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Abstract

In this paper, we will define a new class of finite elements for
the discretization of problems with Dirichlet boundary conditions. In
contrast to standard finite elements, the minimal dimension of the
approximation space is independent of the domain geometry and this
is especially advantageous for problems on domains with complicated
micro-structures. For the proposed finite element method we prove
the optimal-order approximation (up to logarithmic terms) and con-
vergence estimates valid also in the cases when the exact solution has a
reduced regularity due to re-entering corners of the domain boundary.
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1 Introduction

The problem of numerically solving partial differential equations on compli-
cated domains arises in many physical applications such as environmental
modelling, porous media flows, modelling of complex technical engines and
many others. In principle, this problem can be treated with the standard
finite element method; however, the usual requirement

the finite element mesh has to resolve the domain boundary (1.1)

makes a coarse-scale discretization impossible. Every reasonable discretiza-
tion will necessarily contain a huge number of unknowns being directly linked
to the number of geometric details of the physical domain.

This is in sharp contrast to a flexible, problem-adapted, and goal-oriented
discretization:

• The finite element discretization should allow the adaption to the char-
acteristic (possibly singular) behavior of the exact solution without
adding “too” many degrees of freedom but, e.g., by adapting the shape
of the finite element functions to the behavior of the solution by intro-
ducing slave nodes.

• Starting from a very coarse discretization and a very crude approx-
imation of constraints such as Dirichlet boundary conditions, an a-
posteriori error estimation should be used to enrich the finite element
space to improve the local accuracy.

In [4], [5] the composite finite elements (CFE) have been introduced for
coarse-level discretizations of boundary value problems with Neumann-type
boundary conditions. The minimal number of unknowns in the method was
independent of the number and size of geometric details. For functions in
Hk(Ω), the approximation property was proven in an analogue generality as
established for standard finite elements (see [4]).

Composite finite elements for an adaptive approximation of Dirichlet
boundary conditions have been introduced in [7]. These finite elements can
be interpreted as a generalization of standard finite elements by allowing
the approximation of Dirichlet boundary conditions in a flexible adaptive
manner. In this light, we will establish in this paper the approximation and
convergence properties of these finite elements in the framework of an a-priori
analysis.
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In [8], we will introduce the combination of these finite element spaces
with an a-posteriori error estimator in order to improve the approximation
of Dirichlet boundary conditions in a problem-adapted way.

Related approaches in the literature can be found in [1], [6], [15].

We will introduce the composite finite element method for problems with
Dirichlet boundary conditions via a two-scale discretization: One (possibly
coarse) scale H describes the approximation of the solution in the interior
of the domain at a proper distance to the boundary and one (possibly fine)
scale h describes the local mesh size which is used for the approximation of
Dirichlet boundary conditions.

As a model problem we consider the Poisson equation with homogeneous
Dirichlet boundary condition

−∆u = f in Ω , (1.2)

u = 0 on Γ , (1.3)

where Ω ⊂
� 2 is a bounded domain with Lipschitz boundary Γ having a finite

length. For the sake of simplicity, we assume that Ω is a polygonal domain,
but it may still have a very complicated shape. We have to note, also, that
the extension of the presented theory to general 2nd-order elliptic problems
or three-dimensional problems is straightforward from the conceptional point
of view.

The aim of this work is to set up a family of finite elements which possesses
the optimal approximation property (up to logarithmic terms) for functions
in H1

0 (Ω) ∩ H1+s(Ω), s ∈
[

1
2
, 1
]
. If we denote by NΓ the number of line

segments in Γ, the total number of unknowns in the standard FEM can be
expected to be O (NΓ) or even up to O (N 2

Γ), which may be prohibitively
expensive. In this paper, we obtain the approximation space where the min-
imal dimension is independent of NΓ; thus, the total number of unknowns
should be, usually, much smaller than in the standard FEM.

To achieve this goal, we relax the condition (1.1) by introducing a two-
scale grid: The coarse scale grid TH which contains the degrees of freedom and
the fine scale grid Th which adaptively resolves the boundary Γ and contains
only slave nodes which are used to adapt the shape functions to the Dirichlet
boundary conditions. For a triangle τ ∈ TH , we denote its diameter by hτ and
the index H in TH is the largest triangle diameter: H := max {hτ : τ ∈ T }.
The index h in Th is the smallest diameter of triangles in Th.
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The resolution condition (1.1) is replaced by the overlap condition for the
mesh TH :

Ω ⊂
⋃

τ∈TH

τ

and hence, the number of elements n in TH is possibly low independent of the
number and size of geometric details in Ω. The fine scale grid is concentrated
locally at the boundary Γ and the required resolution is either controlled by
an a-priori analysis or by an a-posteriori error estimator.

For the CFE solution of problem (1.2), (1.3), we will show, also, the
optimal convergence rate with respect to H under our weakened condition
on the resolution of the boundary (conditions).

The paper is organized as follows. We define the two-scale composite
finite element space in Section 2 and prove the approximation error estimates
in Section 3. Section 4 is devoted to the convergence analysis for the CFE
solution of problem (1.2), (1.3), and Section 5 summarizes the main aspects
of the presented method.

In this paper, we will use the standard notation ‖·‖s,Ω for the norm in the
Sobolev space Hs(Ω), s ≥ 0, and | · |k,Ω for the seminorm in Hk(Ω), k = 1, 2
(i.e. |u|k,Ω = (

∑
|α|=k

‖Dαu‖2
0,Ω)1/2).

In order to improve readability, we have collected below the most relevant
notations, while their precise definitions will be given later in the text.

