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Abstract

We consider the Galerkin approach for the numerical solution of retarded boundary
integral formulations of the three dimensional wave equation in unbounded domains.
Recently smooth and compactly supported basis functions in time were introduced
which allow the use of standard quadrature rules in order to compute the entries of the
boundary element matrix. In this paper we use TT and QTT tensor approximations to
increase the e�ciency of these quadrature rules. Various numerical experiments show
the substantial reduction of the computational cost that is needed to obtain accurate
approximations for the arising integrals.
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1 Introduction

Acoustic and electromagnetic scattering problems in three dimensions have a wide range
of practical applications in physics and engineering. An important model problem for the
development of e�cient and accurate numerical methods for such types of time-dependent
physical applications is the three-dimensional wave equation in unbounded exterior domains.
Here, boundary element methods show their natural strength, reducing the problem in the
unbounded domain to integral equations on the bounded surface of the scatterer.
The e�cient numerical solution of such retarded boundary integral equations has gained
growing attention in the last years. Existing approaches include methods based on convo-
lution quadrature (cf. [3, 4, 5, 11, 12]) and methods based on bandlimited interpolation
and extrapolation (cf. [32, 33, 34, 36]). Here, we consider a Galerkin method in order to
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discretize the integral equations in space and time (cf. [2, 6, 8, 9]). It can be shown that
the corresponding space-time variational formulation in this approach satis�es a coercivity
property which ensures the unconditional stability of conforming Galerkin schemes. Fur-
thermore, this approach is very �exible with regard to the use of variable time stepping
and spatially curved scatterers. The standard Galerkin approach uses piecewise polynomial
basis functions in time. The drawback of the method in this case is that due to the retarded
time argument the domain for the spatial integration is the intersection of (possibly curved)
pairs of surface panels with the discrete light cone. The stable numerical handling of these
intersections is complicated even for �at panels and might be intractable for curved surface
patches. We refer to [7, 21, 29] for examples of quadrature schemes tailored to this problem.
In [26] smooth and compactly supported basis functions in time were introduced. This
choice circumvents the problem of integrating on the complicated intersections of the dis-
crete light cone with the spatial surface mesh and allows to apply standard quadrature rules
to compute the entries of the boundary element matrix. Due to the compact support of
the basis functions the sparsity of the system matrix is maintained. On the other hand this
leads to C∞ but, in general, non-analytic integrands, which makes the quadrature problem
more di�cult. In general, more quadrature points have to be used as for analytic integrands
as they arise, e.g., for boundary element methods applied to elliptic boundary value prob-
lems. In this paper we therefore address the problem how to e�ciently evaluate the arising
integrals using tensor Gauss quadrature and TT/QTT approximation.
The integrals which de�ne the entries of the block system matrix are de�ned over pairs of
surface panels. They are transformed to the reference triangle in Euclidean space and by
applying simplex coordinates the quadrature problems boils down to the approximation of
an integral over the four-dimensional unit cube. A tensor quadrature rule applied to these
integrals leads to a four dimensional tensor A of size N ×N ×N ×N whose entries are the
values of the integrand evaluated at the di�erent quadrature points.
To reduce the storage and computational costs to handle this large data array, we apply
the methods of tensor approximation based on the idea of separation of variables. There
are various tensor-product formats which allow the low parametric representation of high-
dimensional data. The most commonly used are the canonical, Tucker formats as well as
the class of so-called matrix product states (MPS) representations [35, 30, 31] commonly
used in high-dimensional quantum computations (see survey paper [16] for more details).
Recently these types of tensor formats have attracted much attention in the community of
numerical anylysis. In particular, the hierarchical Tucker [13], the tensor train (TT) [23]
and the tensor chain (TC) [17] formats were considered. In the following we make use
of the TT format applied to both the initial fourth order tensor and to its quantized-TT
(QTT) representation. Such representations allow to reduce the asymptotical storage and
computational costs from O(N4) to O(r2N) or even to O(r2 logN), where r is the small
rank parameter, characterizig the separability properties of the target tensor A. Notice that
the hierarchical Tucker format was recently applied in computation of certain multivariate
intgrals arising in boundary element methods [1].
Various numerical experiments show that these tensors have usually a low rank represen-
tation in TT and QTT format which reduces the storage and computational cost substan-
tially. The evaluation of the quadrature then corresponds to a simple scalar product of the
TT/QTT representation of A and a rank-1 tensor containing the weights of the quadrature
rule. This evaluation can be performed considerably faster compared to the standard ap-
proach. In order to compute the TT/QTT approximation of A directly, without computing
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A itself, we use a TT/QTT cross approximation scheme (cf. [24]). This further reduces the
computational cost, since considerably less evaluations of the integrand are required. We
perform numerical experiments to show the e�ciency of this scheme in our case.
Note that our sparse approximation method for high-dimensional quadrature problems is
by no means restricted to the retarded potential integral equation but, potentially, can
be applied to a much larger class of problems. We restricted to this application because
quadrature is the major bottleneck for the direct discretization of retarded potentials.

