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Abstract

The present paper introduces an hp-version of BEM for the Laplace equation in
polyhedral domains based on meshes which are concentrated to zones on the surface
(wire-basket zones), where the regularity of the solution is expected to be low. For the
classical boundary integral equations, we prove the optimal approximation results and
discuss the stability aspects. Then, we construct the panel-clustering and H-matrix
approximations to the corresponding Galerkin BEM stiffness matrix and prove their
linear-logarithmic cost. The method is shown to have an almost linear complexity with
respect to the number of degrees of freedom located on the wire basket.
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1 Introduction

(Classical boundary integral equations on surfaces I' of a bounded three-dimensional polyhedral
domain €2 can be solved by the h-version or the hp-version of the boundary element method
(and, certainly, by various other methods), see e.g., [4], [10], [21], [23] and the references
therein. If the given data is piecewise analytic, the convergence of the adaptive hp boundary
element method (hp-BEM) with respect to the number of unknowns is much better compared
to the low order h-version. However, the numerical realisation of the hp-BEM requires the
evaluation of singular and nearly singular surface integrals with very high accuracy compared
to the low order h-BEM and the use of the panel-clustering method is not possible in contrast
to the low order h-BEM. Hence, the question, which method is more efficient for solving an
integral equation to a prescribed accuracy strongly depends on the class of problems under
consideration.

In this paper, we will present a boundary element method which combines features from
both, the low order h-version BEM and the hp-BEM. This new hybrid method which we
call the wire-basket BEM, allows the use of two essentials ingredients of any fast boundary
element method: simple numerical quadrature on non-degenerate panels for the computation
of the entries in the stiffness matrix and the application of the panel-clustering or H-matrix
techniques (cf. [11, 12, 8]) for the sparse representation of the non-local boundary integral
operators.
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Figure 1: Screen containing two cracks. The error bars indicate that the exact position of the
crack is not known due to measurement errors. The zones I'™"8" contain the region, where
the solution is expected to have low regularity.

The method can be applied to all situations, where h- and hp-BEM can be applied but,
in addition, also to cases where the application of Ap-BEM is problematic. It is worth to note
that the wire-basket BEM is conceptually related to the so-called boundary concentrated FEM
(cf. [17]) which effectively combines the low-order FEM approximation near the boundary of
the computational domain with the high-order approximation in the interior region.

We begin here with the specification of the class of problems where we see the promising
applications of the new boundary element method.

Let € denote a bounded, three-dimensional Lipschitz domain or the unbounded com-
plement. As a prototype of a homogeneous, linear, elliptic boundary value problem with
constant coefficient we choose a Laplace-type equation as our model problem — either with
given Dirichlet data or with given Neumann data. This problem can be transformed into
a boundary integral equation on the boundary I' = 02 by means of the boundary integral
equation method.

We are interested especially in problems where the smoothness of the given data and
geometry is not uniform on I'. Instead, we assume that a (thin) zone I'™*"#" C T' can be
described where we expect the solution to have very low regularity while on the remaining part
[\I'™ush we expect the solution to be analytic. We do not assume that the (one-dimensional)
boundary of I'™"" consists of only few long straight lines, but OI'*°"¢" is a polygonal line with
a possibly large number of straight segments. Such problems typically arise, e.g., in crack
propagation especially if the data stems from pointwise measurements containing possibly
some uncertainties.

The problem class we are interested in can be described by the following assumption.

Assumption 1.1 T is the surface of a Lipschitz polyhedron and can be decomposed into (mod-
erately many) smooth (open) polygonal surface patches T';, 1 < i < q, and a remaining part
Iroush 5o that the given data, say f : I' — R, has the property that the restrictions f‘ri are
analytic for all 1 <1 < q.

We have in mind that the surface measure of ™" is very small compared to the comple-
ment ['\[Foush,

Such kinds of geometric applications motivate the name wire-basket zone for the set '8k,

The goal of this paper is to present an efficient algorithm for solving the arising boundary
integral equations for this class of problems. Let us start with a sketch of the principle
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Figure 2: Quasi-uniform mesh in the wire-basket regions and graded mesh in the remaining
part of the screen.

Figure 3: Graded mesh for a screen problem.

underlying idea. The starting point of the discretisation is the generation of a surface mesh
G ={mn,..., 7} consisting of shape regular, triangular panels which are graded geometrically
towards the wire-basked I'™u8h,

We assume that I'™" is resolved by G in the following sense.

Assumption 1.2 There exists a subset G*"8" C G which is a quasi-uniform and shape reqular
boundary element mesh for T'roush,

The largest diameter of the elements in G*U¢" is denoted by h.

h:= max h, with h,:=diamr. (1.1)
regGrough
The parts I'; of the surface where the solution is assumed to be analytic, is meshed by triangles
which are geometrically graded to the wire-basket zones. The precise definition of such meshes
will be presented in Definition 2.3 while Figures 2, 3 depict two characteristic examples.

The regularity theory for elliptic equations with constant coefficients imply that the so-
lution is analytic on the smooth parts ™" while it might have very low regularity on the
portion '™ of the boundary.

Our goal is that the discretisation of the boundary integral equation converges with the
rate h*, where we recall that i is the mesh width in G*"8" and x depends on the norm under
consideration and the smoothness of the solution.



We discretise the integral equations by the Galerkin boundary element method where we
use high order elements within the parts I';, 1 < i < ¢, and decrease the polynomial degree
to lowest order finite elements towards the wire-basked zone ™" The number of degrees
of freedom associated with G*"#" is proportional to the total number of unknowns. Since we
have in mind that the set I'™"8" is very thin, while the parts I'; are proper two-dimensional,
we say that the discretisation is concentrated to the wire-basket zones.

The fact that the discretisation will converge with the rate h" (instead of exponential
convergence for the adaptive hp-BEM) allows the use of panel-clustering to avoid the full
system matrix and, in addition, the smoothness requirements on the solution are substantially
relaxed compared to the adaptive hp-BEM.

