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Abstract
In this paper we will consider elliptic boundary value problems with

oscillatory diffusion coefficient, say A. We will derive regularity estimates
in Sobolev norms which are weighted by certain derivatives of A. The
constants in the regularity estimates then turn out to be independent of
the variations in A.

These regularity results will be employed for the derivation of error es-
timates for hp-finite element discretizations which are explicit with respect
to the local variations of the diffusion coefficient.

Keywords weighted regularity, elliptic problem, oscillatory diffusion, hp finite
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1 Introduction
The numerical solution of elliptic boundary value problems by the Galerkin
finite element method consists of the construction of an “appropriate” finite
element mesh and the choice of the (local) polynomial degrees of approximation.
An optimal construction should be adapted to the local behavior of the exact
solution and, hence, should take into account
a) local singularities of the solution (e.g. singularities at re-entrant corners
or at non-smooth interfaces),
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b) effects of, possibly, singular perturbations in the solutions (e.g. indefinite-
ness, boundary layers, etc.),

c) oscillatory coefficients.
Early publications on local singularities for elliptic problems are [12], [8] —

in the meantime a fairly complete theory for this types of irregularities in the
solution is available in the literature. In addition, optimal mesh grading for the
finite element method has been developed in an a priori way so that the optimal
convergence rates are preserved in the presence of singularities.

The same holds true for some classes of singular perturbations. For second
order elliptic problems with analytic coefficients the (global) high-order regu-
larity in weighted Sobolev spaces has been derived explicitly in terms of the
(global) growth of the derivatives of the coefficients (see [17, Theorem 5.3.10]).
In [16] and [15], a wave-number explicit regularity theory for highly-indefinite
Helmholtz-type problems has been developed and optimal finite element spaces
have been constructed.

In this paper, we are interested in Case c), i.e., coefficients in the elliptic
PDE which are oscillatory. The main focus is on coefficients which are smooth
but, possibly, highly oscillatory in some parts of the domain. Emphasis is on
the case that these parts are not distributed uniformly or periodically over the
domain. In this light, this paper can be regarded as a generalization of the
regularity theory for elliptic PDEs with periodic coefficients (see, e.g., [18], [14]
which is based on Fourier transform with special kernel functions).

Based on the local oscillatory behavior of the coefficients, we will construct
finite element spaces which are optimally adapted to the regularity of the solu-
tion. The theory is based on the local regularity results derived in [17, Chap.
5] — the main difference is that we use this local regularity to derive a weight
function for the definition of weighted Sobolev norms so that the constants
in the regularity estimates becomes independent of the local variations of the
coefficients.

Nowadays, a posteriori error estimation is commonly used for the control of
adaptive mesh refinement or, in general, of the adaptive enrichment of finite el-
ement spaces. However, for many singularly perturbed or parameter dependent
problems such as, e.g., convection dominated problems, highly indefinite scat-
tering problems, high-frequency eigenvalue problems, etc., the condition “the
mesh width has to be sufficiently small” typically arises (also for discretizations
with a posteriori error control). For singularly perturbed problems or high fre-
quency scattering problems, this condition is often so restrictive that the initial
mesh must be chosen very fine and further refinement exceeds computer capac-
ity. Thus, the generation of optimal initial meshes is of utmost importance and
our goal is to present a new concept for this purpose.

We further emphasize that our focus in this paper is not in the study of the
regularity of problems with piecewise smooth coefficients being discontinuous at
“sharp” interfaces (because such type of problems are already studied in the lit-
erature by using broken norms (if the interface is smooth) or by Sobolev spaces
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which are weighted by certain singular functions). In the case of smooth inter-
faces, this allows the use of standard finite element spaces which have to resolve
the (smooth) interface and the resulting convergence estimates are asymptoti-
cally optimal. However, if the coefficient does not jump over a sharp interface
but changes rapidly its values over an interface “zone”, the regularity of the
solution is polluted in a neighborhood of this zone and the broken regularity
estimates become useless. However, we emphasize that a generalization of our
regularity estimates to sharp interfaces with discontinuous diffusion coefficients
is possible (but technical) by using [17, Lemma 5.5.8].

In the literature, regularity results for problems with highly oscillatory co-
efficients in combination with error estimates for finite element discretizations
exist for periodic settings, such as full space problems or problems on tori where
the diffusion coefficient is of the form Aper (xε ), i.e., oscillates on a small scaleε, and is periodic. If, in this case, the coefficient is also smooth, one can prove
the error estimate, e.g., for a hp-finite element discretization

‖u− uh‖H1(Ω) ≤ Cf min
{
1,
(h
ε
)p}

(cf. [14, p. 539]).
Our results are in the same spirit but the analysis is not based on Fourier

techniques but on local regularity estimates so that our theory covers also non-
periodic settings and quite general non-uniform oscillatory diffusion coefficients.

In [7], diffusion problems with even more general L∞ coefficients are consid-
ered. It is proved that also in such cases there exists a (local) generalized finite
element basis with the following property: For any shape regular finite element
mesh of step size h there exist O (log 1

h
) local basis functions per nodal point

such that the corresponding Galerkin solution uh satisfies the error estimate
‖u− uh‖H1(Ω) ≤ Cfh,

where Cf depends on the right-hand side f and the global bounds of the diffusion
coefficients (cf. (2.1)) but not on its variations. On one hand, this result is more
general than the ones stated in Theorem 5.2 and Corollary 5.3. On the other
hand, the definition of the basis functions in [7] is not constructive while the
results in this paper apply to standard hp finite element spaces.

2 Setting
LetΩ ⊂ Rd be a Lipschitz domain and let the diffusion matrixA ∈ L∞ (Ω,Rd×dsym

)
be uniformly elliptic:

0 < α(A,Ω) := ess infx∈Ω infv∈Rd\{0}
〈A(x)v, v〉〈v, v〉 ,

∞ > β(A,Ω) := ess sup
x∈Ω

sup
v∈Rd\{0}

〈A(x)v, v〉〈v, v〉 .
(2.1)
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For m ∈ N0, let Hm(Ω) denote the usual Sobolev spaces with norm ‖·‖Hm(Ω)and let Hm0 (Ω) be the closure of C∞0 (Ω) with respect to the norm ‖·‖Hm(Ω).
The dual space of Hm0 (Ω) is denoted by H−m(Ω).

For given f ∈ L2(Ω), we are seeking u ∈ H10 (Ω) such that

a (u, v) :=
∫
Ω
〈A∇u,∇v〉 = ∫

Ω
fv =: F (v) for allv ∈ H10 (Ω). (2.2)

The elliptic regularity theory tells us that for smooth data (domain Ω, dif-
fusion coefficient A) the condition f ∈ Hm(Ω) implies u ∈ Hm+2(Ω) and there
is a constant C (depending on the data and m) such that

‖u‖Hm+2(Ω) ≤ C ‖f‖Hm(Ω) .
In case that the domain Ω is, e.g., a polygonal domain and/or A is only

piecewise smooth and discontinuous along polygonal interfaces it is well known
that high order regularity can be preserved in weighted Sobolev spaces.

In this paper, we will study the effect of a smooth but oscillatory diffusion
coefficient and introduce new types of weighted Sobolev spaces where the regu-
larity constants are independent of such oscillations. This regularity estimates
are then interlinked with the Galerkin discretization of (2.2) by hp finite ele-
ments, because it allows to balance the local estimates of the interpolation error
on the single finite element simplices: The weight function used in the definition
of the oscillation adapted Sobolev norms encodes the strength of the oscillations
of the diffusion coefficients on the scale of the finite element mesh.