Notations:

TH , ΘH Initial, overlapping coarse grid and corresponding set of
vertices,

TΓ subset of TH , which contains all near-boundary triangles,
TH,h, ΘH,h two scale grid with corresponding set of grid points,
T in

H , Θdof inner grid of TH,h with corresponding set of grid points
(degrees of freedom),

Θslave set of slave nodes Θslave := ΘH,h\Θdof ;
xΓ for x ∈ Θslave, xΓ ∈ Γ has minimal distance to x,
∆x for x ∈ Θslave, ∆x ∈ T in

H has minimal distance to x,
τ (closed) triangle,
V (τ) set of vertices of a triangle τ.
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2 The composite finite element space

The construction of the composite finite element (CFE) space is realized in
three steps. We emphasize that all steps can be incorporated easily in any
standard grid refinement algorithm.

Step 1: Overlapping two-scale grid
Let TH = {τ1, τ2, . . . , τn} denote a conforming shape regular finite element
mesh (in the sense of Ciarlet [3]) consisting of (closed) triangles with maximal
diameter H.

Notation 2.1 For any triangle τ , the set of vertices is denoted by V (τ).
The open interior of a (closed) triangle is denoted by int (τ).

The assumption on the grid conformity excludes the presence of hanging
nodes in TH . Further, we assume that TH is an overlapping grid, i.e.

Ω ⊂
⋃

τ∈TH

τ and ∀τ ∈ TH : int(τ) ∩ Ω 6= ∅. (2.1)

It is evident that, for any bounded domain, there exists a triangulation with
very few elements which satisfies these conditions. In order to resolve the
boundary (conditions) in an adaptive way, the triangles in a certain neigh-
borhood of Γ will be refined. The width of this neighborhood is controlled by
a parameter cdist > 0. We employ a simple coloring algorithm which marks
two “layers” of triangles about the boundary Γ provided the distance of such
triangles from the boundary is not “too” far: dist (τ, Γ) ≤ cdisthτ . The pro-
cedure requires as input the mesh TH and the output is the near-boundary
part TΓ of the mesh. It is called by mark near boundary triangles and
defined by

procedure mark near boundary triangles;
begin

Ttemp := ∅; TΓ := ∅;
for all τ ∈ TH do

if int (τ) ∩ Γ 6= ∅ then Ttemp := Ttemp ∪ {τ} ;
for all τ ∈ Ttemp do

for all t ∈ TH with t ∩ τ 6= ∅ do
if dist (t, Γ) ≤ cdistht then TΓ := TΓ ∪ {t} ;

end;
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Next, the near-boundary triangles τ ∈ TΓ are refined adaptively towards
Γ until the fine scale triangles t ⊂ τ satisfy the following condition

dist (t, Γ) > 0 ∨ stop (t) = true, (2.2)

where stop (·) is an abstract stopping criterion which will be addressed in
Remark 4.3 and Lemma 4.2 or replaced by an a-posteriori error estimation
(see [8]).

For a triangle τ , let refine(τ) denote the set of four triangles which arise
by connecting the midpoints of the edges in τ . The procedure adapt boun-
dary successively refines the near-boundary triangles, i.e., which violate con-
dition (2.2). In order to keep the procedure local about the boundary, we
employ an active set Tactive which contains level-by-level the newly generated
near-boundary triangles and is updated via an auxiliary set Ttemp. It is called
by

TH,h := TH ; Ttemp := TΓ; adapt boundary;

and defined by

procedure adapt boundary;
begin

Tactive := {τ ∈ Ttemp : Condition (2.2) is violated}; Ttemp := ∅;
while Tactive 6= ∅ do begin

for all τ ∈ Tactive do begin
σtemp := {t ∈ refine (τ) : |t ∩ Ω| > 0} ;
T := T \ {τ} ∪ σtemp;
Ttemp := Ttemp ∪ σtemp;

end;
green closure(T ) ;
Tactive := {τ ∈ Ttemp : Condition (2.2) is violated}; Ttemp := ∅;

end;
end;

Here, the procedure green closure eliminates all hanging nodes in the
actual triangulation T . If a common triangle τ ∈ T ∩ Ttemp is subdivided by
the procedure green closure, we employ the convention that the triangle τ
is replaced by the refined triangles not only in T but also in the set Ttemp.

For any τ ∈ TH , we define the set of sons by

sons (τ) := {t ∈ TH,h : t ⊂ τ} (2.3)
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Ω in

Figure 1: Two-scale grid TH,h. The dark-shaded triangles form the inner
triangulation T in

H and contain the degrees of freedom. The near-boundary
triangles are surrounded by dotted lines and contain the slave nodes as ver-
tices.

and denote its number by nτ := ] sons (τ).
As a result of this algorithm, we obtain a new conforming and shape

regular grid that is more refined than TH in the vicinity of Γ and does not
differ from TH in the interior of Ω (see Figure 1).

The two-scale nature of the grid TH,h becomes apparent: In the interior
of the domain, at some distance from Γ, the submesh T in

H ⊂ TH,h:

T in
H := {t ∈ sons (τ) : τ ∈ TH\TΓ}

is characterized by the coarse-scale mesh parameter H. (Note that T in
H differ

from TH\TΓ only by those triangles t ∈ TH\TΓ which are refined via the
green-closure algorithm.)

In the neighborhood of Γ the two-scale mesh TH,h is characterized by
the fine-scale parameter h := min {ht : t ∈ TH,h} (obviously, h ≤ H). Later
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we will see that, for the optimal convergence rate of the CFE solution, the
parameters should obey the correlation h = O(Hs) and the choice of s will
be discussed in Section 4.

By choosing the stopping criterion (2.2) in an appropriate way, the near-
boundary triangles satisfy

dist (τ, Γ) ≤ Cdisthτ ∀τ ∈ TH,h\T
in

H . (2.4)

(More precisely, the stopping criterion must contain (2.4).)