The stiffness matrix itself can be computed with almost linear cost and, moreover, it allows
a panel clustering approximation of almost linear complexity with respect to the number of
degrees of freedom on the wire-basket zone. Hence, in the case of smooth data on each part I';,
our method can be viewed as an effective reduction of the classical 3D-BEM to the wire-basket
of the surface (where all the singularities are located).

The paper is structured as follows. In Section 2, we will introduce the wire-basket bound-
ary element space for the Galerkin BEM. The corresponding approximation theory will be
presented in Section 3. In contrast to the adaptive hp-boundary element method, the wire-
basket BEM allows the application of the panel-clustering approximation which reduces the
complexity of the numerical discretisation from O (N?) to O (N log? N), where N is the num-
ber of unknowns and ¢ ~ 1 is moderately small. The panel-clustering method for the wire-
basket BEM will be introduced and analysed in Section 4. The complexity of the method is
summarised in Remark 4.9.

2 Galerkin discretisation of classical boundary integral
equations

2.1 Classical boundary integral equations

Throughout this paper, Q C R? denotes a bounded Lipschitz domain with boundary I' and
normal vector field n (oriented to the exterior of €2). We define the Sobolev space H*(I'),
s > 0, in the usual way (see, e.g., [9]). Note that the range of s for which H*(T") is defined
may be limited, depending on the global smoothness of the surface I'. For s < 0, the spaces
H*(T") are the dual of H~*(I'). The norm in H* (I") is denoted by ||-|,.

We will consider the general integral equation

M+ K)u(x) = Au(z) + / k(z,y)u(y)ds, = f(x), x e, (2.1)

r

for some given scalar A € R kernel function k£ and sufficiently smooth right-hand side f. The
corresponding weak form is

find w € H" such that a(u,v) := (M + K)u,v) = (f,v) for allv e H". (2.2)

Here H* denotes the “energy space” for some p € {—1/2,0,1/2}. (The bracket (-,-) denotes
the continuous extension of the L? (T') scalar product to the H#(T') x H*(T') duality pairing.)

The operator associated with the bilinear form a (-,-) is denoted by A : H* — H~* where
H~#is the dual of H*.



Typical examples are: the classical single layer, double layer and hypersingular operators
for the operator L,u := —Au + x*u for some x > 0. The bilinear form has the following
general form

where the definition of the integral operators is based on the fundamental solution of the
operator L,:

Single layer potential:

Ai=0, u=-1/2 a(u,v):= / S(z—y)v(z)u(y)ds, dsy, (2.4a)
I'xI’
Double layer potential:
A=+ 0=0,a(u,v):= / v(z)u(y) iS (x —y) dsyds,, (2.4b)
I'xT 8ny
Hypersingular operator:
. d d (2.4c)
= = 1 2 = - _ )
Ai=0, u=1/2, a(u,v) /FU (z) o Fu (y) 8ny5(:c y) ds,ds,

Remark 2.1 Fork = 0, the operator L, is the Laplace operator. In this case, the energy space
for the hypersingular operator is the quotient space HY? (T') /R. To avoid technicalities, we
restrict ourselves in this paper, for the hypersingular operator, to k > 0 while the generalisation
to k = 0 s straightforward.

2.2 Galerkin discretisation

In the standard, conforming Galerkin method we select a subspace S C H* and approximate
(2.2) by seeking ug € S, such that

a(ug,v) = (f,v) for all v € S. (2.5)

In the context of the boundary element method, these subspaces are finite element spaces
lifted on the surface I'.

Definition 2.2 (a) The master element t C R? is the open triangle with vertices (0,0)T,
(0, )T and (1,1)T.

(b) A set T = {t1,ta,...,t,} consisting of open and disjoint (possibly curved) triangles in
R? such that there is a C*-diffeomorphism U, : t — T for each t € T is a surface
triangulation of I' if it satisfies

r=|Jt

teT

(c) The triangulation is compatible if the intersection t Nt =: e of non-identical triangles
t,t' € T is either empty, a common vertex, or a common edge and in the case that e is
an edge, there exist affine mappings e, vy : [0,1] — t such that U, 0y, = Wy o vy and
U, 09 :[0,1] — e is bijective.



The triangulation for the wire-basket BEM is constructed as follows.

First, G*U#" is constructed as a set of quasi-uniform and shape regular triangles covering
the wire-basket zone ™! (cf. Figure 2).

The connectivity components of the complement I'\['™"¢" define the polygonal subsets T';,
1 <i < g. On each component I';, we construct a mesh G; which is concentrated to the (one-
dimensional) boundary OI'; in such a way that the union G := gr"s" | J(UL, G;) is a compatible
surface mesh on I'. The definition of G; below generalizes the boundary concentrated meshes
introduced in [17, Definition 2.3].

Let h, denote the diameter of a triangle 7 € G (cf. (1.1)) and recall the notation of
Groush as in Assumption 1.2. In the following we will employ frequently the distance function
distgeo (A4, B) measuring the geodetic distance on I' of two subset A, B C I'. However, we
assume that there are constants c,C such that geodetic distance is comparable with the
three-dimensional Euclidean distance dist (A, B)

cdist (A4, B) < distge, (A, B) < Cdist (A, B) VA, B CT.
The estimates in the remaining part of this paper may depend on the constants ¢, C'.

Definition 2.3 Let G be given with mesh size h (cf. (1.1)). A compatible, shape-reqular
mesh G D G on T is called a mesh concentrated to the wire-basket zones I8! if there
exist c1, ¢y > 0 such that for all 7 € G\G 8"

1if Tt £ Q) then cih < h, < h,
2. if T NIl = then ¢; distgeo (T, ™) < h, < g distgeo (T, [TOU8M).
The constant which measures the shape regularity is given by

Creg = magx h./p, where p, is the radius of the largest inscribed circle in 7.
TE

Remark 2.4 For given § > 0, let
Tgough = {x €I : distgeo (:p, Frough) < 5h} (2.6)

be a neighbourhood of T™* and G be a mesh on I' as in Definition 2.3. Then, there exists
a constant C' > 0 depending only on §, ¢y (cf. Definition 2.3) and c.eg such that all triangles
7€ G with T NI £ 0 satisfy

h, < Ch.

