A POSTERIORI ERROR ANALYSIS FOR ELLIPTIC
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ABSTRACT. The discretisation of boundary value problems on com-
plicated domains cannot resolve all geometric details such as small
holes or pores. The model problem of this paper consists of a tri-
angulated polygonal domain with holes of a size of the mesh-width
at most and mixed boundary conditions for the Poisson equation.
Reliable and efficient a posteriori error estimates are presented for
a fully numerical discretisation with conforming piecewise affine
finite elements. Emphasis is on technical difficulties with the nu-
merical approximation of the domain and their influence on the
constants in the reliability and efficiency estimates.

FI1GURE 1. Intersection of a triangle 7" with the domain
Q) at the boundary.
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1. INTRODUCTION

Porous media or advanced materials with microstructures provide ex-
amples for boundary value problems with small geometric details. Typ-
ically, those details cannot be completely resolved by the mesh of a
finite element discretisation, but have to be involved. This work is de-
voted to the mathematical analysis for the Poisson equation on a do-
main with holes of a mesoscale: Large holes are resolved by the finite
element mesh exactly, but holes of the diameter of the mesh-size and
smaller are not, as illustrated in Fig. 1. Efficient and reliable a poste-
riori error estimates are derived for a conforming piecewise affine finite
element scheme on a triangulation which covers a bigger domain Q*
that includes the domain €2 with holes inside and on the surface.

For elliptic problems on complicated domains, the minimal dimension
of any finite element space is huge since the finite element mesh has
to resolve the geometry. Thus, from the viewpoint of accuracy and
balancing of local errors, we cannot expect that the degrees of freedom
of such a finite element space are distributed in a (nearly) optimal
way. In [HS1], composite finite element spaces have been introduced
where the minimal number of unknowns is independent of the size
and number of geometric details. The combination of composite finite
element spaces with an a posteriori error estimator (used as an error
indicator) allows to design problem-adapted finite element spaces where
the adaptation process starts from very coarse levels.

In addition, by using this a posteriori error estimator the finite element
error can be estimated on discretisation levels where not all geometric
details are resolved by the mesh (but taking them into account by using
composite finite element functions).

Our paper is devoted to the definition and analysis of a reliable and
efficient a posteriori error estimator. As a model problem we will study
the Poisson problem —Awu = f with mixed boundary conditions. We
will consider a Lipschitz domain 2 which arises by removing from a
polygonal domain 2* a possibly huge number of holes. “Holes” are
simple connected domains which are collected in the set of holes C. We
suppose homogeneous Neumann boundary conditions on the boundary
of holes, e.g., for small bubbles of gas.

The discretisation is based on a conforming triangulation 7 of the
overlapping domain €2* with continuous, piecewise affine finite elements
and their restrictions to the domain €2. In a first phase, a 7 -piecewise
affine discrete function U* is computed on 2* while the approximation
of the continuous solution w is given by U := U*|,.
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FIGURE 2. Intersection of a hole w with UE.

Our reliable a posteriori error estimator will be presented in Section 3.
Besides error residuals, we obtain, for an interior hole w € C, the term

n = hw/ |OU /On,,|? ds
Ow

corresponding to du/0dn, = 0 on Jw (and modifications for any hole
which touches the boundary).

We carefully study the efficiency of this contribution where difficulties
arise from the fact that w may be intersected with edges of the trian-
gulation 7 in a quite arbitrary and complicated way; compare Figure 2
for an illustration.

Our main result can be stated as follows. Suppose u € H'(Q) denotes
the exact solution and U = U*|q its discrete approximation. If all
integrals are evaluated exactly (otherwise we obtain inconsistency error
sources 1)), the error in energy norm ||V (u — U)||2(q) is bounded by

0= |lhr fllz@ + [0 210U Jone] | ey + (O 12)2,

weCl

where hr (resp. hg, hy,) is the local mesh-size (resp. edge-size, hole-
size), and [OU*/Ong] is the jump of the normal components of two
(7 -piecewise) discrete gradients across the edges (and standard modi-
fications on the boundary). Theorem 3.1 implies (for exactly matched
Dirichlet boundary conditions) the reliability of 7 in the sense of

IV (u = U)ll2@) < exm.
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Theorem 6.1 shows efficiency, i.e., the converse inequality

In the latter inequality, h.o.t. are known higher order terms and it holds
in a local form. The constants ¢; and ¢, are independent of mesh-sizes
or hole-sizes. They depend on some features of the geometry of holes.
For instance, ¢; stays uniformly bounded if the holes are circular with
diameter h,, < c3 hr for neighbouring elements T of size hy provided a
separation condition is satisfied, namely, two distinct holes w; and ws
have a distance dist(wq,ws) with Ay, + hy, < c¢qdist(wy,ws). To bound
¢y from below, we will assume in addition that h, < ¢4 dist (w,™)
holds. It is stressed that, then, ¢; and ¢y are independent of the way
the edges intersect with holes and tiny pieces as well as entire edges
may lie inside the hole.

As a setting for this, the behaviour of the constants appearing in some
trace estimates and in estimates of norms of appropriate extension op-
erators on some geometry parameters will be investigated in Section 4.
The reliability of the a posteriori error estimator (stated in Theorem
3.1) will be proved in Section 5. The conditions sufficient for the ef-
ficiency estimate of Theorem 6.1 may appear technical at first glance.
Therefore, included examples illustrate the consequences of Assump-
tions 6.1 till 6.8. The proof in Section 7, however, clearly underlines
that the assumptions posed are natural. The analysis of edge and
volume contributions per se requires minor modifications of standard
techniques [V] while the investigations of the hole contributions are
more involved. We emphasise that, in contrast to [DR], where the ef-
fect of approximating the boundary of the domain is incorporated in
the error estimator, our finite element spaces are defined on the true
domain while the construction allows a low-dimensional discretisation
even for very complicated domains.

2. MODEL PROBLEM

As a model problem we consider a domain  C R? which arises by
removing holes from a polygonal domain. More precisely, let Q* C R?
denote a polygonal domain with boundary I'* = 0Q* and let C =
{w; :1 < j < J} be a countable set of simply connected Lipschitz do-
mains w;, the ‘holes’, which have a positive distance from each other
and are all (not necessarily compactly) contained in Q*. The physical
domain Q := Q*\|JC is supposed to be Lipschitz (as a further assump-
tion on the intersections of the hole boundaries dw with I'*). Mixed
boundary conditions are imposed on the boundary I' := 02, namely
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homogeneous Neumann boundary conditions on vy := Q*N 9 (UC), pre-
scribed Neumann data g on 'y := (I'NI'*)\I'p, and prescribed Dirichlet
data up on I'p C I' N IT™ of positive length.

Remark 2.1. Note that I'pUI'y = '™ if 2* includes all holes compactly.
Otherwise, the inclusion I'p UT'y C I'* can be strict.

The strong formulation of the continuous problem reads: Given f €
L*(Q), g € L*(Ty), and up € H(T'p), seek u € H'(Q) satisfying

Au+ f=0 in §, u=up on ['p,

2.1
(2.1) Ju/On =g on Ty, Ou/on =0 on 7.

Since the normal derivative of u vanishes at interior boundaries of holes,
the weak formulation reads: Seek v € H'(Q2) with u|r, = up and

(2.2) /Vu-Vvdx:/fvdx—i-/ guds
Q Q I'n

for all test functions v € Hp() := {v € HY(Q) : v|r, = 0}.

The discretisation of the model problem is based on composite finite
elements which are defined in three steps (i)-(iii) [HS1].

