6) and let V be a normed
linear space. For a periodic function g : J → V which can be extended to an
analytic function in sρ (J) for some ρ > 0 the quadrature error

ENQ (g) :=

∫
J

g (σ) dσ − |J |
NQ

NQ−1∑
ℓ=0

g (tℓ) with tℓ := A+
ℓ

NQ
(B −A)

can be estimated by∥∥ENQ
(g)
∥∥
V
≤ |J | 2

e
2π
|J|NQρ − 1

sup
σ∈sρ(J)

∥g (σ)∥V .

Proof. The proof goes back to [6] – concretely the estimate follows from [14,
(28)] by employing the affine pullback

χ : [0, 2π]→ J, χ (t) := A+
t

2π
(B −A) .

Theorem 10 Let c0 ∈ (m,M), 0 < m < M be as in (2). Let N be the number
of points for the divided difference in (3) and let us define the ratio R by2

R := N
(
M−1/2 +m−1

)
.

2We can always assume R ≤ 2N/m since we have the freedom (cf. (2b)) to choose M ≥ m2.
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Let λ, k be the functions of q = M/m as in (11) and let the function f ∈
A (σ, p, α, β) for some σ < −1. Then, for the divided difference approximation
(5) via quadrature with the contour as in Definition 5 it holds

|ω1,N (0)|
∥∥∥δ1,N (f)− δ̃1,N (f)

∥∥∥
V
≤ α

Cp
1C2

π
(10 + 2 log q)Mp+1 e

2max(1,β)R

eNQτ − 1
(20)

with τ := π
3C0

min{M−1/2,m−1}
10+2 log q .

Proof. In view of (5) we introduce the function g : Jλ → V by

g (σ) :=
1

2π i

f ◦ γM (σ)

ω1,N (γM (σ))
γ′
M (σ) .

Let ρ = (3C0)
−1

min
{
M−1/2,m−1

}
(cf. (18)). Then, Theorem 8 directly im-

plies an estimate of MM,ρ (f) in (8). Note that (19a) yields

sup
z∈CM,ρ

|f (z)| ≤ sup
z∈CM,ρ

α
(
1 + e−βRe z

)
(max {1, |z|})p ≤ α (C1M)

p (
1 + eβ

)
.

To estimate the denominator in (8) we start with

inf
z∈CM,ρ

|z − xi|
(19b)

≥ (1− ε)xi with ε := 2

(
1√
M

+
1

m

)
.

Thus,

sup
z∈CM,ρ

ω−1
1,N (z) ≤

∣∣∣ω−1
1,N (0)

∣∣∣ (1− ε)
−N

=
∣∣∣ω−1

1,N (0)
∣∣∣ e∑N

i=1 log(1−ε) =
∣∣∣ω−1

1,N (0)
∣∣∣ e2R .

Hence,
|ω1,N (0)|MM,ρ (f) ≤ α (C1M)

p (
1 + eβ

)
e2R .

It remains to estimate γ′
M in the strip sρ (Jλ). We use Corollary 17 below,

the choice of ρ, and q1/2M−1/2 ≤ 1 (which follows from (2a)) to obtain for all
σ ∈ sρ (Jλ) the estimate

|γ′
M (σ)| ≤ C2M with C2 :=

65

c0

√
2.

Hence,

|ω1,N (0)| sup
σ∈sρ(J)

∥g (σ)∥V ≤
Cp

1C2

2π
αMp+1

(
1 + eβ

)
e2R .

To apply Theorem 9 we have to estimate the interval length |Jλ| = 4K (λ) and
employ Lemma 23 to obtain

|Jλ| ≤
1

2
log

16

1− λ

(
1 +

√
2

7
(1− λ)

)
(12)

≤ 1

2
log (16

√
q)

(
1 + 16

√
1

7q

)
≤ 10 + 2 log q.
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Hence, we get
π

|Jλ|
ρ ≥ π

3C0

min
{
M−1/2,m−1

}
10 + 2 log q

.

Corollary 11 Let the assumptions of Theorem 10 be satisfied and let τ and
R be as in Theorem 10. Then, the choice of the number of quadrature points
according to

NQ > τ−1

(
c+ log

(
1

ε

)
+ 2max(1, β)R+ (p+ 2) logM

)
(21)

with c ≥ log
(
2 + 20α

Cp
1C2

π

)
implies an accuracy ε in the approximation (5) of

the divided difference in (3), i.e.,

|ω1,N (0)|
∥∥∥δ1,N (f)− δ̃1,N (f)

∥∥∥
V
≤ ε.

Proof. Since NQ ≥ τ−1 log 2, the denominator in (20) can be estimated from
below by eNQτ /2 and we estimate the term (10 + 2 log q) in (20), generously,
by 10M (cf. Remark 7). In view of (20) we obtain

|ω1,N (0)|
∥∥∥δ1,N (f)− δ̃1,N (f)

∥∥∥
V
≤ 20α

Cp
1C2

π
e2max(1,β)R+(p+2) logM−NQτ

(21)

≤ ε.