Remark 2.2 For the constructed grid TH,h we can distinguish two limiting
cases.

a. The number nτ of subtriangles in τ ∈ TΓ equals 1; it means that there is
no subdivision of τ and the grid TH,h simply coincides with the coarse-
scale grid TH (h = O(H) in this case).

b. The number nτ is so large, that the domain Ω is fully resolved by the
grid TH,h (the full resolution of Ω can be achieved by applying the above
mentioned refinement algorithm until the connectivity components τ\Γ
can be meshed by only few triangles; then, further subdivision of t ∈
sons (τ) into these triangles leads to the grid exactly aligned with the
boundary Γ); in this case, h = O(hΓ) where hΓ is the characteristic
scale of Γ.

Step 2: Marking the degrees of freedom
Next, we will define the “free nodes” where the degrees of freedom will be
located and the “slave nodes” where the function values are constraint. The
degrees of freedom correspond to those vertices in the coarse mesh TH – more
precisely in the inner mesh T in

H – having a proper distance to the boundary.
Let ΘH denote the set of all vertices in TH and define

Θdof :=
{
x ∈ V (τ) : τ ∈ T in

H

}
.

All other nodes in TH,h are slave nodes and the values of a composite finite
element function is determined by its values at the nodes x ∈ Θdof . In this
light, the triangles and grid points which are generated by the procedure
adapt boundary do not increase the dimension of the finite element space
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but are used for adapting the shape of the finite element functions to the
Dirichlet boundary conditions.

Step 3: Definition of an extrapolation operator
The degrees of freedom of the composite finite element space are located at
the inner nodes Θdof and the values at the slave nodes of the two-scale mesh
TH,h are determined via a simple extrapolation method.

Let ΘH,h denote the set of all vertices of the two-scale mesh TH,h. The
set of slave nodes is given by

Θslave := ΘH,h\Θdof .

For a slave node x ∈ Θslave, we determine a closest point xΓ on the
boundary Γ and a closest coarse grid triangle ∆x ∈ T in

H .

Remark 2.3 For x ∈ Θslave, the computation of a closest boundary point xΓ

and a closest coarse grid triangle ∆x can be performed efficiently by using the
hierarchical structure of the two-scale mesh. The algorithmic details for this
and also for the generation of the system matrix are presented in [7] while
we focus here on the stability and convergence analysis.

Let u : Θdof →
�

denote a grid function. For any τ ∈ TH , there exists an
uniquely determined linear function uτ : � 1 (

� 2) which interpolates u in the
vertices of τ . Here, and in the sequel, � 1 (

� 2) denotes the space of bivariate
polynomials on

� 2 of maximal degree 1. The values of the grid function u
at a slave node x ∈ Θslave is defined by

ux := u∆x (x) − u∆x

(
xΓ
)
.

This relation defines a simple extrapolation operator E :
� Θdof →

� ΘH,h for
grid functions:

(Eu)x :=

{
ux x ∈ Θdof ,
u∆x (x) − u∆x

(
xΓ
)

x ∈ Θslave.
(2.5)

Let S denote the continuous, piecewise linear finite element space on the
mesh TH,h

S :=
{
u ∈ C0 (ΩH,h) | ∀τ ∈ TH,h : u|τ ∈ � 1

}
,

9



where ΩH,h := int


 ⋃

τ∈TH,h

τ


. The composite finite element space is a sub-

space of S, where the values at the slave nodes are restricted by the extrap-
olation.

Definition 2.4 The composite finite element space for the two-scale approx-
imation of Dirichlet boundary conditions on the mesh TH,h is

SCFE :=
{
u ∈ S | ∃u ∈

� Θdof s.t. u (x) = (Eu)x ∀x ∈ ΘH,h

}
.

Remark 2.5 From the viewpoint of the approximation quality of the com-
posite finite element space, it is essential that the extrapolation from an inner
triangle ∆x to a slave node x is not performed over a “too” large distance.
(Such a situation might appear if a slave node is located in a long outlet of
the domain, far away from an inner triangle). If such situations arise, we
simply modify the definition (2.5) by employing a control parameter ηext > 0
and using the generalized definition

(Eu)x :=





ux x ∈ Θdof ,
u∆x (x) − u∆x

(
xΓ
)

x ∈ Θslave ∧ dist (x, ∆x) ≤ ηexth∆x,
0 otherwise.

(2.6)

Remark 2.6

1. Obviously, SCFE ⊂ S; since the dimension of SCFE is determined only
by the number of nodes in Θdof , it may be much smaller than the di-
mension of S, especially in the case of very complicated boundary Γ.

2. A composite finite element function u ∈ SCFE is, in general, not affine
inside of each triangle τ ∈ TH but continuously composed of affine
pieces on triangles of TH,h. However, in the interior of the domain
(i.e. on triangles τ ∈ T in

H ) it is a standard finite element function being
piecewise affine on these triangles.

Remark 2.7 The space SCFE is, in general, non-conforming in the sense
that the triangles in TH,h might overlap the boundary Γ and, then, the func-
tions from SCFE satisfy the homogeneous boundary condition only approxi-
mately (this is not the case if the two-scale grid TH,h completely resolves the
given domain Ω, see Remark 2.2.b). However, as we will see in Section 4,
a small error in the approximation of boundary conditions is harmless for
the quasi-optimal (with respect to the coarse-scale parameter H) convergence
rate of the CFE solution.
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3 Approximation property

In this section we investigate the approximation property of the proposed
composite finite element space. The error estimates for composite finite
elements will be based on the existence of an appropriate extension operator
for the given domain Ω. It is known that, for a bounded Lipschitz domain
Ω ⊂

� d , there exists a continuous, linear extension operator � : Hk(Ω) →
Hk(

� d), k ∈ � , such that

∀u ∈ Hk(Ω) : � u|Ω ≡ u and ‖ � u‖Hk( � d) ≤ Cext‖u‖Hk(Ω)

with the constant Cext depending only on k and Ω (cf. [12]). It is worth
noting that, for domains containing a large number of holes and possibly a
rough outer boundary, there exists an extension operator with the bounded
norm Cext independent of the number of the holes and of their sizes. For all
details including the characterisation of the class of domain geometries, we
refer to [11].

