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Abstract

In this paper we propose and analyze a new, fast method for the numerical solution of
time domain boundary integral formulations of the wave equation. We employ Lubich’s
convolution quadrature method for the time discretization and a Galerkin boundary
element method for the spatial discretization. The coefficient matrix of the arising
system of linear equations is a triangular block Toeplitz matrix. Possible choices to
solve the linear system arising from the above discretization include the use of FFT
techniques and the use of data-sparse approximations. By using FFT techniques, the
computational complexity can be reduced substantially while the storage cost stays
unchanged and is, typically, high. Using data-sparse approximations the gain is reversed:
the computational cost is (approximately) unchanged while the storage cost is reduced
substantially.

The method proposed in this paper combines the advantages of these two approaches.
First, the discrete convolution (related to the block Toeplitz system) is transformed
to the (discrete) Fourier image, thereby arriving at a decoupled system of discretized
Helmholtz equations with complex wavenumbers. A fast data-sparse (e.g. FMM, panel-
clustering) method can then be applied to the transformed system. Additionally, signif-
icant savings can be achieved if the boundary data is smooth and time-limited. In this
case the right-hand sides of many of the Helmholtz problems are almost zero and can
hence be disregarded. Finally the proposed method is inherently parallel.

We analyze the stability and convergence of these methods, thereby deriving the
choice of parameters that preserves the convergence rates of the unperturbed convolution
quadrature. We also present numerical results which illustrate the predicted convergence
behaviour.

1 Introduction

Boundary value problems governed by the wave equation

∂2
t u− ∆u = f
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arise in many physical applications such as electromagnetic wave propagation or the computa-
tion of transient acoustic waves. Since such problems are typically formulated in unbounded
domains, the method of integral equations is an elegant tool to transform this partial differ-
ential equation to an integral equation on the bounded surface of the scatterer.

Although this approach goes back to the early 1960s (cf. [18]), the development of fast
numerical methods for integral equations in the field of hyperbolic problems is still in its
infancies compared to the multitude of fast methods for elliptic boundary integral equations
(cf. [37] and references therein). Existing numerical discretisation methods include colloca-
tion methods with some stabilization techniques (cf. [6], [7], [13], [14], [15], [32], [36]) and
Laplace-Fourier methods coupled with Galerkin boundary elements in space ([3], [11],[16],
[19]). Numerical experiments can be found, e.g., in [20].

In [17] a fast version of the marching-on-in-time (MOT) method is presented which is
based on a suitable plane wave expansion of the arising potential which reduces the storage
and computational costs.

We here employ the convolution quadrature method for the time discretisation and a
Galerkin boundary element method in space. The convolution quadrature method for the
time discretisation has been developed in [28], [29], [30], [31]. It provides a straightforward
way to obtain a stable time stepping scheme using the Laplace transform of the kernel function.
For applications to problems such as viscoelastic and poroelastic continua see [39, 40, 41].

The coefficient matrix in the arising system of linear equation is a block-triangular Toeplitz
matrix consisting of N blocks of dimension M ×M , where N denotes the number of time
steps and M is the number of spatial degrees of freedom. Due to the non-localness of the
arising boundary integral operators, the M ×M matrix blocks are densely populated.

In the literature, there exist (at least) two alternatives to solve this system efficiently. In
[23], FFT-techniques are employed which make use of the Toeplitz structure of the system
matrix and the computational complexity is reduced to O

((
N log2N

)
M2
)
, while the storage

complexity stays at O (NM2). In [22], [21], [27], the M ×M block matrices are approximated
by data sparse representations based on a cutoff and panel-clustering strategy. This leads
to a significant reduction of the storage complexity while the computational complexity is
reduced compared to the naive approach (cost: O (N2M2)) but increased compared to the
FFT approach.

Also the classical Galerkin discretization of the retarded boundary integral equation, see
[3, 19], leads to a block Toeplitz system matrix where the matrix blocks are of size M ×M
and sparse. More precisely, the number of non-zero entries in the block Toeplitz matrix is, for
piecewise constant boundary elements, of order O(M2) and , for piecewise linear boundary

elements, of order O
(
M2+ 1

8

)
for this approach. Here, the total cost for the computation of a

full Galerkin approximation sums up to O(M2N) for piecewise constant boundary elements
and to O(N2M3/2) for piecewise linear boundary elements. A drawback of this approach,
however, is that the numerical quadrature for computing the coefficients of the system matrix
has to be carried out on the intersections of the boundary element mesh with the discrete
light cone. The stable handling of these intersections and the implementation is especially
complicated for curved panels.

In this paper, we propose a new approach which combines the advantages of the FFT-
technique with the sparse approximation. We transfer the block Toeplitz system to the Fourier
image by the discrete Fourier transform and then face the problem of computing approximate
solutions of Helmholtz problems at different (complex) wave numbers. These Helmholtz prob-
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lems are fully decoupled and can hence be efficiently solved on parallel computers. Relatively
standard, fast methods (e.g. fast multipole method, hierarchical matrices) for the solution of
frequency domain scattering can effectively be applied to these problems; see [8, 34] and [4].
It may also be possible to further reduce the computational cost of assembling the matrices by
using the techniques for multifrequency analysis described in [26, 43]. Further, we also show
that if the boundary data is sufficiently smooth and compatible and of limited time duration,
instead of N , only O(N ǫ), for any fixed ǫ > 0, Helmholtz systems need to be solved. Our
method is similar and shares some properties (the need to solve a series of elliptic problems
and the intrinsic parallelizability) of certain methods for parabolic equations; see [25, 42].
A related, interesting variation of the convolution quadrature for convolution kernels whose
Laplace transform is sectorial can be found in [38].

A short description of the results of this paper has been published in the proceedings of
the Waves 2007 conference [5].

2 Integral Formulation of the Wave Equation

Let Ω ⊂ R3 be a Lipschitz domain with boundary Γ; typically, e.g., in scattering problems, Ω
is an unbounded domain. In this paper, we present efficient methods for numerically solving
the homogeneous wave equation

∂2
t u− ∆u = 0 in Ω × (0, T ) (2.1a)

with initial conditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)

and boundary conditions
u = g on Γ × (0, T ) (2.1c)

on a time interval (0, T ) for some T > 0. For its solution, we employ an ansatz as a single
layer potential

u(x, t) =

∫ t

0

∫

Γ

k(x− y, t− τ)φ(y, τ)dΓydτ , (x, t) ∈ Ω × (0, T ) , (2.2)

where k(z, t) is the fundamental solution of the wave equation,

k(z, t) =
δ(t− ‖z‖)

4π‖z‖ , (2.3)