3 Oscillation Adapted Sobolev Norms
We assume that A — besides (2.1) — satisfies A ∈ Cp(Ω,Rd×dsym) for some smooth-ness parameter p ∈ N≥1. In the subsequent definition we quantify the smooth-
ness of the coefficient relative to subdomains of Ω.
Definition 3.1 (Oscillation condition) Let A ∈ Cp(Ω,Rd×dsym) for some p ∈
N≥1. A subset ω ⊂ Ω fulfills the oscillation condition of order p if

osc(A,ω, p) := max1≤q≤p

{ 1
q! (diamω)q ‖∇qA‖L∞(ω)

} ≤ 1. (3.1)

Note that the oscillation condition is fulfilled if and only if

diamω max1≤q≤p

{( 1
q!‖∇qA‖L∞(ω)

)1/q} ≤ 1. (3.2)

Correspondingly, we define a function Hp,A : Ω → R>0 which turns out to
measure the “variation” of the regularity for problem (2.2) from a standard
Poisson problem. This function will depend on the smoothness parameter p.
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The construction is as follows. We subdivide some bounding box Q0 ⊃ Ω̄ into
hypercubes such that the oscillation condition is fulfilled for every such cube.
In the following, a cube Q := {x ∈ Rd : ‖x− cQ‖∞ ≤ RQ} is represented by its
center cQ and its radius RQ (its halved width). For any parameter ρ > 0

Bρ(Q) := {x ∈ Rd : ‖x− cQ‖∞ ≤ ρRQ}
defines a ρ-scaled version of the cube Q. Clearly, B1(Q) = Q.
Algorithm 3.2 (Oscillation adapted covering) Let Q0 ⊃ Ω̄ be some closed
bounding box of Ω. For p ∈ N≥1, a subdivision Q = Qp(A) of Q0 into closed
cubes is defined by:Q = {Q0}, Q∗ := ∅

while Q∗ �= Q doQ∗ := Q
for Q ∈ Q∗ do
if osc(A,B2(Q) ∩Ω, p) > 1 then
Q is subdivided into 2d disjoint, congruent cubes q1, . . . , q2d andQ = Q \Q ∪ {q1, . . . , q2d}

end if
end for

end while
Remark 3.3 Since A ∈ Cp(Ω,Rd×dsym), Algorithm 3.2 terminates because, under
this assumption, the oscillations of A are bounded globally over Ω, i.e.,

osc(A,Ω, p) ≤ CA,Ω, and, hence, osc(A,Q, p) ≤ 2−�(diamQ0
diamΩ

)
CA,Ω

if Q ∈ Qp(A) is the result of � refinement steps in Algorithm 3.2. Hence, the
maximal number of refinement steps is bounded from above by ⌈log2(1 + CA,Ω diamQ0diamΩ )

⌉.
We shall now make a few observations concerning the local-quasi uniformity of
the subdivisions Qp(A) generated by Algorithm 3.2. We call two cubes Q1, Q2 ∈Q neighbored if their boundaries have a common point. The set of neighbors of
some cube Q will be denoted by N (Q).
Proposition 3.4 If P,Q ∈ Qp(A) are neighbored then 1

4RQ ≤ RP ≤ 4RQ.
Proof. P ∈ Q := Qp(A) implies that the father P̃ of P in the hierarchi-
cal construction of Q does not fulfill the oscillation condition. Necessarily,
B2(P̃ ) �⊂ B2(Q). Since P̃ ∩ Q �= ∅, we get ‖cQ − cP̃ ‖∞ ≤ RQ + RP̃ . The
condition B2(P̃ ) �⊂ B2(Q) can be rewritten as

RQ + 3RP̃ > RB2(Q) = 2RQ,
which yields RP̃ > 1

3RQ and RP = 1
2RP̃ > 1

6RQ. Since radii are successivelyhalved in Algorithm 3.2, we finally get RP ≥ 1
4RQ.
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Proposition 3.5 There exits Col ∈ N depending only on d such that for all
Q ∈ Qp(A)] and for all η ∈ [0, 1[ it holds

#{P ∈ Qp(A) : |P ∩B1+η(Q)| > 0} ≤ ColMd(η),
where M1(η) = log(1− η) and Md(η) = (1− η)1−d if d ≥ 2.
Proof. Let Q := Qp(A) and PQ := {P ∈ Q : |P ∩ B1+η(Q)| > 0}. An upper
bound for the number of elements of PQ can be derived by considering the
scenario where Q is surrounded by layers each of which consists of congruent
cubes of minimal size. The layers are defined recursively: The first layer contains
all neighbors of Q; for k ≥ 2 the (k)− th-th layer contains all neighbors of
elements of the (k − 1)− th layer that are not contained in the layers 1, 2, . . . , k−
1. By Proposition 3.4 all neighbors of Q have at least radius 1

4RQ. We will showlater (see the end of this proof) that elements of the k-th layer have at least
radius 2−(k+1)RQ. Assuming the latter statement is true, we compute that the
thickness of the first K layers is (2(1 − (1/2)K+1)− 1)RQ. Thus there can be
at most K = �− log(1− η)/ log(2)� layers within the η-neighborhood of Q and
the proof is finished for d = 1. If d ≥ 2 then the number of elements in PQ can
be bounded by∑K

k=1 2(d−1)k = 2d−1
2d−1−1

1−(1−η)d−1

(1−η)d−1 . This bound depends only on
η and d but not on Q. It can be written in terms of Md(η) and the proof is
finished.

The missing estimate on the minimal layer thickness is proved recursively.
Assume that the radii of the k-th layer elements are bounded from below by
2−(k+1)RQ for all k = 1, . . . , L and that P is an element of layer L+ 1. Then

‖cQ − cP ‖∞ ≥ RQ +
L∑
k=1
2(2−(k+1)RQ) +RP =

( L∑
k=0
2−k
)
RQ +RP .

If RP ≥ 2−(L+1)RQ nothing has to be shown. Otherwise, if RP ≤ 2−(L+2)RQ
the intersection of P̃ and elements of the layers 1, . . . , L is of measure zero;
P̃ being the father of P in the hierarchical construction of Q. This yields‖cQ − cP̃‖∞ ≥ (∑L

k=0 2−k
)
RQ + 2RP , and

max
y∈B2(P̃ )

‖y − cQ‖∞ ≥
( L∑
k=0
2−k
)
RQ + 6RP .

As in the proof of Proposition 3.4 a necessary condition on RP can be derived
from the fact that B2(P̃ ) does not fulfill the resolution condition while B2(Q)
does, i.e. B2(P̃ ) �⊂ B2(Q):( L∑

k=0
2−k
)
RQ + 6RP > 2RQ.

Thus RP > 1
62−LRQ = 2

32−(L+2)RQ. Since radii are successively halved in
Algorithm 3.2, we get the desired result RP ≥ 2−(L+2)RQ.
Density functions are now given by the local element size in Qp(A).
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Definition 3.6 (Oscillation adapted density) Let Qp(A), p ∈ N≥1, be a
covering of Ω generated by Algorithm 3.2. Then Qp(A)-piecewise constant func-
tions Hp,A : ∪Qp(A)→ R>0 are defined by

Hp,A(x) := min {diamQ : Q ∈ Qp(A) with x ∈ Q} for x ∈ ∪Q.

It will turn out that the function Hp,A contains important information of the
diffusion coefficient A for higher order regularity estimates. However, the con-
struction of Hp,A via subdivisions into (overlapping) cubes is not well suited for
the representation of the geometry of Ω and for finite element discretizations
thereon. In view of the fact that smooth domains, curvilinear polygons, and
curved polyhedra are the relevant geometries for our theory we will construct
a regular finite element mesh (cf. [3]) consisting of (possibly curved) simplices.
The distribution of the simplices in this mesh is controlled by the oscillation
adapted function Hp,A.

In a first step, we introduce an initial coarse mesh that resolves the geometry.
In a second step, based on the functionHp,A, the initial mesh is refined according
to the oscillations of the coefficient.
Definition 3.7 (Macro triangulation, refinement, parametrization)

a) We assume that there exists a polyhedral (polygonal in 2D) domain Ω̃ along
with a bi-Lipschitz mapping χ : Ω̃→ Ω. Let T̃ macro = {K̃macroi : 1 ≤ i ≤ q}
denote a conforming finite element mesh for Ω̃ consisting of simplices
which are regular in the sense of [3]. T̃ macro is considered as a coarse
partition of Ω̃, i.e., the diameters of the elements in T̃ macro are of order
1. We assume that the restrictions χi := χ|K̃macroi

are analytic for all
1 ≤ i ≤ q. The macro mesh for Ω is then given by

T macro :=
{
K = χ(K̃macro) : K̃macro ∈ T̃ } .

b) Using the macro mesh as the initial mesh we introduce a recursive refine-
ment procedure REFINE. The input of REFINE is a finite element meshT , where some elements are marked for refinement, and the output is a
new conforming finite element mesh T refine in in the sense of [3]. The out-
put is derived by refining the corresponding simplicial mesh T̃ in a standard
way (e.g., in 2D, by first connecting the midpoints of the marked triangle
edges and second eliminating hanging nodes by some suitable closure algo-
rithm). The resulting mesh is denoted by T̃ refine = {K̃i : 1 ≤ i ≤ N}. The
corresponding finite element mesh for Ω is denoted by T refine = {K = χ(K̃) :
K̃ ∈ T̃ refine

}. As a simplifying assumption on the refinement strategy we
assume that the elimination of hanging nodes causes refinement of non-
marked triangles only in the first layer around marked triangles. In certain
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cases this strategy generates meshes with some “flat” triangles, i.e., the
constant measuring the shape regularity of the mesh is increased.1

c) Note that there exists an affine bijection AK : K̂ → K̃ which maps the
reference element K̂ := {x ∈ (R≥0)d :∑d

i=1 xi ≤ 1} to the simplex K̃ for
any K = χ(K̃) ∈ T , where T is derived from T macro by repeated appli-
cation of REFINE. A parametrization FK : K̂ → K can be written as
FK = RK ◦ AK, where AK is an affine map and the maps RK and AKsatisfy for constants Caffine, Cmetric, γ > 0:

‖A′K‖L∞(K̂) ≤ Caffine diam(K),
‖(A′K)−1‖L∞(K̂) ≤ Caffine diam(K)−1,
‖(R′K)−1‖L∞(K̃) ≤ Cmetric,
‖∇nRK‖L∞(K̃) ≤ Cmetricγnn! for n ∈ N0.