(i) The (overlapping) triangulation. The polygonal domain * is
partitioned exactly by a regular triangulation 7 into closed triangles
T € T in the sense of Ciarlet [BS, Ci], &* = U7. Two non-disjoint
distinct triangles in 7 share either a common edge FE or a vertex z called
node. The set of all edges resp. nodes is denoted by & resp. N. Edges
on the boundary I'* (belong to only one triangle and) are collected in
the set Ep« = Ep U Ey, where Ep- is split into edges of Dirichlet- and
Neumann type as follows. Let |E NT'p| and |E' NI y| denote the one-
dimensional measure of the sets ENI'p and ENT'y, respectively, along
the edge E € &r+; suppose that either |[ENTp| or |[ENTy| is positive
(but not both of them). Then, set £p := {E € &p« : |[ENTp| > 0} and
En =&\ Ep, Eq =&\ &+, and Ty, := UEN resp. '}, == UED.

(ii) The (overlapping) finite element space. Let S* denote the
space of 7-piecewise affine finite elements and S7, its subspace with
vanishing traces on I'}), i.e.,

S ={VeCQ):VI'e T, V|p is affineon T},

(2:3) Sp={V €8 : Vi, =0}.
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(iii) The (restricted) composite finite element space. The spaces
S and Sp are given by

S =8 ={VeC(): VeSS,V =V},
Sp = S)a-
Remark 2.2. Using I'p C I'* we have
Sp,={VeS:VEec&p V|lg=0}.

Remark 2.3. Throughout the paper we write u, v, for functions lying in
the infinite dimensional space H' (Q2), H}, (2) and U,V . .. for functions
in the finite element space S, Sp. Functions on the extended domain
O* have a superscript *, e.g., u*, U*. Approximations to the right-hand
sides and the porosity (see below) are denoted with a tilde superscript
as, e.g., f, g, while f* is the extension of f from Q to Q* by zero. If v
and v* appear in the same context, we understand v = v*|q.

The intersection of an element with the domain and some notations
are illustrated in Fig. 1. Note carefully that domains are open and
connected and that T € 7 and E € & are closed sets in R?; the interior
of T is denoted by int (7).

To define a fully numerical discretisation, we need to approximate
Dirichlet data up € H' (I'p) by the trace of some function U}, € S*.
The finite element scheme requires a stiffness matrix where, for each
element T' € T of area |T|, some constant g|, approximates the ratio
or := |QNT|/|T|, where g € L°(T) and £L°(7) denotes the T-piecewise
constants. Furthermore, the computation involves approximate right-
hand sides f* € L*(Q*) and g* € L*(T'y). Then, the discrete problem
reads: Seek U* € §* and U := U*|q satisfying U* = U}, on I'}, and, for
all V* € 8y,
(2.4) / oVU* -VV*de = | fV*dx +/ §*V* ds.

* Q* F}(\f
Remark 2.4. Notice that the computational cost for solving the discrete
problem (2.4) are small as the geometry is not resolved in detail (use
of %, T';,, T') instead of ©, I'p, I'y) and holes are taken into account
only via an approximate porosity. In the error analysis, those errors
shall be taken into account.
Remark 2.5. The integrals over intersections T'NQ* should be evaluated
by using a composite quadrature rule employing a hierarchical resolu-
tion of the domain (cf., e.g., [HS2, OR]). The efficient implementation
of the a posteriori controlled discretisation scheme presented here will
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be the topic of a forthcoming paper. Some ideas on the adaptive nu-
merical integration will be sketched at the end of Section 3.

3. A POSTERIORI ERROR ESTIMATE

Suppose u € H' () is the exact solution of (2.2) and let U = U*|q be
the restriction of the discrete solution of (2.4). The ingredients of the
error estimator for the energy error of u—U are the volume residual 7gq,
the edge contributions g, the hole errors 7¢, the Dirichlet contribution
1p, and the consistency term 7..

Let hr (resp. hg) be a T-piecewise (resp. E-piecewise) constant weight
to measure the mesh-size (resp. edge-size) regarded as L*-functions
on * (resp. on UE). Then, the volume contribution reads

(3.1) no = [lhr fll12(q) -

For each edge F € &, let ng denote one unit normal on E with fixed
orientation (oriented to the exterior if £ € &p+) and ng € L>®(UE)
denotes their composition, i.e., ng|g := ng. The T-piecewise constant
discrete gradient VU has a jump across each inner edge F € £, and
the difference (VU)|p, — (VU)|r_ is denoted as [VU] on E; T, and
T_ are the two distinct elements which share the edge F such that
ng points into 7. Note that the jump of the normal components
VU] - ng =: [0U/Ong||g is independent of the chosen orientation of
ng. We regard ng and [0U/Ong] as E-piecewise constant functions on
the skeleton UE of edges; UE is the set of all points x on some boundary
JdT of some triangle T' € 7. Then, the edge contribution reads

172 |OU* 2 (. OU"
| I G Gt

€ Gng
Owing to homogeneous Neumann conditions on v, the analogue to the
edge contribution defines the hole contributions,

(3.3) ne = (Z he, /

WEC 8w\1"jj

+

(3.2) Ne = ‘ h
LQ(USQ)

LA(T) ‘

1/2
|8U*/8nw\2ds>

(h, denotes the diameter of w € C). In case that up is the restriction
of a smooth function on I'};, the Dirichlet contribution
(3.4)

np = min{||Vol| 2 : v € H'(Q) such that v =up —U on I'p}
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is of higher order (and then may be neglected). Finally, the abstract
consistency term is given by

(3.5) 7. := sup {/ (f* = f)W*dz
W*eSs .
|| W*”Hl(Q*)Zl

)

Theorem 3.1. There exists an (hr, he,u, U, f, g)-independent positive
constant c¢; such that

| V(u—U) |20 < c1(na +ne +nc +1p +1c).

The constant ¢ depends on the domain ), I'p, 'y, and the shape of
the elements in T (such as their aspect ratio) but neither on the number
or size of the holes in C nor the way they are hit by UE.

o - gywds— [

* *
N

(0—8)VU*- VW*dx} .

Sections 4 and 5 are devoted to the proof of the theorem while efficiency
will be studied in Sections 6 and 7.

A few remarks and examples on the evaluation of the error estimator
will conclude this section.

The evaluation of the term 7e can be performed as described in [V]
since U* is a standard finite element function and &g resp. I'y consists
of triangle edges.

The remaining terms in the error estimator concern integrals over the
intersections 7'M €2 resp. T'N dw which can be realized by adaptively
subdividing T'; a triangle T is subdivided regularly by connecting the
midpoints of edges.

The triangulation 7 (7T'), which is generated for numerical integration
purposes only, is the result of “7 (T') := 0; refine(T,7 (T))”.
procedure refine(7,7);

begin

if T'NQis a simple domain, i.e., the integrals

/ ...dz, / ...ds, / ...ds
TNQ TNow TNTx

can be approximated by standard quadrature formulae,
then 7 :=7 U{T}
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else begin
subdivide 7' regularly to obtain the children {7} }?:1,
for all 1 < j <4 with int (7;) N Q # 0 do refine (7,7 );

end; end;

By using the subdivisions 7 (T), the contribution e can be evaluated
by

36 B=dh Y z/ X (n- Var)? ds

wel TeT ) KT N(ow\I's)
TOw£

where gp ==V (U*|;) and x : Ow — {1/2,1} is given by

(z) = 1 if there is only one K € 7(T') with x € K,
XM= /2 otherwise.