We finally present a version of Theorem 10, where we assume that the mesh
is graded at most quadratically, i.e.,

max
1≤i≤N

xi ≤ m2. (22)

In this case, we may chooseM := m2. In many applications we also have N ≤ m
(generalizations to M ≤ Cm2 and N ≤ C ′m are straightforward). This case is
considered in the following Corollary.

Corollary 12 Let N ≤ m and assume that (22) is satisfied. Let the assump-
tions of Theorem 10 be satisfied. Let λ, k be the functions of q = M/m as in
(11) and let f ∈ A (σ, p, α, β) for some σ < −1. Then the choice of quadrature
points according to

NQ > m log (m+ 1)

(
c2 + c1 log

(
1

ε

)
+ c3 logm

)
with some constants

c1 :=
30C0

π log 2
, c2 := cc1, c2 ≥ 4c1 max (1, β)

leads to
|ω1,N (0)|

∥∥∥δ1,N (f)− δ̃1,N (f)
∥∥∥
V
≤ ε.
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Proof. The result follows from Corollary 11 by using the assumptions on N ,
m, and NQ in combination with

τ−1 =
3C0

π
(10 + 2 log q)max

(
M1/2,m

)
=

3C0

π
(10 + 2 logm)m ≤ 30C0

π log 2
m log (m+ 1) .

4 Estimates of Jacobi Elliptic Functions

In this section, we will prove Theorem 8. For this we have to analyze the
behavior of the Jaocbi elliptic function in a neighborhood of the interval Jλ.

In order to estimate the distance from our integration contour to the bound-
ary of the region CM,ρ (cf. (7)), we have to estimate the derivatives of γM and,
in turn, the derivatives of z and u (cf. (14)). Let S1 := {z ∈ C | |z| = 1}.

In order to give an idea of the behavior of the width of the region CM,ρ, we
point out the following special values of γM and γ′

M (cf. [1, Sec. 16.5])

γM

(
−K +

i

2
K ′
)

= 0, γ′
M

(
−K +

i

2
K ′
)

= O(m)

γM

(
0 +

i

2
K ′
)

= m+ im
√
2q − 1, γ′

M

(
−K +

i

2
K ′
)

= O(
√
Mm)

γM

(
K +

i

2
K ′
)

= 2M, γ′
M

(
−K +

i

2
K ′
)

= O(M)

The above formulae indicate that the derivative of our parametrization gets
smaller as our contour becomes closer to the imaginary axis. This property is
essential in order to avoid that the boundary of the region CM,ρ enters “too”
much the left half plane (where the integrand is allowed to grow exponentially)
or getting too close to the poles in I (cf. Remark 3) as can be seen from the
mean value theorem

γM (σ + ρζ) = γM (σ) + ργ′
M (ξ),

for some ξ in between σ and σ + ρζ.
In the rest of this section we will derive sharp estimates for γ′

M and the width
of CM,ρ which are explicit with respect to ρ and all the parameters involved in
the approximation formula (5). We have chosen the constants in the estimates
such that the expressions becomes as simple as possible (cf. Remark 7) and,
hence, avoided to optimize them.

Remark 13 For all σ ∈ Jλ we have |sn (σ)| = λ−1/4. Hence

ησ := λ1/4 snσ satisfies |ησ| = 1. (23)
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Proof. We write σ = a+ i
2K

′ (λ) for a := tK (λ) and all t ∈ (−1, 3). Hence,

sn (σ) = sn

(
a+

i

2
K ′ (λ)

)
[1, 16.5.4, 16.17.1]

=

(
1 + λ1/2

)
sn a+ i cn a dn a

λ1/4
(
1 + λ1/2 sn2 a

) .

We have

|sn (σ)| [1, 16.9.1]=

√(
1 + λ1/2

)2
sn2 a+ (1− sn2 a) (1− λ sn2 a)

λ1/4
(
1 + λ1/2 sn2 a

) =

√
2λ1/2 sn2 a+ 1 + λ sn4 a

λ1/4
(
1 + λ1/2 sn2 a

)
=

1 + λ1/2 sn2 a

λ1/4
(
1 + λ1/2 sn2 a

) = λ−1/4.

Lemma 14 Let σ ∈ Jλ and ηρ be as in (23). For any 0 ≤ ρ ≤ π/6 and ζ ∈ S1
it holds

sn (σ + ρζ) = λ−1/4ησ (1− ε) , (24)

where ε = ελ (ρζ, σ) satisfies for all 0 ≤ ρ ≤ π/6 and ζ ∈ S1

|ελ (ρζ, σ)| ≤ 6
(
ρ+

∣∣∣λ1/2 − η2σ

∣∣∣) ρ. (25)

Proof. The addition formula [1, 16.17.1] gives us

sn (σ + ρζ) = sn (σ) (1− ελ (ρζ, σ))

where

ελ (y, σ) =
1− cn y dn y − λ1/2η2σ sn

2 y − η−1
σ sn y

√(
λ1/2 − η2σ

) (
1− λ1/2η2σ

)
1− λ1/2η2σ sn

2 y
.

(26)
The term ελ (y, σ) can be estimated in the considered range of ρ by using [20,
Theorem 1]:

|sn (ρζ)| ≤ tan ρ, |cn (ρζ)| ≤ 1

cos ρ
, |dn (ρζ)| ≤ 1

cos ρ
.

