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Abstract

In this paper, we will consider elliptic PDEs with Neumann boundary conditions on complicated do-
mains. The discretization is performed by composite finite elements.

The a-priori error analysis typically is based on the precise knowledge of the regularity of the solution.
However, the constants in the regularity estimates, possibly, depend critically on the geometric details of
the domain and the analysis of their quantitative influence is rather involved.

Here, we will consider a polygonal/-hedral Lipschitz domain Ω with, possibly, a huge number of geo-
metric details ranging from size O (ε) to O (1). We assume that Ω is a perturbation of a simpler Lipschitz

domain bΩ. We will prove error estimates where only the regularity of the PDE on bΩ is needed along
with some bounds of the norm of some extension operators which are explicit in appropriate geometric
parameters.

Since Composite Finite Elements allow a multiscale discretization of problems on complicated domains,
the arising linear system can be solved by a simple multigrid method. We will show that this multigrid
method converges at optimal rate independent of the geometric structure of the problem.

1 Galerkin discretization of Neumann Problems on Complicated

Domains by Composite Finite Elements

1.1 The Model Problem

Let Ω ⊂ Rd be a bounded Lipschitz domain with polygonal/ -hedral boundary Γ. We are interested in
applications, where Ω has a rough boundary, i.e., the number of straight segments in the polygonal/ -hedral
boundary, possibly, is huge. We assume that Ω can be regarded as a perturbation of a simpler polygonal/-

hedral Lipschitz domain Ω̂ in the sense that

area
(
Ωdiff

)
=: ε with Ωdiff :=

(
Ω̂\Ω

)
∪

(
Ω\Ω̂

)
. (1)

is small (cf. Figure 1). Although the method does not require the existence of such a domain Ω̂ we state the
condition “area

(
Ωdiff

)
is small” already here, since the convergence analysis is strongly based on this fact.

For any bounded domain D ⊂ Rd, we define the Sobolev space Hs(D), s ≥ 0, in the usual way (see, e.g.,
[12] or [17]). For s ∈ R, we set

Hs (D) :=

{
Hs (D) s ≥ 0,

(H−s (D))
′

s < 0.

If D equals Ω, we write Hs short for Hs (Ω). The L2-scalar product is denoted by (·, ·)L2(D) and identified

with its continuous extension to the dual pairing 〈·, ·〉Hs(D)×H−s(D).

Let the right-hand side f ∈ L2 (Ω) be given. Consider the problem: Find u ∈ H1 such that

a (u, v) :=

∫

Ω

〈∇u,∇v〉 + uv =

∫

Ω

fv ∀v ∈ H1. (2)
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Figure 1: Physical domain Ω and simpler domain Ω̂.

1.2 Composite Finite Element Discretization

Let G := {τi : 1 ≤ i ≤ N} be a shape regular triangulation in the sense of Ciarlet of an overlapping domain
Ω?. The maximal mesh width is denoted by hG . In the case that ε = O (hG), the geometric structure can be
resolved by a finite element mesh in a standard way. In this light, we assume that the measure for the size of
the non-resolved geometric details satisfy

ε ≤ Cresh
1+ν
G (3)

for some ν > 0.
Let S?

G denote the standard finite element space on Ω?

S?
G :=

{
u ∈ C0 (Ω?) | ∀τ ∈ G : u|τ ∈ P1

}
.

The composite finite element space on the domain Ω is defined as the restriction

SG := S?
G

∣∣
Ω

:=
{

u|Ω : u ∈ S?
G

}
.

The Galerkin discretization of (2) via composite finite elements is given by: Find uG ∈ SG such that

a (uG , v) =

∫

Ω

fv ∀v ∈ SG . (4)

As a basis for the space SG we choose the restrictions (ϕz|Ω)z∈ΘG
of the standard nodal basis ϕz for the

space S?
G . Here and in the sequel, ΘG denotes the set of mesh points in G. The basis representation of (4)

leads to the linear system
Au = f , (5)

where the system matrix A ∈ RΘG×ΘG and the right-hand side f ∈ RΘG is given by

Ax,y = a
(
ϕy|Ω , ϕx|Ω

)
and fx :=

∫

Ω

f ϕx|Ω .

The solution of (5) is linked to the solution of (4) via

uG =
∑

z∈ΘG

uzϕz .

The efficient assembling of A and f is explained in [13] and we do not discuss this aspect here.

1.3 Multigrid Methods for Neumann Problems on Complicated Domains

The basis representation of the Galerkin method leads to a system of linear equation of the form

Au = f . (6)

Typically, the dimension of A is huge and iterative solvers should be employed for its solution. Multigrid
methods are among the fastest iterative solvers and we will formulate and analyze a multigrid method for the
Neumann problem on complicated domains. For a detailed description of multigrid methods we refer to [11].
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The efficiency of multigrid methods is based on a multi-scale discretization of the boundary value problem.
It is a combination of an iterative solver (called smoother) on each discretization level and a recursive coarse
grid correction. Formally, we introduce a parameter ` ∈ N with 0 ≤ ` ≤ L describing the discretization level.
We start with the given fine grid equations (6) and rename them as

ALuL = fL,

where the number of levels L is not known a priori. Analogously, we rename the finite element space SG as
SL and its basis as ϕL,x, x ∈ ΘL, where ΘL is the set of all mesh points in GL.

1.4 Multigrid Algorithm

Let (G`)
L
`=0 be a sequence of finite element meshes which arise by applying recursively a standard refinement

strategies to an initial mesh G0.

Notation: The domain covered by a finite element mesh G` is denoted by Ω`. The set of mesh points in
G` is denoted by Θ`.

The precise requirements on the mesh sequence (G`)
L
`=0 are

1. Overlap property:

(a)
Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩL ⊇ Ω,

(b) For all 0 ≤ ` ≤ L and τ ∈ G` :
area (τ ∩ Ω) > 0

2. Nestedness: For all 0 ≤ ` ≤ L − 1 and τ ∈ G`, there exists a “set of sons” sons (τ) ⊂ G`+1 such that

⋃

t∈sons(τ)

t ⊂ τ.