In order to define hp-boundary element spaces on a mesh G, we associate a polynomial
degree p, € N to each element 7 and collect them in the polynomial degree vector p := (p;)reg-
The hp-boundary element space is defined by

SHG) ={ue H"'(T)|VT€G:ul, €P,} fork=-10withk+1>pu,  (2.7)

where P, denotes the space of bivariate polynomials of maximal total degree m.

For any 7 and any edge v; of 7, 1 <14 < 3, we define p,; as the maximal polynomial degree

such that for all elements P, , € P, ,, the traces onto the edges satisfy P,_, S S{;(g)]%,

ie.,

{w|% tw E ]P)pm.} C {u\,y Tu € Sf,(g)}.

6



Then, we set

max min :
= max p,; and ;= min p,,.
pT 1§Z_§3pr,z pT 1§Z_§3pr,z

Assumption 2.5 For k= —1,0, let S5(G) be defined as in (2.7).

a. p= (pr)reg is a linear degree vector, i.e., it satisfies

h, , h,
¢ +ylog == < pr™ < pi™ < G + ylog =~ (2.8)
for some constants c,, C, > 0 and v > 0 independent of h.

b. There exists a constant proygn € {0, 1} with prouen > k such that, for all T € Ggroush there
holds p; = Prough -

c. The positive ratio
pmin
Cleg 1= min —
T€G Dr

1s bounded away from 0 independently of h and p.

In the following we abbreviate S{;(g) by S if no confusion is possible.

2.3 Convergence and Approximation Results
In the case of (2.4a,c) the bilinear form a (-, -) in (2.3) is H*(I")-elliptic
2
la (u,w)| = cllull, — vVue H*(T),
and continuous
la (u, 0)] < Cull, vl  Vu,v e HYT).

Via the Lax-Milgram lemma, continuity and ellipticity imply the unique solvability of the
corresponding boundary integral equations and quasi-optimal convergence of the Galerkin
BEM due to Céa’s lemma:

s = ull, < ¢ inf = o] (2.9)

To obtain quantitative error estimate, we will further study the best approximation ing |lu—v]|,
ve

under appropriate regularity assumptions.

For the double layer potential (2.4b) we require the coercivity, injectivity and continuity
of the bilinear form. In this case the coercivity is proved for smooth surfaces while the
generalisation to other classes of surfaces is still open (cf. [6]).

3 Approximation Theory

3.1 Function spaces

In this section, we will introduce some function spaces and begin with a short outline of their
different roles.

The function space for describing the regularity of the solution will be the intersection of
two spaces:



e H"+°(T') for some § > 0: This space reflects the low global regularity which will be
resolved on the wire-basket zone by the fine local mesh width h.

o A (C,7v;T): Set of functions described in terms of countably normed spaces (cf. (3.1)).

The error estimates will be derived first for the auxiliary (local) function set Ay, (7),
which contains all functions with analytic continuation in certain neighbourhoods of 7 (cf.
Definition 3.3). Then, the error estimates for functions in Ag (C,~;I') are derived from those
in Ap, (7) by using the alternative characterisation of Ay, (7) (cf. Remark 3.5) and its

relation to Ag (C,v;T') (cf. (3.1)).

We begin with the definition of the space Ay, (7) which requires several steps. For the
interval I := (—1,1) and p > 1, the Bernstein’s regularity ellipse is given by (cf. [2])

E,={2€C:z—1+|z+1<p+p '}

The corresponding semi-axes are a = L{l and b = =5 -, Obviously there holds a + b = p.

Definition 3.1 Let [ = (—1,1) and M > 0, p > 1 be given constants. An,(I) is the class
of functions f € C*°(I) having a holomorphic extension to £,(I) such that

f() <M Vze & (D).

Next, we introduce the multidimensional analogue of Ay ,(I) on the tensor domain % :=
(L, 1)% Let £ =T x .. x I xEx I x ... x I,

Definition 3.2 For given constants M > 0, p > 1, the set Aur, (Id) consists of all functions
feCc= (Id) having holomorphic extensions to Sp(]), for all 1 < 7 < d, and satisfying

max { sup |f(z)|} < M.

1<5<d i
=I= xeé’éj)

For triangles 7 € G\G™"" let B (7) denote some minimal rectangular bounding box B (7).
Thus, we may fix, for any 7 € G\G™"", a bijective affine mapping x, : I¢ — B (7).

Definition 3.3 For given constants M > 0, p > 1, the set A, (7) is the class of functions
f 7 — R such that the pull back f o x, can be extended to a function in A, (Id).

We shall deal with functions which locally can be extended to some complex neighbour-
hoods of the triangles in g\gmugh. To describe this neighbourhood we introduce

E, (1) = x» (Us;ﬂ) and £,(T):= ] &(n).

Teg\grough

The following assumption concerns the overlap of these complex neighbourhoods.
Assumption 3.4 There exists a constant Cy > 0 such that, for all x € T', there holds

t{reg\g""" 1z €&,(r)} < Cq.



Note that Assumption 3.4 can be satisfied by a proper choice of ¢;, ¢5 in Definition 2.3.

Finally, we introduce the set of functions which will be used to describe the regularity of
the solution of (2.2). With the distance function r = dist(x, [*"") and for 3 € [0,1), we
introduce the weighted space H3(I') as the completion of C°°(I") under the norm

HUHfr{g(r) = |U|§{1(r) + ||7’ﬁvzu||%2(r)-

By Ag (C,v;T') we denote the set of functions on I' that can be described in terms of countably
normed spaces

Ag (C,;T) :={u e H}T): ”U”Hg(r) < O, PPV 2 2y < Cy"nl Vn € N} (3.1)

Assume that our solution has a global Sobolev regularity v € H**°(T") for some § > 0. In
the case of boundary concentrated FEM (cf. [17]), the corresponding regularity results would
imply that the parameter 3 € [0, 1) can be specified explicitly by § = 2—pu—4. The regularity
theory in terms of countably normed spaces Ag (C,~v;T") is still an open question, hence, in
the following, we employ, as a hypothesis, that the choice § =2 — 1 — § is also valid in BEM
applications.