To derive the approximation error estimates, we will need a preparatory
Lemma. Let τ denote an arbitrary triangle with diameter hτ and mass center
Mτ . For c ≥ 1, we introduce the scaled version of τ by

Tc := {Mτ + c (y − Mτ ) : y ∈ τ} . (3.1)

Lemma 3.1 (neighborhood property) Let u ∈ H2(
� 2) and τ be an ar-

bitrary triangle with diameter hτ . Let uτ ∈ � 1 (
� 2) denote the affine interpo-

lation of u at the vertices of τ and let TR be the scaled version of τ as in (3.1)
for some R ≥ 1 about the mass center of τ . For m ∈ {0, 1} and 1 ≤ p ≤ ∞
with the exception (m, p) 6= (1,∞), we have the error estimate

|u − uτ |W m,p(TR) ≤ C (1 + R) (Rhτ )
1+ 2

p
−m |u|H2(TR) , (3.2)

where C only depends on the minimal angles of τ .

Proof. For R ≥ 1, we write T short for TR. Obviously τ and T are
congruent and the diameter of T satisfies hT = Rhτ . For u ∈ H2 (

� 2), let
IT u ∈ � 1 (resp. Iτu ∈ � 1) denote the affine function which interpolates u at
the vertices of T (resp. τ). The projection property of Iτ on � 1 leads to

u − Iτu = (I − Iτ ) (u − IT u) , (3.3)
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where I is the identity. Hence,

|u − Iτu|W m,p(T ) ≤ |u − IT u|W m,p(T ) (3.4)

+

(
sup

v∈C0(T )\{0}

|Iτv|W m,p(T )

‖v‖L∞(T )

)
‖u − IT u‖L∞(T ) .

The estimates

|u − IT u|W m,p(T ) ≤ Ch
1+ 2

p
−m

T |u|H2(T ) and ‖u − IT u‖L∞(T ) ≤ ChT |u|H2(T )

(3.5)
are well known (see, e.g. [3, Theorem 3.1.6]).

Next, we will estimate the supremum in (3.4). Let zi, 1 ≤ i ≤ 3, denote
the vertices of τ with corresponding shape functions bi ∈ � 1 (

� 2) defined by
bi (zi) = 1 and bi (zj) = 0 for i 6= j.

|Iτv|W m,p(T ) =

∣∣∣∣∣

3∑

i=1

v (zi) bi

∣∣∣∣∣
W m,p(T )

≤ max
1≤i≤3

|v (zi)|
3∑

i=1

|bi|W m,p(T ) (3.6)

≤ ‖v‖L∞(τ)

3∑

i=1

|bi|W m,p(T ) .

Since bi is affine, we obtain the estimate for all y ∈ T

|bi (y)| = |bi (Mτ ) + 〈∇bi, y − Mτ 〉| ≤ 1 + |bi|W 1,∞(τ) ‖y − Mτ‖

≤ 1 + Ch−1
τ hT ≤ 1 + CR,

where C only depends on the minimal angles in τ . Thus, for m = 0, we get

‖bi‖Lp(T ) ≤ (1 + CR) h
2/p
T .

The estimate for m = 1 is simpler since ∇bi is constant and an inverse
inequality leads to

|bi|W 1,p(T ) ≤ Ch−1
τ h

2/p
T ≤ C

hT

hτ

h
2/p−1
T ≤ CRh

2/p−1
T .

Taking into account (3.6), we have proven

|Iτv|W m,p(T ) ≤ C (1 + CR) h
2/p−m
T ‖v‖L∞(τ) . (3.7)
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The combination of (3.4)-(3.7) yields the assertion

|u − Iτu|W m,p(T ) ≤ C (1 + R) h
1+2/p−m
T |u|H2(T ) .

Now we are able to prove the main result concerning the approximation
properties of the proposed composite finite elements. In order to avoid too
many technicalities, we assume that there is a constant ηext > 0 such that

dist (x, ∆x) ≤ ηexth∆x ∀x ∈ Θslave (3.8)

and, thus, definition (2.6) reduces to (2.5). The case of the extrapolation by
zero (cf. (2.6)) is discussed in [10]. With Condition (3.8) one may deduce
from (3.2) the estimate:

|u (x) − u∆x (x)| ≤ ChT |u|H2(T ) ∀x ∈ Θslave, (3.9)

where T is the minimal scaled version of ∆x (cf. (3.1)) such that x ∈ T . The
constant C only depends on the minimal angle in ∆x and the constant ηext.

In the following, we define certain geometric constants which will enter
the error estimates.

1. For a triangle τ and a point x ∈
� 2 , let Tx,τ denote the triangle TR as

in Lemma 3.1, where R is chosen as the minimal number such that x, τ
are contained in TR.

2. For τ ∈ TΓ, let T ext
τ ⊂ T in

H denote the set of triangles in T in
H , which are

employed for the extrapolation on Θslave ∩ τ :

T ext
τ := {∆z | ∀z ∈ Θslave ∩ τ} . (3.10a)

The constant Next is defined by

Next := max
τ∈TΓ

]T ext
τ (3.10b)

and Next ∼ 1 expresses the fact that only triangles in a local neighbor-
hood of τ are employed for the extrapolation.

3. Let τ ∈ TΓ. For t ∈ sons (τ) and any pair of vertices x, y ∈ V (t), let
Qt,x,y denote the minimal rectangle, which contains xΓ, yΓ, and t with
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one side being parallel to xΓyΓ (if xΓ = yΓ, the alignment condition is
skipped).

Let Qt denote the minimal rectangle which contains
⋃

x,y∈V(t)

Qt,x,y and

define the constant CQ by

CQ := max
τ∈TΓ

max
t∈sons(τ)

(diam Qt) /ht. (3.11)

Condition (2.4) implies that CQ = O (1).