Let ϕ`,x, x ∈ Θ`, denote the standard continuous, piecewise linear Lagrange basis on G`. For any grid
function u ∈ RΘ` , we associate a finite element function on the overlapping domain Ω` by

P`[u](x) :=
∑

z∈Θ`

u(z)ϕ`,z(x) . (7)

From Θ`+1 ⊂ Ω` we conclude that the function P`[u] can be evaluated at the grid points Θ`+1 of the finer
mesh. In this light, the inter-grid prolongation p`+1,` : RΘ` → RΘ`+1 is defined by

p`+1,`[u](x) := P`[u](x) , x ∈ Θ`+1 ,

and the matrix representation is

p`+1,` ∈ RΘ`+1×Θ` : p`+1,`(x, y) = P`[ϕ`,y](x)

for all x ∈ Θ`+1 and y ∈ Θ`. The restriction is the transposed of p`+1,`, i.e.,

r`,`+1 ∈ RΘ`×Θ`+1 : r`,`+1(x, y) = p`+1,`(y, x) .

Coarse grid operators A` are recursively defined, for ` < L, via the Galerkin product

A` := r`,`+1A`+1p`+1,`. (8)

In order to define the multi-grid algorithm we have to specify a (classical) iterative solver on each single
grid. We restrict here to linear solvers of the form

u
(i+1)
` := u

(i)
` −N`

(
A`u

(i)
` − f`

)
. (9)
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The application of ν iterations of the form (9) defines a mapping S
(ν)
`

(
u

(i)
` , f`

)
:= u

(i+ν)
` .

The multi-grid algorithm is a recursive procedure which requires as input parameters ν1, ν2 ∈ N specifying
the number of pre- and postsmoothing steps and a parameter γ ∈ {1, 2} controlling whether a V- or a W-cycle
is employed (for details we refer to [11]). The multi-grid algorithm is called by

uL := 0; mg (uL, fL, L) ;

and defined by

procedure mg(u`, f`, `) ;
begin

if (` = 0) then u` := A−1
` f` else begin

u` := S
(ν1)
` (u`, f`) ;

d` := A`u` − f`;
d`−1 := r`−1,`d`;
v`−1 := 0;
for j := 1 to γ do mg(v`−1,d`−1, ` − 1) ;
u` := u` − p`,`−1v`−1;

u` := S
(ν2)
` (u`, f`) ;

end;
end;

2 Convergence Analysis for the Galerkin Discretization

In this section, we will derive convergence estimates for the Galerkin solutions. Emphasis is taken on the
explicit tracking of constants on parameters describing the geometry of the domain. For the space dimension,
we assume in the sequel d ∈ {1, 2, 3}.

2.1 Analysis of Perturbations in the Domain

Since the quantitative regularity of (2) might be very complicated, we compare the solution with a related

problem on the simpler domain Ω̂ (cf. (1)). In this light, we extend the data f to Ω̂ by zero and denote the
resulting function again by f .

Let û ∈ H1
(
Ω̂

)
denote the unique solution of

a0 (û, v) :=

∫

bΩ

〈∇û,∇v〉 + ûv =

∫

bΩ

fv ∀v ∈ H1
(
Ω̂

)
. (10)

First, we will investigate the error e := u − û|Ω in the H1-norm.
As prerequisite we will discuss the dependence of the norm of extension operators for Sobolev spaces on

geometric parameters describing the domain.

2.1.1 Extension Operators

In this section, we will define extension operators E : Hk (Ω) → Hk
(
Ω̂

)
, for any k ∈ N so that the supremum

sup
v∈Hk(Ω)\{0}

‖Ev‖Hk(bΩ)/‖v‖Hk(Ω) =: Ck
ext < ∞.

is moderately bounded for a large class of domains, which may contain a huge number of geometric details.
We will employ the extension operator which was developed in [21], [22] as a refinement of some extension
operators in [20], [18], [16]. The proofs of the Theorems in this section can be found in [21], [22].

The construction consists of several steps.

1. The rough boundary (details of size ε) of the domain is simplified by extending to locally cuboid neigh-
borhoods Qi of the original domain. We assume that, after a few iterations, the extended domain
contains only details of size O (1) (cf. Figure 2).
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Figure 2: Complicated domain and locally cuboid neighborhoods. After two iterations the resulting extended
domain is a rectangle.

O ( e )

O ( 1 )

c e

Figure 3: Scaling of local cuboid neighborhoods.

2. The extension operator is defined locally from the intersections Qi ∩ Ω to Qi. The diameters of these
cubes, should be of the same order as the size of the underlying details of the original domain (cf. Figure
3)

3. These ε−cubes Qi along with their intersections Qi ∩ Ω are scaled to reference cubes Q̂i and scaled

intersections Q̂i ∩ Ω of diameter O (1).

We will prove that the norm of the extension operator mainly depend on the norm of the minimal extension

operator for the reference cubes, i.e., E : Hk
(
Q̂i ∩ Ω

)
→ Hk

(
Q̂i

)
.

Definition 1 For ε > 0, N ∈ N and M > 0, the domain Ω ⊂ Rd is of class (ε, M, N) if there exists a family
U = (Ui)i∈N

of subsets in Rd with

1. For all x ∈ ∂Ω there exists i ∈ N such that Bε (x) ⊂ Ui,

2. For any x ∈ ∂Ω, there holds
card {U ∈ U : x ∈ U} ≤ N.

3. For any i, the intersection Ui∩∂Ω is locally the graph of a Lipschitz curve with Lipschitz constant smaller
than or equal to M .

Definition 2 A bounded open set D ⊂ Rd has the property X (cf. Figure 4) if there is an axes-parallel

cuboid Q =

d⊗

i=1

(ai, bi) ⊂ Rd such that set ω := Q\D contains one full side of the cube Q, i.e., there is

1 ≤ i? ≤ d and r ∈ {ai?
, bi?

} such that

i?−1⊗

i=1

(ai, bi) × {r} ×
d⊗

i=i?+1

(ai, bi) ⊂ ω.
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Figure 4: A bounded open set D ⊂ R2 with property X . The common boundary is the X-boundary ΓD.

The boundary ΓD := D ∩ ω is the X-boundary of D.
A pair (ω, U) of bounded domains with ω ⊂ U ⊂ Rd is admissible for extension if

1. ω is a Lipschitz domain,

2. ωc := U\ω has property X,

3. Γωc ⊂ (∂ω) ∩ (∂ωc), where Γωc is the X-boundary of ωc.