Since

1− cn (ρζ) dn (ρζ) = sn2 (ρζ)
(1 + λ)− λ sn2 (ρζ)

1 +
√
(1− sn2 (ρζ)) (1− λ sn2 (ρζ))

,

we obtain for any 0 ≤ ρ ≤ π/6

|1− cn (ρζ) dn (ρζ)| ≤ tan2 ρ
2

1 +
√(

1− tan2 ρ
) (

1− λ tan2 ρ
) ≤ 2 tan2 ρ

2− tan2 ρ
.

12



The other term in the numerator of (26) can be estimated by∣∣∣λ1/2η2σ sn
2 ρζ

∣∣∣+∣∣∣∣η−1
σ sn ρζ

√(
λ1/2 − η2σ

) (
1− λ1/2η2σ

)∣∣∣∣ ≤ tan2 ρ+tan ρ
√∣∣λ1/2 − η2σ

∣∣ ∣∣1− λ1/2η2σ
∣∣.

Note that
1− λ1/2η2σ = 1− λ+ λ1/2(λ1/2 − η2σ)

and we use
√
a+ b ≤

√
a+
√
b for non-negative a, b in order to estimate∣∣∣∣√(λ1/2 − η2σ

) (
1− λ1/2η2σ

)∣∣∣∣ ≤ 2
√
1− λ1/2

√∣∣λ1/2 − η2σ
∣∣+∣∣∣λ1/2 − η2σ

∣∣∣ ≤ 3
∣∣∣λ1/2 − η2σ

∣∣∣ ,
so that we obtain for 0 ≤ ρ ≤ π/6∣∣∣λ1/2η2σ sn

2 ρζ
∣∣∣+∣∣∣∣η−1

σ (sn ρζ)
√(

λ1/2 − η2σ
) (

1− λ1/2η2σ
)∣∣∣∣ ≤ tan ρ

(
tan ρ+ 3

∣∣∣λ1/2 − η2σ

∣∣∣) .
The denominator of (26) for 0 ≤ ρ ≤ π/6 can be estimated by

1∣∣1− λ1/2 sn2 ρζ
∣∣ ≤ 1

1− tan2 ρ
≤ 3

2
.

The combination of these estimates leads to

|ελ (ρζ, σ)| ≤
3

2

(
11

5
tan2 ρ+ 3

∣∣∣λ1/2 − η2σ

∣∣∣ tan ρ) .

We employ tan ρ ≤ 2
√
3

π ρ for all 0 ≤ ρ ≤ π/6 (cf. (12)) to obtain

|ελ (ρζ, σ)| ≤ 6
(
ρ+

∣∣∣λ1/2 − η2σ

∣∣∣ ρ) ρ.
Lemma 15 The contour γM (σ) (cf. Definition 5) is a parametrization of the
circle CM with radius M about M and can be written in the form

γM (σ) = M

(
1 +

1− k1/2ησ
1− k1/2ησ

ησ

)
(27)

with ησ as in (23) and k as in (11). For the derivatives we get

|γ′
M (σ)| ≤ 16λ1/4M

√
2q − 1

q − 1

∣∣λ1/4 + ησ
∣∣∣∣λ1/4 − ησ
∣∣ . (28)

Proof. We introduce the short hands

u = snσ = λ−1/4ησ, λ = k2, ν =
√
2q − 1, x = k1/2 Re ησ, y = k1/2 Im ησ.

(29)

13



Then, the definition of z (u) (cf. (14)) leads to

z (u)−M =
M

(q − 1)

ν − q + (ν + q) k1/2ησ
1− k1/2ησ

=
M (q + ν)

q − 1

x− k + i y

1− x− i y
=

M√
k

x− k + i y

1− x− i y
= Mησ

1− k1/2ησ
1− k1/2ησ

.

From ∣∣∣∣x− k + i y

1− x− i y

∣∣∣∣ =
√

(x− k)
2
+ y2

(1− x)
2
+ y2

=
√
k

we conclude that |z (u)−M | = M , i.e., γM (σ) is a parametrization of CM .

For the derivative γ′
M (σ) we obtain

γ′
M (σ)

[1, 16.16.1]
= M

√
2q − 1

q − 1

2λ1/2 cn (σ) dn (σ)(
λ1/2 sn (σ)− 1

)2 = M

√
2q − 1

q − 1

2λ1/2
√(

1− λ−1/2η2σ
) (

1− λ1/2η2σ
)

(
λ1/4ησ − 1

)2 .

In order to prove estimate (28) we need Lemma 16 below.

Next, we will estimate the derivative γ′
M in a neighborhood of Jλ.

Lemma 16 For σ ∈ Jλ it holds

|γ′
M (σ + ρζ)| = γ′

M (σ) + ρRest,

for all ρ ≤ |λ
1/2−η2

σ|1/2
40 and all ζ ∈ S1, where

|Rest| ≤ 184

√
2q − 1

q − 1

M∣∣λ1/4 − ησ
∣∣2 .