(3.3)

Driven by the density function Hp,A, the actual oscillation adapted meshes are
derived by successively refining the macro mesh as follows.
Algorithm 3.8 (Oscillation adapted finite element mesh) Let T macro be
a subdivision of Ω̄ in the sense of Definition 3.7 and let p ∈ N≥1. A subdivisionTp(A) of Ω that (as we will prove) reflects the regularity of the coefficient is
defined by:T := T macro

for q = 1, 2, . . . , p doM := T
while M �= ∅ doM := {K ∈ T : diam(K) > minx∈KHq,A(x)}T = REFINE(T ,M)
end while

end for

Remark 3.9
a) The mesh Tp(A) serves as a starting mesh for further regular refinements.

Then, the final mesh Th is again a finite element mesh for Ω and satisfies:
For all K ∈ Tp(A), there exists a set of sons sons(K) ⊂ Th such that
K = ⋃{K ′ : K ′ ∈ sons(t)}. The diameter of K ∈ Th is denoted by hKand we are using the maximal mesh width h := max{hK : K ∈ Th} as the
index in Th.

1One could avoid this by allowing that the closure algorithm spreads out by more than one
triangle layer about the red refined triangles. The generalization of our theory to this version
of the closure algorithm however would require further technicalities in our theory. To avoid
this for sake of readability we impose our simplifying assumption on the closure algorithm.

8



b) For �, �′ ∈ N≥1, � < �′, let T�(A) and T�′(A) denote the meshes gener-
ated by Algorithm 3.8 by using the same initial mesh T macro. Then, by
construction, T�′ is a refinement of T�.

Our goal is to discretize (2.2) by the Galerkin finite element method. It will
turn out that the ratio max{hK′ : K ′ ∈ sonsK}/hK , K ∈ Tp(A), plays the
essential role for the error estimates.

We shall prove that the mesh Tp(A) has analogue properties as the meshQp(A) — more precisely it satisfies Propositions 3.4 and 3.5. In addition, it is a
simplicial finite element mesh. For K ∈ T and ρ ≥ 1, some scaled neighborhood
of K is defined by

Kρ := {x ∈ Rd : ∃y ∈ K : ‖y − x‖2 ≤ ρ
2 diam(K)}. (3.4)

Note that Definition 3.7 implies that ρT := max{diam(T )d/|T | : T ∈ T } is boun-
ded from above by a constant which only depends on Caffine and Cmetric from
(3.3).
Lemma 3.10 Let Q = Qp(A) and T = Tp(A), p ∈ N≥1, be the subdivisions
generated by Algorithm 3.2 resp. 3.8 which “resolve” the coefficient A. Then it
holds:

a) There exist C1(d,Caffine, Cmetric), C2(d) ∈ N such that for all Q ∈ Q and
all K ∈ Tp, p ∈ N≥1, there holds
#{T ∈ T : T ∩Q �= ∅} ≤ C1 and #{P ∈ Q : P ∩K �= ∅} ≤ C2.

b) For all η ∈ [0, 1[, there exists C′ol(C1, Col, C2) ∈ N such that for all K ∈ T
there holds

#{T ∈ Tp : |T ∩K1+η| > 0} ≤ C′ol

{log(1− η) if d = 1,
(1− η)1−d if d ≥ 2.

Proof. Let K ∈ T and Q ∈ Q be given such that K ∩Q �= ∅. Then, depending
on the actual realization of the procedure REFINE, there exist θ > 0 such that

θ diam(Q) ≤ diam(K) ≤ diam(Q). (3.5)
Let N (Q) := ⋃{P ∈ Q : P and Q are neighbored} denote a neighborhood of
Q in Q. Then C1 can be estimated by

|N (Q)| = ∑
T∈T : T∩N (Q)�=∅

|T ∩N (Q)| ≥ ∑
T∈T : T∩Q�=∅

|T ∩N (Q)|
≥ ∑
T∈T : T∩Q�=∅

θ
4ρT diam(Q)d ≥ C1 θ

4ρT |Q|.
This implies that C1 is bounded in terms of θ, ρT , and d. An analogue argument
proves that C2 is finite and therefore Part a).
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Part b) follows from Part a) as we will explain next. There are at most C1
cubes which intersect K. Proposition 3.5 shows that in an η-neighborhood of
every such cube there are at most ColMd(η) elements of Q. Therefore, K1+η is
covered by at most C1ColMd(η) cubes. Due to Part a) each of the latter cubes
is again intersected by at most C2 simplices.
We finally introduce weighted (mesh-dependent) Sobolev norms.
Definition 3.11 (Oscillation adapted Sobolev norms) Let Tp(A), p ∈ N≥1,be the subdivision of Ω generated by Algorithm 3.8. A weighted seminorm| · |p+1,A in Hp+1(Ω) is defined by

|u|p+1,A := 1
p!


 ∑
K∈Tp(A)

diam(K)2p‖∇p+1u‖2L2(K)




1/2
,

while corresponding full norms are given by

‖u‖p+1,A :=
√√√√‖u‖2H1(Ω) +

p+1∑
�=2

|u|2�,A.
By construction the seminorms |·|p+1,A are equivalent to the weighted seminorms1
p! |Hp

p,A∇p+1 · |L2(Ω) and
osc(A,K2, p) < 1 for all K ∈ Tp(A). (3.6a)

We omit the proof of equivalence and focus on a related property that will be
used later on.
Lemma 3.12 For all K ∈ Tp(A) the lower estimate

hK ≥ cmax

τ,

(
max1≤q≤p

{(‖∇qA‖L∞(K�)
q!

)1/q})−1
 (3.6b)

holds with a constant τ representing the minimal mesh size in the initial macro
mesh T macro (cf. Definition 3.7), and a constant c > 0 depending only on
the shape parameters in T macro and, through (3.5), the procedure REFINE;
K� := KC denotes the C-scaled version of K (cf. (3.4), where the constant C
depends only on the shape parameters in T macro and the procedure REFINE.
Proof. If K is an element of the initial macro triangulation T macro then, by
choosing τ appropriately, the assertion can always be satisfied. If K ∈ Tp(A)
originates from some father simplex K̃ through refinement, K̃ or one of its
neighbors was marked in Algorithm 3.8. The marking of K̃ implies the existence
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of some Q ∈ Qp(A) so that diam(K̃) > diam(Q). If Q �= Q0 then the scaled
version of its father B2(Q̃) violates the oscillation condition (see (3.2)), i.e.,

diam(B2(Q̃)) max1≤q≤p

{(‖∇qA‖L∞(B2(Q̃)/q!
)1/q} > 1.

This yields
diam(K) ≥ θ diam(K̃) > (θ/4) diam(B2(Q̃)) ≥

θ
4
(
max1≤q≤p

{(‖∇qA‖L∞(Q̃2)/q!
)1/q})−1

. (3.7)
Based on mesh regularity a similar estimate can be derived in the case where
the refinement of K̃ is due to preservation of conformity. Therefore (3.6b) is
proved.

4 Oscillation Adapted Regularity
We start by stating the main result concerning the regularity estimates in
weighted Sobolev norms, where the regularity constants are independent of the
derivatives of the diffusion coefficient A. The proof is based on local interior
regularity estimates which will be proved in Sections 4.2 and 4.3.