2 Problem Setting

Let Ω ⊂ R3 be a Lipschitz domain with boundary Γ. We consider the homogeneous wave
equation

∂2t u−∆u = 0 in Ω× [0, T ] (2.1a)

with initial conditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)

and Dirichlet boundary conditions

u = g on Γ× [0, T ] (2.1c)

on a time interval [0, T ] for T > 0. In applications, Ω is often the unbounded exterior of
a bounded domain. For such problems, the method of boundary integral equations is an
elegant tool where this partial di�erential equation is transformed to an equation on the
bounded surface Γ. We employ an ansatz as a single layer potential for the solution u

u(x, t) := Sϕ(x, t) :=

∫
Γ

ϕ(y, t− ∥x− y∥)
4π∥x− y∥

dΓy, (x, t) ∈ Ω× [0, T ] (2.2)

with unknown density function ϕ. S is also referred to as retarded single layer potential due
to the retarded time argument t− ∥x− y∥ which connects time and space variables.
The ansatz (2.2) satis�es the wave equation (2.1a) and the initial conditions (2.1b). Since

the single layer potential can be extended continuously to the boundary Γ, the unknown
density function ϕ is determined such that the boundary conditions (2.1c) are satis�ed. This
results in the boundary integral equation for ϕ,∫

Γ

ϕ(y, t− ∥x− y∥)
4π∥x− y∥

dΓy = g(x, t) ∀(x, t) ∈ Γ× [0, T ] . (2.3)

In order to solve this boundary integral equation numerically we introduce the following
space-time variational formulation (cf. [2, 8]): Find ϕ in some Sobolev space V such that∫ T

0

∫
Γ

∫
Γ

ϕ̇(y, t− ∥x− y∥)ζ(x, t)
4π∥x− y∥

dΓydΓxdt =

∫ T

0

∫
Γ
ġ(x, t)ζ(x, t)dΓxdt (2.4)

for all ζ ∈ V , where we denote by ϕ̇ the derivative with respect to time.
Let VGalerkin be a �nite dimensional subspace of V being spanned by N basis functions
{bi}Ni=1 in time and M basis functions {φj}Mj=1 in space. This leads to the fully discrete
ansatz

ϕGalerkin(x, t) =
N∑
i=1

M∑
j=1

αj
iφj(x)bi(t), (x, t) ∈ Γ× [0, T ] , (2.5)
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where αj
i are the unknown coe�cients. Plugging this ansatz in (2.4) and rearranging terms

shows that this is equivalent to: Find αj
i for i = 1 . . . , N and j = 1, . . . ,M such that

N∑
i=1

M∑
j=1

Ai,k
j,lα

j
i = gkl ∀1 ≤ k ≤ N ∀1 ≤ l ≤M, (2.6)

where

gkl :=

∫ T

0

∫
Γ
ġ(x, t)φl(x) bk(t)dΓxdt

and

Ai,k
j,l :=

∫
supp(φl)

∫
supp(φj)

φj(y)φl(x)ψi,k(∥x− y∥)dΓydΓx. (2.7)

The function ψi,k contains the time integration and is de�ned, for r > 0, by

ψi,k(r) :=

∫ T

0

ḃi(t− r)bk(t)

4πr
dt.

Let G :=
{
τi : 1 ≤ i ≤M

}
denote a �nite element mesh on Γ consisting of (possibly curved)

triangles. More precisely, we assume that for any τ ∈ G, there exists a smooth bijection
χτ : τ̂ → τ from the reference element τ̂ := conv {(0, 0)ᵀ , (1, 0)ᵀ , (1, 1)ᵀ} to the surface
triangle τ . Then, in the solution process, the following quadrature problem arises: For
τ, τ̃ ∈ G and 1 ≤ i, j ≤M , compute

Ii,kτ,τ̃ (φj , φl) :=

∫
τ

∫
τ̃
φj(y)φl(x)ψi,k(∥x− y∥)dΓydΓx, (2.8)

where φj and φl, typically, are lifted polynomials, i.e., φj ◦ χτ and φl ◦ χτ̃ are polynomials
on τ̂ .

The de�nition of smooth and compactly supported temporal shape functions was ad-
dressed in [26] and is as follows. Let

f (t) :=


1
2 erf (2 artanh t) +

1
2 |t| < 1,

0 t ≤ −1,
1 t ≥ 1

and note, that f ∈ C∞ (R). Next, we will introduce some scaling. For a function g ∈
C0 ([−1, 1]) and real numbers a < b, we de�ne ga,b ∈ C0 ([a, b]) by

ga,b (t) := g

(
2
t− a

b− a
− 1

)
.

We obtain a bump function on the interval [a, c] with joint b ∈ (a, c) by

ρa,b,c (t) :=


fa,b (t) a ≤ t ≤ b,
1− fb,c (t) b ≤ t ≤ c,
0 otherwise.

Let us now consider the closed interval [0, T ] and 2N (not necessarily equidistant) timesteps

0 = t0 < t1 < . . . t2N−2 < t2N−1 = T.
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We de�ne τi := [ti−1, ti] for i = 1, ..., 2N − 1. Then T := {ωi : 1 ≤ i ≤ 2N − 1} with

ω1 := τ1, ω2N := τ2N−1, ∀2 ≤ i ≤ 2N − 1 ωi := τi−1 ∪ τi

de�nes a cover of [0, T ]. A smooth partition of unity subordinate to T then is de�ned by

φ1 := 1− ft0,t1 , φ2N := ft2N−2,2N−1 , ∀2 ≤ i ≤ 2N − 1 : φi := ρti−2,ti−1,ti .

Smooth and compactly supported basis functions in time {bi}2Ni=1, can then be obtained by
multiplying these partition of unity functions with suitably scaled Legendre polynomials (cf.
[26] for details).

Remark 2.1. It holds

1. suppψi,k ⊂ [tk−2 − ti, tk − ti−2].