Proof. Let σ ∈ Jλ. The first derivative of γM can be written in the form

γ′
M (σ + ρζ)

[1, 16.16.1]
= M

√
2q − 1

q − 1

2λ1/2 cn (σ + ρζ) dn (σ + ρζ)(
λ1/2 sn (σ + ρζ)− 1

)2 .

We use (24) and write

x := x (ε) := sn (σ + ρζ) = ησ
1− ε

λ1/4
,

so that

γ′
M (σ + ρζ)

[1, 16.16.1]
= CM,qg (x) ,

where CM,q := 2Mλ1/2
√
2q−1
q−1 and

g (x) := g1 (x) g2 (x) and g1 (x) :=
√
(1− x2) (1− λx2) and g2 (x) :=

(
1− λ1/2x

)−2

.
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We obtain for 0 ≤ ρ ≤ |λ
1/2−η2

σ|1/2
40 the estimate

|ε| ≤ 6
(
ρ+

∣∣∣λ1/2 − η2σ

∣∣∣) ρ ≤ 1

4

∣∣∣λ1/2 − η2σ

∣∣∣ and |ε| ≤ 1/2. (30)

For the functions g2, g
′
2 we need some auxiliary estimates. The modulus of x

can be estimated by
1

2λ1/4
≤ |x| ≤ 3

2λ1/4
. (31)

Then,∣∣∣1− λ1/2x
∣∣∣ = ∣∣∣1− λ1/4ησ (1− ε)

∣∣∣ = ∣∣∣1− λ1/4ησ + λ1/4ησε
∣∣∣

≥
∣∣∣1− λ1/4ησ

∣∣∣− λ1/4 |ε| ≥
∣∣∣1− λ1/4ησ

∣∣∣− λ1/4 1

4

∣∣∣λ1/2 − η2σ

∣∣∣ .
Note that

∣∣1− λ1/4ησ
∣∣ = ∣∣λ1/4 − ησ

∣∣ so that∣∣∣1− λ1/2x
∣∣∣ ≥ ∣∣∣λ1/4 − ησ

∣∣∣ (1− 1

4

∣∣∣λ1/4 + ησ

∣∣∣) ≥ 1

2

∣∣∣λ1/4 − ησ

∣∣∣ . (32)

Thus,

|g2 (x)| ≤
4∣∣λ1/4 − ησ

∣∣2 and |g′2 (x)| ≤
2∣∣1− λ1/2x

∣∣3 ≤ 16∣∣λ1/4 − ησ
∣∣3 . (33)

The estimate of the first derivative of g1 is more involved. Explicit calcula-
tion leads to

g′1 (x) = −x

(√
1− λx2

1− x2
+ λ

√
1− x2

1− λx2

)
. (34)

Similarly as for (32) we get∣∣∣1 + λ1/2x
∣∣∣ ≥ 1

2

∣∣∣λ1/4 + ησ

∣∣∣ (35)

so that the combination of (32) and (35) yields∣∣1− λx2
∣∣ ≥ 1

4

∣∣∣λ1/2 − η2σ

∣∣∣ . (36)

For the lower estimate of
∣∣1− x2

∣∣ we argue as follows. It holds

∣∣1− x2
∣∣ = ∣∣∣∣∣1− η2σ

(1− ε)
2

λ1/2

∣∣∣∣∣ = λ−1/2
∣∣∣λ1/2 − η2σ (1− ε)

2
∣∣∣ (37)

≥ λ−1/2
(∣∣∣λ1/2 − η2σ

∣∣∣− |ε (2− ε)|
)
.
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Since 0 ≤ ρ ≤ |λ
1/2−η2

σ|1/2
40 and

∣∣λ1/2 − η2σ
∣∣ ≤ √2 ∣∣λ1/2 − η2σ

∣∣1/2, we get from
(30) the estimates

|ε| ≤ 1

4

∣∣∣λ1/2 − η2σ

∣∣∣ and |ε (2− ε)| ≤ 1

2

∣∣∣λ1/2 − η2σ

∣∣∣ (38)

so that ∣∣1− x2
∣∣ ≥ ∣∣λ1/2 − η2σ

∣∣
2λ1/2

. (39)

The estimates of
∣∣1− λx2

∣∣ and ∣∣1− x2
∣∣ from above follow from∣∣∣1− λ1/2x

∣∣∣ ≤ ∣∣∣1− λ1/4ησ

∣∣∣+ λ1/4 |ε| ≤
∣∣∣1− λ1/4ησ

∣∣∣+ λ1/4 1

4

∣∣∣λ1/2 − η2σ

∣∣∣
≤
∣∣∣λ1/4 − ησ

∣∣∣ (1 + λ1/4 1

4

∣∣∣λ1/4 + ησ

∣∣∣) ≤ 3

2

∣∣∣λ1/4 − ησ

∣∣∣ .
Replacing ησ by −ησ leads to∣∣∣1 + λ1/2x

∣∣∣ ≤ 3

2

∣∣∣λ1/4 + ησ

∣∣∣
and, in turn, ∣∣1− λx2

∣∣ ≤ 9

4

∣∣∣λ1/2 − η2σ

∣∣∣ . (40)

To estimate
∣∣1− x2

∣∣ from above we argue as in (37), (38) to obtain∣∣1− x2
∣∣ ≤ 3

2λ1/2

∣∣∣λ1/2 − η2σ

∣∣∣ . (41)

The combination of (31), (34), (36), (39), (40), and (41) results in

|g′1 (x)| ≤ 7.