The following remark recalls the well-known fact that controlling all higher derivatives of
a function implies that it belongs to the class of analytic functions Ay ,(7) (see e.g., [3] for
the proof in the case 7 = I).

Remark 3.5 Assume that a function u : I — R satisfies for some Cy, 7, > 0
‘ o"u

ox"
Then uw € A ,(I) holds with p =1+, > 1, M = C - C,. Similarly, if we control higher
order gradients of a function v : B(T) — R, then u € Ay (7).

< Cyygn! for alln € Ny. (3.2)
Lo (1)

3.2 Local polynomial approximation on 7 € G\Grouet

Due to classical results on the best polynomial approximation we know that for any f €
Ay (1), there holds
in £ = vllcoy < Mo, (33)

UE]PN(I)

where Py (]) is the set of polynomials of degree N on I. Moreover, we have

If = Infllcory < eM (log N) p¥, (3.4)

where [y is the polynomial interpolation operator at the N + 1 Chebyshev nodes on I (see,
e.g., [24]) and ¢ does not depend on f. The corresponding result for the W1 -norm reads as:

For each 1 < p; < p,
If — Infllweay < OMN (log N) pi™. (3.5)

Note that without loss of generality one can choose p = p; in (3.4).
For multivariate functions f = f(z1,...,z4) : R? — R, we use the tensor product inter-

polant
Inf=Iy.Iyf € PylIf],

where I% f denotes the interpolation polynomial with respect to the variables x; € I, := [—1, 1],
1 =1,...,d, at the Chebyshev nodes.



Proposition 3.6 Let M > 0 and p > 1 be given. For all f € Ay ,(I?) and N > 1 the
estimate

I = Infllossy < M (1og? N) p™ (3.6)

holds. Moreover, we have
If = Infllwa ey < e MN? (log? N) p~. (3.7)

Proof. The proof of (3.6) is based on a multiple use of the triangle inequality in combination
with the familiar estimate to the Lebesgue constant,

[ In]]Loo(r)—Lo(r)y < clog N

(see [14] for more details). The second statement is a consequence of (3.5). n

Lemmata 3.7 and 3.8 below allow us to prove the optimal approximation results in L2- and
H'-norms by the wire-basket hp-FEM for functions in Ag (C,~;T"). Then the result in the
H*-norm for p € [0, 1], follows by interpolation. To recover the almost optimal approximation
order in H*-norm with pu < 0, we need some modification of the approximation space.

Our arguments here are similar to those from [17, 16], where the approximation theory in
the H'-norm was derived. We apply the explicit construction of the interpolation operator
from [19] and provide the corresponding error analysis based on Proposition 3.6. Let I, ; be
the standard interpolation operator along the ith edge ; of the unit triangle 7 at the p; + 1
Chebyshev nodes (properly scaled to the ith edge of 7).

Lemma 3.7 Let u € Ay, (7) for some M > 0 and p > 1. For each p = (p1,p2,p3) € N?,
there exists a linear interpolation operator mp : C(T) — P,(T) with p := maxi<;<3 p; such that

L=hul), =123

Let Cy := miny<;<3 p;/p. Then there exists b with 0 < Cy < b such that

(7mp w)

||u — mpu|| Lz < ¢ M p**(1 4 logp)*?p~". (3.8)

Moreover,
IV (u = mpu)|| 2y < eMp*(1 + log® p)p~*". (3.9)

Proof. We apply the interpolation operator 7, constructed in [19]. Estimate (3.8) is proved
by combining the bound

lu = mpul| Lzy < ep*2(1+1ogp)'? inf_|Ju —vl| =)
vEP,(T)

(see [19, Th. 6.2.6] for the case p; = p = p3 = p) with estimate (3.6) for N = Cyp. The
modification to the case p; < py < p3 = p is rather straightforward because, then, p; = Cyp
and b in (3.8) and (3.9) may depend on Cj.

Estimate (3.9) is more involved. We start from the bound

[V (u— mpu)|| o) < Uei;lf(?){ﬂv(u —0)|| 2 + CP*|lu — | 2} (3.10)

10



which is a simple modification of [19], (6.2.17). We then choose the element v = vy as the
Chebyshev interpolant of the extension of u to I?. Thus, this function realizes (cf. (3.7) with
d=2)

IV (u— o)l 27) < eMp?(1 +log® p)p~*”.

Since vy interpolates u at some point xy € 7, i.e., min |(u — vp)(z)| = 0, finally, we treat the
TreT

simultaneous approximation (3.10) by using the Poincaré-Friedrichs inequality
lu = vollr27) < el V(u —vo)l127)

which completes the proof. [ ]

Now we give some auxiliary approximation results with respect to the H™-norm with
m € [0,1]. Let I, -, denote the Gauss-Lobatto interpolant of degree p; on the edge ~; of the
reference element 7. We apply the explicit construction of the interpolation operator in [19]
and provide the corresponding error analysis based on Proposition 3.6.

The following interpolation error estimate on 7 € G is a consequence of Lemma 3.7. We
employ the convention that if 7 and p = (p1,p2, p3) appear in the same context, then, p; is
defined as the maximal polynomial degree of the trace functions ul|,, € P,,, 1 < i < 3, for
u € S{;(T), where 7; denotes the ith edge of 7. For any 7 € G, we define the lifted interpolation
operator 7, by

. f = (ﬂpf) o X;l with f: fox, and y, as in Definition 3.3.