δ(t) being the Dirac delta distribution. The ansatz (2.2) satisfies the homogeneous equation
(2.1a) and the initial conditions (2.1b). The extension x → Γ is continuous and hence, the
unknown density φ in (2.2) is determined via the boundary conditions (2.1c), u(x, t) = g(x, t).
This results in the boundary integral equation for φ,

∫ t

0

∫

Γ

k(x− y, t− τ)φ(y, τ)dΓydτ = g(x, t) ∀(x, t) ∈ Γ × (0, T ) . (2.4)

Existence and uniqueness results for the solution of the continuous problem are proved in [30]
and [3, Prop. 3].
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3 Numerical Discretisation

3.1 Time Discretisation via Convolution Quadrature

For the time discretisation, we employ the convolution quadrature approach which has been
developed by Lubich in [28], [29], [30], [31]. We do not recall the theoretical framework here,
but directly apply the approach to the wave equation. We make use of the following notation
for the time convolution:

V (∂t)φ :=

∫ t

0

v(t− τ)φ(τ)dτ,

where V denotes the Laplace transform of the operator v; for reasons behind using this
notation see [28]. Note that, for the retarded single layer potential (2.2) v is a parameter
dependent integral operator, i.e., (v(t− τ)φ(τ)) (x) =

∫
Γ
k(x − y, t− τ)φ(τ, y)dΓy (where we

write φ(τ, y) for (φ(τ)) (y)) and V (s) is the Laplace transform of v given by (3.4).
To discretize the time convolution we split the time interval [0, T ] into N + 1 time steps

of equal length ∆t = T/N and compute an approximate solution at the discrete time levels
tn = n∆t. The continuous convolution operator V (∂t) at the discrete times tn, is replaced by
the discrete convolution operator, for n = 0, 1, . . . , N ,

(
V (∂∆t

t )φ∆t
)
(tn) :=

n∑

j=0

ω∆t
n−j(V )φ∆t(tj) . (3.1)

The convolution weights ω∆t
n (V ) are defined below (see (3.3)); whenever the underlying oper-

ator, v respectively V , is clear from the context, we will write ω∆t
n . The time-discrete problem

is given by: Find φj(·) = φ∆t(·, tj), such that

n∑

j=0

(
ω∆t
n−jφj

)
(x) = gn(x) , n = 1, . . . , N, x ∈ Γ, (3.2)

where gn(x) is some approximation to g(x, tn), or g(x, tn) itself.
For the derivation and the general framework and various applications, we refer to [28],

[29], [30], and for our concrete problem to [22]. If the time discretisation is related to the
unconditionally stable BDF2 scheme, the convolution weights ω∆t

n are implicitly defined by

V

(
γ(ζ)

∆t

)
=

∞∑

n=0

ω∆t
n ζn, |ζ | < 1. (3.3)

Here, V (s) : H−1/2(Γ) → H1/2(Γ), Re s > 0, is the single layer potential for the Helmholtz
operator ∆U − s2U = 0,

(V (s)ϕ) (x) =

∫

Γ

K(‖x− y‖, s)ϕ(y)dΓy, where K(d, s) :=
e−sd

4πd
. (3.4)

Note that, K is the Laplace transform of the original time-domain kernel function (2.3). The
function γ (ζ) is the quotient of the generating polynomials of the BDF2 scheme and is given
by

γ (ζ) =
1

2

(
ζ2 − 4ζ + 3

)
.
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3.2 A decoupled system of Helmholtz problems

As recommended in [28, 30] the convolution weights ω∆t
j can be numerically computed by

applying the trapezoidal rule to its representation as a contour integral,

ω∆t
j (V ) =

1

2πi

∮

C

V (γ(ζ)/∆t)

ζj+1
dζ, (3.5)

where C can be chosen as a circle centred at the origin of radius λ < 1. The approximate
convolution weights are then given by the scaled inverse discrete Fourier transform

ω∆t,λ
j (V ) :=

λ−j

N + 1

N∑

l=0

V (sl)ζ
lj
N+1, where ζN+1 = e

2πi
N+1 , sl = γ(λζ−lN+1)/∆t.

Let us extend the above two formulae to negative indices j < 0; note that this implies
ω∆t
j = 0 for j < 0. As N → ∞ or λ→ 0 we have ω∆t

j −ω∆t,λ
j = O(λN+1), j = −N, . . . , N ; see

Proposition 5.4. By extending the sum in (3.1) to j = N and substituting the approximate
weights in (3.2) we obtain a new system of equations for the new unknown φ∆t,λ:

(
V (∂∆t,λ

t )φ∆t,λ
)

(tn) :=

N∑

j=0

ω∆t,λ
n−j (V )φλj = gn, n = 0, 1, . . . , N. (3.6)

The effect of the approximation on the difference between φ∆t,λ and φ∆t is discussed later.
Substituting the definition of ω∆t,λ in (3.6) we obtain the system of equations

λ−n

N + 1

N∑

l=0

(
V (sl)φ̂l

)
(x)ζnlN+1,= gn(x), n = 0, 1, . . . , N, (3.7)

where

φ̂l :=

N∑

j=0

λjφλj ζ
−lj
N+1.

Note that the inverse transform is given by

φλl =
λ−l

N + 1

N∑

j=0

φ̂jζ
lj
N+1. (3.8)

Now, notice that, after multiplying by λn, applying the discrete Fourier transform with
respect to n to both sides gives N + 1 decoupled problems:

(
V (sl)φ̂l

)
(x) = ĝl(x), for all x ∈ Γ, (3.9)

where

ĝl(x) =

N∑

n=0

λngn(x)ζ
−ln
N+1.

We have thereby reduced the problem of solving numerically the wave equation to a system
of Helmholtz problems with complex wavenumbers sl, l = 0, 1, . . .N . An example of the range
of frequencies is given in Figure 1.
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Figure 1: A range of complex frequencies for N = 256, T = 2, and λN = 10−4. For this example it
holds that Re sn > 4.6, n = 0, 1, . . . , N .

Remark 3.1 An important remark to make here is that

V
(
∂∆t,λ
t

)
φ∆t,λ = g implies φ∆t,λ = V −1

(
∂∆t,λ
t

)
g.

This can be seen by applying the scaled discrete inverse Fourier transform, see (3.8), to

φ̂l = V −1(sl)ĝl,

thereby obtaining

φλn =
λ−n

N + 1

N∑

l=0

φ̂lζ
nl
N+1 =

λ−n

N + 1

N∑

l=0

V −1(sl)ĝlζ
nl
N+1 =

N∑

j=0

ω∆t,λ
n−j (V −1)gj.

The last step is obtained from the definition of ĝl and ω∆t,λ
n (V −1); see also (3.6) and (3.7).

This fact will help us in obtaining optimal error and stability estimates.