2. In particular, ψi,k = 0 for k ≤ i− 2.

3. LetR (τ, τ̃) := [dist (τ, τ̃) ,maxdist (τ, τ̃)], where maxdist (τ, τ̃) := sup(x,y)∈τ×τ̃ ∥x− y∥.
Then,

Ii,kτ,τ̃ (φj , φl) = 0 if R (τ, τ̃) ∩ [tk−2 − ti, tk − ti−2] = ∅.

Let
I (τ, τ̃) :=

{
(i, k) ∈ {1, 2, . . . , N}2 | Ii,kτ,τ̃ (φj , φl) ̸= 0

}
and, vice versa,

I (i, k) :=
{
(τ, τ̃) ∈ G × G | Ii,kτ,τ̃ (φj , φl) ̸= 0

}
.

Note that the index sets I (τ, τ̃) and I (i, k) are sparse.

Our goal is, in the following, to approximate Ii,kτ,τ̃ (φj , φl) e�ciently using TT- and QTT-
approximations. For simplicity we assume that we have piecewise constant basis functions
in space so that suppφl = τ and suppφk = τ̃ with τ, τ̃ ∈ G. In general these basis functions
are lifted piecewise polynomials and typically of low order. Therefore we do not expect a
severe impact of higher order basis functions in space on the rank decomposition in TT/QTT
format. Let us denote by τ̂ = conv

{
(0, 0)T, (1, 0)T , (1, 1)T

}
the reference triangle in R2.

The pullbacks of the surface panels to the reference triangle are denoted by χτ : τ̂ → τ and
χτ̃ : τ̂ → τ̃ and assumed to be smooth bijections. Because simplex coordinates transform
triangles to squares, integrals of the form (2.8) can be written as∫

τ

∫
τ̃
ψi,k (∥x− y∥) dΓydΓx = (2.9)∫

[0,1]4
4π|τ ||τ̃ |ξxξy ψi,k(∥χτ (ξx, ξxηx)− χτ̃ (ξy, ξyηy)∥)︸ ︷︷ ︸

=:f(ξx,ηx,ξy ,ηy)

dηydξydηxdξx.

We apply properly scaled tensor Gauss-Legendre quadrature rules for the numerical approx-
imation of the arising integrals over the four-dimensional unit cube. Let n1, n2, n3, n4 ∈ N>0

be the number of Gauss quadrature points in the �rst/second/third/forth dimension with
nodes

(x1,i)
n1
i=1, (x2,j)

n2
j=1, (x3,k)

n3
k=1, (x4,l)

n4
l=1 ∈ [0, 1]
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and weights
(w1,i)

n1
i=1, (w2,j)

n2
j=1, (w3,k)

n3
k=1, (w4,l)

n4
l=1 ∈ R.

Then,∫
[0,1]4

f(ξx, ηx, ξy, ηy) dηydξydηxdξx ≈
n1∑
i=1

n2∑
j=1

n3∑
k=1

n4∑
l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j , x3,k, x4,l).

(2.10)
For simplicity and in order to test the QTT approximation we set n1 = n2 = n3 =

n4 =: NG and assume that NG is a power of 2. The evaluation of an approximation in
the form (2.10) requires O(N4

G) additions/multiplications and furthermore O(N4
G) function

evaluations. Since f , or more speci�cally ψi,k, contains itself an integral, such function
evaluations might be expensive. Due to the non-analyticity of f and the need to compute
the integrals (2.9) accurately in order to obtain stable solutions of the time-domain boundary
integral equations, we need a medium number of quadrature points in each direction. Thus,
depending on the required accuracy of the approximation, the quadrature problem can
become costly. Therefore the question arises if the right hand side in (2.10) can be evaluated
more e�ciently. For this purpose we will investigate, in the following, the TT and QTT low
rank approximations to the fourth order tensor A = [A(i, j, k, l)] de�ned entrywise by

A(i, j, k, l) = f(x1,i, x2,j , x3,k, x4,l), (i, j, k, l) ∈ {1, ..., NG}4. (2.11)

Note that for the singular case, where dist (τ, τ̃) = 0, regularizing coordinate transforms
have to be applied to remove the singularity of the kernel function (cf. [28], [25]). Also
in this case, the transformed integral is (a sum of integrals) over the four-dimensional unit
cube and our compression method can be applied also to these cases. However, since only
O (M) integrals are singular (compared to O

(
M2

)
regular ones) we restrict in this paper

to the approximation of the regular integrals.

3 Tensor Approximation of I i,jτ,τ̃ (φj, φl)

In the following we apply the matrix-product states (MPS) type tensor representations in the
form of tensor train (TT) and quantized-TT (QTT) formats to represent sparsely the fourth
order coe�cients tensor arising in the quadrature approximation of the above integrals (see
(2.10)).

3.1 Matrix-product states (MPS) tensor formats

A tensor of order d is de�ned as an element of �nite dimensional tensor-product Hilbert space
Wn ≡ Wn,d of the d-fold, N1 × ...×Nd real-valued arrays, and equipped with the Euclidean
(Frobenius) scalar product ⟨·, ·⟩ : Wn ×Wn → R. Each tensor in Wn, n = (N1, ..., Nd), can
be represented componentwise,