Theorem 3 Let k ∈ N and let ω ∈ Rd be of class (ε, M, N). Let (ω, U) be admissible for extension. Then,
there exists an extension operator Ek : Hk (ω) → Hk (U) with bounded operator norm

‖Ekf‖Hk(U) ≤ C2 (1 + C4) ‖f‖Hk(U) ∀f ∈ Hk (Ω)

which satisfies
|Ekf |Hk(U) ≤ C3 (1 + C4) |f |Hk(ω) ∀f ∈ Hk (Ω) .

The constants C2, C3 only depends on ε, M, N and diam ωc, where ωc := U\ω. C4 is the constant in the
Poincaré inequality, i.e.

∀f ∈ Hk (ωc) : ‖f‖2
Hk(ωc) ≤ C4 |f |2Hk(ωc) + C4

∑

|α|<k

∣∣∣∣
∫

Ω

Dαf

∣∣∣∣
2

.

The essential observation for the extension on complicated domains is that the constants in Theorem 3
remains unchanged if ω is scaled. In this light, let ω ⊂ Rd be a subset with positive diameter diam ω > 0. We
define the scaling operator χω : Rd → Rd by

χω (x) :=
x

diam ω
and ω̂ := {χω (x) : x ∈ ω} .

Theorem 4 Let k ∈ N and let ω ⊂ U ⊂ Rd. Assume that the normalized domain ω̂ is of class (ε, M, N) and

that
(
ω̂, Û

)
is admissible for extension. Let Êk : Hk (ω) → Hk (U) be the extension operator as in Theorem

3. Then, the operator Ek := Hk (ω) → Hk (U) defined by

Ekf =
(
Êk

(
f ◦ χ−1

ω

))
◦ χω (11)

is an extension operator with

‖Ek‖Hk(U)←Hk(ω) ≤ Ĉ2

(
1 + Ĉ4

)(
1 + diamk ω

)
,

where Ĉ2, Ĉ4 are the constants as in Theorem 3 for the operator Êk on the normalized domains ω̂, Û .

Now, we will compose the global extension operator from Ω to an overlapping (simpler) domain Ω?.

Definition 5 Let Ω be a bounded domain. A finite family of disjoint axes parallel cubes Q = {Qi : 1 ≤ i ≤ q}
is admissible for extension for the domain Ω if, for all 1 ≤ i ≤ q, the pairs (Qi ∩ Ω, Qi) are admissible
for extension. The extension operator Ek,i : Hk (Qi ∩ Ω) → Hk (Qi) is given as in (11) where ω is replaced by
Qi ∩Ω and U by Qi. Let ΩQ := Ω∪⋃q

i=1 Qi and let the extension operator Ek : Hk (Ω) → Hk (ΩQ) be defined
by

(Ekf) (x) :=

{
Ek,i

(
f |Qi∩Ω

)
(x) x ∈ Qi,

f (x) otherwise.
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Theorem 6 Let Ω be a bounded domain and let

Q = {Qi : 1 ≤ i ≤ q} (12)

be admissible for extension for Ω. The extension operator Ek : Hk (Ω) → Hk (ΩQ) as in Definition 5 is
bounded

‖Ek‖Hk(ΩQ)←Hk(Ω) ≤ Col max
1≤i≤q

‖Ek‖Hk(Qi)←Hk(Ω∩Qi)
=: CQ,

where Col is the overlap constant

Col :=
√

sup
x∈Ω

] {i : x ∈ Qi}. (13)

Finally, we may allow finite iterations of the extension to families of cubes.

Definition 7 Let Ω be a bounded domain and let
−→Q = (Qi : 1 ≤ i ≤ p) be a finite sequence of families of axes

parallel cubes. Recursively, we put Ω0 := Ω and, for 1 ≤ i ≤ p,

Ωi = Ωi−1 ∪
⋃

Q∈Qi

Q

If, for all 1 ≤ i ≤ p, the family Qi is admissible for extension for the domain Ωi−1, we say that
−→Q is

admissible for extension from Ω to Ωp. Let Ek,i : Hk (Ωi−1) → Hk (Ωi) be constructed as in Definition 5.
Then Ek : Hk (Ω0) → Hk (Ωp) is the composition

Ek = Ek,p ◦ Ek,p−1 ◦ . . . ◦ Ek,1.

Theorem 8 Let Ω be a bounded domain and let

−→Q = {Qi : 1 ≤ i ≤ p} (14)

be admissible for extension from Ω to Ωp. The extension operator Ek : Hk (Ω) → Hk (Ωp) as in Definition 5
is bounded by

‖Ek‖Hk(ΩQ)←Hk(Ω) ≤
p∏

i=1

CQi
.

In summary, we have shown that the extension operator Ek from a domain Ω to a domain Ωp which is the
iterated cuboid extension of Ω is independent of

1. the number q of geometric details (cf. (12)),

2. and of the size diam Qi of the geometric details (cf. (12))

but depends on

1. the norm of the local extension operator Êk : Hk
(
Q̂i ∩ Ω

)
→ Hk

(
Q̂i

)
on the normalized domains

Q̂i ∩ Ω and Q̂i

2. the overlap constant Col of the cuboids (cf. (13)),

3. the number p of iterations in the extension process (cf. (14)).

2.1.2 Bounds on the Perturbation Error

Let Ω be the given (Lipschitz) domain and Ω̂ the simplified domain as explained in Section 1. To reduce

technicalities, we assume that Ω ⊂ Ω̂.

Let E1 : H1 (Ω) → H1
(
Ω̂

)
be the minimal extension operator. We consider equation (10) and employ

test functions of the form E1v ∈ H1
(
Ω̂

)
for any v ∈ H1 (Ω). Subtracting this equation from (2) yields

a (e, v) −
∫

bΩ\Ω

(〈∇û,∇E1v〉 + ûE1v) = 0
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for all v ∈ H1 (Ω). Choosing v = e, we get

‖e‖2
H1(Ω) = − (û, E1e)H1(bΩ\Ω) .