3.3 Spatial Discretization. Galerkin Boundary Element Methods

In the previous section we have derived the semi-discrete problem: For n = 0, 1, . . . , N, find
φλn ∈ H−1/2 (Γ) such that

N∑

j=0

ω∆t,λ
n−j φ

λ
j = gn, n = 0, 1, . . . , N. (3.10)

We have further shown that the above system is equivalent to a system of decoupled Helmholtz
equations (

V (sl)φ̂l

)
(x) = ĝl(x), for all x ∈ Γ. (3.11)
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In this paper we use a Galerkin boundary element method for the spatial discretization.
Let G be a regular (in the sense of Ciarlet [10]) boundary element mesh on Γ consisting of
shape regular, possibly curved triangles. For a triangle τ ∈ G, the (regular) pull-back to the
reference triangle τ̂ := conv

{(
0
0

)
,
(
1
0

)
,
(
0
1

)}
is denoted by χτ : τ̂ → τ . The space of piecewise

constant, discontinuous functions is

S−1,0 := {u ∈ L∞ (Γ) : ∀τ ∈ G : u|τ ∈ P0} ,

and, alternatively, we consider the space of continuous, piecewise linear functions

S0,1 :=
{
u ∈ C0 (Γ) : ∀τ ∈ G : (u ◦ χτ )|τ ∈ P1

}

for the space discretisation. As a basis for S−1,0, we choose the characteristic functions for
the panels τ ∈ G, while the basis for S0,1 consists of the standard hat functions, lifted to the

surface Γ. The general notation is S for the boundary element space and (bm)Mm=1 for the
basis. The mesh width is given by

h := max
τ∈G

hτ , where hτ := diam (τ) .

For the space-time discrete solution at time tn we employ the ansatz

φh,λn (y) =
M∑

m=1

φn,mbm(y) , (3.12)

where (φn,m)Mm=1 ∈ RM are the nodal values of the discrete solution at time step tn. Therefore,
for the Helmholtz problems (3.11), the corresponding ansatz is

φ̂hl (y) =

M∑

m=1

φ̂l,mbm(y), (3.13)

where the relationship between φ̂l,m and φn,m is given by φ̂l,m =
∑N

n=0 λ
nφn,mζ

ln
N+1.

To solve for the coefficients φ̂l,m we impose the integral equations (3.11) not pointwise but

in a weak form: Find φ̂hl ∈ S of the form (3.13) such that

M∑

m=1

φ̂l,m

∫

Γ

∫

Γ

K(‖x− y‖, sl)bm(y)bk(x)dΓydΓx =

∫

Γ

ĝl(x) bk(x)dΓx, (3.14)

for l = 0, 1, . . . , N, k = 1, 2, . . . ,M . Note that this is equivalent to imposing (3.10) in a weak
form in order to compute φh,λn .

4 Algorithmic Realization and Sparse Approximation

Applying the Galerkin boundary element method to the time-discrete equations (3.1) obtained
by convolution quadrature, results in a block triangular, block Toeplitz system, each block
being a dense Galerkin boundary element matrix; see [30] and [21]. This block system can be
solved by using FFT techniques, see [23], with computational complexity of O

(
M2N log2N

)

and a storage complexity of O (M2N). Alternatively (see [27]), one can approximate the
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block matrices An by a cutoff strategy and panel-clustering and directly solve the system
without FFT. This reduces the storage cost significantly, while the computational complexity
is O (M2N1+s), where the small value of s depends on the chosen discretisation. By rewriting
(3.1) as a system of decoupled Helmholtz problems we are able to combine the advantages of
both approaches.

We note that also the classical Galerkin discretization of the retarded boundary integral
equation leads to a block Toeplitz system. Solving this system, see [3, 19], nevertheless results
in suboptimal, higher than linear, computational complexity.

4.1 Reduction of the number of Helmholtz problems to be solved

A closer look at the Helmholtz problems tells us that only half of the problems need to be
solved. Since φ̂l, ĝl, and sl are discrete Fourier transforms of real data, we know that they
are, for l = 1, 2, . . . , ⌊N

2
+ 1⌋, the complex conjugates of φ̂j, ĝj, sj, for j = ⌈N

2
+ 2⌉, . . . , N + 1;

for the case of sl see Figure 1. Most importantly for us this means that

φ̂N+2−j = φ̂j, j = 1, 2, . . . ,

⌈
N

2
+ 1

⌉
. (4.1)

Depending on the properties of the right-hand side g, it is possible to avoid the solution of
a much larger number of Helmholtz problems without destroying the accuracy of the overall
approximation. A particularly favourable case arises if g as a function of time can be extended
to R as a smooth function with support contained in [0, T ].

Let us assume that for some x ∈ Γ, g(x, ·) ∈ C∞([0, T ]), and that

∂nt g(x, 0) = ∂nt g(x, T ) = 0, for all n ∈ N0.

Further, define gλ(x, t) := λt/∆tg(x, t). Then it is clear that also gλ(x, ·) ∈ C∞([0, T ]) and
that also all the partial derivatives with respect to time vanish at the end points of the time
interval [0, T ]. The reason for defining this function is that ĝn(x) is an approximation of a
Fourier coefficient of gλ(x, t) as we see next.

Let gλ(x, ·) be extended to the domain [0, T + ∆t] by zero (i.e. in a smooth way) and
further extended to R in a periodic way with period T + ∆t. Let then

gλ(x, t) =

∞∑

j=−∞

aj e
2πit

T+∆t , aj =
1

T + ∆t

∫ T+∆t

0

gλ(x, τ)e
−2πijτ
T+∆t dτ

be its Fourier expansion. Approximating the integral in the definition of the coefficients aj by
the trapezoidal rule we obtain exactly the values 1

N+1
ĝj(x), where, assuming N even,

aj ≈
1

N + 1

N∑

n=0

gλ(x, tn)e
−2πijn

N+1 =
1

N + 1
ĝj(x), for 0 ≤ j ≤ N/2.

See Figure 2 for an example of a right-hand side with the above properties and the decay of
its Fourier coefficients. The solutions of Helmholtz problems with right-hand sides that are
close to zero (all the right-hand sides on the central plateau in Figure 2) can be set to zero
with no adverse affect on the accuracy of the overall method.

Remark 4.1 A right-hand side g with the above properties can be thought of as a smooth
signal of finite durability. If g does not have these properties it may still be possible to split
the signal into a number of smooth and time limited signals.
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Figure 2: We plot max‖x‖=1 |ĝn(x)| for N = 256, T = 2, λN = 10−8, and g(t, x) the Gaussian pulse
given by (6.5). The solution to the nth Helmholtz problem with n in the central plateau in the above
plot, is accurately approximated by zero.