For τ ∈ TΓ, the minimal ball which contains the set

τ ∪

(
⋃

x∈Θslave∩τ

(
Tx,∆x ∪ TxΓ,∆x

)
)

∪


 ⋃

t∈sons(τ)

Qt




is denoted by Bτ . For τ ∈ T in
H we set Bτ = τ . The constant Cuni, defined by

Cuni := max
τ∈TΓ

max
t∈TH

t∩Bτ 6=∅

diam Bτ

ht
, (3.12)

describes the local quasi-uniformity of the initial overlapping mesh TH near
the boundary.

The approximation error estimates for the near-boundary triangles τ ∈ TΓ

will be decomposed into a sum of error estimates on the sons, t ∈ sons (τ).
For each t ∈ sons (τ), these estimates will involve the given function in the
neighborhood Qt of t. As a consequence, a quantity which measures the
overlap of such neighborhoods will enter the error estimates. In this light we
define, for τ ∈ TΓ and t ∈ sons (τ), the set

Tol (t) :=
{
t̃ ∈ sons (τ) : Qt̃ ∩ t 6= ∅

}
.

The number of elements in Tol (t) can be estimated by the following technical
lemma.

Lemma 3.2 For any τ ∈ TΓ and t ∈ sons (τ), we have

]Tol (t) ≤ C (1 + log (hτ/ht)) ,

where C only depends on CQ as in (3.11) and the shape regularity of the
mesh.
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A l

t

Figure 2: Triangle τ ∈ TΓ and (black-shaded) son t ∈ sons (τ). The concen-
tric annular regions A` contain triangles t̂ (marked with ×), where the boxes
Qt̃ intersect t and, hence, belong to T `

ol (t).

Proof. Fix t ∈ sons (τ). For R > 0, let Bt (R) denote the disc with
radius R > 0 about the mass center of t. Obviously, there holds τ ⊂ Bt (hτ ).
Let L denote the smallest integer such that 2−Lhτ ≤ 8ht. (This implies
ht ≤ 2−2−Lhτ and L ≤ C (1 + log (hτ/ht)).) We introduce annular regions
about t by

A` := Bt

(
2−`hτ

)
\Bt

(
2−`−1hτ

)
` = 0, 1, . . . , L − 1

(cf. Figure 2) and set AL := Bt

(
2−Lhτ

)
. For 0 ≤ ` ≤ L, we define (non-

disjoint) subsets T `
ol (t) ⊂ Tol (t) by

T `
ol (t) :=

{
t̃ ∈ Tol (t) : t̃ ∩ A` 6= ∅

}
.

Obviously, we have Tol (t) =
L⋃

`=0

T `
ol (t). For ` < L we have

dist (A`, t) ≥ 2−`−1hτ − ht ≥ 2−`−2hτ ,

while t̃ ∈ T `
ol (t) and Qt̃ ∩ t 6= ∅ lead to diam Qt̃ ≥ 2−`−2hτ . The definition of

CQ as in (3.11) yields the second estimate in

2−`−2hτ ≤ diam Qt̃ ≤ CQht̃.
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The shape regularity of the triangles leads to the estimate
∣∣t̃
∣∣ ≥ CC−2

Q 2−2`−4h2
τ

of the area of t̃. Since the area of A` is 3πh2
τ2

−2`−2, i.e., is of the same order
as
∣∣t̃
∣∣, it is easy to see that ]T `

ol (t) ≤ C, where C only depends on the shape
regularity of the triangles and the constant CQ. Hence

L−1∑

`=0

]T `
ol (t) ≤ CL.

It remains to investigate ]T L
ol (t). First, we will show that each t̃ ∈ T L

ol (t)
satisfies ht̃ ≥ cht. Let

Ut :=
{
t̃ ∈ T L

ol (t) : t̃ ∩ t 6= ∅
}

.

The shape regularity of the mesh TH,h implies that ht̃ ≥ c1ht holds for all
t̃ ∈ Ut . Now consider t̃ ∈ T L

ol (t) \Ut. Again from the shape regularity of the
mesh TH,h we conclude dist

(
t̃, t
)
≥ c2ht. The condition t̃ ∈ T L

ol (t) implies
Qt̃∩t 6= ∅ and, by taking into account the previous estimate, diam Qt̃ ≥ c3ht.
From the definition of the constant CQ we conclude

c3ht ≤ diam Qt̃ ≤ CQht̃.

The shape regularity of the mesh directly implies for the area of t̃
∣∣t̃
∣∣ ≥ c4h

2
t ≥ c42

−6−2Lh2
τ .

Since the area of AL is π2−2Lh2
τ , i.e., of the same order as the area of t̃

the number ]T L
ol (τ) is bounded by constant depending only on the shape

regularity of the mesh and the constant CQ.

In order to measure the cardinality of the set Tol (t) globally we introduce
CI

ol as the minimal constant such that,

]Tol (τ) ≤ CI
ol max

t∈sons(τ)
(1 + log (hτ/ht)) =: l̃og

(
hτ/h

min
τ

)
∀τ ∈ TΓ,

holds, where hmin
τ := mint∈sons(τ) ht. For τ ∈ T in

H , we put l̃og
(
hτ/h

min
τ

)
:= 1.

The global analogue is

L̃og (H/h) := max
{

l̃og
(
hτ/h

min
τ

)
: τ ∈ TΓ

}
.
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Related to the constant Cuni is the second overlap constant C II
ol defined

by
CII

ol := max
t∈TΓ

] {τ ∈ TH : |Bτ ∩ t| > 0} .