Since the main focus of this paper is the investigation of the hole con-
tributions to the finite element error we discuss the error terms cor-
responding to the data approximation np and 7. under simplifying
assumptions.

Ezample 3.1. Suppose that there is a function U}, € &* with up =
U} |rp- Then, the Dirichlet contribution vanishes by making the ansatz
U* = Up+U; and solving for Ujj. Note that Uj vanishes at the Dirichlet
boundary.

Ezample 3.2. If there exists a continuous u}, : I';, — R with up =
u¥|r,, which is Ep-piecewise smooth, i.e., u%|p € H*(E) for all E € Ep,
np can be of higher order. Indeed, it is proved in Lemma 4.1 of [CB]
that, if U*(z) = u},(z) for all nodes z € N NTp, then

np < csl|h*0%u, /05| oy )

where 0/0s denotes the derivative along E.

Ezxample 3.3. Assume that the data f, g are sufficiently smooth. We
may extend the function f € L? (Q) to f* € L*(Q*) and g € L*(Ty)
to g* € L* (T'%) by zero. In order to evaluate the integrals, we employ
the subdivision 7 (7) to obtain

f V*dr = / fVde =) fvde =Y " Y fVdz.
TeT /ONT TeT KeT(T) Y NK

Since we assumed that the integrals over {2 N K can be approximated
sufficiently accurate and f is smooth, the corresponding consistency
term in 7. can be neglected. In a similar fashion, the integral over
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'y reduces to an integral over I'y and the subdivisions 7 (T") can be
employed for numerical integration as in (3.6).

Remark 3.1. By an adaptive resolution of the boundary generated by
the procedure refine, the amount of work for realising our finite ele-
ment method is proportional to the number of elements in 7 plus the
number of subdivided elements for resolving the curved boundary and,
in this way, depends linearly on the number of geometric details.

4. EXTENSION OPERATORS, TRACE THEOREMS, AND POINCARE
INEQUALITIES ON COMPLICATED DOMAINS

The proof of the reliability and the efficiency of the error estimator is
based on estimates of the norm of certain extension and trace operators.
In this section, we will show that their norms are moderately bounded
for a broad class of domains which might contain a huge number of
small holes.

4.1. Extension operators. Let 2 C O, I'p, I'}), etc. be as in Sec-
tion 2 and H} (%) = {v e H (O : v
will define an extension operator €p : H} () — H} (Q*) so that the
supremum

e = 0}. In this section, we
D

sup  [[VEpv| 209/ VY] 1200 =: c6 < 00.
veHL (Q)\{0}

is moderately bounded for large class of domains, which may contain
a huge number of geometric details.

Remark 4.1. The constant ¢; will depend on cg.

The extension operator €p is constructed in three steps. Let u €
H} (Q). Since Q is a Lipschitz domain it is well known that there
exists an extension operator &% . HL(Q) — H'(Q*). Put u’ :=
@Steiny, ¢ {1 () and note that u|p, = 0. Next, we employ a function
m : Q0 — [0, 1] satisfying m = 1 on Q and m = 0 on I';,\I'p to define
ul = muj € H}, (Q2%). Finally, the local Ritz-projections u9 of uj on
w € C is subtracted to end up with u* := uj — u3 =: €pu. The details
of this construction along with illustrating examples will be discussed
in this section.

Theorem 4.1 (Stein). Let @ C R? be a bounded Lipschitz domain.
Then, there exists an extension operator €3 . HL(Q) — H' (Q¥).
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FIGURE 3. Domain ) with triangular hole w and a
change of the type of boundary conditions outside 0f2
to illustrate Assumption 4.1.

For a proof, we refer to [S]. Theorem 4.1 neither implies that the
operator norm of €5 is moderately bounded (the bound might be
very large for domains with a huge number of small geometric details)
nor that the H'-seminorm of the extended function can be estimated
by the H!-seminorm of the original function. To fulfil homogeneous
Dirichlet boundary conditions on I'},, we assume the existence of an
appropriate cutoff-function.

Assumption 4.1. There exists a function m : Q* — [0,1] such that
m =1 on Q while m = 0 on I, \I'p and, for all v € H' (Q*) with v = 0
on I'p, we have that the product mv belongs to H}, (). Set

M:{veH (V):v|,, =0} = HH(Q), v—mo.

For holes w € C, which do not touch the exterior Dirichlet boundary
I'5\I'p, we may choose m|, = 1. The following example considers the
characteristic model situation of Figure 3.

Ezample 4.1. Let Q = Q*\w where Q* = (—1,1) x (0,1) and
w := int conv{(0,0), (¢,0), (¢,e)} for some 0 < e < 1/2.

(Recall that int and conv denote the interior and convex hull, respec-

tively, of a set.) Suppose I';; := [—1, 6] x {0} for some 0 < § < ¢, while
I'y =I"\I'}), I'p = [-1,0] x {0}. Let (z,y) = r(cosa,sine). We
define the function m by

1 if x € Q,
m(x,y) = { X(x) + (1 — X(ac)) sin (204) if r € w,
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where x(z) =0for 0 <z < and x(z) = (x—0)/(e—9) for 6 <z <e.
It is easy to check that m is continuous in the open set 2* and m =0
on I'p\T'p. Given vf € H'(Q*) with vi| = 0, we define vy := mu}.
The proof of

2+/2

||m||Loo(Q*) =1 and |Vm(z)| < m for all z € O*

is straightforward. Hence, Hardy’s inequality in the form of Theo-

rem 1.4.44 in [G] (where s = 1, p = 2, a = 0) yields v} € HY(Q¥)
and so eventually v; € H} ().

In the next step, we introduce the Ritz-projection of functions H}, (2*)
in the space V := {v € H" () : v|qur;, = 0}.

Definition 4.1. The Ritz-projection R : H}, (*) — V is given for
vy € H} (%) by v} := Roi where v5 € V is the solution of

Vol - Vw = Vol - Vwdx for all w € V.
Qo o

Now, we have all ingredients for defining the extension operator €p.

Definition 4.2. The extension operator €p : H}, (Q) — H} (%) is
given by the composition

(4.1) ¢p = (I — M) medten,

Following the ideas in [OSY], it was proved in [SW] that the norm of
the extension operator €p does not depend on the size and number
of holes in the domain provided a certain separation condition (see
Section 1, (4.2), and [SW, (2.8)]) is satisfied.

To reduce technicalities we focus on some characteristic examples and
refer to [SW] for proofs and general considerations.

Example 4.2. Let Q* C R? denote a Lipschitz domain and {Bj}iens
N C N, be a family of balls with radius €; which are compactly included
in Q* and satisfy a separation condition

(4.2) dist (B;, By) > ¢y max{e;, e} and dist (B;,I') > cre;

for all distinct j,k € N and the global constant ¢; > 0. Let Q :=
O"\U Bjen. Choose m =1 in Q* (cf. Assumption 4.1) and define &p
as in (4.1). Then, the operator norm of &p and its seminorm, i.e., the
constant cg, is bounded independently of card(N) or ¢;.
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Ezample 4.3. For 6 > 0, let Q* = (-1 —-6,1 +(5)2 and w = (—1, 1)2.
Then, there exists a constant cg > 0 so that the norm of every extension
operator € : H'(Q*\w) — H'(*) can be estimated from below by

csd 2 < €.

The following example shows that the separation condition (4.2) is not
necessary in order to bound the norm of the minimal extension operator
by a moderate constant.

Ezample 4.4. Let Q* = (—1, 1)3 and, for j = 1,2, w; = B; x (—1,1).
Here, B; denotes the disc with radius ¢ about the points (£2¢,0)".
Then, the norm of the minimal extension operator € : H' (Q*\w; Uwy)
— H'(Q*) is bounded uniformly as & — 0.