For u € Ag(Cy,v,; T') and for 7 € G, we define (cf. [17])

> 1
Cri= > W|]r"+ﬁvn+2u”%g(ﬂ. (3.11)
n=0

We recall that the polynomial degree on the mesh G*"" equals pyouen € {0, 1} (cf. Assumption
2.5).

Lemma 3.8 For each I';, 1 <i <q, and m € {0,1}, let u € H™ N Az(C, ;). Then, for
all T € G\G™"#" there holds

[u— el sy S G2 Po(p) o7, (3.12)

where Py is a polynomial of fixed degree that does not depend on w. For elements T with
T C T (¢f. (2.6)) the following estimate is valid

= gy < AP = s, (3.13)
Proof. The estimate (3.12) for m = 0 follows from (3.8), applying the pull-back 7, u o x,

of approximation 7, (cf. Lemma 3.7) to each triangle 7 € G\G™"¢". First, we estimate the
constant M for the pull-back @ = w o x,. To that end, we note that

[r OV 2 Fa gy < Cr(2y)"™n! VT EG (3.14)

11



(cf. (3.11)) and, moreover, Y C2 < 3C2 with C; as in (3.11). Using (3.14), one can see that
TEG
u satisfies

V" 20| 20 S CREHIV" | 2 (3.15)
< Ch}__6||Tn+ﬁvn+2u||L2(T) (316)
< CLhP(29,)™n!
(cf. [17]). Now Remark 3.5 implies that @ € Ay, (7) with M < C.h7 and p =1+ (27,) .
Then we have
lu = meullr2(r) S el — ]2

< b Po(p)p max, 4
x€Ey(T

< 2P Py(p)p .

Using (3.9), the case m = 1 can be proven similarly. For elements lying in a é-neighbourhood
of T™ueh (cf. (2.6)), we apply standard finite element error estimation to obtain

= eyl gy S B L )

3.3 Approximation of H"™(T') N Ag(C,~;I')-functions by Si(G) for
p =0

In this Section, we will prove optimal approximation results by our hp-BEM for functions in
H*(T) N Ag(C,v;T) for certain range of parameters j,d, 3. The regularity results for the
Sobolev space H**°(T") on the Lipschitz surfaces are well presented in the literature on BEM.
Concerning the conditions which guarantee certain regularity in countably normed spaces we
refer to [23] and literature therein.

We will need an assumption concerning the geometric structure of the wire-basket.

Assumption 3.9 There ezists a constant wy > 0 independent of h such that for all w > wy
and 3 > wh, the measure of the subregions

F<W7ﬁ) = {.I' € T':wh S distge()(x’]:*l"ough) S ﬁ}
satisfies
|F<w7ﬁ)| 5 B - th,,
where the constant being hidden in the “S”-estimate may depend on the length of the boundary

orreush put not on h.

Next, we introduce on each component I';, 1 < ¢ < ¢, a layer-type structure in the
triangulation G. Let L be the largest integer such that (diamI')27% > wyh with wy as in
Assumption 3.9. For 0 < ¢ < L, we define the subgrids G, by

L-1
Goi={7€G: (diamT) 27" < distyeo (7, """ < (diam[) 27} and Gy := G\ (U gg>
517
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and the subregions v, by
Yer={z € (diamT) 27" < distgeo (2, [™"") < (diamT) 27} . (3.18)
In the following lemma, the symbol O(...) means the two-sided estimate.

Lemma 3.10 Let G be a mesh as in Definition 2.3 and derive the distribution of the polyno-
mial degrees according to (2.8). Then, for all0 < ¢ < L and all T € G, we have

h. =027, p,<C(l+L—10), Ny:=>» 1<C2 (3.19)

T€Gy

and, for { < L,
distgeo (7, T7"") = O(279). (3.20)

Proof. Let 7 € Gy. The estimate h, = O (24) follows by combining Definition 2.3 and (3.17).
The estimate p, = O(1+~(L—Y)) is a consequence of the previous one, (2.8), and Assumption
2.5.c, while (3.20) follows from (3.17). It remains to estimate the number of elements in G,.
All triangles 7 € G, satisfy h, = O (24) and the shape regularity of the mesh (cf. Definition
2.3) implies the estimate |7| = O (2_%) for the area of 7. From Assumption 3.9 we conclude

(cf. (3.18))

—(—1

Ye=F ((diam )2 (diamT) 26)

and for the area we obtain
el < 27

Comparing this area with the area |7| leads to the estimate for N. |

Theorem 3.11 Assume u € H*(I') N Ag(Cy, vu; ') for some s > p. Let b > 0 be as in (3.8),
G be a geometric mesh with mesh size h (cf. (1.1)) and let p = {p,} be a linear degree vector
on G with slope v > 0 provided that 2 — 3 — by < 0. Let Assumptions 3.4 and 3.9 be satisfied.
For k= —1,0, let Sk (G) be defined as in (2.7).
Then for each m € [0, min {s, k + 1}], there exists a constant C' > 0 depending on u and
0B such that
inf{||lu —v||[gmm) : v € Sg(g)} < CpmintsProugnt1,2=6}=m (3.21)

Proof. First, we will consider the case m = 0. Based on Lemma 3.8, we explicitly construct
an element mu € Sg(g ) providing an optimal approximation property in the L?(T")-norm. For
any 7 € Gy, there holds p, = prougnh. The combination of Remark 2.4 and (3.13) yields

lu = Lrull ) < chmin{s’proughﬂ}||u||Hs(T), (3.22)

where I, is the linear interpolant in the case of continuous boundary elements while it is the
L? (7)-orthogonal projection for discontinuous boundary elements. For £ =0,1,...,L—1 and
T € Gy, we apply the results of Lemma 3.8 elementwise to obtain

L—1 L—1
S e g, £ 3000 Y R
=0 T€G, £=0 TEG,
L—-1
< R0 37 Q220210 2
/=0
SwEIC, (3.23)
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taking into account that 2 — § — by < 0, by assumption. In the estimate above we made
use of the finite overlapping property between the regularity ellipses £,(7) for different 7 € G,
(cf. Assumption 3.4). The combination of (3.23) and (3.22) completes our proof in the case
m = 0.