A = [A(i1, ..., id)] with iℓ ∈ Iℓ := {1, ..., Nℓ},

where for the ease of presentation, we mainly consider the equal-size tensors, i.e., Nℓ = N
(ℓ = 1, ..., d). We call the elements of Wn = RI1×...×Id as N -d tensors. The dimension of
the tensor-product Hilbert space Wn scales exponentially in d, dim Wn,d = Nd implying
the exponential storage cost for a general N -d tensor.
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In our application the quadrature coe�cients for approximating Ii,kτ,τ̃ (φj , φl) constitute
the N ×N ×N ×N tensor A of order 4 as in (2.11), requiring N4 storage size. Hence, in
the case of multiple computations of a tensor and high numerical cost of evaluation a single
entry, the calculations become nontractable already for N of order several tens.
The MPS representation of a d-th order tensor reduces the complexity of storage to

O(dr2N), where r is the maximal mode rank [35, 30]. The MPS tensor approximation
was proved to be e�cient in high-dimensional electronic/molecular structure calculations,
in quantum computing and in stochastic PDEs (see survey paper [16] for more details). In
the recent mathematical literature the various versions of MPS tensor decomposition were
discovered as the hierarchical Tucker [13], the tensor train (TT) [23] and the tensor chain
(TC) [17] formats. In the following we make use of the TT format applied to both the initial
N -d tensor and to its quantized representation (quantics-TT).

De�nition 3.1. (Tensor chain/train format) For a given rank parameter r = (r0, ..., rd),
and the respective index sets Jℓ = {1, ..., rℓ} (ℓ = 0, 1, ..., d), with the periodicity constraints
J0 = Jd (i.e., r0 = rd), the rank-r TC format contains all elements A = [A(i1, ..., id)] ∈ Wn

which can be represented as the chain of contracted products of 3-tensors over the d-fold
product index set J := ×d

ℓ=1Jℓ,

A(i1, ..., id) =
∑

α1∈J1

· · ·
∑

αd∈Jd

A(1)(αd, i1, α1)A
(2)(α1, i2, α2) · · ·A(d)(αd−1, id, αd).

In the matrix form we have the entrywise MPS representation

A(i1, i2, . . . , id) = A
(1)
i1
A

(2)
i2
. . . A

(d)
id
, (3.1)

where each A(ℓ)
iℓ

is rℓ−1 × rℓ matrix.
In the case J0 = Jd = {1}, the TC format coincides with TT representation in [23].

The TC/TT format reduces the storage cost of N -d tensor to O(dr2N), r = max rℓ.
The important multilinear algebraic operations with TT tensors can be implemented with

linear complexity scaling in d and N . In particular, for the Hadamard product we have

Z = X ◦Y : Z(k)(ik) = X(k)(ik)⊗ Y (k)(ik),

implying the formatted representation of the scalar product (in O(dr3N) ≪ Nd operations)

⟨X,Y⟩ = ⟨X ◦Y,1⟩.

3.2 Quantized-TT (QTT) Approximation of N-d tensors

Further reduction of the asymptotic storage complexity can be based on the so-called
quantized-TT (QTT) representation obtained from the initial N × N × N × N tensor by
simple folding (reshaping) to higher dimensional 2× ...× 2 array. It was shown in [17] that
the computational gain of the QTT representation is due to the fact that a class of discrete
exponential (resp. trigonometric) N -vectors allows the rank-1 (resp. TT rank-2) dyadic
folding representation, reducing the storage complexity O(N) to the logarithmic bound
O(2 log2N); similar result holds for polynomial vectors sampled over uniform or graded
surface meshes.
We suppose thatN = 2L with some L = 1, 2, .... The next de�nition introduces the folding

of N -d tensors into the elements (quantized 2× ...× 2 tensors) of auxiliary D-dimensional
tensor space with D = d log2N .
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De�nition 3.2. ([17]) Introduce the binary folding transform of degree 2 ≤ L,

Fd,L : Wn,d → Wm,dL, m = (m1, ...,md), mℓ = (mℓ,1, ...,mℓ,L),

with mℓ,ν = 2 for ν = 1, ..., L, (ℓ = 1, ..., d), that reshapes the initial n-d tensor in Wn,d to
the elements of quantized space Wm,dL as follows:
(A) For d = 1 a vector X = [X(i)]i∈I ∈ WN,1, is reshaped to the element of W2,L by

F1,L : X → Y = [Y (j)] := [X(i)], j = {j1, ..., jL},

with jν ∈ {1, 2} for ν = 1, ..., L. For �xed i, jν = jν(i) is de�ned by jν − 1 = C−1+ν , where
the C−1+ν are found from the binary representation of i− 1,

i− 1 = C0 + C12
1 + · · ·+ CL−12

L−1 ≡
L∑

ν=1

(jν − 1)2ν−1.

(B) For d > 1 the construction is similar.

Notice that the folding transform Fd,L is the linear isometry between WN,d and W2,dL

(see [17]).

Remark 3.3. Every 2-dL tensor in the quantics space W2,dL can be represented (approxi-
mated) in the low rank TT format. This leads to the so-called QTT representation of N -d
tensors. Assuming that rk ≤ r, k = 1, ..., dL, the complexity of QTT representation can be
estimated by O(dr2 logN), providing log-volume asymptotics compared with the volume size
of initial tensor O(Nd).

3.3 Sketch of numerical TT/QTT approximation

The manifold [14] of rank-r TT tensors in Wn is known to be closed in the Frobenius norm
[24].
From the computational point of view, one of the most attractive features of TT format is

the following: the numerical computation of rk−1×rk matrices A(k)
ik

in the TT representation
(approximation) of a full format tensor A = [A(i1, ..., id)],

A(i1, i2, . . . , id) = A
(1)
i1
A

(2)
i2
. . . A

(d)
id
,

can be implemented by a stable SVD-based algorithm (MATLAB Toolbox http://spring.inm.rus.ru/osel).
For the completeness of presentation, we sketch the full-to-TT compression algorithm [23]
to be applied in �4 to our particular fourth order coe�cients tensor.
Input: a tensor A of size n1 × n2 · · · × nd and accuracy bound ε > 0.
1: First unfolding: Nr =

∏d
k=2 nk, M := reshape(A, [n1, Nr]).