It remains to estimate g1 (x). We use (40) and (41) to obtain

|g1 (x)| ≤
√
|1− x2| |1− λx2| ≤ 2

∣∣λ1/2 − η2σ
∣∣

λ1/4
. (42)

In total, we have proved

γ′
M (σ + ρζ) = γ′

M (σ) + ρRest, (43)

where

|Rest| ≤ max
0≤µ≤ρ
|ζ|=1

|γ′′
M (σ + µζ)| ≤ CM,q max

|ε|≤ 1
4 |λ1/2−η2

σ|
x=ησ

1−ε

λ1/4

|g′1 (x) g2 (x) + g1 (x) g
′
2 (x)|

≤ 184λ1/4M

√
2q − 1

q − 1

1∣∣λ1/4 − ησ
∣∣2 . (44)
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Proof of estimate (28).
Note that ρ = 0 implies ε = 0 (in (24)) and, in turn x = λ−1/4ησ. We have

γ′
M (σ) = CM,qg

(
λ−1/4ησ

)
.

From (42) and (33) we get

|γ′
M (σ)| ≤ 16λ1/4M

√
2q − 1

q − 1

∣∣λ1/4 + ησ
∣∣∣∣λ1/4 − ησ
∣∣ .

Corollary 17 For all 0 ≤ ρ ≤ q−1/4

40 , it holds

|γ′
M (σ)|

(12)

≤ M

√
2q − 1

q − 1
(64
√
q + 736qρ) ∀σ ∈ sρ (Jλ) .

Proof. It is easy to verify (cf. (12)) that the condition on ρ implies

ρ ≤

√∣∣λ1/2 − η2σ
∣∣

40
∀σ ∈ Jλ (45)

and, hence, Lemma 16 is applicable. We employ estimate (28) and Lemma 16
to obtain

|γ′
M (σ + ρζ)| ≤M

√
2q − 1

q − 1

(
16λ1/4

∣∣λ1/4 + 1
∣∣∣∣λ1/4 − 1
∣∣ + 184

ρ∣∣λ1/4 − 1
∣∣2
)

(12)

≤ M

√
2q − 1

q − 1
(64
√
q + 736qρ) .

Corollary 18 Let 0 ≤ ρ ≤ q−1/4

40 . Then, the distance of the boundary of the
region CM,ρ to the contour CM can be estimated by

|γM (σ + ρζ)− γM (σ)| ≤ 92M

√
2q − 1

q − 1
ρ

(∣∣λ1/2 − η2σ
∣∣+ ρ∣∣λ1/4 − ησ
∣∣2
)
∀σ ∈ Jλ and ζ ∈ S1.

(46)

Proof. Again, the condition on ρ implies (45) and Lemma 16 is applicable. We
have

|γM (σ + ρζ)− γM (σ)|
(43)

≤ ρ |γ′
M (σ)|+ ρ2

2
|Rest|

(28), (44)

≤ 92M

√
2q − 1

q − 1
ρ

(∣∣λ1/2 − η2σ
∣∣+ ρ∣∣λ1/4 − ησ
∣∣2
)
.

In the following the width of CM,ρ will be estimated in terms of z ∈ CM .
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Corollary 19 Let 0 ≤ ρ ≤ q−1/4

40 . For any z = M (1 + θ), θ ∈ S1, the width of
CM,ρ is bounded by

dist (z, ∂CM,ρ) ≤ 261
Mρ

q − 1

(
q |1 + θ|+ 1 +

(
q3/2 |1 + θ|2 + q1/2

)
ρ
)
. (47)

Proof. From (27) we conclude that any point on CM can be written as z =
M (1 + θ) for θ ∈ S1 and corresponds to

ησ =
θ + k1/2

1 + k1/2θ
. (48)

We combine (46) and (48) to bound the width of CM,ρ for any z = M (1 + θ) by

dist (z, ∂CM,ρ) ≤ 92M

√
2q − 1

q − 1
ρ

(∣∣2k1/2 + (k + 1) θ
∣∣

1− k
+

∣∣1 + k1/2θ
∣∣2 ρ

(1− k)
2

)
.

For the first term in the bracket, we get with ν as in (29)∣∣2k1/2 + kθ + θ
∣∣

1− k
=
|q (1 + θ)− 1|

ν
≤ q |1 + θ|+ 1

ν

and for the second one∣∣1 + k1/2θ
∣∣2 ρ

(1− k)
2 =

|q (1 + θ) + ν − θ|2 ρ
4ν2

≤
(
q2 |1 + θ|2 + (ν + 1)

2
) ρ

2ν2
.

This leads to

dist (z, ∂CM,ρ) ≤ 92M
1

q − 1
ρ
(
q |1 + θ|+ 1 +

(
q3/2 |1 + θ|2 +

√
2q1/2

)
2ρ
)
.