Finally, we revisit Example 4.1 and estimate the norm of the extension
operator.

Example 4.5. Let 2, Q*, w, and the function m be defined as in Example
4.1. Then, the norm and the seminorm of the extension operator €p
as in (4.1) can be estimated form above by C/ (1 —§/e).

This example indicates that the (semi-)norm of the extension operator
¢p behaves critically if the ratio of the length of the Dirichlet portion
Ow N T}, compared to the length of the outer boundary dw N I'™* tends
to one.

4.2. Clément interpolation on complicated domains. The proof
of the reliability of the error estimator makes use of the Clément ap-
proximation [Cl, V, CF] operator P : H},(2*) — S such that, for all
T €T and u* € H' (Q¥),

(4.3) Ju* — PU*HL?(T) + hr [u” — Pu*‘Hl(T) < cohr |U*‘H1(WT) )
(44)  [[p7" (u* = PU*)HLz(Q*) + |t = Pu| g < 10 [0 1 gy -

Here, wr :== U{K € 7 : TN K # (}. The constants ¢g and cio
depend merely on the aspect ratio of the elements. Their quantitative
estimation is given in [CF]. With u* = €pu we obtain that the right-
hand side in (4.4) can be bounded from above by c11 |u] g1 ) where c1y
depends on cg and cqg.

4.3. Trace theorems. Traces of H!-functions along edges have to be
estimated by their norms on adjacent triangles [Cl, CF|. For shape
regular meshes, we have the local estimate for u € H'(T) on the edge
EcCcol,Ee& TeT,

ey < e (B Nl ey + R s o
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and a global version, for u* € H' (Q*),
ey < enn (10720 iz + Y290 ).

Non-resolved geometric details require further estimates.

Definition 4.3. Let w C R? denote a Lipschitz domain of area |w|

and let v C @ be a Lipschitz curve of length |y|. The trace constant
Cly,w) is

2
HUHLQ(y)

(45)  C(y,w):= sup :
vem @\(0} Y]/ 1w 10l 22 + 1@l / 1] ol )

Remark 4.2. Letting v = 1 in (4.5) shows 1 < C(v,w).

The trace constant C'(7,w) is scaling-invariant.

Lemma 4.1. For w and v as in Definition 4.3 and € > 0, define
Xe ' W — we by xe () = ex and w. = X (W), 7. = X (7). Then,
O(’yaawa) - C(’Yvw)'

Proof. Straightforward calculations yield |v| () = e 1lvo Xt (e
k=01, and |[v]|}2,, = e oo xz s, for each v € H'(w) and
|we| = €2|w] or |7.| = €]y| from which we deduce the assertion. d

Ezample 4.6. (a) Let w be a disc with boundary v = dw. Then,
C(y,w) < 3. (b) Let w be a parallelogram and v one of its sides.
Then, C(y,w) < 2.

Proof. For the proof of (a) we refer to [BS, Sec. 1.6] and indicate
the proof of (b) for rectangles (the case of a parallelogram is similar).
Suppose w = (0,a) x (0,b). The mean value theorem guarantees that

f(n) =0t fobf(y) dy for f € H'(0,b) and some 1 € (0,b). The funda-
mental theorem of calculus and Cauchy inequalities then show

(46) F(0) = (b /0 F(y) dy - /0 " ly) dy)?

< 2672 £ sm + 28 oy < 267115 Isom + 260 £ I

Replacing f(y) in (4.6) by v(z,y) (and prime by 9/0y) and integrating
with respect to x over (0,a) we deduce (b). O

In the sequel, we will frequently estimate functions on (subsets of ) holes
and appropriate neighbourhoods thereof.
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Notation 4.1. For a set A C R?, the Chebyshev ball B is the minimal
ball that contains A. The disc with radius 2 diam A about the midpoint
of By is denoted by Vy.

Lemma 4.2. Let w C R? be a domain with diameter h, and let T be
a shape reqular triangulation of R?>. Then,

2 — 2 2
022 ey < 26 (B2t 100y + B lolings)

The constant ci4 is the number of w-intersections with edges.

Proof. Let
o ={wNE:EFE€&EN|wNE|>0}.

For each S € &, define a rectangle Q(S) with one side S and the other
of length h,,. Example 4.6(b) shows

1 _
5” v 12205y < bl o 2208y + Pl v i)

By definition, ¢14 is the number of overlaps of Q(S) C V,, for all S € &,.
This leads to

1 _
§|| vl 22e,) < hot Z lv1Z2000sy) + P Z v 3 o)
Set., Set.,

< cuhy v 7200 + Cuhol vina,. O

4.4. Poincaré inequalities. The proof of reliability and efficiency of
the error estimators requires Poincaré inequalities [N, PW].

Theorem 4.2 (Payne and Weinberger). Let w denote a convex do-
main in R% with diameter h,,. Then, for all w € H' (w) and u, =

fwudx/|w|,
Ju— Ume(w) < he/m |U|H1(w) .

For a nonconvex domain w, we first extend u to a convex neighbourhood
V., and then deduce

(4.7) lu — vl 2w < v —uy, 2w < [lu—uy,llz2)
< diam(V5,) /7 [u| gy < €15 ho [u] g -
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U” solution of (2.4)

\L restriction

‘ u exact solution ‘ ‘U =R, U* approximation of u

- extensio

=€ | < | e=y-U

\'EI:?CC lifting

vl rD:: (up - U)|B

—

w=e-v

extension

g 4/Clément interpolation

e

S
restriction m Q

FIGURE 4. Diagram illustrating the relationship of the
functions U, U*, u, e, e, v, w, w*, W*, W, z* and z.

I
%
<

i
N
S

5. PROOF OF RELIABILITY

Throughout the proof we write a < b for a < ¢b, where the multi-

plicative constant ¢ > 0 is independent of hz, he, u, U, f, g and may

depend on €2, I'p, 'y, and on the shape of the elements or their aspect

ratio. Furthermore, the estimates depend on the numbers

(5.1) macxcard{T €T :TNw#0} and sup card{w eC:x e V,}.
we reEN*

Since emphasis is on many small holes w with h, < hp (others shall be

resolved in ©*) the numbers in (5.1) are moderate.

In the sequel, various functions arise with relationships illustrated in
Figure 4. Recall that U* € S* solves (2.4) and U := RqoU*, where
Rgq is the restriction of a function v : Q* — R to €. Split the error
e:=u—U € H(Q) into e — v and v, where v € H'(Q) satisfies
v=up—UonTpandnp = ||Vv|2q). Given w :=e —v € Hp(Q)
let w* := Epw € HLH(Q*) and let W* := Pw* denote the Clément
approximation to w*. Define 2* := w* — W* € HY(Q*) and z := Rg2*,
W := RoW™*. Observe z € H5(Q2) and z* =0 on I'},. The H'-norm of
W* can be estimated by using a Friedrichs inequality for w* € H}, (2%),
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the approximation properties of the Clément approximation (4.4) and
the continuity of the extension operator &p with respect to the H!-
seminorm

W g1y < W = w[ ey + 1wl 1y
S |w*‘H1(Q*) Sle— U|H1(Q) .
This, a triangle inequality with |e*| g1 (o) S |e|a1 (), and |U*—=v*| g1 S
le| (o) at the end yield
-1 _* —1/2 _« * *
(5.2) || hz' 2" lr2 + Il g 22 I z2e) + | 2% mr @) + W 100
5 |€ — U|H1(Q) 5 |€‘H1(Q) —+ Np-