Theorem 3.3 Let u ∈ H1
0 (Ω) ∩ H2(Ω) and let assumptions (2.4) and (3.8)

be satisfied. Then, there exists uCFE ∈ SCFE such that
√ ∑

t∈sons(τ)

‖u − uCFE‖2
m,t ≤ Ch2−m

τ l̃og
m/2 (

hτ/h
min
τ

)
|u|2,Bτ ∀τ ∈ TH ,

(3.13)
∥∥u − uCFE

∥∥
m, Ω

≤ CH2−mL̃og
m/2

(H/h) ‖u‖2,Ω , (3.14)

where m = 0, 1 and u – in the neighborhood Bτ of the triangle τ ∈ T – is
identified with its extension � u. The constant C only depends on the minimal
angles in the triangulation TH,h and Cdist, ηext, Cext, Next, Cuni, CI

ol, CII
ol .

Proof. For u ∈ H1
0 (Ω)∩H2 (Ω), we define the grid function u : Θdof →

�

by ux := u (x), x ∈ Θdof . Let the extension operator E be as in (2.5) and
let uCFE be the � 1-nodal interpolant of Eu on TH,h. We identify u with its
extension � u.

We will show that uCFE satisfies the estimates stated in the theorem.

1. Local estimate:

For any τ ∈ T in
H , the function uCFE

∣∣
τ

is the affine interpolant on τ of
the values (u (x))x∈V(τ) and the estimate (3.13) is the standard interpolation
estimate (see, e.g., [3]).

Next, we consider τ ∈ TΓ. Recall the definition of the set of sons as in
(2.3).

For any t ∈ sons (τ), we can write

‖u − uCFE‖m, t ≤ ‖u − Itu‖m, t + ‖Itu − uCFE‖m,t , (3.15)

where, as in (3.3), It is the Lagrange linear interpolation operator on t,
It : C0(t) → � 1 (t). For the first term on the right-hand side of (3.15) we
have the standard interpolation estimate

‖u − Itu‖m, t ≤ Ch2−m
t |u|2, t , (3.16)
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t xx G
D x

G
Figure 3: Slave node x, closest boundary point xΓ, and closest inner trian-
gle ∆x.

where ht is the diameter of t. For the second term, we use, first, the inverse
estimate (see, e.g. [2, Section 4.5]):

‖Itu − uCFE‖m, t ≤ Ch1−m
t ‖Itu − uCFE‖L∞(t) . (3.17)

Now we notice that ‖Itu − uCFE‖L∞(t) = max
x∈V(t)

∣∣Itu(x) − uCFE(x)
∣∣. Then,

from (3.17) we obtain

‖Itu − uCFE‖m, t ≤ Ch1−m
t max

x∈V(t)

∣∣u (x) − uCFE (x)
∣∣ . (3.18)

We have

uCFE (x) =

{
u (x) if x ∈ Θdof ,
u∆x (x) − u∆x

(
xΓ
)

if x ∈ Θslave,

where ∆x and xΓ are as in (2.5). As before, the function u∆x ∈ � 1 (
� 2)

denotes the unique affine function which interpolates the values of u at the
vertices of ∆x. While the case x ∈ Θdof is trivial, for the other case x ∈ Θslave,
we can write (see Figure 3)

∣∣u(x) − uCFE(x)
∣∣ ≤ |u(x) − u∆x(x)| +

∣∣u
(
xΓ
)
− u∆x

(
xΓ
)∣∣ , (3.19)

using the fact that u
(
xΓ
)

= 0. Since dist(x, ∆x) ≤ ηexth∆x (cf. (3.8)) and
dist(x, xΓ) ≤ (Cdist + 1)ht (cf. (2.4)), we may infer that both terms on the
right-hand side of (3.19) can be estimated by (3.9) and we obtain

∣∣u(x) − uCFE (x)
∣∣ ≤ ChT |u|2,T ∀x ∈ V(t),

18



where T is a triangle with diameter hT ∼ (h∆x + ht) which contains x, xΓ,
and ∆x.

In combination with (3.18), we get
∥∥Itu − uCFE

∥∥
m, t

≤ Ch1−m
t ChT |u|2,T . (3.20)

A summation over all t ∈ sons (τ) yields:
∑

t∈sons(τ)

∥∥Itu − uCFE
∥∥2

m, t
≤ Ch2

T |u|22,T

∑

t∈sons(τ)

h2−2m
t . (3.21)

The shape regularity of the triangles implies h2
t ∼ |t| and, for m = 0, we

obtain ∑

t∈sons(τ)

h2
t ≤ C

∑

t∈sons(τ)

|t| ≤ C |τ | ≤ Ch2
τ .

Plugging this estimate into (3.21) and employing (3.12) yields
√ ∑

t∈sons(τ)

‖Itu − uCFE‖2
0, t ≤ Ch2

τ |u|2,Bτ
.

For m = 1, this estimate becomes too pessimistic since
∑

t∈sons(τ) h2−2m
t in

(3.21) equals ] (sons τ) and this number cannot be, in general, bounded in
terms of hT .

Hence, for m = 1, we refine our analysis as follows. Let t ∈ sons (τ) and
let z ∈ V (t) be an arbitrary chosen vertex of t.

Then, the function uCFE
∣∣
t
can be written in the form

uCFE
∣∣
t

:=
∑

x∈V(t)

(
u∆x (x) − u∆x

(
xΓ
))

bx,t = u∆z − u∆z

(
zΓ
)

+
∑

x∈V(t)




{
u∆x (x) − u∆x

(
xΓ
)}

−
{
u∆z (x) − u∆z

(
xΓ
)}

︸ ︷︷ ︸
d1(x)

−
(
u∆z

(
xΓ
)
− u∆z

(
zΓ
))

︸ ︷︷ ︸
d2(x)





bx,t.

As before, for any triangle T , the function uT ∈ � 1 (
� 2) is the unique affine

interpolation of the values of u at the vertices V (T ). Further, u∆z

(
zΓ
)

is
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the function on t with constant value u∆z

(
zΓ
)

and bx,t is the finite element
basis function on t corresponding to the vertex x. Note that d1 (x) can be
rewritten as

d1 (x) =
〈
∇u∆x −∇u∆z , x − xΓ

〉
.