The following theorem estimates how far the contour γM (σ + i ρ) enters the
left half plane. The title of the Theorem is motivated by the shape of the outer
contour, as depicted in Figure 1.

Theorem 20 (Kidney Distance) Let c0 ∈ (0, 1), m, M , and q be as in (2).

For any ρ ≤ (3C0)
−1

min
{
M−1/2,m−1

}
with C0 = 370

c0
, it holds for µ as in (9)

µ (M,ρ) ≥ −1.

Proof. For θ ∈ S1, we define xθ := 1 + Re θ and yθ := Im θ and note that
M (xθ + i yθ) ∈ CM , xθ ∈ [0, 2] and yθ ∈ [−1, 1]. The right-hand side in (47)
defines a function dλ,M,q,ρ (θ) and we write short d (θ) if there is no confusion.
It holds

µ (M,ρ) ≥ min
θ∈S1
{Mxθ − d (θ)} (49)
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and we will estimate the right-hand side in (49) from below. The relation

(xθ − 1)
2
+ y2θ = 1 implies |1 + θ|2 = x2

θ + y2θ = 2xθ and we obtain the estimate

d (θ) ≤ C0Mρ
(√

xθ + q−1 +
(
q1/2xθ + q−1/2

)
ρ
)

with C0 :=
370

c0
. (50)

For 0 ≤ xθ ≤ 1/M and 0 ≤ ρ ≤ M−1/2

3C0
we get

3ρ
√
xθ ≤

1

C0M
.

For 1/M ≤ xθ ≤ 2 and, again, 0 ≤ ρ ≤ M−1/2

3C0
it holds

3ρ
√
xθ ≤ 3ρ

xθ√
xθ
≤ 3ρ

√
Mxθ ≤

xθ

C0

so that for all xθ and 0 ≤ ρ ≤ M−1/2

3C0
we have shown

ρ
√
xθ ≤

1

3C0

(
xθ +

1

M

)
.

For the second term in the right-hand side in (50) we get for 0 ≤ ρ ≤ 1
3mC0

the
estimate

ρ

q
≤ 1

3C0M
≤ 1

3C0

(
xθ +

1

M

)
.

The last bracket of the right-hand side in (50) can be estimated for 0 ≤ ρ ≤
M−1/2

3C0
by

(
q1/2xθ + q−1/2

)
ρ2 ≤ 1

(3C0)
2

(
1√
mM

xθ +

√
m

M

1

M

)
(2a)

≤ 1

(3C0)
2

(
xθ +

1

M

)
≤ 1

3C0

(
xθ +

1

M

)
.

In total we have proved that the function d (θ) can be estimated by

d (θ) ≤Mxθ + 1.

Thus,
µM,ρ ≥ min

θ∈S1
{Mxθ − d (θ)} ≥ −1.

The following Theorem estimates how far the contour γM (σ − iρ) moves
towards the interval I = [m,M ] containing the poles of our integrand in (3).
The title of the theorem is again motivated by the shape of this contour, see
Figure 1.
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Theorem 21 (Egg Distance) Let A ∈ [m,M ]. For ρ ≤ (3C0)
−1

min
{
M−1/2,m−1

}
we have

dist (A, CM,ρ) ≥
(
1− 2M−1/2 − 2

3
m−1

)
A.

Proof. We write A = Mξ for ξ ∈
[
q−1, 1

]
. The distance of A to the contour

can be bounded from below by

dist (Mξ, CM,ρ) ≥ min
θ∈S1
|M (1 + θ)− d (θ) θ −Mξ| .

With the choice 0 ≤ ρ ≤ (3C0)
−1

min
{
M−1/2,m−1

}
we obtain for the distance

function and xθ as in the proof of Theorem 20

d (θ) ≤ 2

3

(√
Mxθ + 1

)
. (51)

Note that

|M (1 + θ)− d (θ) θ −Mξ| ≥M |1 + θ − ξ|−|d (θ)| ≥M
√
ξ2 + 2xθ (1− ξ)−2

3

(√
Mxθ + 1

)
.

With the aid of the symbolic algebra program MATHEMATICA, we find that
the right-hand side takes a minimum as a function of xθ ∈ [0, 2] at

xθ =


2 if 1− 1√

18M − 1
≤ ξ ≤ 1,

ξ2

(9M (1− ξ)− 2) (1− ξ)
if 0 ≤ ξ ≤ 1− 1√

18M − 1
.

Hence, after some manipulations we get

|M (1 + θ)− d (θ) θ −Mξ| ≥


M (2− ξ)− 2

√
M if 1− 1√

18M − 1
≤ ξ ≤ 1,(

M − 2
√
M
)
ξ − 2

3 if 0 ≤ ξ ≤ 1− 1√
18M − 1

.

Since ξ ≥ q−1 we have 2/3 ≤ (2/3) ξq and the assertion follows.

Corollary 22 For ρ ≤ (3C0)
−1

min
{
M−1/2,m−1

}
we have

max {|z| : z ∈ CM,ρ} ≤
10

3
M.

Proof. The assertion follows from (51) and max {|z| : z ∈ CM} = 2M .
In order to estimate the length of the interval Jλ we need to estimate the

complete elliptic integral.