4.2 Data sparse approximation

To find a solution to (3.9) we need to solve a number of dense linear systems each of sizeM×M .
The cost of solving a single system by a direct method is O(M3) and if a good preconditioner
for an iterative method is available this can be reduced to O(M2). In both cases the storage
costs are O(M2). The cost of recovering the values φj,m from φ̂l,m is negligible since it can be
done exactly (if we ignore errors due to finite precision arithmetic) and efficiently using the
FFT in time O(MN logN); see also Remark 5.11.

One possibility for reducing these costs is to use panel-clustering or fast multipole tech-
niques. We explain the basic idea behind these methods.

Let An be the nth linear system to be solved in (3.9), i.e.,

(An)kj =

∫

Γ

∫

Γ

K(‖x− y‖, sn)bj(y)bk(x)dΓydΓx.

Further we denote by I the index set I := {1, 2, . . . ,M} and refer to subsets τ ⊂ I as clusters
and define corresponding subsets of the boundary Γ by

Γτ := ∪j∈τsupp bj.

We call a pair of clusters τ × σ a block. The corresponding block of the matrix An is then
given by

(An|τ×σ)kj =

{
(An)kj if k ∈ τ and j ∈ σ,

0, otherwise.

In the following definition, B(c, r) denotes the ball centred at c ∈ R3 and radius r > 0.
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Definition 4.2 A block b = τ × σ is said to be η-admissible, for some η < 1, if there exist
rτ , rσ > 0 and cτ , cσ ∈ R3 such that

rτ + rσ ≤ η‖cτ − cσ‖ and Γτ ⊂ B(cτ , rτ), Γσ ⊂ B(cσ, rσ).

For an admissible block our goal is to find a separable approximation of the fundamental
solution:

K(|x− y|, s) ≈
L∑

l,k=1

uτk(x)s
τ,σ
kl v

σ
l (y), x ∈ Γτ , y ∈ Γσ. (4.2)

As indicated by the notation, we require that the basis functions uτk(·) (respectively vσl (·))
depend only on the cluster τ (respectively σ), and that the coefficients sbk,l depend only on
the block cluster b = τ × σ. Such an expansion allows us to approximate the block An|τ×σ of
the matrix by a low rank matrix:

An|τ×σ ≈ USV ⊤, (4.3)

where

(U)kl :=

{∫
Γτ
uτl (x)bk(x)dΓx, if k ∈ τ, l = 1, . . . , L,

0, otherwise,
(4.4)

(V )jl :=

{∫
Γσ
vσl (y)bj(y)dΓy, if j ∈ σ, l = 1, . . . , L,

0, otherwise,
(4.5)

and (S)lm := sτ,σlm . Note that for An|τ×σ we need O(|τ ||σ|) amount of storage, whereas for
USV ⊤ O(|τ |L + |σ|L). If L ≪ max{|τ |, |σ|}, it is significantly advantageous to use the low
rank approximation of the block.

An extensive literature exists on the use of these methods to speed up the solution of
the Helmholtz integral equations discretized by Galerkin boundary elements [2, 4, 12, 34, 35].
Most of this literature is however on the Helmholtz problem with a purely real wave number.
For a purely real wave number the single layer potential representation is not always invertible,
therefore certain stabilization methods need to be used. In our case the imaginary part of the
wave number is strictly positive and we can use the single layer representation. The details of
applying these “fast” methods to our case, together with algorithms and complexity estimates,
will be given in a forthcoming paper. Here we investigate the effect of perturbations, due to
the application of the fast methods, on the stability and accuracy. We assume that the kernel
function K(·, sl) in (3.9) is replaced by a separable approximation Kpc(·, sl) such that

|K(d, sl) −Kpc(d, sl)| ≤
δ

d
, for some δ > 0. (4.6)

The solution of the resulting perturbed system is denoted by φ̂pc
l,m. To obtain a uniform

approximation (4.6) the length of expansion L needs to depend both on the block cluster
b = τ × σ and on sl. Typically L is chosen so that

L ≥ C

(
Re sl‖cτ − cσ‖ + log

1

δ

)d−1

, (4.7)

where C depends on the admissibility parameter η and d = 2, 3 is the space dimension.
Explicit and sharp estimates on the optimal choice of L are difficult to obtain, especially for
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complex wave numbers. In practice, one would estimate the error by a product of a Bessel and
a Hankel function; see e.g. [1, 8]. Nevertheless, an important observation that can be made is
that once L is greater than some threshold, the threshold depending on sl, the convergence is
exponential. This means that high accuracy can be obtained at little extra cost.

5 Error Analysis

In the previous section we have introduced a method to reduce the numerical solution of
the wave equation to a system of Helmholtz problems. We have also described two ways of
reducing the cost of solving these systems by introducing further approximations. In this
section we investigate the stability and convergence of both the basic method and the further
approximations. This allows us to adjust the control parameters of these methods to the
required accuracy in an optimal way.

Let the approximation to the unknown density φ(x, tn) obtained by the pure Lubich’s
method, i.e. with exact convolution weights, be given by φhn ∈ S. In [30] it is proved that if
the data g is sufficiently smooth and compatible, then

‖φhn(·) − φ(·, tn)‖H−1/2(Γ) ≤ C(∆t2 + hm+3/2), (5.1)

where m = 0 for a piecewise constant basis and m = 1 for piecewise linear basis. By smooth
and compatible we mean that g ∈ H5

0 ([0, T ];H1/2(Γ)) where

Hr
0([0, T ];H1/2(Γ)) :=

{
g : Γ × [0, T ] → R : there exists g∗ ∈ Hr(R;H1/2(Γ))

with g = g∗|[0,T ] and g∗ ≡ 0 on (−∞, 0)
}
,

Hr(R;H1/2(Γ)) :=

{
g : Γ × R → R :

∫ ∞

−∞

(1 + |ω|)2r‖(Fg)(·, ω)‖2
H1/2(Γ)dω <∞

}
,

and F denotes the integral Fourier transform with respect to the time variable t ∈ R.
Our goal is to prove that the parameters in our method can be chosen so that convergence

rates in (5.1) are preserved.

5.1 Errors due to the perturbation of ω∆t
n

Let Vh(s) : S → S be defined by

(Vh(s)ϕ, ψ)L2(Γ) := (V (s)ϕ, ψ)L2(Γ) , for all ϕ, ψ ∈ S.

Whenever necessary, we will identify the inner product (·, ·)L2(Γ) with its extension to the
dual pairing H−1/2(Γ)×H1/2(Γ). The solution by the convolution quadrature, i.e. with exact
weights, is given by, see equation (5.5) in [30],

φh = V −1
h (∂∆t

t )gh

whereas with the perturbed weights the solution is given by

φh,λn =
(
V −1
h (∂∆t,λ

t )gh
)

(tn),

11



(see Remark 3.1), where gh ∈ S is the L2-projection of g on S:

(gh, ψ)L2(Γ) = (g, ψ)L2(Γ), for all ψ ∈ S.