The definition of v implies [, Vv - Veodz = 0 for all ¢ € H}, (Q). The
choice ¢ = e — v leads to

/Vv-Vedm =3,
Q

Hence, we obtain with e = 24+ W 4 v
(5.3) le |§{1(Q) = /QVe -Vzdx —l—/QVG -VWdz + 1},

The second term on the right-hand side in (5.3) is split into Vu - VW
and VU - VIW. The concept of the porosity o, the weak formulation
(2.2), and (5.2) show (recall that f* and g* vanish outside © and I'y)

(5.4) /QVe-Vde:/Q*(f*—f*)W*dx—k/ (g" — %) W*ds

T
N / (0= 0)VU* - VW*dx < || W* || me S | €| e

For the first term on the right-hand side in (5.3), an integration by parts
on each T'N ) is performed. Careful account on the exact boundary
conditions results in

(5.5) /Ve-Vzdx :/ [0U/0ng| z ds
Q UENQ

+LN(9—8U/8n)zds+[)fzdx—/z@U/ands

gl
with jump terms on UE N := (UE) NS within 2. Next, we will derive
an appropriate representation of the last integral in (5.5). Figure 2
illustrates how edges and boundary pieces might hit a hole w € C.

Let us consider one hole w € C with outer normal n, = —nqg = —n and
boundary dw = ~,Uy)Uvx, where v, := (0w)Ny, 75 := (0w)NI'}, and
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v = (0w) NT%. The edges cut w into a finite number of connectivity
components wy, . ..,wy illustrated in Fig. 2, w \ (UE) = W{w1, ..., ws}.
(Their number J < 1 is limited since w intersects with only a finite
number of elements, cf. (5.1)). On each w;, VU* is constant and equal
to VU*|,,. The divergence theorem shows

(5.6) OU* J0n,,, ds = VU], - /

Ny, ds = 0.
awj .

Ow;

Therefore, for any real constant ¢, we obtain
/ 2*0U* [0On,,, ds = / (2" = c,) OU* [Ony,, ds.
Ow; Ow;

Note that VU™ is, in general, discontinuous across U€g. Besides the
situation in Figure 2 it may happen that 7, has a positive intersection
with the skeleton UEq, |7, N (UEq)| > 0. Even in this case, we have

oU/on = —oU* /on,, — [0U* /Ong| on ENn,, E € &.

Therefore,
/ z*aU*/anwds—/ zaU/ands—/ 2* [0U* [Ong| ds
TN Yoo (Ow)N(UEq)
:/ 2*0U* /On,, ds
Ow

J
- Z/ 2 8Uj*/8nw].ds+/ 2% [0U* [Ong] ds.
j=1 Ow;

(Ugg )ﬂw

We used z* = 0 on 7}, and that the definition of the jumps [0U*/Ong]
does not depend on the underlying orientation of ng. The combination
of the last four identities shows

(5.7)
/ 20U /Onds = —/ 2% [0U* /Ong] d8+/ 2*oU* /On, ds
w (Y Uw)N(UE)

TN

J
+ Z (cw — 2%) 0U* [Ony,, ds.
7=1

Ow;
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A summation over all holes w € C and a rearrangement of boundary
pieces of U{Ow; : j =1,...,J} yield

(5.8) za—Uds:—/ z* {GU ] ds+/ z* o ds
v on (Q*\Q)N(UE) Ong % \I'n on

ou* oU*
+ Co — 2~ ds+/ Co — 2~ { }ds).
Z (/8w( ) ong, m(ug)( ) Ong

Combining this representation with (5.5) leads to
(5.9)

/Ve-Vzdx:/ [OU* [Ong] z* ds
Q UEq

+/ (g*—aU*/an)zds—ir/f*z*dx

* *

F]\7
oU* oU*
+ 25—y, —ds—i—/ Z*—c, { ]ds).
Z (/80.) ( ) ong, wN(UE) ( ) Ong

weCl

The first three summands on the right-hand side of (5.9) can be es-
timated with standard arguments (e.g., from [V]) utilising (5.2) and
Cauchy’s inequality. The last contribution of (5.9) is bounded by

_ . ou~
I S e I L

weCl

The trace inequality (cf. Lemma 4.2), (5.1), and a Poincaré inequality
with proper ¢, (cf. Subsection 4.4) result in

* - * 2 |2
2% = o lz2nen S ha' 17 = colliaqry + o 12T
2
(5.11) S o 12wy -

Its combination with (5.10) yields (recall the finite overlap of the neigh-
bourhoods V,, from (5.1)) and the boundedness of the extension oper-
ator)

S [ loU/one) ds S ne g
For the second last term on the right-hand side of (5.9), we consider
first the case that |[', N Ow| = 0 and employ analogous arguments to
obtain

* aU* *
> [ =) G ds S el
wee VoW w
since Ow\I'}, equals dw up to a set of measure zero (cf. (3.3)). If
II', N Ow| > 0 we set ¢, = 0. Employing 2* = 0 on I'}, and the trace
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theorem (cf. Section 4.3) yield
/a (2 — ) DU* o,y ds 5 0U* /0l (e

1/2
- * 12 *|2
S ol P M TS R
Since |0w N T%)| > 0 and using again z*|% = 0, a Friedrichs’ inequality

leads to ”Z*HiQ(Vm) S_, he, |Z*|2Hl(Vw) and

* aU* *
Z/aw(z —cy) on, ds Smelz ‘Hl(Q*) :

wel

The combination of the above estimates concludes the proof of Theo-
rem 3.1. U

6. EFFICIENCY: GEOMETRIC PRELIMINARIES AND MAIN RESULT

This section is devoted to the presentation of sufficient assumptions for
the converse (called efficiency) estimate of Theorem 3.1 and so to the
sharpness of that (reliability) estimate. For the ease of this discussion,
we assume throughout this section that all holes are compactly embed-
ded in Q*. Otherwise, the hole boundaries (0w) N T}, and (Ow) N Ty
would require a special treatment, i.e., a modification of the extension
operator €p. The main part of this section is devoted to characterise
a class of holes (of quite general geometry) that allows for an efficiency
estimate. The main result is stated in Theorem 6.1 and proved in the
subsequent section.

Assumption 6.1. For any hole w € C, the neighbourhood V,, from
Notation 4.1 is compactly included in 2*.

Remark 6.1. The definition of V,, could be generalised by replacing the
factor 2 in Notation 4.1 by any other factor which is larger than one
or even to more generally shaped neighbourhoods V,,, where 0V, has
positive distance to w.

Definition 6.1. For any ball B let pg be the standard mollifier pp €
D(B) with 0 < pg < 1, i.e., for the ball B around z with radius r > 0,

pp(r) =exp(l/r +1/(|zr —2|* —r)) if x € B and pg(x) = 0 else.

Assumption 6.2. Suppose that, for any edge E € &, there exists a
ball B C Q* with E N Bg = 0 and
(a) diam(Bg) =~ hg (size control),
(b) dist(Bg, E) < hg (distance control),
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(¢) JopByde~ Ry (porosity control).
Let o denote the union of By with all triangles T' € 7 with £ C T

Assumption 6.3. Suppose that, for any element T" € 7, there exists
a ball By C Q*\ (UE) with

(a) diam(Br) = hr (size control),
(b) dist(Br,T) < hr (distance control),
(¢) JopB,de~ h% (porosity control).

Set or ‘= TU BT.

The local efficiency estimate for the contribution of the hole w € C
requires a set of additional assumptions.