2: Compute the truncated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(n1,Nr)∑
k=r+1

σ2k ≤ (ε · ∥A∥F )2

d− 1
.

3: Set A(1) = U , M := ΛV T , r1 = r, and process modes k = 2, ..., d− 1.
4: for k = 2 to d− 1 do
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4a: Construct the next unfolding: Nr :=
Nr
nk
, M := reshape(M, [rnk, Nr]).

4b: Compute the truncated SVD of M ≈ UΛV , so that the approximate rank r ensures

min(nk,Nr)∑
k=r+1

σ2k ≤ (ε · ∥A∥F )2

d− 1
.

4c: Set rk = r and reshape the matrix U into a tensor:

A(k) := reshape(U, [rk−1, nk, rk]).

4d: Recompute M := ΛV .
end for

5: Set A(d) =M .
Output: TT cores Ak, k = 1, . . . d, de�ning a TT ε-approximation to A.

The above algorithm has the numerical complexity O(nd+1). In the present paper we di-
rectly apply this algorithm to the fourth-order tensor of interest to demonstrate the e�cient
rank decomposition in the TT format that reduces drastically the storage and computa-
tional cost. Moreover, assuming the existence of low-rank TT representation the rank-r
TT approximation can be computed by the heuristic algorithm called TT-cross approxima-
tion [24] avoiding the �curse of dimensionality� (see the numerical example below). This
algorithm also applies to QTT format (QTT-cross approximation).

Remark 3.4. Notice that the QTT approximation of the target N ×N ×N ×N tensor A
can be performed by the same decomposition algorithm but applied in the particular setting
nk = 2, d = 4 logN . The rank-r QTT-cross approximation takes the advantage of low
cost O(r4 logN) since, due to the main property of TT-cross algorithm, it calls only for
O(r2 logN) entries of the initial tensor A. In this way, the generation of the full tensor can
be avoided by using the rank-r QTT-cross approximation method that requires to compute
only few entries (chosen adaptively) of the target tensor. The numerical results show that
the compression is comparable with the complete QTT approximation method (see �4.6).

3.4 Computation of I i,jτ,τ̃ (φj, φl) using TT/QTT approximation

Let us denote the TT and QTT representations of A as in (2.11) by ATT and AQTT . An
approximation of the integral in (2.10) using these representations instead of A can be
obtained by a simple tensor operation in the quantics space W2,dL, d = 4, L = logNG,
speci�cally as the scalar product of the rank-1 coe�cients tensor W = w1 ⊗ w2 ⊗ w3 ⊗ w4

with ATT or AQTT . Let

QG := ⟨W,A⟩ =
NG∑
i=1

NG∑
j=1

NG∑
k=1

NG∑
l=1

w1,iw2,jw3,kw4,lf(x1,i, x2,j , x3,k, x4,l), (3.2)

QTT := ⟨W,ATT ⟩, (3.3)

QQTT := ⟨W,AQTT ⟩, (3.4)

denote the quadrature formulas based on the di�erent representations of A. As pointed out
in Section 3.1 the cost to evaluate the scalar products QTT or QQTT scales with O(4r3NG),
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where r is much smaller than NG, compared to O(N4
G) for the exact evaluation of QG.

Therefore the approximations QTT and QQTT can be computed considerably faster, pro-
vided that A has TT and QTT representations with low rank.
Since ATT and AQTT are only approximations of A, the formulas QTT and QQTT intro-
duce additional quadrature errors. An important question therefore is how accurate the
approximations ATT/QTT have to be, such that the relative errors

EG,TT :=
|QG −QTT |

|QG|
and EG,QTT :=

|QG −QQTT |
|QG|

(3.5)

are small and the additional error does not a�ect the accuracy of the quadrature QG.

4 Numerical Experiments

In the following, we investigate the compression properties of A and the accuracy of QTT

and QQTT using di�erent triangles and time meshes in order to cover various cases, that
might occur during the solution of the discrete system (2.6) . Therefore, let

τ := conv
{
(0, 0, 0)T, (1, 0, 0)T , (1, 1, 0)T

}
τ̃ := cshift + conv

{
(1, 0, 0)T, (1,

1

2
, 1)T , (0, 1,

1

2
)T

}
with cshift ∈ R. These triangles will be used for all numerical experiments. Only cshift ∈ R
is variable and will be set individually for each case. Furthermore we will de�ne di�erent
time grids for each case consisting of six points t1 ≤ . . . ≤ t6 ∈ R≥0. We then choose basis
function b(t) and b̃(t) in time such that supp b = [t1, t3] and supp b̃ = [t4, t6]. More precisely,
b and b̃ will be the smooth bump functions as de�ned in Section 2 multiplied with properly
scaled Legendre polynomials of degree 1 (cf. [26]), i.e.,

b(t) = ρt1,t2,t3(t)

(
2
t− t1
t3 − t1

− 1

)
and b̃(t) = ρt4,t5,t6(t)

(
2
t− t4
t6 − t4

− 1

)
. (4.1)

8.5 9 9.5 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 4.1: ψ(r) for the time grid given

in (4.3).