For the remainder of the paper we will make use of the following notation:

‖ · ‖+1 = ‖ · ‖H1/2(Γ)←H−1/2(Γ) and ‖ · ‖−1 = ‖ · ‖H−1/2(Γ)←H1/2(Γ). (5.2)

Lemma 5.1 Let Re s ≥ σ0 > 0. Then

‖V −1
h (s)‖−1 ≤

Cstab

min(1, σ0)
|s|2.

Proof. The result follows immediately from the definition of Vh(s) and the coercivity estimate
for V (s) (see [3]):

Re (sV (s)ψ, ψ)L2(Γ) ≥ C−1
stab

min(1, σ0)

|s| ‖ψ‖2
H−1/2(Γ).

Remark 5.2 For ω ∈ R, there holds

γ
(
λeiω

)
=

(λ+ 3) (1 − λ) + 8 (1 − λ)λ sin2 ω
2

+ 8λ2 sin4 ω
2

2

− iλ sinω
(
2 (1 − λ) + λ

(
1 + 2 sin2 ω

2

))
.

For the real part, we obtain the estimate

Re
γ
(
λeiω

)

∆t
≥
(

1 − λ

2
+ 4λ2 sin4 ω

2

)
/∆t.

For 0 ≤ λ < 1, we have the uniform bound with respect to ω.

Re
γ
(
λeiω

)

∆t
≥ Re

γ (λ)

∆t
=

(3 + λ)(1 − λ)

2∆t
≥ 3(1 − λ)

2∆t
.

For the modulus, the (rough) upper estimate holds
∣∣∣∣∣
γ
(
λeiω

)

∆t

∣∣∣∣∣ ≤
C

∆t
with C = 53/2.

Lemma 5.3 Let Wh(s) := V −1
h (s)/s2. Then,

‖ω∆t
j (Wh)‖−1 ≤ 2CstabeT. (5.3)

Further, for sufficiently smooth and compatible g, the identities

V −1
h (∂∆t

t )g = Wh(∂
∆t
t )
(
(∂∆t
t )2g

)
(5.4)

and, for N ≥ 4,
V −1
h (∂∆t,λ

t )g = Wh(∂
∆t,λ
t )

(
(∂∆t
t )2g

)
, (5.5)

hold, where (∂∆t
t )2g denotes the two-fold application of the multistep approximation, in our

case the BDF2 scheme.

12



Proof. The bound for ‖ω∆t
j (Wh)‖−1 follows from the Cauchy estimate by choosing the circle

with radius e−∆t/T as the integration contour in (3.5), Remark 5.2, and Lemma 5.1:

‖ω∆t
j (Wh)‖−1 ≤ ej∆t/T max

‖z‖=1

∥∥Wh

(
γ(e−∆t/T z)/∆t

)∥∥
−1

≤ Cstab

min(1, (1 − e−∆t/T )/(2∆t))
ej∆t/T ≤ 2CstabTe

j/N .

Applying the (scaled) inverse discrete Fourier transform to the identity V −1
h (sl)ĝl = Wh(sl)s

2
l ĝl,

we see that V −1
h (∂∆t,λ

t )gh = Wh(∂
∆t,λ
t )g̃h where

g̃hn =
λ−n

N + 1

N+1∑

l=0

ĝhl s
2
l ζ
ln
N+1, sl = γ(λζ−lN+1)/∆t.

The inverse discrete Fourier transform of s2
l is

1

N + 1

N+1∑

l=0

(γ(λζ−lN+1)/∆t)
2ζ ljN+1 ≈

λj

2πi

∮

C

(γ(λζ)/∆t)2

ζj+1
dζ =

λj

∆t2
δj (5.6)

where

(γ(ζ))2 =

∞∑

k=−∞

δkζ
k =

(
3

2
− 2ζ +

1

2
ζ2

)2

.

Since (γ(ζ))2 is a polynomial of order 4 and N ≥ 4 the coefficients λj

∆t2
δj are reproduced

exactly, without any quadrature error in (5.6). Therefore

g̃hn =
1

∆t2

n∑

j=0

δn−jg
h
j

which is exactly the result of applying the BDF2 multistep method twice, where it is implicitly
assumed that g(t) = 0 for t ≤ 0. The result for V −1

h (∂∆t
t )gh is proved similarly, but with no

restriction on N ; see also [30].

Proposition 5.4 Let 0 < λ < 1. Then

‖V −1
h (∂∆t

t )gh − V −1
h (∂∆t,λ

t )gh‖H−1/2(Γ) ≤ 2CstabeT
2 λN+1

1 − λN+1
∆t−1.

Proof. Let aj := λjω∆t
j (Wh) and let âj := λjω∆t,λ

j (Wh), Wh(s) = V −1
h (s)/s2. Then âj is the

discrete Fourier transform approximation to aj for j = −N, . . . , N and, see [24],

‖aj − âj‖−1 =

∥∥∥∥∥

∞∑

l=1

aj+l(N+1) + aj−l(N+1)

∥∥∥∥∥
−1

≤
∞∑

l=1

‖aj+l(N+1)‖−1

≤ λj
∞∑

l=1

λl(N+1)‖ω∆t
j+l(N+1)‖−1 ≤ 2CstabeTλ

j λN+1

1 − λN+1
,

where we have used the bound (5.3). Therefore

‖ω∆t
j (Wh) − ω∆t,λ

j (Wh)‖−1 ≤ 2CstabT
λN+1

1 − λN+1

and the result follows from the definition of the discrete convolution and identities (5.4) and
(5.5).

13



Theorem 5.5 Let the exact solution φ(·, t) be in Hm+1(Γ) for any t ∈ [0, T ], data g ∈
H5

0 ([0, T ];H1/2(Γ)), 0 < λ < 1, and let the boundary element space be S = Sm−1,m for
m ∈ {0, 1}. Then the discrete solution

φh,λn =
(
V −1
h (∂∆t,λ

t )gh
)

(tn)

satisfies the error estimate

‖φh,λn − φ(·, tn)‖H−1/2(Γ) ≤ Cg

(
λN+1

1 − λN+1
T 2∆t−1 + ∆t2 + hm+3/2

)
,

where Cg depends on the right-hand side g, Cstab, and the time interval length T .

Proof. The result is a direct consequence of Proposition 5.4 and (5.1); see [30, Theorem 5.4].

5.2 Error due to the perturbation of Vh(s)

We investigate the effect of perturbing Vh(s), in particular the effect of approximate evaluation
of the kernel K(d, s) by separable expansions. If these perturbations could be chosen analytic
in s, then a stability and error estimate from Lemma 5.5 in [30] could be used in which there
is no loss of powers of ∆t. Unfortunately due to numerical stability issues, see [4, 8, 33], this
is not the case for the problem at hand: different expansions need to be used for different
values of s. Hence we will simply assume that

‖V ε
h (sl) − Vh(sl)‖+1 ≤ ε, l = −N,−N + 1, . . . , N − 1, N (5.7)

and investigate how this perturbation affects the final solution.