4.1 Main Regularity Result
Theorem 4.1 Let A ∈ Cp(Ω,Rd×dsym) satisfy (2.1) for some p ∈ N≥1 and assume
f ∈ Hp−1(Ω). The corresponding solution of (2.2) is denoted by u. Further
assume that the mesh Tp(A) is generated by Algorithm 3.8. Let the boundary
∂Ω be of class Cp.

Then, the solution satisfies u ∈ Hp+1(Ω) and
‖u‖p+1,A ≤ C11Cp12 ‖f‖Hp−1(Ω) . (4.1)

The constants C11 and C12 are independent of p and the variation of A but
depend on α, β as in (2.1), on Col (cf. Proposition 3.5) and on the constants
in Definition 3.7(c), on the spatial dimension d, and on the geometry of the
domain Ω through its diameter and the constants describing the regularity of
the boundary ∂Ω.
Proof. For K ∈ Tp(A), let HK := sup{Hp,A(x) : x ∈ K} and let Hmax :=‖Hp,A‖L∞(Ω). Then by choosing 0 < η < 1 as in Lemma 3.10(b) and using
Lemmata 4.5, 4.6, and 4.8 we obtain
∑

K∈Tp(A)

H2p
K
∥∥∇p+1u∥∥2L2(K)
(p!)2 ≤ C28C2p

9 p ∑
K∈Tp(A)

(
‖∇u‖2L2(K1+η) +

p−1∑
i=0

H2+2iK
(i+ 1)!2

∥∥∇if∥∥2L2(K1+η)

)

(3.6a)≤ C210C2p
9 p
(
‖∇u‖2L2(Ω) +

p−1∑
i=0

H2+2imax
(i+ 1)!2

∥∥∇if∥∥2L2(Ω)

)
.
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Since 0 < α := α(A,Ω) is bounded from below and Hmax ≤ diamΩ we obtain
∑

K∈Tp(A)

H2p
K
∥∥∇p+1u∥∥2L2(K)
(p)!2 ≤ C211C2p

9 p ‖f‖2Hp−1(Ω) ≤ C211(C′9)2p ‖f‖2Hp−1(Ω) ,
(4.2)

where C11 depends also on Hmax. For the estimate of the full norm, we get

‖u‖2p+1,A = ‖u‖2H1(Ω) +
p∑
�=1

|u|2�+1,A
≤ C ‖f‖2L2(Ω) +

p∑
�=1

C211(C ′9)2� ‖f‖2H�−1(Ω)

≤ C211C2p
12 ‖f‖2Hp−1(Ω) .

4.2 Interior Regularity
For the local high order interior regularity estimates we employ the framework
which has been developed in [19], [17]. By some technical reasons which are
related to the construction of the oscillation adaptive covering and the finite
element method we replace the Euclidean balls in [19], [17] by simplices. For
R > 0, let the d-dimensional scaled unit simplex (with barycenter at the origin)
be denoted by

T̂R :=
{
x− 1

d+ 1 (R,R, . . . , R)ᵀ | x ∈ (R≥0)d ∧ ‖x‖�1 ≤ R
}
.

Lemma 4.2 (H2-regularity) Let f ∈ L2(T̂R), A ∈ C1(T̂R,Rd×dsym) such that
0 < α := α(A, T̂R) and β(A, T̂R) =: β < ∞ (cf. (2.1)). Assume that osc(A, T̂R, 1) ≤ 1.Then, there exists a constant CI depending only on α and β such that the weak
solution u of −div(A∇u) = f in T̂R, u = 0 on ∂T̂R
is in H2(T̂R) and satisfies∥∥∇2u∥∥L2(T̂R) ≤ CI ‖f‖L2(T̂R) . (4.3)

The proof follows by scaling the problem to the unit simplex T̂1 (as explained
in [17, Lemma 5.5.5]) and by using standard regularity estimates (see, e.g., [5],
[6]).
Lemma 4.3 (interior regularity) Let the assumptions of Lemma 4.2 be sat-
isfied. Then, there exists a constant C′I > 0 depending only on α(A, T̂R) and
β(A, T̂R) such that any solution of

−div (A∇u) = f in T̂R (4.4)
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satisfies
∥∥∇2u∥∥L2(T̂r) ≤ C′I

(‖f‖L2(T̂r+δ) + δ−1 ‖∇u‖L2(T̂r+δ) + δ−2 ‖u‖L2(T̂r+δ)
)

for all r, δ > 0 with r + δ < R.
Proof. (See [19, Lemma 5.7.1], [17, Lemma 5.5.11] for ball-shaped domains.)
We employ a cutoff function χ being identically one on T̂R−δ, vanishing on
T̂R\T̂R−δ/2 and satisfying ∥∥∇jχ∥∥L∞(T̂R) ≤ Cδ−j , j = 0, 1, 2. Then, U = χu
satisfies
−div (A∇U) = χf−2 〈∇u,A∇χ〉−udiv (A∇χ) in T̂R and U = 0 on ∂T̂R.
By using (4.3) and triangle inequalities in combination with Hölder inequalities,
we get
‖∇u‖L2(T̂R−δ) ≤ ∥∥∇2U∥∥L2(T̂R)

≤ CI
(‖f‖L2(T̂R) ‖χ‖L∞(T̂R) + 2 ‖∇u‖L2(T̂R) ‖A‖L∞(T̂R) ‖∇χ‖L∞(T̂R)

+ ‖u‖L2(T̂R) ‖div (A∇χ)‖L∞(T̂R)
)
. (4.5)

The assumptions on the cutoff function and A imply ‖χ‖L∞(T̂R) ≤ C and

‖A‖L∞(T̂R) ‖∇χ‖L∞(T̂R) ≤ Cβ
(
A, T̂R

)
δ−1 (4.6a)

‖div (A∇χ)‖L∞(T̂R) ≤ C
(
R ‖A′‖L∞(T̂R) (Rδ)−1 + β

(
A, T̂R

)
δ−2)

≤ Cδ−2 (1 + β
(
A, T̂R

))
. (4.6b)

The combination of (4.5) and (4.6) leads to the assertion.
For the estimate of the higher order derivatives we need some further notation.
Let

NR,� (v) := 1
[�]! sup

R/2≤r<R
(R− r)2+� ∥∥∇�+2v∥∥L2(T̂r) � ∈ N0 ∪ {−2,−1} ,

(4.7a)
MR,� (v) := 1

�! sup
R/2≤r<R

(R− r)2+� ∥∥∇�v∥∥L2(T̂r) � ∈ N0, (4.7b)

where [�] := max {1, �}. Note that for any 1/2 ≤ η < 1 :
∥∥∇�+2v∥∥L2(T̂ηR) ≤ [�]!

((1− η)R)2+�NR,� (v) . (4.8a)
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Lemma 4.4 (interior higher order regularity) For � ∈ N0, we assume (cf.
(2.1)) that

A ∈ C�+1(T̂R,Rd×dsym), osc
(
A, T̂R, �+ 1

) ≤ κ for some κ > 0,
0 < α := α

(
A, T̂R

)
, β

(
A, T̂R

)
=: β < ∞.

Then there exists C′I > 0 depending only on α, β, and d such that

NR,� (u) ≤ C′I

(
MR,� (f) + (1 + κ)

�+1∑
q=1

�+ 1
2q [�+ 1− q]NR,�−q (u)

)
(4.9)

for any f ∈ H�
(
T̂R
) and any solution u of

−div (A∇u) = f on T̂R.
Proof. One easily checks that the proof of [17, Lem. 5.5.12] carries over to the
scaled unit simplex (instead of balls) so that

NR,� (u) ≤ C′I

(
MR,� (f) +

�+1∑
q=1

(�+ 1
q
)(R

2
)q ‖∇qA‖L∞(T̂R)

[�− q]!
�! NR,�−q (u)

(4.10)
+NR,�−1 (u) +NR,�−2 (u)) .

From osc
(
A, T̂R, �+ 1

) ≤ κ we conclude that

NR,� (u) ≤ C′I

(
MR,� (f) + κ

�+1∑
q=1

�+ 1
2q [�+ 1− q]NR,�−q (u) +NR,�−1 (u) +NR,�−2 (u)

)
.

(4.11)
Since the factors in front of NR,�−1 (u) and NR,�−2 (u) above are 1, the assertion
follows.

Lemma 4.5 For p ∈ N≥1, we assume that
A ∈ Cp(T̂R,Rd×dsym), osc

(
A, T̂R, p

) ≤ κ for some κ > 0,
0 < α := α

(
A, T̂R

)
, β

(
A, T̂R

)
=: β < ∞.