Thus, the integrals we want to approximate are of
the form

Iτ,τ̃ :=

∫
τ

∫
τ̃
ψ (∥x− y∥) dΓydΓx

with

ψ(r) :=

∫ T

0

ḃ(t− r)b̃(t)

4πr
dt (4.2)

where r ∈ R>0. Note that

suppψ = [t4 − t3, t6 − t1].

We denote the domain of the spatial integration by

S =
{
z ∈ R3 s.t. z = x− y, x ∈ τ, y ∈ τ̃

}

10



and de�ne

Smin := min
z∈S

∥z∥ = dist(τ, τ̃), Smax := max
z∈S

∥z∥ = maxdist(τ, τ̃).

It can be easily seen that the position of triangle τ̃ , i.e. cshift, has to be chosen such that
[SminSmax]∩[t4−t3, t6−t1] ̸= ∅ in order to obtain Iτ,τ̃ ̸= 0 (cf. Remark 2.1). In the following
we will perform numerical experiments for the following cases:

1. Smin < t4− t3 and Smax < t6− t1. Here, the domain S is only partially enlighted from
one side (cf. Figure 4.2). The case Smin > t4 − t3 and Smax > t6 − t1 leads to similar
numerical results in our example and will not be treated separately.

2. Smin > t4 − t3 and Smax < t6 − t1. In this case the domain S is completely enlighted
(cf. Figure 4.4).

3. Smin < t4 − t3 and Smax > t6 − t1. Here, the discrete light cone is a narrow strip (cf.
Figure 4.6).

4. Smin small. In this case we examine how small distances between the triangles in�uence
the compression rates.

5. At last we consider the case of higher order basis functions in time and therefore a
more oscillatory function ψ.

Remark. In the following numerical experiments the TT/QTT approximations of the
tensor A were computed using the TT-toolbox 1.0 for MATLAB written by I. Oseledets
(http://spring.inm.rus.ru/osel).

4.1 Case 1: Partially enlighted integration domain

For this case we de�ne the time grid

t1 = 0.6, t2 = 1.2, t3 = 1.7, t4 = 9.8, t5 = 10.5, t6 = 11.0 (4.3)

and cshift = 4.4 such that Smin ≈ 7.2 and Smax ≈ 9.6. This choice of the parameters leads to
a situation as illustrated in Figure 4.2. The integration domain is only partially enlighted
from one side, which leads (depending of the choice of cshift) to many zero entries in the
resulting tensor A. In this example cshift was chosen such that approximately 50% of the
entries of A are nonzero.
For the approximation of Iτ,τ̃ we set NG = 32, i.e., we use 32 Gauss quadrature points in
each direction leading to a tensor A with size(A) = 32× 32× 32× 32. In order to test the
QTT approximation we reshape A to a matrix B of size 322 × 322.
The table below shows the e�ciency of the TT-approximation ATT and the QTT-

approximationAQTT ofA. We listed the mean ranks of the corresponding cores for di�erent
approximation accuracies. We additionally computed the singular value decomposition of
B and listed the number of relative singular values that are greater than the prescribed
accuracy. The decay of the singular values is shown in Figure 4.3.
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Case 1
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Figure 4.3: Relative singular values of B: Non-

zero entries of B: ≈ 50%.

Accuracy Mean rank of ATT Mean rank of AQTT Rel. SV of B
10−2 5.7 8.0 7
10−3 9.4 15.2 12
10−4 13.0 23.1 18
10−5 18.7 33.4 28
10−6 25.4 45.5 41

It can be observed that the ranks of the TT- and QTT-approximation are small, espe-
cially for low and medium accuracies. The low ranks in this case could be found also for
other con�gurations of the numerical experiment. In general it can be noticed that the
compression is better if many entries of A are zero or in other words that the enlighted part
of the integration domain is small. (That a sparse A however does not necessarily lead to
good compression rates can be seen in Section 4.3).
In the next table we compare the time that is needed to compute the approximations
QG, QTT and QQTT for di�erent accuracies of the TT- and QTT-approximation. We as-
sume that A, ATT , and AQTT are given in each case, so that only the di�erent scalar
products (3.2)-(3.4) have to be evaluated. Furthermore we compute the relative errors
EG,TT and EG,QTT (cf. (3.5)) in order to see the e�ect of the additional approximation on
the quadrature result.

Accuracy Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 2 · 10−3 9.8 2 · 10−4

10−3 100 1.3 4 · 10−5 10.1 1 · 10−4

10−4 100 1.4 2 · 10−6 10.3 6 · 10−6

10−5 100 1.5 1 · 10−7 10.8 2 · 10−7

10−6 100 1.6 7 · 10−8 11.2 4 · 10−8

It can be seen above that the evaluation of QTT and QQTT is considerably faster than
the evaluation of QG due to the low ranks of ATT and AQTT and the induced low number
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Figure 4.5: Relative singular values of B. Non-

zero entries of B: 100%.

of arithmetic operations, that is needed to compute the corresponding scalar products.
Furthermore it can be observed that the errors EG,TT and EG,QTT are small even for low
and medium accuracies of the TT- and QTT-approximation. In this case it is su�cient
to determine ATT and AQTT with relatively low accuracy in order to obtain accurate
approximations for QG. On the one hand this is advantageous since we bene�t from low
ranks in this case and on the other hand the computation of ATT and AQTT directly via
TT/QTT cross approximation becomes cheaper as well (cf. Section 4.6).