Lemma 23 The complete elliptic integral K is strictly monotonously increasing
in [0, 1[ and satisfies the estimate

π

2
≤ K (λ) ≤ 1

2
log

16

1− λ

(
1 +

√
2

7
(1− λ)

)
∀λ ∈ [0, 1[ .
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Proof. The strict monotonicity and the endpoint value at λ = 0 follow directly
from (10a).

From [11, 8.113 (3) (with the substitution k2 ← λ therein)] we obtain

K (λ) =

∞∑
ℓ=0

(
(2ℓ)!

(ℓ!)
2

)2(
1− λ

16

)ℓ
(
log

4√
1− λ

− 2

ℓ∑
m=1

1

(2m− 1) 2m

)

=
1

2
log

16

1− λ
+

∞∑
ℓ=1

(
(2ℓ)!

ℓ!2

)2(
1− λ

16

)ℓ
(
1

2
log

16

1− λ
− 2

ℓ∑
m=1

1

(2m− 1) 2m

)
.

By using
∞∑

m=1

1

(2m− 1) 2m
= log 2

we get

|K (λ)| ≤ 1

2
log

16

1− λ

(
1 +

1− λ

8

∞∑
ℓ=1

(
(2ℓ)!

ℓ!2

)2(
1− λ

16

)ℓ−1
)
.

The infinite sum on the right-hand side is monotonously decreasing for λ ∈ ]0, 1].
Hence, for λ ∈

[
1
2 , 1
]
we have

|K (λ)| ≤ 1

2
log

16

1− λ

(
1 +

1− λ

8

∞∑
ℓ=1

(2ℓ)!

(ℓ!)
2

(
1

32

)ℓ−1
)
≤ 1

2
log

16

1− λ

(
1 +

√
2

7
(1− λ)

)
.

(52)
The definition (10a) shows that K (λ) is strictly monotonously increasing in

λ ∈ [0, 1] so that estimate (52) holds for all λ ∈ [0, 1[.

5 Numerical Experiments

As it is common for developments in the field of numerical quadrature, new
challenges arise from new types of applications. Besides the classical New-
ton expansion of an interpolating polynomial, high order divided differences
arise when using variable time stepping in the generalized convolution quadra-
ture method (GCQ) for approximating convolution operators. The quadrature
problem is particularly challenging if the application is related to the retarded
potential boundary integral equations (RPBIE) for solving the three-dimensional
wave and Maxwell equation in exterior domains (see [15]).

The application of the GCQ to the wave equation leads to an integral oper-
ator valued integrand K in (4), i.e., f ← K, which is a function of the frequency
variable z ∈ C. From, e.g., [15, (3), (9), Proposition 8], it follows that the
function

f(z) = (1 + z)4e−z (53)

reflects the characteristic (spectral) properties of the operator valued function
K: a) exponential growth to the left half plane, b) polynomial growth to the
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right, and c) an oscillatory behavior for increasing imaginary part. We will use
this function f for our numerical experiments and refer to [16] for the application
to the wave equation. Our choice of nodes xℓ is also related to the variable time
stepping in the GCQ method. If the solution of the retarded potential integral
equation (or its derivative) has a singularity, say, at time t = 0, then, from the
approximation point of view, an algebraic grading of the time steps towards the
origin can properly resolve the singularity. This consideration is reflected by
our choice

tℓ =

(
ℓ

N

)α

, ∆ℓ = tℓ+1 − tℓ, for ℓ = 0, 1, . . .

with the grading exponent α; α = 1 corresponds to uniform time steps while α =
2 is a typical choice for resolving a qualitative behavior O

(
t1/2

)
of the solution

at the origin. The arising divided differences are related to the reciprocal mesh
sizes (cf. [15]), more precisely, are given by

xℓ =
1

∆ℓ
, for ∀ℓ = 1, . . . , N, (54)

and our goal is to approximate the scaled divided differences

ω1,N (0)
1

2πi
[x1, . . . , xN ]f =

N∏
ℓ=1

(−xℓ)
1

2πi

∫
CM

f(z)∏N
ℓ=1(z − xℓ)

dz (55)

=
1

2πi

∫
CM

f(z)∏N
ℓ=1(1−

z
xℓ
)
dz

by our new contour quadrature. With this notation (55) becomes

1

2πi

∫
CM

f(z)∏N
ℓ=1(1−∆ℓz)

dz. (56)

The computation of “exact” solutions for this experiments is not a trivial
task and we employed the software MATHEMATICA, which allows to work
with arbitrary high precision. Even though, we were not able to compute reliable
reference solutions with MATHEMATICA for very high order divided differences
for all values of α, in particular for α in between 0.5 and 1.8. In these cases, we
have computed a reference solution with our method by using max{3 ·105, 2N2}
quadrature points.

Experiment 1: Performance for Quadratic Mesh Grading Relative
errors for different values of NQ and N are provided in Table 1.