Then, for any f ∈ Hp−1
(
T̂R
) and any solution u of

−div (A∇u) = f on T̂R.
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it holds
Rp
p!
∥∥∇p+1u∥∥L2(T̂ηR) ≤ C1Cp2

(
‖∇u‖L2(T̂R) +

p−1∑
i=0

R1+i
(i+ 1)!

∥∥∇if∥∥L2(T̂R)
)

for all 1/2 ≤ η < 1 with
C1 := λ+ 1+ C′I

(1− η) (1 + λ) , C2 := λ+ 1
2 (1− η) , λ := 2C′I (1 + κ) . (4.12)

Proof. The estimate
NR,−1 (u) ≤ R

2 ‖∇u‖L2(T̂R) (4.13)
directly follows from (4.7a). Definition (4.7a) implies

NR,0 (u) = sup
R/2≤r<R

(R− r)2 ∥∥∇2u∥∥L2(T̂r) .

Next, we estimate the recursion (4.9) and define

N−1 := NR,−1 (u) and, for � = 0, 1, 2 . . . , N� := C�+λ
�+1∑
q=1

�+ 2
2q (�+ 2− q)N�−q,

(4.14)
where C� := C′IMR,� (f) and λ as in (4.12). It follows directly by comparing
(4.9) with (4.14) that NR,� (u) ≤ N�. We set Ñ� := 2�N�/ (�+ 2) and C̃� :=
C�2�/ (�+ 2) to obtain

Ñ−1 = N−1/2 and, for � = 0, 1, 2 . . . , Ñ� = C̃� + λ
�+1∑
q=1

Ñ�−q.

This recursion can be resolved and we get, for all � ≥ 0,
Ñ� ≤ C̃� + λ (λ+ 1)� Ñ−1 + λ

�−1∑
i=0
(λ+ 1)�−1−i C̃i

≤ (λ+ 1)�+1 Ñ−1 +
�∑
i=0
(λ+ 1)�−i C̃i.

By substituting back the original quantities we derive
N�
�+ 2 ≤ (λ+ 12

)�+1
N−1 + C′I

�∑
i=0

(λ+ 1
2
)�−i MR,i (f)

(i+ 2) . (4.15)

The combination of (4.8a), (4.13), (4.15), andMR,i (f) ≤ 1
i!
(R
2
)2+i ∥∥∇if∥∥L2(T̂R)with some elementary estimates leads to the assertion.
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4.3 Regularity at the Boundary
For R > 0, let the d-dimensional scaled unit simplex be denoted by

T̂+R :=
{
x | x ∈ (R≥0)d ∧ ‖x‖�1 ≤ R

}

and let Γ+R :=
{
x ∈ T̂+R | xd = 0} be its horizontal facet.

For the estimate of the solution in T̂+r by quantities in a certain neighbor-
hood, we will proceed along the lines of [17, Sect. 5.5.3] and derive estimates
for the normal and tangential derivatives at the boundary separately.
4.3.1 Control of Tangential Derivatives
Let x = (x1, x2 . . . , xd−1) denote the tangential variables with respect to Γ+R.The derivatives with respect to x are denoted by ∇x. We will need the following
notation

N+R,� (v) :=


1
�! sup
R/2≤r<R

(R− r)�+2 ∥∥∇2∇�xv∥∥L2(T̂+r ) if � ≥ 0,
sup

R/2≤r<R
(R− r)�+2 ∥∥∇2+�v∥∥L2(T̂+r ) if � = −2,−1.

(4.16a)
M+R,� (v) := 1

�! sup
R/2≤r<R

(R− r)�+2 ∥∥∇�xv∥∥L2(T̂+r ) . (4.16b)

Lemma 4.6 For p ∈ N≥1, we assume (cf. (2.1)) that
A ∈ Cp(T̂+R ,Rd×dsym), osc

(
A, T̂+R , p

) ≤ κ for some κ > 0,
0 < α := α

(
A, T̂+R

)
, β

(
A, T̂+R

)
=: β < ∞.

Then there exists C′B > 0 depending only on α, β, and d such that for all
f ∈ Hp−1

(
T̂+R
) and any solution u of

−div (A∇u) = f in T̂+R , u = 0 on Γ+R (4.17)
we have
Rp
p!
∥∥∇p−1x ∇2u∥∥L2(T̂+

ηR) ≤ C1Cp2
(
‖∇u‖L2(T̂+

R ) +
p−1∑
i=0

R1+i
(i+ 1)!

∥∥∇if∥∥L2(T̂+
R )
)

for all 1/2 ≤ η < 1 with
C1 := λB + 1 + C ′B

(1− η) (1 + λ) , C2 := λB + 1
2 (1− η) , λB := 2C ′B (1 + κ) .
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Proof. Once again, one checks that the proof for [17, Lem. 5.5.15] carries over
to the scaled unit simplex so that

N+
R,� (u) ≤ CB

(
M+
R,� (f) +

�+1∑
q=1

(�+ 1
q
)(R

2
)q ‖∇qA‖L∞(T̂+

R )
[�− q]!

�! N+
R,�−q (u)

+N+
R,�−1 (u) +N+

R,�−2 (u)
)
.

This estimate has the same form as (4.10) so that we may conclude
N+R,� (u)
�+ 2 ≤ (λB + 12

)�+1
N+R,−1 (u) + C′B

�∑
i=0

(λB + 1
2

)�−i M+R,i (f)
(i+ 2) (4.18)

and, finally, the assertion follows in the same way as in the proof of Lemma 4.5.

4.3.2 Control of Normal Derivatives
For the control of the normal derivatives, we introduce the quantity

N+
R,�,q (v) := 1

[�+ q]! sup
R/2≤r<R

(R− r)�+q+2 ∥∥∇�x∂q+2y v∥∥L2(T̂+r ) , (4.19)

where, again, ∇x denote the gradient with respect to the tangential variables
xi with respect to Γ+R, 1 ≤ i ≤ d− 1, and ∂y = ∂xn denote the derivative withrespect to the normal direction.

Lemma 4.7 For t ∈ N0, we assume that
A ∈ Ct+1(T̂+R ,Rd×dsym), osc(A, T̂+R , t+ 1) ≤ κ for some κ > 0,
0 < α := α(A, T̂+R ), R�+m

�!m!
∣∣∇�x∂my A∣∣ ≤ κ for all 1 ≤ �+m ≤ t+ 1,

∞ > β := β(A, T̂+R ).
Then, for all f ∈ Ht(T̂+R ) and corresponding solutions u of (4.17) we have

∣∣∣N+
R,�,q (u)

∣∣∣ ≤ C5K�1Kq
2

(
N+R,−1 (u) +

�+q∑
s=0

MR,s (f)
)

for all � ∈ N0 and q ∈ Z≥−2 with � + q ≤ t. The constants C5, K1, K2 only
depend on α, β, d, λB, C′B, and κ.
Proof. We assume that f ∈ Ct(T̂+R ) and obtain the result for general f ∈ Ht(T̂+R )by a standard density argument.

In the following, �, q denote always integers which satisfy � ∈ N0, q =−2,−1, 0, . . ., and �+ q ≤ t.
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For q = −2,−1, the estimate N+R,�,q(v) ≤ N+R,�+q(v) directly follows fromthe definitions (4.16) and (4.19). This serves as the start of an induction. We
assume that the assertion is proved for all

(�, q) ∈ It(q′) := {(r, s) | 0 ≤ r ≤ t,−2 ≤ s ≤ min {q′, t− r − 1}}
for some −1 ≤ q′ ≤ t − 1. In the induction step, we will prove the result for
all (�, q) ∈ It (q′ + 1). Taking into account the start of the induction, we may
assume from now on that �, q ≥ 0 and �+ q ≤ t.

Let Â denote the d × d matrix with Âi,j := Ai,j for all 1 ≤ i, j ≤ d with
(i, j) �= (d, d) and Âd,d := 0. Then

−Ad,d∂2yu = f + 〈divA,∇u〉+ Â : ∇2u
and
−∂2yu = f̃ + 〈b,∇u〉+B : ∇2u with f̃ = f/Ad,d, b = divAAd,d , B := A−1d,dÂ.

With start with the contribution related to f̃ . From Lemma A.2 we obtain
(R− r)�+q+2
(�+ q)!