For k = 0, we have to consider the case m = 1 which can be treated similarly (cf. [17]).
The estimate for the intermediate indices follows by interpolation. [ ]

3.4 Approximation in Sobolev norm H*, u >0

Now we discuss the approximation properties of functions v € H**(I') N Ag(C,v;T) with
respect to the Sobolev norm with negative indices H7#, 1 > 0. Let vy € S’;(g) be the best
approximation to u in the L?-norm. Then, with an arbitrary zy € S’;(g), there holds

(u—vN,2z— 2N)

lu—vnllg-» = sup )
z€Hm\{0} 12| e
and we readily obtain
lu— onllgs < Cllu—vnlo sup  inf Az=2nlo (3.24)
zeHm\{0} 2N E€SE(G) | 2]| e

Since we approximate on large panels with high order polynomials we cannot gain from the
term
inf ”Z—ZN”O SCHZ”HH
ZnESE(G)

since z € H*, in general, is not smooth enough to make use of the high-order polynomial
degrees on the elements with proper distance to the wire basket. To improve the approximation
properties in (3.24) we modify the approximation space as follows. Fix the surface patch T';.
Choose a coarse mesh parameter H = v/h and introduce the domain I'yy CC T; by

Iy :={z el dist(x,0l;) > H}.

Let us modify the original triangulation in such a way that it remains a quasi-uniform mesh
of the size H in the domain 'y (cf. Fig. 4 with Ny = 4 - 2L). Correspondingly to the new
triangulation, we introduce the modified space S ’;Lp(g), where the polynomial degrees on the
elements in 'y are all chosen as a constant corresponding to that for the elements of the
original space SE(G) on level Ly ~ L/2, thus having the diameter O(H) = O(Vh).

By standard mesh refinement techniques it is easy to subdivide the triangles 7 in G with
diam(7) > v/h (see Fig. 4, where we have Np = 4 - 2%). The polynomial degree vector for the
refined mesh is chosen according to (2.8) by replacing the ratio h,/h by min{h.,/h}/h and
the definition of S}; (G) would correspond to (2.7) by using the new degree vector and the
new mesh. One can easily verify the following properties:

e The number of unknowns for the new method is of the same order as for S5(G). In fact,
from Lemma 3.10, one derives that the number of unknowns for the original mesh and for

the original polynomial degree vector is O(h~!(log h~!)3), while the number of unknowns
for the refined mesh and modified degree vector is O(h~!(log h™1)? + h~'(log h™1)?).

14



Figure 4: Modified BCM: L = 8, Ly;s = 3 (left), L =8, Lyip = 4 (right).

e The approximation property holds:

inf ||z — znllo < C H"|| 2| . (3.25)

ZNGS]I?I,p(g

Now we arrive at the following result.

Corollary 3.12 Let the assumptions of Theorem 3.11 are valid. Then for p = 1/2, there
exists a constant C' > 0 depending on u and 3 such that

inf{Hu _ UHH—N(F) = Sz’p(g)} < Chu/2+min{s,pmugh+1,2—6}(Hu’

w4+ C). (3.26)

Due to this corollary we see a reduced gap of h*/? between the optimal result and (3.26),

which certainly improves (3.24), where  inf ”i HZN o < ¢ (cf. 3.25).
zneSE(G) HE

4 Hierarchical Clustering in Wire-basket BEM

In this section, we construct and analyse an hierarchical matrix approximation to the exact
stiffness matrix A, corresponding to the Galerkin BEM (cf. (2.5)).

4.1 Construction of the hierarchical clustering

We present this subsection for the readers convenience (see [11], [15], [21] for more details). We
restrict ourselves here to the Galerkin boundary element discretisation of boundary integral
equations while collocation or Nystrom discretisations can be considered as well.

Note that the representation of the term A (u,v) in (2.3) with respect to the nodal basis
(bi);co leads to a sparse matrix. (The number of non-zero entries of this matrix is bounded
from above by

L
CZZp <CZZ I+L-0'<CY (1+L-0 25<02LZ (1+0*27* < CN,
=0 =0

=0 T7€G, =0 T7€G,
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where N is the number of degrees of freedom located in I'™°#"). Hence, we concentrate on the
sparse representation of the bilinear form a (-, ) (cf. (2.4)). The matrix corresponding to the
bilinear form a is given by

A=(a(b,b)) co= /Fbi (x) /F k(z,y)b; (y)dsyds, (4.1)

and, due to the non-localness of the kernel function, is fully populated. In (4.1), k is the
kernel function corresponding to one of the forms in (2.4).

If the dimension of S is very large, iterative solvers should be employed for the solution
of the arising linear system. Such solvers require a matrix-vector multiplication as a basic
operation while the knowledge of all matrix entries of A, typically, is not needed explicitly. The
idea of the panel-clustering algorithm is to represent the bilinear form a (-, ) in an alternative
way so that a matrix-vector multiplication can be performed approximately. Here, we will
generalize the panel-clustering method to the hp-discretisation in our applications.

We start with the description of the general idea. Let © denote the index set of unknowns.
The data-sparse representation of integral operators starts with the definition of the clusters
and a cluster tree.

Definition 4.1 (Cluster) A cluster is a non-empty subset of ©. The support and the diam-
eter of a cluster ¢ are given by

I'. :=supp Z b; and diamc:= diamI,,
i€c

where b; are the basis functions from (4.1). The cluster-box Q. is the minimal axis-parallel
box which contains I'. and the cluster centre Z. is the centre of mass of Q.. The distance of
two clusters c, s is given by

dist (¢, s) := dist (I', T') .
For a finite element function v = Ez’e@ u;b;, its restriction to c is denoted by
Ue = Zulbz
i€c

Definition 4.2 (Cluster Tree) A cluster tree T is a tree' whose vertices (called “clusters”)
are certain subsets of ©. These are required to satisfy the following properties:

(i) © is the root of T .
(ii) L(T) ={{i}:i € O}, where L(T) denotes the set of leaves of T.