First, we will mollify and extend the normal n along 0w (that points
into w; n = —n,,) to a neighbourhood of dw. Some examples in Figure 5
illustrate Assumption 6.4.

Assumption 6.4. Suppose that, for each hole w € C, there exists
¢ = q(w) € N disjoint curves 7, ...,7, and open balls By,..., B, so
that
(a) w is a Lipschitz domain (global smoothness),
(b) Ow =7, U---U~, and 71, . ..,7, are C? (local smoothness),
(c) the orthogonal projection P : B — Ow (projection property),
is unique on B := By U---U B,
(dl) BNy #0,
(d2) B, N~; has positive distance to dw \ v;, distortion
(d3) By,..., B, are pairwise disjoint, < control )
(d4)  ho ~ |yl ~ |0w] ~ [B; N V[V,

Introduce the extended domain Q**, the intersections V' and V**
with Bj (w) and ¢ (w) as in Assumption 6.4 (cf. Figure 6, 7 for an
illustration) by

q(w)
(6.1) Q*:=QUY Y Bj(w), VIM:=V,nQ, 1 :=V,nQ"

wel j=1

Since f € L*(R), the solution of the differential equation belongs to
the Hilbert space Hi (Q) :={u € H'(Q) : Au € L? (Q)} with

1/2
(%U)Hi(g) = (UaU)Hl(Q) + (Au, AU)LQ(Q) , ||u”Hi(Q) = (anh{i(g) .
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LR

FIGURE 5. The domains (a) and (b) satisfy Assump-
tion 6.4 with moderate constants in the estimates while
this is not the case for domain (c).

FIGURE 6. Domain €2 with holes. The extended domain
Q** arises by including the shaded half balls to €.

The following assumption concerns the existence of an extension oper-
ator for a subspace of H} (). Let us introduce

W(Q):={ueH (Q):0u/on=00n~vy}&S
equipped with the H} (£2)-norm.
Assumption 6.5. Adopt Assumption 6.4 and suppose

(a) there exists a continuous extension operator €, : W (Q2) —
Hj (%) so that, for all w € W (Q) and w € C,

||€Lu||Hi(V;*) < ci6 HUHH%/(V“Z;nt) .
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F1GURE 7. Neighborhood V,, of w with boundary 0V,
intersection V" = V, N Q and extended intersection
V=V, NnaQ.

(b) If w € W(Q) and Au € H' (V™) then, A€ u € H* (V**) and
HAQELuHHl(V;*) < ar HA“”HI(W;M) )

(c) if w is affine on some B; (w) N2, then, the extension € u is the
affine extension on B; (w).

Remark 6.2. Assumption 6.5 implies that, for all u € W () and v €
C6° (Bj (w)),

(6.2) / Vo -V (€ru) —vA (Epu)dx = 0.
Bj(w)

Remark 6.3. Consider 2 = (—1,0)x(0,1) and Q* = (—1,1)x(0, 1) with
the hole w = 0*\Q and the inner boundary v := QN Q*. Then, there
exists no extension operator from H} () into H} (2*). The reason is
that all functions w € H (Q*) satisfy w € Hj,, (©2) and, hence, w|, €

H? (), while the trace map tr : H' () — HY2 (v) is surjective. As
an example, the function u € H} (Q) defined by u(z) = r*sin (Ap),
where (r, ) are polar coordinates in € centred at (0,1/2) and X\ €

(0,1), belongs to H} (2) and cannot be extended to u* € Hi (Q*).!

The extension operator €j is constructed for one typical polygonal
hole.

!Thanks are due to M. Costabel for providing us with this Remark.
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Example 6.1. Let 2, Q*, w,~ be as in Remark 6.3. Then, there exists an
extension operator €, : W (Q) — H] (2*) which satisfies Assumption
6.5. For u € H} (), the extended function u* := €pu is given, for
r € w, by

0
(6.3) u* (1, m9) == u(—x1, 22) + 2xla—u (0, 23) .
21
For u € W (€2) and z € Q, let
0
ug (x) == xla—xul (0, z2) .

The definition of W (Q) implies that du/0z; is constant on v and,
hence, us € S. The function u; := u — uy satisfies duy /0x; = 0 on 7.
The linearity of €, allows to investigate v := €pu; and uj := Epus
separately. For u; and (x1,xs) € w, the extension operator simplifies to
w} (z1, %) := uy (—x1,22). The density of C* (Q) N H} (Q) in Hi (Q)
implies that it is sufficient to investigate the boundedness of € u; for
functions u; € C*(2) N W (€2). Simple calculations result in uj =
uy, Vuy = Vuy on v and A (€puy) (1, 22) = (Auy) (—21,22) on w.
Consequently, for all uj € H} (€2), there holds

||UTHHi(Q*) =2 ||u1||H£(Q) :
If, in addition, Aut € H' (2*), then,
12830 ey = 2 1801 -

The definition (6.3) directly implies that affine functions are extended
analytically, i.e., “by themselves”. The proof of

||u;"Hi(Q*) N ||u2||H£(Q)> ||AUT||L2(Q*) = ”AU1||L2(Q) =0
is straightforward. Next,
[uzll g1 (@) S 10u/021 | g1y -

~y

The continuity of the trace operators in H} () implies ||us|| (@) <
||| 1} (e from which we conclude

[0 1y @y S llwall gy ) + w2l g o

< ullgy @) + 2 llu2ll gy @) S llulls o -
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To mollify and to extend the normal field n to some neighbourhood of
the hole boundaries we employ the ansatz (recall the definition of B
from Assumption 6.4)

Ano P in B,
(6.4) N = { 0 otherwise.
The function A is a generalization of bubble functions from the a poste-
riori error analysis [V] with an integral mean orthogonal to the direction
(cos o, sin ).

Assumption 6.6. The function A = \, € C* (R?) in (6.4) depends
continuously on a € [—7, 7] and satisfies
(a) suppre € Band 0 < A\, <1 on dw

|>\a|Loo(R2) + hy, |>\0‘|W11°°(IR2) 5 1 } (CUt-Oﬁ fllIlC‘ElOn)7

for any «; there exists a sub-arc 7, C ; o
() With [7;|'~ ;] and A > 1/2 on 3, (positivity),
(c) fvwmt ($°Y) - Ndx =0 (a-orthogonality).

Remark 6.4. The compactness of [—m, 7| and the continuous depen-
dence of A on « imply an a-uniform estimate in Assumption 6.6.(a).

We need an abstract assumption on the hole boundaries.

Assumption 6.7. The mollified and extended normal field IV is of the
form (6.4) where ) satisfies Assumption 6.6 and, for all ¢ € R?,

(6.5) hot g N||i2(vw) + he g - N|§{1(vw)
<l il < / (¢-N)(q-n)ds.

We illustrate these abstract assumptions with two typical examples.

Ezample 6.2. (polygonal hole). Assume that w is a polygonal hole
satisfying Assumption 6.4 with straight lines ; orthogonal to n;. Then,

q
/ \q-N\%szZ/ lg- An o P> du
Vo j=1 Bjﬂvw
q q
“Yolenl [ e Yl nf B0V
j:l Bjan ]:]_

q
BNV,
_y B0k ‘/ lq-nPds Shy [ lg-nf da.
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Ficure 8. Circular hole w in Example 6.3.

The estimate of the H!-seminorm follows analogously by using

/ IVA|]” dz < 1.
B;NV,

The second inequality in (6.5) follows from

Ow j=1 J i
S lenl [ Ads< [ @ N)(a-mas
j=1 b7 ow

Remark 6.5. The estimates in Example 6.2 are based on Assumptions
6.4 and 6.6 and so are the multiplicative constants hidden in the nota-
tion <.