∥∥∥∇�+qf̃∥∥∥L2(T̂+r ) ≤ 2
α
(8
3
)d−1

2 γ�+q
�+q∑
s=0

MR,s (f) ,

where γ := max{2, 8κα } and T̂r in the definition of MR,s (f) (cf. (4.7b)) has to
be replaced by T̂+r .Next, we will bound the term

M�,q (b, u) := 1
(�+ q)! sup

R/2≤r<R
(R− r)�+q+2 ∥∥∇�x∂qy 〈b,∇u〉∥∥L2(T̂+r ) .

From [17, Lemma 5.5.18], we get

M�,q (b, u) ≤ �!q!
(�+ q)!

�∑
r=0

q∑
s=0

∥∥∂sy∇rxb∥∥L∞(T̂+
R )

r!s!
(R
2
)r+s+1×

× [�− r + q − s− 1]!
(�− r)! (q − s)!

(
N+
R,�−r,q−1−s (u) +N+

R,�+1−r,q−s−2 (u)
)
.

The bound
1

r!s!
∥∥∂sy∇rxb∥∥L∞(T̂+

R )
(R
2
)r+s+1 ≤ C

2
(γ
2
)r+s (4.20)

is proved in Lemma A.3, where C depends on d, α, and κ. Thus

M�,q (b, u) ≤ C�!q!
2 (�+ q)!

�∑
r=0

q∑
s=0

(γ
2
)r+s [�− r + q − s− 1]!

(�− r)! (q − s)! ×
× (N+R,�−r,q−1−s (u) +N+R,�+1−r,q−s−2 (u)

)
.
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Finally, we consider the term B : ∇2u. From [17, Lemma 5.5.17] we derive
the estimate

1
[�+ q]! sup

R/2≤r<R
(R− r)�+q+2 ∥∥∇�x∂qy (B : ∇2u)∥∥L2(T̂+r )

≤ �∑
r=0

q∑
s=0

(�
r
)(q

s
)∥∥∂sy∇rxB∥∥L∞(T̂+

R )
(R
2
)r+s×

× [�− r + q − s]!
[�+ q]!

(
N+
R,�+1−r,q−1−s (u) +N+

R,�+2−r,q−s−2 (u)
)
.

Similarly as for the estimate (4.20) one shows
1
r!s!
∥∥∂sy∇rxB∥∥L∞(T̂+

R )
(R
2
)r+s ≤ C

(γ
2
)r+s with C := 2κ

α (γ − 1)2
(8
3
)d−2

2 +β.

Thus
1

[�+ q]! sup
R/2≤r<R

(R− r)�+q+2 ∥∥∇�x∂qy (B : ∇2u)∥∥L2(T̂+
R )

≤ C �!q!
[�+ q]!

�∑
r=0

q∑
s=0

(γ
2
)r+s [�− r + q − s]!

(�− r)! (q − s)!
(
N+R,�+1−r,q−1−s (u) +N+R,�+2−r,q−s−2 (u)

)
.

In this way, we have proved

N+
R,�,q (u) ≤ 2

α
(8
3
)d−1

2 (γ
2
)�+q �+q∑

s=0
MR,s (f)

+ �!q!
[�+ q]!

C
2

�∑
r=0

q∑
s=0

(γ
2
)r+s [�− r + q − s− 1]!

(�− r)! (q − s)!
(
N+
R,�−r,q−1−s (u) +N+

R,�+1−r,q−s−2 (u)
)

+ C �!q!
[�+ q]!

�∑
r=0

q∑
s=0

(γ
2
)r+s [�− r + q − s]!

(�− r)! (q − s)!
(
N+
R,�+1−r,q−1−s (u) +N+

R,�+2−r,q−s−2 (u)
)
.

To understand this recursion, we start by introducing
C1 = 2

α
(8
3
) d−1

2 , C2 = γ/2,
Ñ+�,q := N+R,�,q (u) , Ĉ := max {C1,C}

to obtain

Ñ+
�,q ≤ ĈC�+q2

(�+q∑
s=0

MR,s (f)

+ �!q!
(�+ q)!

�∑
r=0

q∑
s=0

C−r−s2
(r + s)!
r!s!

(Ñ+r,s−1 + Ñ+r+1,s−2
2 [r + s] + Ñ+r+1,s−1 + Ñ+r+2,s−2

))
.
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By using Stirling’s formula and �!/r! ≤ ��−r we get with c := e1/12

�!q!
(�+ q)!

(r + s)!
r!s! ≤ c

( e
�+ q

)�+q−r−s
��−rqq−s ≤ c

( e �
�+ q

)�−r ( e q
�+ q

)q−s ≤ c e�−r+q−s .

Thus,

Ñ+
�,q ≤ ĈC�+q2

�+q∑
s=0

MR,s (f)

+ cĈ
�∑
r=0

q∑
s=0
(C2 e)�−r+q−s

(Ñ+r,s−1 + Ñ+r+1,s−2
2 + Ñ+r+1,s−1 + Ñ+r+2,s−2

)
.

By defining the quantities N I�,q via the recursion N I�,q := N+
R,�,q (u) for q =−2,−1, and by

N I�,q = ĈC�+q2
�+q∑
s=0

MR,s (f)+ 3cĈ2
�∑
r=0

q∑
s=0
(C2 e)�−r+q−s

(
Ñ Ir+1,s−1 + Ñ Ir+2,s−2

)
(4.21)

for q ≥ 0 we conclude from obvious monotonicity considerations that Ñ+
�,q ≤

N I�,q.Note that (4.18) implies after some simple estimates

N+R,t (u) ≤ C4Ct3
(
N+R,−1 (u) +

t∑
i=0

M+R,i (f)
)
. (4.22)

with C3 = e λB+12 and C4 = C3 + C′B.We will prove by induction that

N I�,q ≤ C5K�1Kq
2

(
N+R,−1 (u) +

�+q∑
s=0

MR,s (f)
)
,

where
C5 ≥ max{C4, 2Ĉ

}
, K1 ≥ max {C3, 2C2 e} , K2 ≥ K1max

{
1, 24cĈ

}
.

For q = −2,−1, we get from (4.22)

N I�,q = N+
R,�,q (u) ≤ N+

R,�+q (u) ≤ C4C�+q3

(
N+R,−1 (u) +

�+q∑
i=0

M+R,i (f)
)

and the assumptions on C5, K1, K2 imply the assertion.
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For q ≥ 0, we estimate the right-hand side (r.h.s.) in the recursion (4.21) by
r.h.s. ≤ ĈC�+q2

�+q∑
s=0

MR,s (f)

+ 3cĈ2 K�+11 Kq−1
2 C5

(
1 + K1

K2

) ∞∑
r=0

∞∑
s=0

(C2 e
K1

)r (C2 e
K2

)s(
N+R,−1 (u) +

�+q∑
m=0

MR,m (f)
)

≤ C5K�1Kq
2
({
6cĈK1

K2

(
1 + K1

K2

)}
N+R,−1 (u)

+
{ Ĉ
C5

(C2
K1

)�(C2
K2

)q
+ 6cĈ K1

K2

(
1 + K1

K2

)} �+q∑
m=0

MR,m (f)
)
.

The assumptions onK1,K2 ensure that the expressions in the curly brackets
are bounded by 1 so that the assertion follows.
Lemma 4.8 For p ∈ N≥1, we assume that

A ∈ Cp(T̂+R ,Rd×dsym), osc
(
A, T̂+R , p

) ≤ κ for some κ > 0,
0 < α := α

(
A, T̂+R

)
, R�+m

�!m!
∣∣∇�x∂my A∣∣ ≤ κ for all 1 ≤ �+m ≤ p,

∞ > β := β
(
A, T̂+R

)
.

Then for all f ∈ Hp−1
(
T̂+R
) and corresponding solutions u of (4.17) we

have
R�+q+1
[�+ q]!

∥∥∇�x∂q+2y u∥∥L2(T̂+
ηR) ≤ C6C�+q7

(
‖∇u‖L2(T̂+

R ) +
�+q∑
i=0

1
i!
(R
2
)1+i ∥∥∇if∥∥L2(T̂R)

)

for all � ∈ N0 and q ∈ Z≥−2 with �+ q ≤ p− 1 and for all 1/2 ≤ η < 1, where
C6 := C5(1−η)2 and C7 := max{K1,K2}

1−η .
4.3.3 Curved Boundaries
Next, we will lift the regularity estimates on the scaled unit simplex to possibly
curved simplices of the finite element mesh. We explain the arguments only for
the case of a simplexK ∈ G with one and only one edge, say E, on Γ. We denote
the pullback to the (scaled) reference element by FK := RK ◦ AK : T̂+

hK → K
which is chosen such that FK : Γ+hK → E. The scaling of the reference triangle
is chosen such that FK and its derivatives are bounded independently of h.