Lemma 5.6 Let Re s > σ0 > 0 and let ε < 1
2
C−1

stab

min(1,σ0)
|s|2

. Then (V ε
h (s))−1 is bounded and

‖ (V ε
h (s))−1 ‖−1 ≤ 2Cstab

|s|2
min(1, σ0)

.

Proof. Let us write
V ε
h (s) = Vh(s)

[
I − V −1

h (s) (Vh(s) − V ε
h )
]
.

From the estimate ‖V −1
h (s)‖−1 ≤ Cstab|s|2/min(1, σ0), see Lemma 5.1, we see that ε <

1
2
C−1

stab min(1, σ0)/|s|2 is sufficient for (V ε
h (s))−1 to exist and to be bounded as above.

Lemma 5.7 Let min
l=0,1,...,N

Re sl > σ0 > 0 and ε < 1
2
Cstab

min(1,σ0)
max

l=0,1,...,N
|sl|2

. Then

‖ω∆t,λ
j (Qh) − ω∆t,λ

j (Qε
h)‖−1 ≤ CTλ−jε∆t−1,

where C =
(

Cstab

min(1,σ0)

)2

,

Qh(s) :=
V −1
h (s)

s4
, and Qε

h(s) :=
(V ε

h (s))−1

s4
.

14



Proof. Using the fact Q−1
h (s) = s4Vh(s) we obtain the bound

‖Qh(sl) −Qε
h(sl)‖−1 = ‖Qh(sl)(s

4
l V

ε
h (sl) − s4

l Vh(sl))Q
ε
h(sl)‖−1 ≤

(
Cstab

min(1, σ0)

)2

ε.

From this and the definition of the perturbed convolution weights the result follows.
Let us define the solution of the ε-perturbed convolution equation by

φλ,h,ε := (V ε
h )−1(∂∆t,λ

t )g = Qε
h(∂

∆t,λ
t )

(
(∂∆t
t )4g

)

and as before
φλ,h := V −1

h (∂∆t,λ
t )g = Qh(∂

∆t,λ
t )

(
(∂∆t
t )4g

)
.

In the next result we estimate the difference between the two.

Proposition 5.8 Let min
l=0,1,...,N

Re sl > σ0 > 0 and ε < 1
2
Cstab

min(1,σ0)
max

l=0,1,...,N
|sl|2

and let the data g be

sufficiently smooth and compatible. Then

‖φλ,h,εn − φt,λ,hn ‖H−1/2(Γ) ≤ CεT 2λ−N∆t−2,

with C > 0 as in Lemma 5.7.

Proof. The result is a direct consequence of the above lemma.
The above result together with Remark 5.2 implies that to obtain optimal convergence it

is sufficient to insure that ε ≤ CλN∆t4.
Let us now investigate what is the effect of perturbations to the kernel function K(d, s).

In order to do this we assume

|K(‖x− y‖, sl) −Kpc(‖x− y‖, sl)| ≤ δ
1

‖x− y‖ for all x, y ∈ Γ (5.8)

for l = 0, 1, . . . , N , and define the operator V pc
h (s) : S → S by

(V pc
h (s)ψ, ϕ)L2(Γ) =

∫

Γ

∫

Γ

Kpc(‖x− y‖, s)ψ(y)ϕ(x)dΓydΓx.

Proposition 5.9 Let (5.8) hold. Then, there exists C0 > 0 such that

‖V pc

h (sl) − Vh(sl)‖+1 ≤ C0h
−1δ.

Hence if δ ≤ 1
2
C0Cstabh

min(1,σ0)
maxl |sl|2

≤ Ch∆t2 we have the estimate

‖pcφλ,hn − φλ,hn ‖H−1/2(Γ) ≤ CδTh−1λ−N∆t−2

holds, where
pcφλ,h = (V pc

h )
−1

(∂∆t,λ
t )g.

Proof. Let ϕ ∈ S. The well known L2-continuity of the single layer potential for the Laplacian
and a scaling inequality for boundary element functions lead to

‖(V pc
h (sl) − V pc

h (sl))ϕ‖H1/2(Γ) ≤ δ sup
ψ∈S(Γ)

‖ψ‖
H−1/2(Γ)

=1

∫

Γ×Γ

|ϕ (y)| |ψ (x)| 1

‖x− y‖dsxdsy

≤ Cδ sup
ψ∈S(Γ)

‖ψ‖
H−1/2(Γ)

=1

‖ϕ‖L2(Γ) ‖ψ‖L2(Γ) ≤ Ch−1δ ‖ϕ‖H−1/2(Γ) .
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The estimate of the error in the solution is then a direct consequence of Proposition 5.8 and
Remark 5.2.

In the following result, the binary relation A . B is used to denote the existence of a
constant C independent of any discretization parameters such that A ≤ CB. Further A ∼ B
implies A . B and B . A.

Corollary 5.10 Let the conditions of Theorem 5.5 be satisfied, let (5.8) hold, and let

hm+3/2 . ∆t2, λN+1 ∼ ∆t3, δ . λNh∆t4 . h7m/2+25/4.

Then the optimal rate of convergence is achieved,

‖pcφλ,hn − φ(·, tn)‖H−1/2(Γ) ≤ C∆t2,

where C depends on the data g.

Remark 5.11 According to the above result λ should be chosen as λ ∼ ∆t3/(N+1) = e
3

N+1
log T

N .
Since the rounding errors, in the same manner as the errors due to panel-clustering, are
magnified by λ−j, λ should be chosen in the interval

√
eps < λN < 1, where eps is the machine

accuracy. In IEEE double precision this is approximately 10−16, therefore the accuracy of the
method is limited by the choice λ > 10−8/N . This accuracy limit can however be improved if
an n-trapezoidal rule is used to compute the weights ω∆t,λ

j with n = jN , j > 1.

Remark 5.12 The condition on the accuracy of the panel-clustering approximation is rather
stringent. However since the convergence of the separable expansion is exponential for large
enough length of expansion L, see (4.7), the computational costs of the panel-clustering method
depend only logarithmically on the required accuracy. Therefore the overall computational cost
is not affected significantly.

If we had assumed that V pc
h (s) − Vh(s) is analytic in s and could be bounded by C|s|2,

significantly better error estimates could be obtained by using Lemma 5.5 in [30]. Unfortu-
nately, due to the well-known numerical stability issues with the multipole expansions for the
Helmholtz kernel [4, 8, 33], different types of expansions need to be used in for different ad-
missible block; the choice of the block depending on the wavenumber sl. This restricts us from
using the more favourable results of Lemma 5.5 in [30].