(iii) If o € T is not a leaf, there is a set of vertices of T (denoted sons(c)) such that o is the
disjoint union: 0 = Uy csons(0)0 -

There are standard procedures for constructing cluster trees (see for example [8, Example
2.1]). Once T has been constructed, a second tree, Ty, whose vertices are pairs of clusters
may be constructed with the following properties:

lUsually a tree is a graph (V, E) with vertices V and edges E having a certain structure. Here the structure
will be given by the sons of the vertices (defined below), while V' is identified with T.
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Definition 4.3 T, is uniquely defined by
(i) (©,0) ¢ Ty is the root of Ty,
(ii) For b= (0',0") € Ty, the set of sons is defined as follows:

sons (¢’) x sons (¢”")  if o',0” € T\L(T),

soms (b) 1= { 10} xsons (o) if be L(T)xT\L(T),
' sons {0’} x {o"} if be T\L(T) x L(T),
0 if beL(T)x L(T).

The key point in the hierarchical clustering algorithm is to select pairs of clusters (o/, 0") €
Ty and to approximate the corresponding integrals by replacing the kernel k of the integral
operator by a suitable separable expansion. This cannot be done on all pairs of clusters, but
only on pairs which are sufficiently far apart relative to their diameters. This leads to the
definition of an admissible pair of clusters:

Definition 4.4 (Admissible Pair) Forn > 0, a pair (¢’,0") € Ty is called n-admissible if
max{diam o', diam ¢”} < 27 dist(o’,0"). (4.2)

Using the concept of admissibility, the integration domain I' x " in (4.1) is split into a
nearfield and a farfield, characterised by the subsets P, (“farfield”) and Pyes (“nearfield”)
of Ty, defined as follows.

First set Puear = 0 = Prar, and then initiate a call divide(T',T") of the following recursive
procedure:

procedure divide(o’, 0");

begin if (0/,0”) is n-admissible then P, := Py, U {(0’,0")}
else if (0/,0") is a leaf then P, ey := Pyear U {(0’,0")}
else for all (¢,c”) € sons(o’,0”) do divide(c, ¢”)

end;

As a result of this call, P := P,ea U P, describes a non-overlapping partitioning of © x ©
in the sense that U{o’ x 0" : (0/,0") € P} = © x © and all contributions ¢’ x ¢” have empty
intersection.

In this light, the part of the bilinear form associated with the integral operator,

a(u,v) = (Ku,v) o) = /

r

0(@) [ ko) u o) dsds. (43)
r
can be written in the form
a(u,v) = Z ViU / bi () k (x,y) b (y) dsyds,.
b=(0,s)€P (i,5)€b FoxI's

The goal is to approximate the kernel functions on admissible blocks I', x I'y by a separable
expansion with respect to appropriate function systems ®” : I'» — R and ¥” : ' — R | for
all c € T and v € [,,. Here [,, denotes an index set and m the approximation order. In
typical examples, the function systems could be the tensorised three-dimensional Lagrange
basis functions restricted to the surface patches I'.. In this case, I, is the index set

Im::{V6N3|‘v’1§i§3:0§yi§m}.
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Let b = (0,s) € Py, Forx € T',, y € 'y, we use a separable approximation ky(z,y) ~ k(z,y)

of the form:
ko(r,y) = > ke (2)uP)(y). (4.4)
v€lm, nelm

For kernel functions which are related to linear elliptic PDEs of second order with constant
coefficients one can prove (cf. [21] and references therein) the exponential convergence estimate

(n')™

_ SOl
|k(z,y) — ku(z,y)| < C4 dist(o, s)*

(4.5)

forall z € I'y,y € I'y and b = (0, s) € Py, where ' = Cyn for some constant Cy and 7 as in
Definition 4.4 can be chosen such that n” < 1. The number £ > 0 is the blow-up rate of the
kernel

k()| <Csle—yl™, ayel, z#y. (4.6)

Note that the constants C; and Cy are independent of the clusters. In the following, we
assume that (4.5) holds.

The panel-clustering approximation of the bilinear form a in (2.2) acting on the finite-
dimensional space S x S is given by

pe (U, v) Z Z vluj/ x) kp (z,9) bj (y) dsyds, (4.7)

b=(0,s)€P (i,7)€b o xT's

and

k(x, r€el,,yely withb=(0,5) € Paear,
fin (X, y) ::{ (x,y) Y (0,5) (4.8)

kn(x,y) r€l,,yelywithb=(0,s) € P .

The algorithmic realisation of (4.7) is as in the standard panel-clustering algorithm (cf.
[21]). We skip the details here and proceed with the error analysis.

4.2 Error analysis

The replacement of the kernel function in (4.3) by the panel-clustering approximation ky, leads
to the perturbed bilinear form a,.. We will employ Strang’s lemma to prove stability and
consistency of the perturbed Galerkin method. First, we will formulate suitable assumptions
on the geometry of I', on the finite element mesh G, and on the construction of the cluster
tree.

Let Qr denote the minimal axis-parallel 3D-box containing I'. By subdividing Qr step-by-
step into eight congruent sub-boxes results an (infinite, virtual) octree Q. The set Q, contains
all boxes in @ which have depth ¢ in Q. We assume conventionally that the boxes in Q, are
pairwise disjoint, i.e., any face, edge and vertex belongs to only one box, and the union of the
boxes is in Qr.

We identify the cluster tree with the set of clusters

T:={cCO|3QeQ:Zy CQforalliec}

and the set sons (¢) of a cluster ¢ is the minimal subset of T so that its union is ¢. If such a
set does not exist, then, c is called a leaf ¢ € £(T). The subsets Ty C T contain all clusters
with depth ¢ in the cluster tree.
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Assumption 4.5
1. There exists a constant Cy such that
Vee T: Cyt (diame)® < |Te| < Cy (diam ). (4.9)
2. There exists a constant Cy independent of ¢ such that for all ¢
Vee T, : C51278 < |Te| < C527° (4.10)

3. There exists Cg such that
Cith <27t < Cgh,

where L denotes the minimal constant such that T, = () for all £ > L.