From the invariance (up to multiplicative constants) of Sobolev norms under
analytic coordinate transforms (see [17, Corollary 4.2.21]) we conclude that the
estimates in Section 4.3.1 and 4.3.2 remain valid (with the substitutions R ← hK
and T̂+R ← K) — now with multiplicative constants which depend in addition on
bounds of derivatives of the pullback FK .
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5 Oscillation Adapted Finite Elements
As an application of the new regularity estimates we will derive error estimates
for Galerkin hp-finite element discretizations of (2.2) We refer the reader to
[1, 4, 9, 10, 21] for further details concerning hp methods.

Let Tp(A) be generated by Algorithm 3.8. We assume that the mesh Th is a
refinement of Tp (A) according to Definition 3.7 and satisfies (3.3) with moderate
constants. Recall the definition of the subsets sons (K) ⊂ Th for K ∈ Tp (A) as
in Remark 3.9a).

The hp-finite element space for the mesh Th with polynomial degree p is
given by

Sph :=
{u ∈ H10 (Ω) | ∀K ∈ Th : u|K ◦ FK ∈ Pp

} , (5.1a)
where the pullback is as in Definition 3.7(c).

The Galerkin discretization of (2.2) reads:
Find uh ∈ Sph s.t. a (uh, v) = F (v) ∀v ∈ Sph. (5.1b)

It is well known that the Galerkin solution exists, is unique, and satisfies the
quasi-optimal error estimate in the form of Céa’s lemma

‖u− uh‖H1(Ω) ≤ 1
α infv∈Sp

h
‖u− v‖H1(Ω) . (5.2)

To obtain explicit convergence estimates in terms of h and p one has to construct
an hp-interpolation operator and to use regularity estimates for the solution u
in combination with approximation properties.
Theorem 5.1 There exists an interpolation operator Πh,p : Hk (Ω)→ Sph such
that

‖u−Πh,pu‖H1(K) ≤ Capx
(hK

p
)p ‖u‖Hp+1(K)

holds for all K ∈ Th. The constant Capx only depends on the constants in (3.3)
and is independent of p, u, K, and the diameter hK := diamK.

A construction for the interpolation operator Πh,p and the proof of the the-
orem can be found, e.g., in [2, Lemma 4.5], [20, Lemma 17].

The combination of the local interpolation estimates as in Theorem 5.1 with
the new regularity estimates (cf. Theorem 4.1) and Céa’s lemma (5.2) gives us
the error estimate for the Galerkin solution.
Theorem 5.2 Let the assumption of Theorem 4.1 be satisfied. Let the hp-finite
element discretization be as in (5.1). Then the Galerkin solution uh exists, is
unique, and satisfies the error estimate

‖u− uh‖H1(Ω) ≤ C11Capx
cα (C13heff)p ‖f‖Hp−1(Ω) , (5.3a)
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where

heff := maxK∈Tp(A)

{(
1 + max1≤q≤p

(‖∇qA‖L∞(K�)
q!

)1/q)
maxK′∈sons(K)hK′

}
(5.3b)

with K� as in Lemma 3.12.
Proof. We obtain

‖u− uh‖2H1(Ω) ≤ 1
α2
∑
K∈Th

‖u−Πh,pu‖2H1(K) ≤ C2apx
α2

∑
K∈Th

(hK
p
)2p ‖u‖2Hp+1(K)

= C2apx
α2

∑
K∈Tp(A)

∑
K′∈sons(K)

(hK′

p
)2p ‖u‖2Hp+1(K′)

≤ C2apx
α2

∑
K∈Tp(A)


 maxK′∈sons(K)hK′

hK




2p(hK
p
)2p ‖u‖2Hp+1(K) .

Remark 3.9(b) implies that
∑

K∈Tp(A)

(hK
p
)2p ‖u‖2Hp+1(K) ≤ ‖u‖2p+1,A .

From (3.1) and (3.6b) we conclude that

‖u− uh‖H1(Ω) ≤ Capx
cα (Cheff)p ‖u‖p+1,A .

Corollary 5.3 Let the assumption of Theorem 5.2 be satisfied. Assume that
the coefficient A satisfies

1
q! ‖∇qA‖L∞(Ω) ≤ Cε−q (5.4)

for some (small) ε > 0 and for all 1 ≤ q ≤ p. Let p and h be chosen such that
p =

⌈ logh
log(C′9h/ε)

⌉
and C ′9h < ε

holds. Then, the Galerkin discretization with the corresponding hp-finite element
space Sph has a unique solution uh which converges linearly

‖u− uh‖H1(Ω) ≤ Ch ‖f‖Hp−1(Ω) ,
where C is independent of ε, h, and f .
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Proof. The combination of (5.3) and (5.4) yields
‖u− uh‖H1(Ω) ≤ C

(C′9h
ε
)p ‖f‖Hp−1(Ω)

with some constant C. By using p =
⌈ logh
log(C′

9h/ε)
⌉
and the condition on h we

obtain — after some straightforward manipulations — the assertion.
The above corollary shows that for problems with oscillations of characteristic
length scale ε in the coefficient, standard hp-finite element basis functions on a
uniform mesh of width h � ε and polynomial degree p � log 1/ε suffice to allow
for an error bound proportional to ε. Note that in this case the dimension of
the finite element space is of order (ε log(1/ε))−d. In contrast, a conventional
P1 finite element method requires for the same error tolerance a mesh of width
h � ε2 so that the dimension of the P1 finite element space is much larger —
more precisely of order (ε)−2d.

Notice that the results of this paper apply to problems with coefficients of
finite and infinite smoothness — analyticity is not required. In addition, there
is no periodicity assumption: oscillations distributed in a non-uniform way are
explicitly addressed.

Our theory does not cover problems with discontinuous coefficients. How-
ever, if the interfaces between smooth regions of the the diffusion coefficient
are resolved by the initial macro finite element mesh, then, by exploiting [17,
Lemma 5.5.8], the generalization of our regularity estimates to sharp interfaces
with discontinuous diffusion matrix is possible.

The method shall not be regarded as a substitute for adaptive finite element
methods driven by suitable a posteriori error estimators; the influence of the
domain geometry and the right-hand side on the regularity of the solution are
not handled by our theory. However, in many situations it is difficult to define
an initial mesh (as coarse as possible) from which the adaptive algorithm suc-
cessfully and efficiently applies. The a priori criterion for the design of minimal
meshes (as it is used in Algorithms 3.2 and 3.8) might be useful in such situa-
tions. A comparison of our approach with a posteriori estimates regarding the
resolution of oscillatory coefficients (by adaptive finite element meshes) is topic
of future research.

A Derivatives of Composite Functions and of
Products of Functions

Lemma A.1 Let ω ⊂ Rd be a domain and a ∈ Ct+1(ω) which satisfies osc (a, ω, t+ 1) ≤
κ and ∀x ∈ ω 0 < α ≤ a (x) ≤ β < ∞.
Then a−1 ∈ Ct+1(ω) and satisfies, for R := diamω,

Rt+1
(t+ 1)!

∣∣∇t+1a−1 (x)∣∣ ≤ 2
α
(8
3
)d−1

2 γt+1 (A.1)
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with γ := max{2, 8κα }.
Proof. The existence of a−1 and a ∈ Ct+1(ω) follows readily from the general-
ized diBruno formula (cf. [13, Theorem 4.2]).

For x ∈ ω fixed and all y ∈ Cd, let

ã (y) :=
t+1∑
�=0

1
�! 〈y − x,∇〉� a (x) with 1

�! 〈y − x,∇〉� a := ∑
µ∈Nd0|µ|=�

(y − x)µ
µ! ∂µa (x) .