Thus,

∇
(
uCFE − u

)∣∣
t
= ∇ (u∆z − u)|t +

∑

x∈V(t)

{d1 (x) − d2 (x)}∇bx,t (3.22)

and we estimate all three terms separately.
For the first term in (3.22) we employ Lemma 3.1 and obtain (recall the

definition of T ext
τ and Next as in (3.10))

∑

t∈sons(τ)

‖∇ (u∆z − u)‖2
L2(t)

=
∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

‖∇ (uT − u)‖2
L2(t)

≤
∑

T∈T ext
τ

‖∇ (uT − u)‖2
L2(τ) ≤ Next ‖∇ (uT − u)‖2

L2(τ)

≤ Ch2
τ |u|

2
H2(Bτ ) .

Next, we will consider the term in (3.22) related to d2:

∑

x∈V(t)

(
u∆z

(
xΓ
)
− u∆z

(
zΓ
))

∇bx,t.

The case xΓ = zΓ is trivial and we assume from now on that zΓ 6= xΓ.
Condition (2.4) yields

∥∥xΓ − zΓ
∥∥ ≤

∥∥xΓ − x
∥∥ + ‖x − z‖ +

∥∥z − zΓ
∥∥ ≤ Cht. (3.23)

By a rotation of the coordinate system we may assume that xΓ and zΓ lie
in the x1-axes, i.e. xΓ =

(
xΓ

1 , 0
)
, zΓ =

(
zΓ
1 , 0
)
, and t, xΓ, zΓ are contained

in the minimal axes-parallel rectangle Qt,x,z = (a1, b1) × (a2, b2) of diameter
diam Qt,x,z ≤ Cht. We employ u

(
xΓ
)

= u
(
zΓ
)

= 0 and Hölder’s inequality
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to obtain

∣∣u∆z

(
xΓ
)
− u∆z

(
zΓ
)∣∣2 =

∣∣u∆z

(
xΓ
)
− u∆z

(
zΓ
)
−
(
u
(
xΓ
)
− u

(
zΓ
))∣∣2

=

∣∣∣∣∣

∫ zΓ
1

xΓ
1

∂1 (u∆z − u) ds

∣∣∣∣∣

2

≤
∣∣zΓ

1 − xΓ
1

∣∣
∫ zΓ

1

xΓ
1

|∂1 (u∆z − u)|2 ds

≤ Cht

∫ b1

a1

|∂1 (u∆z − u)|2 ds.

Integration over Qt,x,z yields, along with an inverse inequality for ∇bx,t,

∥∥(u∆z

(
xΓ
)
− u∆z

(
zΓ
))

∇bx,t

∥∥2

L2(Qt,x,z)

≤ Ch−2
t

∫ b1

a1

∫ b2

a2

∣∣u∆z

(
xΓ
)
− u∆z

(
zΓ
)∣∣2 dx2dx1

≤ Ch−1
t

∫ b1

a1

∫ b2

a2

∫ b1

a1

|∂1 (u∆z − u)|2 dsdx2dx1

≤ C |u∆z − u|2H1(Qt,x,z) . (3.24)

Thus, the combination of (3.24) with (3.22) yields

∑

t∈sons(τ)

∥∥∥∥∥∥

∑

x∈V(t)

(
u∆z

(
xΓ
)
− u∆z

(
zΓ
))

∇bx,t

∥∥∥∥∥∥

2

L2(t)

=
∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

∥∥∥∥∥∥

∑

x∈V(t)

(
uT

(
xΓ
)
− uT

(
zΓ
))

∇bx,t

∥∥∥∥∥∥

2

L2(t)

≤ C
∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

∑

x∈V(t)

|uT − u|2H1(Qt,x,z)

≤ C
∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

|uT − u|2H1(Qt)
≤ C l̃og

(
hτ/h

min
τ

) ∑

T∈T ext
τ

|uT − u|2H1(Bτ )

≤ C l̃og
(
hτ/h

min
τ

)
Next max

T∈T ext
τ

|uT − u|2H1(Bτ ) ≤ C l̃og
(
hτ/h

min
τ

)
h2

τ |u|
2
H2(Bτ ).
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Finally, we will estimate the term in (3.22) related to d1. A triangle
inequality in combination with condition (2.4) and an inverse inequality for
the basis functions yields

∣∣∣∣∣∣

∑

x∈V(t)

d1 (x)∇bx,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x∈V(t)

〈
∇u∆x −∇u∆z , x − xΓ

〉
∇bx,t

∣∣∣∣∣∣
≤ C max

x∈V(t)
‖∇ (u∆x − u∆z)‖ ,

where the gradients on the right-hand side are constant vectors in
� 2 . Thus,

∑

t∈sons(τ)

∥∥∥∥∥∥

∑

x∈V(t)

d1 (x)∇bx,t

∥∥∥∥∥∥

2

L2(t)

≤ C
∑

t∈sons(τ)

∑

x∈V(t)

‖∇ (u∆x − u∆z)‖
2 |t|

≤ C
∑

T,T̃∈T ext
τ

‖∇ (uT − uT̃ )‖2
∑

t∈sons(τ)

∆z=T̃

∑

x∈V(t)
∆x=T

|t|

≤ 3C
∑

T,T̃∈T ext
τ

‖∇ (uT − uT̃ )‖2 |τ |

≤ C̃N2
exth

2
τ max

T,T̃∈T ext
τ

‖∇ (uT − uT̃ )‖2 .

The estimate

‖∇ (uT − uT̃ )‖2 =
1

|Bτ |
‖∇ (uT − uT̃ )‖2

L2(Bτ )

≤ Ch−2
τ

{
‖∇ (uT − u)‖2

L2(Bτ ) + ‖∇ (uT̃ − u)‖2
L2(Bτ )

}

≤ C̃ |u|2H2(Bτ )

follows from the neighborhood property (Lemma 3.1) and finishes the proof
of the local estimate.