4.2 Case 2: Completely enlighted integration domain

For this case we again use the time grid (4.3) and set cshift = 5.1 such that Smin ≈ 8.42
and Smax ≈ 10.28. We are therefore in the situation where the integration domain τ × τ̃
is completely enlighted (cf. Figure 4.4). Thus, A is in general densely populated with no
vanishing entries. We set again NG = 32 and compute the mean ranks of the TT- and QTT
approximation of A. The decay of the relative singular values of the reshaped matrix B is
shown in Figure 4.5.
The results of the numerical experiments indicate that the compression rates in this case

are very similar to Case 1. Thus a fully populated tensor A does not have a severe negative
impact on the ranks of ATT and AQTT compared to a situation where the integration
domain ist only partially enlighted and similar basis functions in time are used.

Accuracy Mean rank of ATT Mean rank of AQTT Rel. SV of B
10−2 6.7 10.4 9
10−3 9.8 18.2 14
10−4 13.4 29.1 20
10−5 18.4 40.5 29
10−6 25.0 53.3 42

The next table shows the time that is needed to compute the di�erent approximations of
Iτ,τ̃ . Thereby we again assume that A,ATT and AQTT are given for each accuracy.
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Figure 4.7: Relative singular values of B. Non-

zero entries of B: ≈ 64%.

Accuracy Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 7 · 10−3 10.0 5 · 10−2

10−3 100 1.4 1 · 10−3 10.3 4 · 10−4

10−4 100 1.4 8 · 10−5 10.6 4 · 10−5

10−5 100 1.5 3 · 10−6 10.8 3 · 10−6

10−6 100 1.7 4 · 10−8 11.3 1 · 10−8

As expected the evaluation of the scalar product using the TT- and QTT approximation
is considerably faster. Furthermore, the relative errors EG,TT and EG,QTT are, as in the
previous case, small for medium accuracies of ATT and AQTT .

4.3 Case 3: Narrow discrete light cone

Here we want to examine how a narrow discrete light cone, i.e., the support of ψ is a small
interval, in�uences the compression rates. Therefore we consider the time mesh

t1 = 0.6, t2 = 0.8, t3 = 1.0, t4 = 10.3, t5 = 10.45, t6 = 10.7

such that suppψ = [9.3, 10.1]. Choosing cshift = 5.4 leads to the case where Smin < 9.3
and Smax > 10.1. We are thus in the situation illustrated in Figure 4.6. We set again
NG = 32 and compute the mean ranks of the TT- and QTT approximation of A which
has approximately 64% nonzero entries. The decay of the relative singular values of the
reshaped matrix B is shown in Figure 4.7.

Accuracy Mean rank of ATT Mean rank of AQTT Rel. SV of B
10−2 14.4 21.8 23
10−3 23.3 46.8 37
10−4 33.2 69.7 60
10−5 44.3 97.1 89
10−6 57.0 130.1 126
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As one can see in the table above, the compression rates are worse than in the previous
cases. This is not surprising since ψ has the same oscillatory behavior as before but varies
on a smaller interval. The approximation of the tensor A, which is based on the evaluation
of ψ at di�erent points in τ × τ̃ and not only in a narrow strip containing the discrete light
cone, is therefore clearly more di�cult. This is con�rmed by various numerical experiments.
The narrower the discrete light cone is, the higher are the mean ranks of the TT- and QTT
approximation of A in general. This case is therefore an example where a more sparse A
does not lead to better compression rates.
Although the mean ranks of ATT and AQTT are larger here than in the previous cases,
the compression is still good enough to reduce the computing times of the quadratures
considerably.

Accuracy Time QG Time QTT EG,TT Time QQTT EG,QTT

10−2 100 1.3 4 · 10−1 9.0 6 · 10−1

10−3 100 1.4 1 · 10−2 9.5 2 · 10−2

10−4 100 1.6 1 · 10−4 10.2 1 · 10−3

10−5 100 1.8 5 · 10−5 11.1 5 · 10−5

10−6 100 2.1 1 · 10−6 12.4 1 · 10−6

Another e�ect that can be observed here is, that the errors EG,TT and EG,QTT decay
slower than before. The approximations of A have therefore to be computed with higher
accuracy in order to obtain good approximations of QG.

4.4 Case 4: Near �eld integrals

We now want to test the compression rates in the case where the triangles in (2.9) are close
to each other. Since the integrand in (2.9) is weakly singular for x = y, the convergence rates
of standard quadrature rules deteriorate for dist(τ, τ̃) → 0. We examine if low distances
between the triangles also have a negative in�uence on the compression rates of the TT- and
QTT-approximation. In order to test this numerically we use the triangles τ, τ̃ as before
and set cshift = 1. In this case we have

dist(τ, τ̃) ≈ 1.44 and maxdist(τ, τ̃) ≈ 3.20.

As time grid we choose

t1 = 0.6, t2 = 1.2, t3 = 1.9, t4 = 4.2, t5 = 4.7, t6 = 5.7,

such that suppψ = [2.3, 5.1]. Thus, we are in the case of a partially enlighted integration
domain as in Case 1. Setting again NG = 32, we obtain the following mean ranks for ATT

and AQTT .