Remark 6.6. The condition (6.5) is partly redundant as g - N2,
is bounded by diam(V,,)|q - N|g1(y,) owing to a Friedrichs inequality.

The following example shows that Assumption 6.7 may hold with mod-
erate constant for holes with curved boundary (cf. Figure 8).

Ezxample 6.3 (circle). If Ow is a circle and F' is a sub-arc of dw we
find polar coordinates centred at the midpoint of w and, without loss
of generality, suppose w = B(0,¢) and F = {e(cos(p,siny) : —a <
¢ < a} for some ¢ > 0 and 0 < a < 7w/2. Let A be a scaled
mollifier with centre at (¢,0) and support B := B((g,0),r) for r :=
emin{1/2, \/2(1 — cosa)}. then, N(r,¢) := op(r, ¢) (cos ¢, sin ) sat-
isfies Assumption 6.7. The constant in (6.5) is independent of £ but
degenerates if « is small.

Remark 6.7. The previous two examples illustrate that and how N can
be constructed for a quite large class of piecewise smooth domains:
Corners are cut-off. It is also clear that the support V,, of N can be a
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FiGUurE 9. Triangulations covering a hole w. The balls
of connecting edges are denoted by D; while the balls for
each smooth component 7, are denoted by B;

subset of an arbitrary small neighbourhood of dw on the expense of a
large constant in (6.5).

The subsequent notions concern the patch around a hole and allow that
holes may intersect arbitrarily with the mesh.

Definition 6.2. Let
T, ={T €T :TNow#0}.

A sequence (Tj)}]:o of triangles in 7 is edge-connected if, for j =
1,2,...,J, the triangles T;_;, T} share a common edge F;.

Some characteristic examples illustrating Assumption 6.8 are depicted
in Figure 9.

Assumption 6.8. For any hole w € C and any K € 7, there is a
sequence of edge-connected triangles (K j)‘j]:O in 7 with J = J(K)
such that, for all edges F; = K,;_1 N K, there exists a ball D; with
radius r; centred at M; € I; and

(a) ] Z hw’

(b) D; C O,

(c) the endpoints of E; have positive distance to D; N Ej.

Remark 6.8. Assumption 6.8 can be generalized by allowing more gen-
eral domains D; for connecting neighbouring triangles with finite over-
lap.

Remark 6.9. The definition of the balls D; in Assumption 6.8 implies
that, for all U* € S* and U := U*|,, there holds U* = €,U on D;.
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The constants in the preceding assumptions of this section enter in
the multiplicative constant in the efficiency estimate. Its proof is the
contents of the next section. Recall the definition of o and op from
Assumption 6.2 and 6.3.

Theorem 6.1. Under the Assumptions 6.1-6.8 and notation of Sec-
tion 2 we have with f; = A&Lu

. 2
i+ 0+ 0¢ S Velliao) + D e min 1o = 95)[72sory,)

Ecén
+2 g min || f = fr [Faneg + D_PE 0in |1 = fz 22000,
TeT Eec&
. 2
+§hi min [|ff = foll iz -
w

Remark 6.10. Theorem 6.1 even holds in a more local form as shown
in the proof in Section 7.

Remark 6.11. The third and fourth term are of higher order if the
right-hand side f is smooth in the sense that it is the restriction of a
function F in H'(Q*). Indeed, f = F|q yields

min IS = Jr 2 @nor) < ngie%H F = Frlle2en S hr | VE 2(0r)

according to (4.7) and Assumption 6.3. An analogous estimate holds
forming,er || f—fE 120000, If £ € H' (V!™), Assumption 6.5 implies
i =A€pu e H} (V**) and the last term is of higher order

,If?é% 17— fw”L?(vy) S ho ||A€LUHH1(V;*) < cirhe, ||AU||H1(v$nt)

= cirho || f |z vriney -

The second term is of higher order if there exists G € H' (I'y;) such
that g = G|y, . In this case, there holds

. 2 3/2 2
E%; hg gé% (g — gE)HL?(EﬂFN) S |k aG/(‘aS”m(r;V)‘
N

7. PROOF OF EFFICIENCY

The following results provide local estimates summarised in Theo-
rem 6.1. The combination of Lemma 7.2, 7.4, 7.5, and 7.6 is the proof
of the theorem.
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Definition 7.1. For any edge F with ball Bg from Assumption 6.2 let
Ok be the piecewise quadratic product of the two barycentric coordi-
nates with g = Ay Ap on 7' € 7 with £ C 0T that vanishes on 0T\ E
and equals s(hg — s)/h% on E with respect to the arc-length s. Let

bg = PBrg — cppp, for cp:= / Or dx// pBg dr € R.
Q Q

Lemma 7.1. Under the Assumption 6.2, the function bg from Defini-
tion 7.1 equals s(hg — s)/h% on E with respect to the arc-length s and
satisfies supp bp C 0g,

(7.1) /bde:o, Lip(bs) < 1/hp, and | Vbg ||y < L.
Q

Proof. Since E N By = () in Assumption 6.2, by = (g on E and
fQ bpdx = 0 follows by definition of cg. The functions pp, and Bg
are Lipschitz with Lipschitz constant < 1/hg. Hence it remains to
verify 0 < cg < 1. Assumption 6.2.(c) shows cg < 1. The remaining
estimate then follows from Assumption 6.2. O

Definition 7.2. Let d = 1,2. For any d-dimensional measurable set
V C R?, let |w N V] denote the d-dimensional measure of w NV and set

Cy ={wel: |wnV|>0}.

Lemma 7.2. We have, for all E € £ and fr € R, & := E\ {E},

g 10U* 5] 1325y S 1 Ve |2gano + 2% 1Lf = f5 I 2@noe)
+ Y b 10U [0n, [12gan) + D he 10U /0ne] |72 unquery -

UJECO—E w€eCg

Proof. Let Jg denote the constant [0U*/Ong| and notice that (since bg
reads s(hg — s)/h% on E)

(7.2) hie | T 1Py = hie/3 T / 0U* /0ns] by ds.
E
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The last integral has a representation as in (5.9) with z* replaced by
bg, namely,

U/QJEtU;dSZZu/lve"VbEbe—-/(flU;dx
E Q Q

(7.3)
(g [ ] o)

weCl

For holes w € C with wN E = (), the function bg equals zero on wN(UE)
and we set in these cases ¢, = 0. Thus, the sum ) . over the last
integral in (7.3) reduces to a sum over all w € Cpg, i.e.,

> JE/ w—be)ds + Z/ e {ggg} o —bp) ds.

weCp w€eCg

For the remaining holes w € Cg, we choose the constant ¢, such that
J.np(Co — bg)ds vanishes. Then, ¢, equals bp(§) for some & in the
convex hull of w N E and for any z € w we have |z — ¢| < h,. By
Lemma 7.1, bg is Lipschitz with Lip(bg) < 1/hg. This and a Cauchy
inequality for the length |Ow| show

(7.4) [ lew — b [OU* 00| ds < || e — b || 200 | OU* /0n || 2200
Ow

S \3W|1/2 ho/hE| OU*/On,, ||L2(8w)-

The sum ) . for the second last integral in (7.3) reduces to >
Note that 3 ,cc, h? < h2% and, thus,

weCop*

1/2

/ e — bi) [OU* fomu|ds < | S bl 0U* /0, |2agan

wel wECo

In the same fashion, we obtain by using |w N (UE")| < h,, and Cauchy’s
inequality the estimate

oU*
Z /m(ué") {

on
welp €

J -0

ds<zh
E

welp

S<Z

weCp

[6U

8n5

L2(wN(UE))