Cauchy-Schwarz inequalities and the boundedness of E1 lead to

‖e‖2
H1(Ω) ≤ C1

ext ‖û‖H1(bΩ\Ω) ‖e‖H1(Ω) . (15)

Hence, the perturbation error ‖e‖H1(Ω) can be estimated by the norm of the solution û in the small strip

Ω̂\Ω. This norm will be estimated in Lemma 10 under the weak assumption that

Ω̂\Ω ⊂ Sε,

where Sε is a strip of width O (ε) along the boundary of Ω̂, i.e.,

Sε := {x ∈ Ω̂ : dist(x, ∂Ω̂) < cwε}, (16)

for some cw > 0. Furthermore, we assume some minimal regularity for the homogenous Neumann problem.

Assumption 9 (Hλ-regularity) There exists λ ∈
]

3
2 , 2

]
and C1 > 0 such that, for any µ ∈ [1, λ] and

f ∈ Hµ−2
(
Ω̂

)
, the solution û to (10) satisfies

‖û‖Hµ(bΩ) ≤ C1 ‖f‖Hµ−2(bΩ) .

Lemma 10 Let the Neumann problem on Ω̂ be Hλ
(
Ω̂

)
-regular for some λ ∈

]
3
2 , 2

]
(cf. Assumption 9).

Then, for any 3
2 < δ ≤ µ ≤ λ and f ∈ Hµ−2

(
Ω̂

)
, there holds

‖û‖H1(bΩ\Ω) ≤ C̃
(√

ε ‖f‖Hδ−2(bΩ) + εµ−1 ‖f‖Hµ−2(bΩ)

)
. (17)

The constant C̃ depends continuously on C1, δ, µ, λ, and cw and, possibly, tends to infinity as δ, µ, λ → 3/2.

Proof. Part I: By using a finite system of local charts and changes of variables, we can localize and
rescale the estimate, so that it is sufficient to consider the case of a hypercube Ω̃ = (0, 1)d ∼= B × (0, 1), where

B = (0, 1)d−1 and the boundary is reduced to

γ := B × {0} .

In this case, the above-mentioned transformation of the strip Sε is contained in

S̃ε = B × (0, CIε),

for some CI > 0 which only depends on Ω̂ and cw (cf. (16)). The transformed function û is denoted by ũ.
First, we will show that there exists C > 0 such that, for all 1/2 < κ ≤ s ≤ 1, there holds

‖v‖L2(eSε) ≤ C
(√

ε ‖v‖Hκ(eΩ) + εs ‖v‖Hs(eΩ)

)
∀v ∈ Hs

(
Ω̃

)
. (18)

We will prove (18) by using finite element approximation theory on an auxiliary mesh. In order to avoid

technicalities we assume that (CIε)
−1 ∈ N. This allows us to define a conforming, uniform, simplicial mesh

Gaux, where all triangles are translations and rotations of the simplex

{
x ∈ (R>0)

d
:

d∑

i=1

xi < CIε

}
.

Further, we may assume that there is a subset Gε ⊂ Gaux which defines a partitioning of S̃ε ⊂ Ω̃. The auxiliary
finite element space Saux is given by

Saux :=
{

u ∈ C0
(
Ω̃

)
| ∀τ ∈ Gaux : u|τ ∈ P1

}
.
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Now let 1/2 < s ≤ 1 and v ∈ Hs
(
Ω̃

)
. Then, it is well known (see [5, Section 4.8], [23], [24]) that there is

a projection operator P : Hs
(
Ω̃

)
→ Saux such that

‖v − Pv‖Hr(eSε) ≤ ‖v − Pv‖Hr(eΩ) ≤ CIIε
t−r ‖v‖Ht(eΩ) (19)

holds for all 0 ≤ r ≤ t ≤ s. The constant CII depends only on s (since Gaux is a uniform grid, no mesh
parameters enter the constant CII in the approximation error estimates). We conclude that

‖v‖L2(eSε) ≤ ‖v − Pv‖L2(eSε) + ‖Pv‖L2(eSε) ≤ CIIε
s ‖v‖Hs(eΩ) + ‖Pv‖L2(eSε) . (20)

We will prove in Part III that, for any 1/2 < κ ≤ s, there holds

‖Pv‖L2(eSε) ≤ CIII

(√
ε ‖Pv‖Hκ(eΩ) + εs ‖Pv‖Hs(eΩ)

)
, (21)

where CIII only depends (continuously) on s, κ, and CII and, possibly, deteriorates if s → 1/2 or κ → 1/2.
From (19) we conclude for k ∈ {κ, s}

‖Pv‖Hk(eΩ) ≤ ‖Pv − v‖Hk(eΩ) + ‖v‖Hk(eΩ) ≤ (CII + 1) ‖v‖Hk(eΩ) . (22)

The combination of (20) - (22) yields

‖v‖L2(eSε) ≤ CIV

(√
ε ‖v‖Hκ(eΩ) + εs ‖v‖Hs(eΩ)

)
, (23)

where CIV only depends on CII and CIII.

Part II: Next, we will derive (17) from (23).

Applying estimate (23) to ∂iũ ∈ Hµ−1
(
Ω̃

)
, for all i = 1, · · · , d, we obtain

‖ũ‖H1(eSε) ≤ CV

(√
ε ‖ũ‖Hδ(eΩ) + εµ−1 ‖ũ‖Hµ(eΩ)

)
,

for all 3/2 < δ ≤ µ and CV only depends on CIV. The conclusion follows by the estimates

‖ũ‖Hδ(eΩ) ≤ C1‖f̃‖Hδ−2(eΩ) and ‖ũ‖Hµ(eΩ) ≤ C1‖f̃‖Hµ−2(eΩ).

Part III: In this part, we will establish (21).

Let w ∈ Saux and note that w ∈ H1
(
Ω̃

)
. We employ the representation

w (y′, yd) = w (y′, 0) +

∫ yd

0

∂w (y′, t)

∂t
dt ∀y = (y′, yd) ∈ B × (0, CIε) .

Cauchy-Schwarz inequalities lead to

w2 (y′, yd) ≤ 2w2 (y′, 0) + 2CIε

∫ CIε

0

(
∂w (y′, t)

∂t

)2

dt.