5.3 Error due to the reduction of the number of linear systems

Corollary 5.13 Let 0 ≤ λ < 1 and σl = Re sl. Then

‖φ̂hl ‖H−1/2(Γ) ≤ C1(∆t)
−2‖ĝl‖H1/2(Γ),

where C1 = 53 Cstab

min(1,σl)
.

Proof. The result is a direct consequence of Lemma 5.1 and Remark 5.2.
Let Nz ⊂ {0, 1, . . . , N} determine the Helmholtz problems the solution of which will be

computed; the rest will be approximated by zero. Then we define the resulting approximation
to φh,λ by

∅φh,λn (x) :=
λ−n

N + 1

∑

l∈Nz

φ̂hl (x)ζ
ln
N+1.
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Corollary 5.14 Let n ∈ {0, 1, . . . , N}. If

max
l /∈Nz

‖ĝl‖H1/2(Γ) ≤ C−1
1 λn(∆t)4,

then we obtain optimal order convergence at time step tn:

‖∅φh,λn − φh,λn ‖H−1/2(Γ) ≤ ∆t2.

Proof. The proof follows directly from Corollary 5.13.
Next we show that if the right-hand side is smooth and of finite duration, it is sufficient

to solve only a few Helmholtz systems. Let us introduce the space of functions that are zero
at both t = 0 and t = T .

Hr
00([0, T ];H1/2(Γ)) :=

{
g : Γ × [0, T ] → R : there exists g∗ ∈ Hr(R;H1/2(Γ))

with g = g∗|[0,T ] and supp g∗ ⊂ [0, T ]
}
.

Theorem 5.15 Let g ∈ Hr
00([0, T ];H1/2(Γ)) for some r ≥ 3.5 and ǫ > 0 be given. For any

N ∈ N let λ := ǫ
1
N . Then, Nz can be chosen so that #Nz ≤ Cǫ−

1
r+1/2N

4
r+1/2 and the optimal

order convergence is retained. The constant C depends on r, (log ǫ)/T , and g.

Proof. Let gλ(x, t) := λt/∆tg(x, t) = ǫ
t
T g(x, t) = et

log ǫ
T g(x, t) on t ∈ [0, T ]. Then we see that gλ

is independent ofN and that gλ ∈ Hr
00([0, T ];H1/2(Γ)). Then for ω ∈ R, ‖(Fgλ)(·, ω)‖H1/2(Γ) =

o(|ω|−r−1/2). Taking ωj = 2πj/(T + ∆t) = 2πjN/(T (N + 1)) we define

aj := ‖(Fgλ)(·, ωj)‖H1/2(Γ) = o(j−r−1/2), j ∈ Z.

Then using the aliasing formula, see [24], we arrive at an estimate for ĝn, for n = 1, . . . , N/2−1,

‖ĝn‖H1/2(Γ) ≤ an +
∑

k>N/2

ak = o(n−r−1/2 +N−r+1/2) = o(n−r−1/2).

The constants in the o(·) notation depend only on r,(log ǫ)/T , ǫ, and g. The result now follows
from Corollary 5.14.

6 Numerical experiments

In this section we present the results of numerical experiments. Except for one simple example,
the experiments will be done in two dimensions. All the steps in the method remain the same
in two dimensions except that the fundamental solution for the wave equation is given by

k2D(d, t) =
H(t− d)

2π
√
t2 − d2

, (6.1)

where H is the Heaviside function:

H(t) =

{
0, for t < 0,

1, for t > 0.
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The Laplace transform K2D(d, s) is again the fundamental solution of the Helmholtz equation
∆U − s2U :

K2D(d, s) =
i

4
H

(1)
0 (isd), (6.2)

where H
(1)
0 (·) is the zero order Hankel function of first kind.

Let us consider the case of Γ being the unit ball in R2 or R3 and a right-hand side
that is separable in the time and the spatial variables: g(x, t) = g(t)e(x), where e(x) is an
eigenfunction of the single layer potential V (s) with the eigenvalue λl(s). In two dimensions
the eigenfunctions are the complex exponentials eilθ and λl(s) = iπ

2
Jl(is)Hl(is) whereas in

three dimensions these are the spherical harmonics Y m
l (θ, ϕ) with λl(s) = −sjl(is)hl(is); we

have used the standard polar/spherical coordinates to describe the eigenfunctions. Here Jl(·),
respectively jl(·), are cylindrical, resp. spherical, Bessel functions of order l, whereas H

(1)
l (·),

resp. h
(1)
l (·), are the cylindrical, resp. spherical, Hankel functions of first kind and order l.

The problem of finding the unknown density φ(x, t) can then be reduced to the single, time,
dimension. This can be seen by replacing the fundamental solution k in the single layer
representation formula by the inverse Laplace transform of its Laplace transform K:

g(t)e(x) =

∫ t

0

∫

Γ

k(t− τ, ‖x− y‖)φ(τ, x)dΓydτ

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

esτ
∫

Γ

K(s, ‖x− y‖)φ(t− τ, y)dΓydτds

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

esτ (V (s)φ(t− τ, ·))(x)dτds, x ∈ Γ, for some σ > 0.

Therefore, we can use the ansatz φ(x, t) = φ(t)e(x) to reduced the problem to finding φ(t)
such that

g(t) =
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

esτλl(is)φ(t− τ)dτds.

Hence we need to solve a convolution integral equation in one dimension:

g(t) =

∫ t

0

λ̌l(τ)φ(t− τ)dτ, (6.3)

where λ̌l(·) is the inverse Laplace transform of λl(·). The latter equation can then be solved by
Lubich’s original method, which makes use only of λl(·) and not its inverse Laplace transform.
The first few numerical examples will be of this type.

6.1 Radial solution of scattering by unit sphere

In this example we consider the three dimensional case, Γ = S2. Let g(x, t) = g(t) be constant
for a fixed time t, i.e. e(x) = 2

√
πY 0

0 = 1. In this particularly simple case it can be shown
that

φ(t) = 2g′(t), t ∈ [0, 2].

The restriction to the interval [0, 2] is a consequence of the fact that the diameter of the sphere
is 2. For time t > 2 the expression for φ(t) is more complicated.
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N error rate
4 1.44 –/–
8 0.45 1.68
16 0.12 1.90
32 0.032 1.94
64 0.0081 1.96
128 0.0020 1.99
256 0.00051 1.99
512 0.00013 2.00
1024 3.2 × 10−5 2.00

Table 1: The results for scattering by unit sphere with g(x, t) = sin5(t) and λ = ∆t3/N .

The right-hand side of the nth Helmholtz problem is a constant:

ĝn =
N∑

j=0

λjg(tj)ζ
−nj
N+1,

and the solution of the Helmholtz problem is also a constant and is given by

φ̂n =
ĝn

λ0(sn)
.