The upper half of the table, i.e., NQ ∈ [20, 320], shows the fast convergence
with respect to NQ and, in addition, that the convergence starts later for higher
order divided differences. We also see that for NQ < N the accuracy becomes
unreliable and the asymptotic convergence is not yet reached.
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α = 2

NQ N = 8 N = 32 N = 128 N = 512 N = 2048
20 2.1502e− 1 3.5308 1.4086 1.0001 1.0000
40 3.7623e− 3 5.9599e− 2 2.0090e− 1 4.4724e− 1 1.0000
80 7.3213e− 9 4.2988e− 5 2.2862e− 3 3.0797e− 1 2.8917e− 1
160 2.5628e− 15 4.2252e− 10 9.9688e− 12 1.5785e− 2 7.9961e− 1
320 2.2203e− 16 3.2376e− 15 4.8974e− 15 5.8516e− 11 7.7515e− 2

N 3.4100 3.8665e− 1 1.8754e− 8 3.6240e− 15 1.0184e− 14
N log(N) 3.3270e− 1 3.5767e− 8 5.0626e− 16 7.2342e− 15 5.5631e− 15

N(log(N))2 3.7623e− 3 1.7210e− 15 1.7291e− 15 5.2064e− 16 3.7840e− 15
N2 3.5023e− 6 1.9752e− 15 8.7585e− 16 4.1947e− 15 5.5929e− 14

Table 1: Computation of the integral in (56) for xℓ in (54) with grading factor
α = 2. We have underlined in each column the first number, where NQ ≥ N is
satisfied (cf. Corollary 12; note that m = O (N) holds in the considered case).
Note that the working precision in our MATLAB implementation is about 10−16.

α = 1.1

NQ N = 8 N = 32 N = 128 N = 512 N = 2048
20 4.2110 e−7 1.5008 e−1 8.8498 e−1 4.1609 e−1 1.0000
40 2.2196 e−14 1.2963 e−9 9.5680 e−2 9.0889 e−1 4.9303 e−1
80 2.2196 e−14 1.2434 e−14 1.7946 e−9 1.0042 e−1 9.7628 e−1
160 2.2201 e−14 1.4694 e−14 4.2353 e−14 8.7141 e−9 1.1488 e−1
320 2.2196 e−14 1.3668 e−14 4.2508 e−14 2.1433 e−14 2.8493 e−8
N 1.7713 e−1 3.7742 e−5 4.0800 e−14 2.5120 e−14 1.5834 e−13

N log(N) 2.6919 e−11 1.3043 e−14 4.2679 e−14 2.6638 e−14 1.6050 e−13
N(log(N))2 2.2196 e−14 1.2520 e−14 4.0646 e−14 2.5939 e−14 1.7563 e−13

N2 2.1403 e−14 1.3372 e−14 4.0956 e−14 1.3455 e−14 1.0146 e−13

Table 2: Computation of the integral in (56) for xℓ in (54) with grading factor
α = 1.1. We have underlined in each column the first number, where NQ ≥ N
is satisfied (cf. Corollary 12; note that m = O (N) holds in the considered case).
The working precision in our MATLAB implementation is about 10−16. For this
value of α, the error is compared to a reference solution which was computed
by the same method with max

{
3 · 105, 2N2

}
quadrature points.
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Remark 24 (Application to GCQ) For the generalized convolution quadra-
ture method, our new contour quadrature can be efficiently employed to approx-
imate the arising contour integrals. The error analysis in [16] shows that the
target accuracy ε for the contour quadrature approximation has to depend on the
discretization parameter N – for the details we refer to.[16, Theorem 11, Corol-
lary 12]. The numerical experiments in [16] show that the choice NQ = N logN
preserves the overall convergence rates of the (theoretical) GCQ with exact in-
tegration.

Experiment 2: Robustness towards Uniform Time Steps We have
shown numerically that our new contour quadrature allows to approximate ef-
ficiently the integral in (56) for strongly graded meshes. In the following ex-
periment we have applied our method to the case of a very mildly graded mesh
(close to uniform time stepping) to study the robustness of the quadrature
method with respect to the grading factor, i.e., α close to 1.

Table 2 clearly indicates that the performance of our quadrature is robust
(becomes even better) as the mesh becomes close to a uniform mesh, i.e., the
nodes xℓ in (55) cluster around a single point. This property avoids that different
quadrature strategies have to be implemented depending on the strength of non-
uniformity of the nodal points in the divided differences.

Experiment 3: Comparison with Standard Parametrization of the
Circle and Direct Evaluation of Divided Differences Finally, our last
example illustrates the dramatic improvement of our new contour quadrature
in comparison to the simple parameterization M (1 + exp(iθ)), θ ∈ [0, 2π) of the
circle CM in (56) for the quadratically graded mesh. In Figure 2 we show the
results for α = 2 and different values of N .

The evaluation of Newton’s table for computing the high order divided dif-
ferences in our experiment leads, in the case α = 2, to huge errors for N ≥ 64
and even NaN approximations for N ≥ 256.
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Figure 2: Convergence rates for different parameterizations of CM . Top: With
the simple parametrization M (1 + exp(iθ)), θ ∈ [0, 2π). Bottom: With the
parametrization in Definition 5.
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