Integrating over S̃ε results in

‖w‖2
L2(eSε) ≤ 2ε ‖w‖2

L2(γ) + 2 (CIε)
2 ‖∇w‖2

L2(eSε) . (24)

Since the trace operator γ0 : Hκ
(
Ω̃

)
→ L2 (γ) is continuous for any κ > 1/2, we obtain

‖w‖L2(eSε) ≤ C
{√

ε ‖w‖Hκ(eΩ) + ε ‖∇w‖L2(eSε)

}
. (25)

where C only depends on CI and κ and may deteriorate as κ → 1/2. Finally, we employ an inverse inequality
for the (uniform) mesh Gaux (cf. [5]) to obtain

‖∇w‖L2(eSε) ≤ Cεs−1 ‖w‖Hs(eSε) (26)

for any s ∈ [0, 1]. The combination of (25) and (26) yields the proof of Part III.
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Theorem 11 Let the assumptions in Lemma 10 be satisfied. Then, for any 3
2 < δ ≤ µ ≤ λ and f ∈ Hµ−2

(
Ω̂

)
,

there holds
‖e‖H1(Ω) ≤ C0

(√
ε ‖f‖Hδ−2(bΩ) + εµ−1 ‖f‖Hµ−2(bΩ)

)
, (27)

with C0 := CextC̃ and C̃ is as in Lemma 10.

Proof. Combine (15) with (17).

2.2 Error Analysis of the Galerkin Solution

The convergence analysis for composite finite element discretization is based on the quasi-optimality of the
Galerkin discretization and transformed as usual to an estimate of the interpolation error. However, since the
intersections τ ∩ Ω are neither shape regular nor affine equivalent to a reference element we cannot apply the
standard interpolation estimates straightforwardly but have to employ an extension operator first.

First, we will introduce the constants which will appear in the error estimates.

Regularity on Ω̂

We always assume that the Neumann problem on Ω̂ is Hλ
(
Ω̂

)
-regular for some λ ∈

]
3
2 , 2

]
(cf. Assumption

9).

Bounds for the minimal extension operator

Recall that Ω? is the domain which is covered by the overlapping finite element mesh. Let E2 : H2
(
Ω̂

)
→

H2 (Ω?) denote the minimal extension operator with norm

CI
ext := sup

{
‖E2v‖H2(Ω?) : v ∈ H2

(
Ω̂

)
∧ ‖v‖H2(bΩ) = 1

}
< ∞.

Note that Sobolev’s embedding theorem implies, for d = 1, 2, 3,

E2 : H2
(
Ω̂

)
→ C0 (Ω?) and CII

ext := ‖E2‖C0(Ω?)←H2(bΩ) < ∞.

We put Cext := max
{
CI

ext, C
II
ext

}
.

Bounds for the interpolation error
Let Ω? be the overlapping domain which is covered by the finite element mesh G. Since the embedding

H2 (Ω?) ↪→ C0 (Ω?) is continuous, the nodal interpolation IG : H2 (Ω?) → S?
G is well defined. It is well known

that, for m = 0, 1, the constants Capx,m, only depend on the minimal angles in the mesh G

Capx,m := hm−2
G sup

v∈H2(Ω?)
‖v‖H2(Ω?)=1

‖v − IGv‖Hm(Ω?) .

We put Capx := max {Capx,0, Capx,1}.

Theorem 12 Let Assumption 9 be satisfied. Let f ∈ Hλ−2
(
Ω̂

)
. Then, for any 3/2 < δ ≤ λ, the Galerkin

solution uG (cf. (4)) satisfies the error estimate

‖u − uG‖H1(Ω) ≤ C0

√
ε ‖f‖Hδ−2(Ω) +

(
C0ε

λ−1 + C5h
λ−1
G

)
‖f‖Hλ−2(Ω) . (28)

The constant C5 only depends on C1, Cext and Capx.

Proof. The continuity and ellipticity constants for the Neumann problem on Ω are 1, i.e.,

|a (u, v)| ≤ ‖u‖H1(Ω) ‖v‖H1(Ω) ∀u, v ∈ H1 (Ω) ,

a (u, u) = ‖u‖2
H1(Ω) .

Let û denote the solution of the extended problem (10). Hence, the quasi-optimality of the Galerkin dis-
cretization and Theorem 11 yield

‖u − uG‖H1(Ω) = inf
v∈SG

‖u − v‖H1(Ω) ≤ ‖u − û‖H1(Ω) + inf
v∈SG

‖û − v‖H1(Ω)

≤ C0

(√
ε ‖f‖Hδ−2(bΩ) + ελ−1 ‖f‖Hλ−2(bΩ)

)
+ inf

v∈SG

‖û − v‖H1(Ω) .

10



It remains to estimate the infimum in the estimate above. First, we assume that the Neumann problem (10)

on Ω̂ is H2-regular.
The infimum can be estimated by introducing

vint = (IGE2û)|Ω .

This leads to the estimate

inf
v∈SG

‖û − v‖H1(Ω) ≤ ‖û − vint‖H1(Ω) ≤ ‖E2û − IGE2û‖H1(Ω?)

≤ CapxhG ‖E2û‖H2(Ω?) ≤ CextCapxhG ‖û‖H2(Ω?)

≤ CextCapxC1hG ‖f‖L2(bΩ) .

The result for intermediate Sobolev spaces Hλ (Ω), λ ∈
]

3
2 , 2

]
, follows by interpolation applied to the

operator Lu := u −P(u), where P(u) is the H1-orthogonal projection of u onto SG .

Corollary 13 Let the assumptions of Theorem 12 be satisfied. Assume that (3) holds. Then, for any 3/2 <
δ ≤ λ, the Galerkin solution uG (cf. (4)) satisfies the error estimate

‖u − uG‖H1(Ω) ≤ C0

√
ε ‖f‖Hδ−2(Ω) + C6h

λ−1
G ‖f‖Hλ−2(Ω) .

The constant C6 only depends on C5 and Cres (cf. (3)).

The Aubin-Nitsche duality argument allows to obtain error estimates with respect to weaker norms. In
this light, we define the function vϕ ∈ H1 (Ω) as the unique solution of

a (vϕ, w) = (ϕ, w)L2(Ω) ∀w ∈ H1 (Ω) .

for given ϕ ∈ H−1.

Corollary 14 Let the assumptions of Theorem 12 be satisfied. Assume that (3) holds. Let 3/2 < δ ≤ µ ≤ λ
and 3

2 < δ ≤ s ≤ λ. Then, the Galerkin solution uG (cf. (4)) satisfies the error estimate

‖u − uG‖H2−µ(Ω) ≤
(
C0

√
ε + C6h

µ−1
G

)(
C0

√
ε ‖f‖Hδ−2 + C6h

s−1
G ‖f‖Hs−2

)
.