1/2
LQ(wn(us/))> '

[\

hl/2 {@]

Gng




A POSTERIORI ERROR ANALYSIS FOR COMPLICATED DOMAINS 31

By construction, [,bgdz = 0. Hence, [, fbgdx can be replaced by
Jo(f = fE) bg dx. Taking into account (7.1) we are led to

/E(]E bE ds < ||V6HL2(QOUE) + ||hT (f - fE>||L2(QﬂcrE)

1/2 , 12
ou* ou*
A1 |+ (Z o] ) .
wECo Ong, weCp One L2 (wN(UE"))
This concludes the proof. O

Definition 7.3. For any triangle T with ball By from Assumption 6.3
let Br be the cubic bubble function which is the product of the three
barycentric coordinates, Gy = A\ Aa A3, on 1" that vanishes on 0T. Let

br == 0Br —crpp, for cr :z/ﬁde//pBT dr € R
Q Q

Lemma 7.3. Under the Assumption 6.3, the function by from Defini-
tion 7.8 satisfies supp by C o7, and

/dex:o, Lip(b) < 1/he, and || Vbr |z < 1.
Q

Proof. The proof is analogous to that of Lemma 7.1 and so omitted. O

Lemma 7.4. We have, for all T € T and fr € R,

(75) N hrfiz@ary S Ve llZz@non
+ 0 || f = fr 12 np) + Z ho | OU* 00 |72

wECaT

Proof. Suppose that fr is the integral mean of f over Q N or and
calculate

(7.6) N hef z2@nor) = e (f = f7) 2oy = 107 fr [ 22(000r)-
Assumption 6.3 implies that |o7| < h2 and that (7.6) is bounded by

(7.7) W32 fr 2 oareny S ML fr byl fr — f|dx

Qﬂo’T

+h%|fT/ br f dal.
QOUT
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This and Cauchy’s and Young’s inequalities lead to
(7.8) N1 hrf 122 0mr) < 10T flI72(0000)

S (5 = ) Besorom + ([

Qﬂo’T

bedx>2.

We focus on the estimate of fmgT br fdx. By choosing z* = by in

(5.9), we obtain
(7.9)

/ beda:—/ Ve -Vbrdx
QOUT

B (/&u (br — ds+/ﬂ(ug) (br — cu) BZJ ds).

wel

Next, we choose the constants ¢, in (7.9). For all holes w € C which are
compactly included in o7, we choose ¢, := [, brds/ |0w| and observe

[br — CWHLQ((%J) S |6W|1/2 he/hr.

For all remaining holes, we choose ¢, = 0 and, since by vanish at some
point of Jw in these cases, we get the estimate

1/2
lbr — Cw”L?(aw) = ||bTHL2(8w) S 0wl / he /.

Thus, the last sum in (7.9) vanishes while the second last sum can be
estimated form above by

ou*
> [ Jor s < 3 o =l | G
wee Y Ow weC w I1L2(0w)
) 1/2
< ¥ el ol [
weCo hT an“’ L2(8w) N weCo an“’ L2(8w)
The combination of those estimates concludes the proof. O

Lemma 7.5. Under Assumptions 6.1, 6.4, 6.5, 6.7, 6.8 we have, for
any fo € R, ff:= A€ru, and V™ as in (6.1),

hi/2 HaU*/anHL?(aw) S |€L€‘H1(V;*) + ho || f1 — waL2(VJ*) :

Proof. Abbreviate g7 := VU* |7€ R? for T € T and obtain
(7.10)

/ |oU* /on|? ds = Z/

lgr - n|* ds < {FnaTX/ lgr - n|* ds
TGT TNow

TNOow
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from card 7, < 1. Let the maximum on the right-hand side of (7.10)
be attained for K € 7. Hence,

(7.11) U™ /on|* ds < lqx - n|* ds.
Ow Ow

Let o denote the polar angle of qx € R? and define A = )\, as in
Assumption 6.6. Combining du/0n = 0 on <, the last condition in
Assumption 6.6, and the divergence theorem we derive, for any f, € R,

a7l S / (4 - N)(qc - n) ds
Ow

- /a (g - N)((gx — Vu)-n)ds
- ine {(V(gx - N)) (gg —Vu)+ (qx - N) (f — fo)} dz.
With Assumption 6.7, we infer

(7.12)  lax - nlli2ew S Wk - 0)llz2@whs 7 lax — Va2

+ll(ax - )l 2oy B2 I = Fooll caquamey
The combination of (7.12) with (7.10) yields
huljﬂ ||8U*/8””L2(aw) 5 ||QK - Vu”Lz(ngnt) + he ||f - fw’\Lz(V$nt) .
It remains to consider the first term on the right-hand side. Since
(7.13)  lax — Vull oy < IVell oininrey + lax — Vull o yine gy

it is sufficient to investigate the last term in (7.13). Take the sequence
of edge-connected triangles (K j)‘jjzo as in Assumption 6.8 and recall
the definition of the balls D; with radii 7; therein. Put ¢; := gk, and
notice that continuity of U* along E; implies that g; — g;_; is parallel
to ng;. Then,

(7.14) g5 — q;-1| = | [0U* /ong, ]| for j =1,2,...,J.
Define a bubble function b; supported in D; with

10511 oo,y 75 105 wr0e 0y S s

/ bjds =~ r;, and / b; =0.
D;NE; D,

J
Put u* := €pu, ff := —Au*, and e} := u* — U*. Remark 6.9 implies
e} = €re on D;. An integration by parts shows, as in the proof of
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Lemma 7.2, by using (6.2)

(715)  hy|[0U /ong,]| ~ / b, [0U* /on, ] ds
D;NE;

= / (Vb, - Ve* — frb;)dx
D.

S ‘€2|H1(D]-) + ho |7 — waLQ(D]-) :
The combination of (7.14)-(7.15) results in
(7.16) 19 = gj-1ll oqugney S o |[OU* /O ]

S ‘€2|H1(D]-) + ho [T — waLQ(D]-) :

Owing to J < 1, triangle inequalities lead to
J

(717) HQK - VUHLQ(Vuz;ntmT) S ‘62|H1(VJ*) + Z Hq] - qj—1||L2(V$"t) .
j=1

Utilizing (7.16)-(7.17) and summing the result for all 7" € 7\ { K} with
TNV = () we conclude

lgr — VUHB(VZW\K) S |62‘H1(V;*) + ho || f1 — waL?(Vw**) :

The combination with (7.13) concludes the proof. O

Lemma 7.6. Under Assumptions 6.1, 6.4, 6.5, 6.7, 6.8 we have, for
any f, €R, [ := A€ru, and VJ asin (6.1),

(7.18) hy/? [[[0U* /0ne]ll 2 ureyy < 1€ lmqvsey + ho IFE = Foll oz

Proof. We adopt the notations of the previous proof. Consider any
E € & satistying |EF Nw| > 0. The estimate

ho (10U [Onell S €| g p,) + o 1T = foll Lo,
is derived as (7.15). By employing \/m /h, <1 we obtain
(7.19) hi/z H[aU*/anE]Hm(me) S ‘e*|H1(V;*) + ho |lf7 — waL2(V;) :

Since, for any hole w € &, the number of edges E with |[ENw| > 0
is bounded by a moderate constant (cf. (5.1)) a summation of (7.19)
over all E' € & leads to (7.18). O
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