Accuracy Mean rank of ATT EG,TT Mean rank of AQTT EG,QTT

10−2 5.5 4 · 10−3 7.4 1 · 10−3

10−3 9.1 2 · 10−4 13.6 6 · 10−4

10−4 13.8 2 · 10−6 22.1 4 · 10−5

10−5 20.0 9 · 10−7 33.2 5 · 10−7

10−6 27.4 1 · 10−8 46.0 3 · 10−8
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Figure 4.8: Plot of ψhigh,1.
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Figure 4.9: Plot of ψhigh,2

As we can see above small distances between the triangles τ and τ̃ do not have an in�u-
ence on the compression rates of the TT- and QTT approximation and that the ranks are
comparable to those in Case 1. Note however that the number of Gauss points NG usually
has to chosen larger for such near �eld integrals in order to preserve a certain accuracy of
the quadrature rule (cf. [25]).
As in Case 1, EG,TT and EG,QTT are quickly decreasing such that a relatively low accuracy
of ATT and AQTT is su�cient for the quadrature. The computing times for QTT and QQTT

are very similar to those in Case 1 and we therefore refrain from listing them here.

4.5 Case 5: Higher order basis functions in time

At last we examine the case of a higher order of the basis functions than considered before.
Therefore we adopt the setting in Case 1, i.e., we use the time grid (4.3) and set cshift=4.4.
Instead of using the basis function in (4.1) we �rst set

b(t) = ρt1,t2,t3(t)P2

(
2
t− t1
t3 − t1

− 1

)
and b̃(t) = ρt4,t5,t6(t)P3

(
2
t− t4
t6 − t4

− 1

)
,

where Pp denotes Legendre polynomials of degree p. We denote the corresponding function
ψ in (4.2) by ψhigh,1 (cf. Figure 4.8). As a second example we choose

b(t) = ρt1,t2,t3(t)P5

(
2
t− t1
t3 − t1

− 1

)
and b̃(t) = ρt4,t5,t6(t)P5

(
2
t− t4
t6 − t4

− 1

)
.

As above we denote the corresponding ψ in (4.2) by ψhigh,2 (cf. Figure 4.9). In the following
we list the mean ranks and the relative errors for both settings.

Accuracy Mean rank of ATT EG,QTT Mean rank of AQTT EG,QTT

10−2 4.7 4 · 10−3 7.0 3 · 10−3

10−3 8.5 6 · 10−5 13.3 2 · 10−4

10−4 12.5 4 · 10−5 22.1 6 · 10−5

10−5 18.3 6 · 10−6 32.2 1 · 10−5

10−6 24.7 6 · 10−7 44.6 1 · 10−6
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The table above shows the results for case ψhigh,1. As we can see the mean ranks are not
a�ected by the higher order of the basis functions in this example. They are even slightly
lower than in Case 1. This is due to the fact that ψhigh,1 is not considerably more oscillating
than ψ in Case 1 even though Legendre polynomials of higher order are involved. In order to
see a negative e�ect of higher order basis function we have to consider Legendre polynomials
of degree 5, i.e. ψhigh,2, as the next table shows.

Accuracy Mean rank of ATT EG,QTT Mean rank of AQTT EG,QTT

10−2 5.5 5 · 10−1 9.1 6 · 10−1

10−3 10.7 1 · 10−2 16.8 3 · 10−3

10−4 14.3 1 · 10−3 26.8 7 · 10−5

10−5 20.8 4 · 10−5 37.7 2 · 10−5

10−6 27.5 1 · 10−5 50.9 2 · 10−5

10−7 44.3 5 · 10−7 77.6 1 · 10−6

Also here we can see that the compression rates are not considerably worse than before
or in Case 1 even though ψhigh,2 is more oscillatory now. A negative aspect that becomes
evident, however, is the slower decrease of EG,QTT and EG,QTT .

4.6 Example on QTT-cross approximation

As it was mentioned in Remark 3.4 the rank-r QTT-cross approximation takes the advantage
of the log-volume cost O(r4 logN) requiring an evaluation of only O(r2 logN) ≪ N4 entries.
In the following we give the numerical illustration on QTT-cross approximation for Case
1 above. The next table presents the results on ε-QTT-cross approximation of the target
tensor A of size 32 × 32 × 32 × 32. We give the CPU time (sec.), QTT and TT ε-ranks
and the relative storage size for the obtained TT and QTT approximations. In all cases the
storage cost of QTT representation is lower than those for the TT-format.

ε 10−6 10−5 10−4

Time (sec.) 10.4 6.3 3.1
QTT-rank 31 21 14
TT-rank 18 13 9

stor(TT)/stor(QTT) 1.14 1.17 1.24

Finally we notice that the numerical evaluation of the full tensor A amounts to 321 sec.

5 Conclusion

In this paper, we have presented a new method for the e�cient evaluation of the integrals
which arise from the direct discretization of retarded potential integral operators. Since
the integrands are C∞ but, in general, not analytic the number of quadrature points is
relatively large while the total number of such integrals is huge during the generation of
the system matrix. We have introduced the TT and the QTT representations for the four-
dimensional quadrature tensors arising from the evaluation of the (transformed) integrands
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at the quadrature points in the four-dimensional unit cube. We have systematically tested
the sensitivity of the algorithm with respect a) to di�erent cases how the smeared discrete
light cone intersects the spatial mesh, b) to the distance of the surface panels inducing
di�erent nearly-singular behaviors of the integrands, and c) to the polynomial degree of the
temporal approximation. In all cases the compression by the TT and QTT representation
is impressive.
Since both, the TT and the QTT formats require as input the full tensor it is important to

substitute the corresponding full-to-TT and full-to-QTT approximation algorithms by their
adaptive cross versions. We have performed numerical experiments which show that the
compression rates by the adaptive TT-cross and QTT-cross representations are comparable
with the original ones while the generation of the full tensor can be avoided.

Acknowledgement. The authors are thankful to Dr. I. Oseledets (INM, Moscow) for the
assistance with QTT-cross-approximation MATLAB routine.
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