Proof. Let e = u − uG . By duality we have for 3/2 < µ ≤ λ:

‖e‖H2−µ(Ω) = sup
ϕ∈H−2+µ\{0}

(e, ϕ)L2(Ω)

‖ϕ‖H−2+µ

= sup
ϕ∈H−2+µ\{0}

a (e, vϕ)

‖ϕ‖H−2+µ

= sup
ϕ∈H−2+µ\{0}

inf
ṽϕ∈SG

a (e, vϕ − ṽϕ)

‖ϕ‖H−2+µ

≤ ‖e‖H1(Ω) sup
ϕ∈H−2+µ\{0}

inf
ṽϕ∈SG

‖vϕ − ṽϕ‖H1(Ω)

‖ϕ‖H−2+µ

.

By choosing ṽϕ as the Galerkin approximation of vϕ, we may apply Corollary 13 twice to obtain

‖e‖H2−µ(Ω) ≤
(
C0

√
ε + C6h

µ−1
G

)(
C0

√
ε ‖f‖Hδ−2 + C6h

s−1
G ‖f‖Hs−2

)
.

Corollary 15 Let Assumption 9 be satisfied. Let f ∈ H−1
(
Ω̂

)
. Assume that (3) holds. Let 1 ≤ µ ≤ λ.

Then, the Galerkin solution uG (cf. (4)) satisfies the error estimate

‖u − uG‖H2−µ(Ω) ≤ 2
(
C0

√
ε + C6h

µ−1
G

)
‖f‖H−1(bΩ) .

The constant C only depends on C0, C1, Cext, and Capx.

Proof. Let e = u − uG . As in the proof of Corollary 14 one shows

‖e‖H2−µ(Ω) ≤
(
C0

√
ε + C6h

µ−1
G

)
‖e‖H1(Ω) .

The ellipticity of the bilinear form a (·, ·) implies

‖e‖H1(Ω) ≤ ‖u‖H1(Ω) + ‖uG‖H1(Ω) ≤ 2 ‖f‖H−1(bΩ) .

11



3 Multigrid Convergence

In this section, we will investigate the convergence of the multi-grid method following the general multi-grid
convergence theory in [11]. However, the proofs require an approximation property for finite element spaces
which might depend on the geometric details in a complicated way.

Here, we will prove the approximation property by combining the perturbation estimates with regularity
estimates on the simplified domain Ω̂. Since our focus in this paper is more on the approximation property
of composite finite elements and less on the choice of an optimal smoother we restrict here to a damped
Jacobi-type method as the smoothing iteration. For the system of linear equations A`u` = f`, it is given by

u
(i+1)
` = u

(i)
` −N−1

`

(
A`u

(i)
` − f`

)
, (29)

where
N−1

` := ωh2
`M
−1
` (30)

and M` denotes the mass matrix:

(M`)x,y :=
(
ϕx,`|Ω , ϕy,`|Ω

)
L2(Ω)

∀x, y ∈ Θ`.

The parameter ω > 0 is a suitable damping parameter. We will prove the convergence in the framework of
geometric multigrid methods (cf. [11]).

Remark 16 We have chosen N` as in (30) in order to simplify the analysis of the smoothing property as
much as possible and to focus on the approximation property. For the practical realization one has to solve in
each iteration step a linear system of the form

M`x = y (31)

Some aspects are discussed below:

1. For the numerical experiments, we have always replaced N` by the diagonal part of A`, i.e., N` :=

ω diag
[
(A`)x,x : x ∈ Θ`

]
and obtained convergence rates which are independent of the geometric details

in the domain (see Section 4).

2. In standard cases, the condition number of the mass matrix is of order 1 and the solution of (31) requires
only a small number of iteration steps which, in particular, is independent of dimM`. This can be proved
as long as the areas of the intersections (supp ϕx,`) ∩ Ω are of order hd

` .

3. The case that (suppϕx,`) ∩ Ω is degenerate (i.e., much smaller than hd
`) for some x ∈ Θ`, is analyzed

in [25] for some model problem and it was shown that the multigrid convergence is not affected by such
scaling effects.

The numerical solution of boundary value problems on complicated domains is a topic of vivid research.
Our approach differs from techniques such as AMG ([19], [15], [4], [26]), agglomeration methods ([1], [3], [6],
[2], [9], [7]), subspace correction methods ([14], [27], [28]) since the construction is based on the coarse scale
discretization of the boundary value problem where the asymptotic convergence order is preserved on coarser
grids. Hence, it can be used not only for constructing a spectral equivalent preconditioner for the fine scale
equations but also for a low dimensional discretization of the PDE for a given prescribed (moderate) accuracy.

3.1 Smoothing and Approximation Property

We start with considering the two grid method. The iteration can be written as an affine map in the form

u
(i+1)
L = KTGM

L u
(i)
L + RTGM

L fL with the two-grid iteration matrix

KTGM
L := Kν2

L

(
A−1

L − pL,L−1A
−1
L−1rL−1,L

)
ALKν1

L

and the iteration matrix KL := IL −N−1
L AL of the linear solver (9). For the Jacobi-type smoother (cf. (29))

we have
KL = IL − ωh2

LM−1
L AL.

12



The iteration converges if and only if the spectral radius ρ
(
KTGM

L

)
is smaller than one. The convergence

proof is based on a multiplicative splitting of KTGM
L and an estimate of the factors in appropriate norms. In

this light, we introduce, for α ∈ [−1, 1], a scale of norms ‖·‖α,` : RΘ` → R. Let

L` : S` → S`

be defined by
(L`u, v)L2(Ω) = a (u, v) ∀u, v ∈ S`.

Remark 17 The operator L` can be expressed by means of the system matrix A`, the mass matrix M` and
the prolongation P` as

L` = P`M
−1
` A`P

−1
` .

It is easy to see that L` is self-adjoint with respect to the L2 (Ω)-scalar product and satisfies

(L`u, u)L2(Ω) = ‖u‖2
H1(Ω) ∀u ∈ S`.

Hence, powers of L` are well-defined for any real α ∈ R.

The operator L` allows to define a scale of norms on S`. For α ∈ [−1, 1], we set

(u, v)α,` := (Lα
` u, v)L2(Ω) and ‖u‖α,` := (u, u)

1/2
α,` .