The approximation to the unknown density at time-step tn is given by

φn :=
λ−n

N + 1

N∑

j=0

φ̂jζ
nj
N+1.

If λ is chosen small enough, theoretical estimates predict the following behaviour of the error:

(
N∑

n=0

∆t|φ(tn) − φn|2
)1/2

≤ C∆t2.

One more detail needs to be fixed before the experiments can be started, namely the choice
of λ. Recall that λ needs to be chosen small enough to insure stability and accuracy, see
Theorem 5.5, but also large enough to avoid numerical instability issues, see Remark 5.11. As
suggested in Remark 5.11 we make the choice

λ = max(∆t3/N , eps
1

2N ). (6.4)

Numerical results for the scattering by unit sphere are given in Table 1 and show that our
theoretical estimates are sharp for this example.

6.2 A non-radial example

In this example we consider the two dimensional case. We pick the right-hand side to be
g(x, t) = h(t) cos(lθ), where for the space variable we use the polar coordinate system r ∈ R≥0,
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N M ‖φ− φh,λ‖−1/2,l2 rate
4 16 0.78 –/–
8 40 0.27 1.54
16 102 0.084 1.68
32 254 0.023 1.83
64 640 0.0062 1.93
128 1610 0.0016 1.98

Table 2: The results for scattering by the unit disk with g(x, t) = sin5(t) cos(3x) and the piecewise
constant Galerkin basis S = S−1,0. M is chosen so that h3/2 ∝ ∆t2.

N M ‖φ− φh,λ‖−1/2,l2 rate
4 22 0.66 –/–
8 40 0.26 1.34
16 68 0.082 1.67
32 116 0.023 1.84
64 204 0.0060 1.93
128 352 0.0015 1.99

Table 3: The results for scattering by the unit disk with g(x, t) = sin5(t) cos(3x) and the piecewise
linear Galerkin basis S = S0,1. M is chosen so that h5/2 ∝ ∆t2.

θ ∈ [0, 2π). Since cos(lθ) is an eigenfunction of the single layer potential V (sn), the Helmholtz
problems can be solved exactly. However, to investigate the effect of spatial discretization we
solve the problems using the Galerkin method and hence obtain an approximation φh,λ(tn, θ)
of the unknown density. To investigate the error, we use the fact that φ(θ, t) = φ(t) cos(lθ)
and solve with high accuracy for φ(t) by applying Lubich’s method to the one dimensional
problem (6.3). The error measure we use is the following:

‖φ− φh,λ‖−1/2,l2 :=

(
N∑

n=0

∆t‖φ(tn) cos(l·) − φh,λ(tn, ·)‖2
H−1/2(Γ)

)1/2

.

The theory predicts the above error to be proportional to hm+3/2 + ∆t2, where m = 0 for
the Galerkin basis of piecewise constant functions and m = 1 for the basis of piecewise linear
functions. In all the experiments we choose λ as in (6.4). To see if the spatial discretization
has introduced significant errors, we compute the error obtained when the Helmholtz problems
are solved exactly. The results are given in the following table.

N 4 8 16 32 64 128
‖φ− φh,λ‖−1/2,l2 0.61 0.24 0.077 0.022 0.0057 0.0015

Comparing these results to Table 2 and Table 3 we see that the error due to the discretization
in space is not significant.
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N #Nz M ‖φ− ∅φh,λ‖−1/2,l2 rate
4 3 24 2.9 –/–
8 5 40 2.9 −0.03
16 9 68 1.4 1.09
32 17 116 0.42 1.70
64 24 204 0.11 1.92
128 24 352 0.028 1.98
256 24 612 0.0072 1.99

Table 4: The results for scattering by the unit disk where the incoming wave is a Gaussian pulse
and the piecewise linear Galerkin basis S = S1,0 is used. The column #Nz shows the number of
Helmholtz problems actually solved.

6.3 Reduction of the number of systems

Let us now consider a signal that is smooth and of nearly limited time duration:

g(r, t) = cos(5t− r.α) exp(−1.5(5t− r.α− 5)2), (6.5)

α = (1, 0). For such a Gaussian pulse our theory predicts that only O(N ǫ), for any fixed ǫ > 0,
Helmholtz systems need to be solved to obtain optimal convergence; see also Figure 2. The
results for scattering by the unit disk and for piecewise-linear basis functions, S = S1,0, are
given in Table 4. Since we approximate by zero only the solutions of those Helmholtz prob-
lems whose right-hand sides are zero almost to machine precision, the number of Helmholtz
problems, #Nz is constant for large enough N . For this more complicated problem, for each
N we have used the numerical solution using 2N steps in time and the corresponding number
of nodes in the discretization in space as the reference solution.

7 Conclusion

We have described a method that requires the solution of a number of Helmholtz problems to
obtain an approximate solution of the wave equation in an unbounded, homogeneous medium.
We have proved stability and optimal convergence results for this approach. Further we have
indicated ways in which to efficiently solve the resulting system of Helmholtz problems. The
stability and convergence results of the perturbations introduced by the efficient solvers has
also been presented.

The fast methods we propose to use are typically capable of computing a matrix-vector
product in almost linear time, i.e., O(M logaM), of a single dense M ×M system arising
from the discretization of the Helmholtz single layer potential. In order to solve efficiently
the linear system by an iterative method requiring only matrix-vector multiplication a good
preconditioner is needed. The investigation of such preconditioner is beyond the scope of
this paper. With a preconditioned iterative solver we expect to obtain computational costs
which scale linearly, up to logarithmic terms, with respect to the number of unknowns NM .
Important observation is that in some cases only a few Helmholtz systems need to be solved.
Though this does not change the overall complexity (the discrete Fourier transformation still
requires O(MN logN) operations), it can hugely reduce the absolute time for the compu-
tation. The storage costs will also scale linearly since at any one time only a single linear
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system representing the discretization of a Helmholtz problem needs to be stored. Since all
the NM coefficients φj,n are stored, the storage costs are not better than linear. Crucially,
since the Helmholtz problems to be solved are entirely decoupled, the proposed method is
easily parallelizable.

These asymptotic estimates improve significantly both the storage and computational costs
compared to the previously proposed approaches for the solution of the wave equation using
the convolution quadrature discretization in time; see [23] and [21, 22, 27]. The asymptotic
costs of the MOT method presented in [9, 17] are also almost linear in the number of degrees of
freedom. Advantages of our method include the intrinsic parallel nature of the method, proven
convergence and stability properties, and the relatively simple implementation details. In a
forthcoming paper, algorithmic details for the data sparse approximations, a more in-depth
asymptotic complexity analysis, and large scale computational results will be presented.
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