Also from [13, Theorem 4.2], it follows that ∂µa−1 (x) only depends on ∂νa (x)
for νi ≤ µi, 1 ≤ i ≤ d. Hence, by choosing y = x, we obtain

(ã−1)(µ) (x) = (a−1)(µ) (x) ∀µ ∈ Nd0 |µ| = t+ 1.
Since ã is analytic we may apply Cauchy’s integral formula to estimate the
derivatives of ã

1
µ!
(ã−1)(µ) (x) = 1

(2πi)d
∮
Cr(x1)

∮
Cr(x2)

. . .
∮
Cr(xd)

ã−1 (v)
(v − x)µ+1dv (A.2)

with 1 = (1, 1, . . . , 1)ᵀ and Cr (xi) is the circle in C about xi with radius r > 0.
The denominator satisfies

∣∣∣(v − x)µ+1
∣∣∣ = r|µ|+d so that

∣∣∣∣ 1µ! (ã−1)(µ) (x)∣∣∣∣ ≤ r−|µ| sup{∣∣ã−1 (v)∣∣ : v ∈ Cd | ∀1 ≤ i ≤ d vi ∈ Cr (xi)} .
The assumptions on a imply

∣∣ã−1 (v)∣∣ = 1
a (x) + 〈v − x,∇ã (ξ)〉

for some ξ ∈ vx. We set e := v−x‖v−x‖ and obtain

|〈v − x,∇ã (ξ)〉| =
∣∣∣∣∣
t∑
�=0

1
�! 〈ξ − x,∇〉� 〈v − x,∇〉a (x)

∣∣∣∣∣
≤ t∑
�=0

r�+1
�!
∣∣∣〈e,∇〉�+1 a (x)∣∣∣ .
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Some tedious calculus leads to
1
�!
∣∣∣〈e,∇〉�+1 a (x)∣∣∣ = (�+ 1) ∑

µ∈Nd0|µ|=�+1

eµ
µ! ∂

µa (x)

= 1
�!
√√√√√
∑
µ∈Nd0|µ|=�+1

(�+ 1)!
µ! e2µ

√√√√√
∑
µ∈Nd0|µ|=�+1

(�+ 1)!
µ! |∂µa (x)|2

= 1
�!

√√√√( d∑
i=1

e2i
)�+1 ∣∣∇�+1a (x)∣∣ = 1

�!
∣∣∇�+1a (x)∣∣ .

Thus, with R = diamω, by choosing r = cR in (A.2) for some 0 < c < 1, and
by using the oscillation condition we obtain

|〈v − x,∇ã (ξ)〉| ≤ κ
t∑
�=0
(�+ 1) c�+1 ≤ κc

∞∑
�=0
(�+ 1) c� = cκ

(1− c)2 .

By setting c = γ−1 (cf. (A.1)) we get |〈v − x,∇ã (ξ)〉| ≤ α
2 so that

∣∣ã−1 (v)∣∣ ≤ 2
α .Hence,

R|µ|
µ!
∣∣∣(ã−1)(µ) (x)∣∣∣ ≤ 2

αc|µ| . (A.3)
A summation over all µ ∈ Nd0 with |µ| = t+ 1 leads to
Rt+1
(t+ 1)!

∣∣∇t+1a−1 (x)∣∣ = 1
(t+ 1)!

√√√√√
∑
µ∈Nd0|µ|=t+1

(t+ 1)!
µ!

∣∣R|µ|∂µã(µ) (x)∣∣2

≤ 2
α

1√(t+ 1)!ct+1
√√√√√
∑
µ∈Nd0|µ|=t+1

µ! Lemma A.4≤ 2
α
(8
3
)d−1

2 c−t−1.

Lemma A.2 Let ω ⊂ Rd be a domain and let a ∈ Ct+1(ω) satisfy the assump-
tions of Lemma A.1. Then, for f ∈ Ct+1(ω), it holds f̃ := f/a ∈ Ct+1(ω) and
f̃ satisfies, for R := diamω and 1 ≤ � ≤ t+ 1,

R�
�!
∣∣∣∇�f̃ (x)∣∣∣ ≤ 2

α
(8
3
)d−1

2 γ�
�∑
q=0

Rq |∇qf (x)|
q!

with γ as in Lemma A.1.
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Proof. From [17, Lemma A.1.3] we conclude that
R�
�!
∣∣∣∇�f̃ (x)∣∣∣ ≤ �∑

q=0

Rq |∇qf (x)|
q!

R�−q ∣∣∇�−qa−1 (x)∣∣
(�− q)! .

By using Lemma A.1 we get
R�
�!
∣∣∣∇�f̃ (x)∣∣∣ ≤ 2

α
(8
3
)d−1

2 γ�
�∑
q=0

Rq |∇qf (x)|
q! .

Lemma A.3 Let ω ⊂ Rd be a domain and let A ∈ Ct+1(ω,Rd×dsym) be such that
0 < α

(
A, T̂+R

)
=: α and β := β

(
A, T̂+R

)
< ∞. For the oscillations we assume

osc (a, ω, t+ 1) ≤ κ and
R�+m
�!m!

∣∣∇�x∂my A∣∣ ≤ κ ∀1 ≤ �+m ≤ t+ 1.

Then, for b = divA
Ad,d , it holds b ∈ Ct(ω,Rd) and b satisfies, for R := diamω and

1 ≤ �+m ≤ t,
R�+m+1
�!m!

∣∣∇�x∂my b (x)∣∣ ≤ Cγ�+m with C := 4
√dκ
α
(8
3
)d−2

2
( γ
γ − 1

)3
.

Proof. For 1 ≤ �+m ≤ t, it holds

R�+m+1
�!m!

∣∣∣∣∇�x∂my divAAdd
∣∣∣∣ ≤

�∑
r=0

m∑
s=0

Rr+s+1 ∣∣∇rx∂sy divA∣∣
r!s!

R�−r+m−s
∣∣∣∇�−rx ∂m−sy A−1

d,d
∣∣∣

(�− r)! (m− s)! .
(A.4)

Next, observe that
Rr+s+1
r!s!

∣∣∇rx∂sy divA∣∣ ≤ √d
(
(r + 1) Rr+s+1

(r + 1)!s!
∣∣∇r+1x ∂syA

∣∣+ (s+ 1) Rr+s+1
r! (s+ 1)!

∣∣∇rx∂s+1y A∣∣)
≤ √d (r + s+ 2)κ (A.5a)

and
Rr+s
r!s!

∣∣∣∇rx∂syA−1
d,d
∣∣∣ = 1√r!s!

√√√√√
∑

µ∈Nd−1
0|µ|=r

1
µ!s!

∣∣∣Rr+s∂µx∂syA−1
d,d
∣∣∣2 (A.3)≤ 2γr+s

α
1√r!
√√√√√
∑

µ∈Nd−1
0|µ|=r

µ!

≤ (83
)d−2

2 2γr+s
α . (A.5b)
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Inserting (A.5) into (A.4) leads to
R�+m+1
�!m!

∣∣∣∣∇�x∂my divAAdd
∣∣∣∣ ≤ 2

√dκ
α
(8
3
)d−2

2 �∑
r=0

m∑
s=0
(r + s+ 2) γ�−r+m−s

≤ 2√dκ
α
(8
3
)d−2

2 γ�+m
∞∑
r=0

∞∑
s=0
(r + s+ 2) γ−r−s

≤ 4√dκ
α
(8
3
)d−2

2 γ�+m+3

(γ − 1)3 .

Lemma A.4 It holds ∑
µ∈Nd0|µ|=�

µ! ≤ �!
(8
3
)d−1

. (A.6)

Proof. Let
σd (�) :=

{ �! d = 1,∑�
i=0 i!σd−1 (�− i) d > 1

and observe that the left-hand side in (A.6) equals σd (�). We prove the result
by induction over d.

The case d = 1 is trivial. For d = 2, we employ the notation as in (cf. [11,
(2.5)])

(−�)i := (−1)i Γ (1 + �)
Γ (1 + �− i) ∀� ∈ N≥1 and ∀0 ≤ i ≤ �

to obtain
1
�!

�∑
i=0

i! (�− i)! =
�∑
i=0
(−1)i i!

(−�)i
[11, (7.2.4)]= �+ 1

2�+1
�+1∑
k=1

2k
k

= �+ 1
2�+1 (− iπ +B2 (2 + �, 0)) =: ψ (�) ,

where Bz (a, b) is the incomplete beta function. The function ψ (x) is continuous
for all x ∈ R≥0 and satisfies

ψ (0) = 1 ψ (∞) = 1.
Hence, there exists C such that, for all � ∈ R≥0, it holds ψ (�) ≤ C. Numerical
tests show that the maximum of ψ is attained for ψ (4) = 8/3 so that σ2 (�) ≤8
3�!.Assume that the assertion holds for d−1. Then, the recursion formula gives
us

σd (�) ≤ (83
)d−2 �∑

i=0
i! (�− i)! ≤ (83

)d−1
�!.
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