Remark 18 Note that for α = 0, 1 and u ∈ S`, it holds ‖u‖0,` = ‖u‖L2(Ω) and ‖u‖1,` = ‖u‖H1(Ω).

The discrete counterpart of the scalar product (·, ·)α,` and norm ‖·‖α,` are given by

〈u,v〉α,` := (P`u, P`v)α,` and |||u|||α,` := 〈u,u〉1/2
α,` .

Throughout this section we assume that the Neumann problem on Ω̂ is Hλ-regular for some λ ∈ ]3/2, 2].
We will establish the multigrid convergence with respect to the |||·|||s−2,L-norm, where

s := min

{
λ,

3

2
+

ν

2

}
. (32)

The proof of the following lemma requires an inverse assumption. Since we assume that the difference Ωdiff

(cf. (1)) has small measure ε < Cresh
1+ν
L (cf. (3)), the constant Cinv > 0 in

Cinv := h` sup
u∈S`\{0}

‖u‖H1(Ω)

‖u‖L2(Ω)

(33)

should have moderate size (cf. [8, Corollary 1]).

Lemma 19 Let the assumptions of Corollary 15 be satisfied. Let (3) be satisfied for some ν > 0 and let Cinv

be bounded independent of the refinement level `. Then,

sup
f∈R

Θ`\{0}

‖P`f‖Hs−2

|||f |||s−2,`

≤ CP. (34)

Proof. Let R` : S` → RΘ` be the adjoint to P`

〈R`u,v〉0,` = (u, P`v)L2(Ω) ∀u ∈ S` ∀v ∈ RΘ` . (35)

Then, R`P` = I` is the identity matrix and P̂` := P` (R`P`)
−1

equals P`. Hence, the proof follows by using
Lemma 25 and 26 and applying [11, Lemma 6.3.24(ii)].

Corollary 20 Let the assumptions of Lemma 19 be satisfied. Then

sup
v∈S`\{0}

∣∣∣∣∣∣P−1
` v

∣∣∣∣∣∣
2−s,`

‖v‖H2−s

≤ CP. (36)
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Proof. We have
P−1

` u = P ?
` u ∀u ∈ S`.

Consider the Banach spaces Sµ
` :=

(
S`, ‖·‖µ,`

)
and Hµ

` :=
(

RΘ` , |||·|||µ,`

)
. Then, the left-hand side in (36) is

the operator norm of the adjoint operator

∥∥P−1
`

∥∥
H

2−s
`
←S2−s

`

= ‖P ?
` ‖H2−s

`
←S2−s

`
= ‖P`‖Ss−2

`
←H

s−2
`

.

Since the norm on the right-hand side equals the left-hand side in (34), the assertion follows.

The convergence proof for the two-grid method is split into the smoothing property

∣∣∣∣∣∣M−1
L ALKν

L

∣∣∣∣∣∣
s−2,L←2−s,L

≤ CSh2−2s
L η (ν) (37)

with η (ν) → 0 as ν → ∞ and the approximation property

∣∣∣∣∣∣(A−1
L − pL,L−1A

−1
L−1rL−1,L

)
ML

∣∣∣∣∣∣
2−s,L←s−2,L

≤ CAh2s−2
L .

Theorem 21 If the parameter ω is small enough so that ωh2
Lρ(LL) < 1, then the smoothing property holds:

∣∣∣∣∣∣M−1
L ALKν

L

∣∣∣∣∣∣
s−2,L←2−s,L

≤ CSh2−2s
L η (ν) .

Proof. The definition of the norms imply

∣∣∣∣∣∣M−1
L ALKν

L

∣∣∣∣∣∣
s−2,L←2−s,L

=
∥∥∥L

(s−2)/2
L PLM−1

L ALKν
LP−1

L L
(s−2)/2
L

∥∥∥
0,L←0,L

=
∥∥∥L

s/2
L PLKν

LP−1
L L

(s−2)/2
L

∥∥∥
0,L←0,L

.

The power of the iteration matrix can be written in the form

PLKν
LP−1

L =
(
I − ωh2

LLL

)ν

and, hence,

∣∣∣∣∣∣M−1
L ALKν

L

∣∣∣∣∣∣
s−2,L←2−s,L

=
∥∥∥L

s/2
L

(
I − ωh2

LLL

)ν
L

(s−2)/2
L

∥∥∥
0,L←0,L

=
(
ωh2

L

)1−s
∥∥∥
(
ωh2

LLL

)s−1 (
I − ωh2

LLL

)ν
∥∥∥

0,L←0,L

≤ ω1−sh2−2s
L

(
η0

(
ν

s − 1

))s−1

,

where

η0 (ν) =
νν

(ν + 1)
ν+1 =

1

e ν
+ O

(
ν−2

)
.

Hence, the choice of s as in (32) implies that η (ν) := ω1−s
(
η0

(
ν

s−1

))s−1

tends to zero as ν → ∞.

For the approximation property, we employ the theory in [11, Chapter 6.3.1.3]. We assume that there is a
constant Cs such that

h`−1 ≤ Csh` ∀1 ≤ ` ≤ L. (38)

Theorem 22 Let the assumptions of Corollary 14, Lemma 19, and (38) be satisfied. Then, for any 3/2 <
δ ≤ s

∣∣∣∣∣∣(A−1
L − pL,L−1A

−1
L−1rL−1,L

)
MLf

∣∣∣∣∣∣
2−s,L

≤ C
(√

ε + hs−1
L

)(√
ε |||f |||δ−2,L + hs−1

L |||f |||s−2,L

)
,

where C only depends on C0, C6, and Cs (as in (38)).
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Proof. Let f ∈ RΘL and define fL ∈ SL by

fL :=
∑

x∈ΘL

αL,xfx with αL := M−1
L f .

Let uL (resp. uL−1) denote the composite finite element solution to problem (4) with SG and f being replaced
by SL and fL (resp. by SL−1 and fL). The exact solution u ∈ H1 (Ω) for the right-hand side fL is denoted
by u. Then (

A−1
L − pL,L−1A

−1
L−1rL−1,L

)
f = P−1

L (uL − uL−1) .

Corollary 20 implies

sup
v∈SL\{0}

∣∣∣∣∣∣P−1
L v

∣∣∣∣∣∣
2−s,L

‖v‖H2−s(Ω)

≤ CP.