The next assumption concerns the partitioning P of © x ©. For c € T, let

P (¢) ={s€T:(¢,8) € P} and U, := U T..

SEPryr(c)

The following assumption expresses the fact that the triangles in G are shape regular and, for
sufficiently small control parameter n = O (1) in (4.2), the set P, (¢) is quasi-uniform.

Assumption 4.6
1. There exists a constant C; such that
VeeT:|U,| < Cr(diame)?. (4.11)
2. There exists a constant Cg independent of ¢ such that
Veel :4{ceTy:xeU.} <Cs. (4.12)
Assumption 4.5 and 4.6 allow to estimate the perturbation in the bilinear form.

Lemma 4.7 Let Assumption 4.5 and 4.6 be satisfied. For the kernel approximation we assume
(4.5). Then,

Vu,v € 5t ]a(u,v) = pe (u,v)] < C(h) ()™ 0]l 2y lull p2gry -
The function C (h) is given by

1 Kk < 2,
C(h):=Cyg |logh| k=2, (4.13)
h=t k=3,

where Cy is positive and depends continuously on Ci, n, k, Cy, Cs, Cg, Cr, Cs.
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Proof. For all u,v € S, we have

(4.5)
|a (u,v) — dpe (u,v)] < Ci(n Z //‘UJ \us )|dsydsx

dist(o, s)
(0,8)€ Pray

< Ci(n ZZ Z HUJHLI(FJ ”U‘S”LI(F dist(o, s)™"

€=0 0€Ty s€ P,y (0)

(4.2), (4.9), (4.11) - B} L ‘ -
< Cr()™ (20)° V/CaCr Y Y~ (diam 0)* ™ [[vg || o,y Nttsll 20,

=0 UET[
L

<Cm)m Z 2/(+=2) Z lvoll 2,y lusll 22,

/=0 UET[

L
< CCs(n)™ [0ll ey lull oy Y 272
=0

where C' is positive depending continuously only on Cj, n, k, Cy, Cs5, and C%.
For the sum in the last estimate, we obtain

L 1 Kk < 2,
3200 < | floghl A=
=0 h=' kK =3.

|
In order to prove existence, uniqueness and optimal convergence rates for the Galerkin
discretisation with panel-clustering via Strang’s lemma we will show

Vu, v € 5 1 fa(u,v) = ape (u,0)] < CP || gy [10ll ey »

where o = min{s,2 — 3, prough + 1} — p4 with s, i, 3 as in Theorem 3.11 and py = p for
i >0 and py = p/2 for negative p.

Theorem 4.8 Let the assumptions of Subsection 2.3 and of Theorem 3.11 be satisfied. Choose

log h _ .
||10g 77'” with o = min{é,2 — B3, Prougn + 1} — f14 (4.14)

mi |(@+)

as the expansion order for the panel-clustering algorithm. Then, the Galerkin discretisation
with panel clustering has a unique solution us € S for sufficiently small h which converges
with the same rate as the unperturbed Galerkin method

lw = sl ey < Cuh®.
Proof. The definition of m and C (h) (cf. (4.14) and (4.13)) leads to the estimate
Vu,v € 5 2 fa(u,v) = pe (u,v)] < Coh® [[0]] oy llull 2y -
For i > 0, we conclude that

Vi, v € S : fa (u,v) = dpe (4, 0)] < Coh® 0]l ey ] ey (4.15)
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The combination of Céa’s lemma 2.9, Strang’s lemma with Theorem 3.11 resp. Corollary
3.12 and (4.15) proves the assertion for u > 0.

For ;1 < 0, we employ the inverse inequality for shape regular meshes (cf. [22, Thm. 4.76]):
For all w € S and all 7 € G, we have

Pz

||u||H1(T) S ChT

|U||L2(T) :

This implies
2
2 D
HUHL2(T) <C HUHHl(T) HU”H—I(T) < Ch_T HUHL2(T) HUHH—l(T)
and the desired inverse inequality for the L?-norm follows. For 7 € G, there holds (cf. Lemma
3.10)

2 2 5t L (1+2)° -1
pi/h: <C(Q+L—-0)"2"<C2"max ———— < Ch .

z>0 PAd

Hence,
Vu € S [Jull o) < O lull g-1q) -

Interpolating this result with the trivial estimate [|u||;2q) < [[ull 2(q) results in [jul[2q) <
Ch 2 |ull g-1/2 () and

Vu,v € S+ |a(u,v) = Gpe (u,0)] < COR AT 0]l ey Nl gy < CH N0 gy Nall ey
The combination with the Strang Lemma again yields the assertion. [ ]

Remark 4.9 The complexity analysis for the panel clustering and H-matriz construction in
the presence of geometrically refined grids remains basically the same as for quasi-uniform
grids. Recall that in [15] the cardinality and geometry balanced partitionings have been consid-
ered in 1D-case as well as in the case of 2D composed grids (with local mesh refinement). The
analysis in the more general setting was presented in [8]. Applying the above mentioned con-
structions we obtain that the storage requirements and complexity of the matriz-vector product

are estimated by (cf. [8])
NSt<T7 k) < 275/&[/6(5;) max{k, nmin}#@p7 NH-U < 2NSt<T7 k)u

where Cy, is the so-called sparsity constant (in our particular case we have Cgp & 25, Ny =
20). Hence, we arrive at a linear-logarithmic complexity with respect to Nywouwsn. The specific
feature of our construction is that we obtain not fully balanced block cluster tree, since some
admissible blocks may have small size and thus they are represented by full matrices. However,
this does not destroy the asymptotically almost linear complexity.
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