This and a triangle inequality yield

∥∥(
A−1

L − pL,L−1A
−1
L−1rL−1,L

)
f
∥∥

2−s,L
≤ CP

(
‖uL − u‖H2−s(Ω) + ‖uL−1 − u‖H2−s(Ω)

)
.

From the convergence estimates for the Galerkin solution and the regularity properties (cf. Corollary 14)
we derive

‖uL − u‖H2−s(Ω) ≤
(
C0

√
ε + C6h

s−1
L

) (
C0

√
ε ‖f‖Hδ−2 + C6h

s−1
L ‖f‖Hs−2

)

=
(
C0

√
ε + C6h

s−1
L

) (
C0

√
ε
∥∥PL

(
M−1

L

)
f
∥∥
Hδ−2 + C6h

s−1
L

∥∥PL

(
M−1

L

)
f
∥∥
Hs−2

)

≤ C
(√

ε + hs−1
L

) (√
ε
∣∣∣∣∣∣M−1

L f
∣∣∣∣∣∣

δ−2,L
+ hs−1

L

∣∣∣∣∣∣M−1
L f

∣∣∣∣∣∣
s−2,L

)
,

where C depends on C0, C6, and CP.
The estimate of the difference uL−1 − u is completely analogously while hL is replaced by hL−1. However,

the compatibility of consecutive step widths (cf (38)) leads to

∥∥(
A−1

L − pL,L−1A
−1
L−1rL−1,L

)
f
∥∥

2−s,L
≤ C

(√
ε + hs−1

L

) (√
ε
∣∣∣∣∣∣M−1

L f
∣∣∣∣∣∣

δ−2,L
+ hs−1

L

∣∣∣∣∣∣M−1
L f

∣∣∣∣∣∣
s−2,L

)
.

Substituting f by MLf yields the assertion.

Corollary 23 Let the Assumptions of Theorem 22 be satisfied and assume (3). Then, the approximation
property holds ∥∥(

A−1
L − pL,L−1A

−1
L−1rL−1,L

)
MLf

∥∥
2−s,L

≤ Ch2s−2
L ‖f‖s−2,L .

Theorem 24 Let the Assumptions of Theorems 21 and 22 be satisfied. Then, the norm of the two-grid
operator can be estimated by ∥∥KTGM

L

∥∥
s−2,L←s−2,L

≤ Cη (ν)

where the function η (ν) → 0 is independent of hL and tends to zero as ν → ∞.

Since estimate [11, (7.1.2)] holds with Cp = Cp = 1 and [11, (7.1.1)] follows from Theorem 21, the
convergence of the W-cycle is implied by [11, Theorem 7.1.2].

In summary, we have proved that the multi-grid method on complicated domains converges robustly with
respect to the area measure 0 < ε ≤ Ch1+ν

L under very weak geometric assumptions on the domains.

4 Numerical Experiments

We have performed numerical experiments to study the convergence behavior of the multigrid method based
on composite finite elements for a Neumann problem on the complicated domain of the baltic sea (cf. Figure
5).

We have employed the V-cycle multigrid algorithm with 2 symmetric Gauß-Seidel smoothing steps. The
stopping criterion is

∥∥ALu(i) − fL
∥∥ ≤ 10−8. In Table 1 we display the number of iterations of our multigrid
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Figure 5: Ω is the two-dimensional surface of the baltic sea.

Level 2 3 4 5 6 7 8 9 10 11 12 13 14 15
]mg-iteration 6 7 12 16 13 20 22 17 18 17 16 15 13 13

Table 1: Number of iterations for the multigrid algorithm

algorithm as a function of the levels. Since these numbers are independent of the level, the convergence rates
are small and independent of the refinement level.

Finally, we have depicted the mesh sequence which shows that the coarsest mesh has only 9 degree of
freedom. The overlaps of triangles with the domain are of rather general shape and neither quasi-uniform or
shape regular. Note that the underlying mesh which resolves Ω is only used for numerical integration and is
not related to degrees of freedom.

16



A Proof of some Norm Equivalences

In this section, we will prove (34). We will employ [11, Lemma 6.3.24(ii)]. In this light, we will prove that
[11, Lemma 6.3.22] holds also in our setting.

Recall the definitions of the finite element prolongation P` : RΘ` → S` ⊂ H1 as in (7) and its adjoint
R` : H−1 → RΘ` (cf. (35)). Let L` := M−1

` A` and define the operator

X?
` := I − Q` with Q` := P`L

−1
` R`L. (39)

Lemma 25 Let Q` be defined as in (39). Then

‖Q`‖H1←H1 ≤ 1.

Proof. The continuity constant of the elliptic boundary value problem equals 1 and, hence,

‖L‖H−1←H1 = 1.

The definition of the norm |||·|||1,` implies

sup
u∈R

Θ`\{0}

‖P`u‖H1

|||u|||1,`

= sup
f∈H−1\{0}

|||R`f |||−1,`

‖f‖H−1

= 1.

Finally, the ellipticity constant for the bilinear form a (·, ·) equals 1 and this leads to (see [12, Lemma 6.5.3])

sup
f∈R

Θ`\{0}

∣∣∣∣∣∣L−1
` f

∣∣∣∣∣∣
1,`

|||f |||−1,`

≤ 1.
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Lemma 26 Let the assumptions of Corollary 15 be satisfied. Let (3) be satisfied for some ν > 0. Then, for
any 1 ≤ µ ≤ min

{
λ, 3+ν

2

}
and any u ∈ H1, we have

‖(I − Q`) u‖H2−µ←H1 ≤ 2 (C0 + C6) hµ−1 ‖u‖H1 (40)

Proof. Note that
I − Q` =

(
L−1 − P`L

−1
` R`

)
L.

For u ∈ H1, we obtain by using Corollary 14 and the regularity of the boundary value problem

∥∥(
L−1 − P`L

−1
` R`

)
Lu

∥∥
H2−µ ≤ 2

(
C0

√
ε + C6h

µ−1
)
‖Lu‖H−1 ≤ 2

(
C0

√
ε + C6h

µ−1
)
‖u‖H1 .

Condition (3) implies the assertion.
Acknowledgement: Thanks are due to Profs. Monique Dauge and Wolfgang Hackbusch for fruitful

discussions.
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