Global estimate:
The global estimate (3.14) follows immediately from the local one:

∥∥u − uCFE
∥∥2

m, Ω
≤

∑

τ∈TH

∑

t∈sons τ

‖u − uCFE‖2
m,t

≤ CL̃og
m

(H/h)
∑

τ∈TH

h2(2−m)
τ ‖Eu‖2

2,Bτ
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≤ CCII
olL̃og

m
(H/h) H2(2−m)

∑

t∈TH

‖Eu‖2
2,t

≤ CCII
olC

2
extL̃og

m
(H/h) H2(2−m)‖u‖2

2,Ω.

Theorem 3.3 concerns the basic approximation property of the composite
finite element space SCFE in the case when the approximated function (we
think of the exact solution to our problem) u belongs to H2(Ω). However,
especially when the polygonal boundary Γ is complicated, it is very likely
for the exact solution of the Dirichlet problem to have a lower regularity
owing to possible re-entrant corners of the boundary. Thus, we need some
generalization of Theorem 3.3 for the case u ∈ H1+s(Ω), 0 ≤ s ≤ 1 (in fact,
it would be sufficient to consider 1/2 ≤ s ≤ 1).

First, we need the following result from the interpolation theory of Sobolev
spaces.

Lemma 3.4 Let Ω be a domain with Lipschitz boundary. Let L be a linear
operator mapping Hm0(Ω) to Hk0(Ω) and, also, Hm1(Ω) to Hk1(Ω), where
m0, m1, k0, k1 are arbitrary real numbers.
Then, L maps H (1−θ)m0+θm1(Ω) to H (1−θ)k0+θk1(Ω) and, moreover,

‖L‖H(1−θ)m0+θm1 (Ω)→H(1−θ)k0+θk1 (Ω) ≤ ‖L‖1−θ
Hm0(Ω)→Hk0 (Ω)

· ‖L‖θ
Hm1 (Ω)→Hk1 (Ω)

for all θ ∈ (0, 1).

Proof. See Proposition (14.1.5) and Theorem (14.2.7) in [2].
Now we can prove the generalized approximation property of the space

SCFE.

Theorem 3.5
Let u ∈ H1

0 (Ω) ∩ H1+s(Ω), 0 ≤ s ≤ 1. Then, there exists uCFE ∈ SCFE such
that

‖u − uCFE‖m, Ω ≤ CH1+s−mL̃og
sm/2

(H/h)‖u‖1+s,Ω , (3.25)

where m = 0, 1.

Proof. Let m ∈ {0, 1} and Let Lmu := u − PCFE
m (u), where PCFE

m (u)
is the Hm-orthogonal projection of u onto SCFE. Evidently, Lm is a linear
operator, as the projection in Hilbert spaces is a linear operation.
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It follows from Theorem 3.3 that Lm maps H2(Ω) to Hm(Ω) (m = 0, 1)
and

‖Lm‖H2(Ω)→Hm(Ω) ≤ CH2−mL̃og
m/2

(H/h) .

At the same time, Lm also maps Hm(Ω) to Hm(Ω) and

‖Lm‖Hm(Ω)→Hm(Ω) ≤ 1 ,

since ‖u − PCFE
m (u)‖m,Ω ≤ ‖u − 0‖m,Ω = ‖u‖m,Ω.

Then, according to Lemma 3.4, Lm maps H1+s(Ω), 0 ≤ s ≤ 1, to Hm(Ω)
and

‖Lm‖H1+s(Ω)→Hm(Ω) ≤ CH1+s−mL̃og
sm/2

(H/h) .

Remark 3.6 The approximation theorems do not pose any restriction on the
fine-scale parameter h. In fact, the approximation property of the composite
finite element space SCFE holds also when the grid TH,h coincides with the
coarse grid TH , i.e. in the case h = O(H).

4 Convergence estimates for the composite

finite element solution

The given Dirichlet problem (1.2), (1.3) can be recast in the following varia-
tional form: Find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω) , (4.1)

where

a(u, v) :=

∫

Ω

〈∇u,∇v〉 dx , (f, v) :=

∫

Ω

fv dx . (4.2)

We assume that f ∈ L2(Ω); then, problem (4.1) has a unique solution.
The approximation of (4.1) with the composite finite elements leads to

the discrete problem: Find uCFE ∈ SCFE such that

a(uCFE, v) = (f, v) ∀v ∈ SCFE . (4.3)

The unique solvability of problem (4.3) for any mesh width H ∈ (0, 1) would
immediately follow from the Lax-Milgram lemma, if we could show the uni-
form coercivity of the bilinear form a(·, ·) on SCFE, i.e.

∃γ > 0 s.t. γ‖v‖2
1,Ω ≤ a (v, v) ∀v ∈ SCFE , (4.4)
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with the constant γ independent of the mesh parameters H and h.
We prove this result with the help of the following two Lemmas.

Lemma 4.1 Let Ω be a bounded connected domain with Lipschitz boundary
Γ. Then, there exists a positive constant C depending only on Ω such that

‖u‖1,Ω ≤ C

(
|u|1,Ω +

∣∣∣∣
∫

Γ

u ds

∣∣∣∣
)

∀u ∈ H1(Ω) .

Proof. See, e.g., Lemma (10.2.20) in [2].
The uniform coercivity will rely on the local mesh width of the triangles

t ∈ TH,h, which intersect the boundary Γ. In this light, for τ ∈ TΓ, we
introduce the set sonsΓ (τ) := {t ∈ sons (τ) : |t ∩ Γ| > 0}; here |t ∩ Γ| is the
length of t ∩ Γ.

Lemma 4.2 Suppose that inside of each element τ ∈ TΓ the following con-
ditions are satisfied:

|τ ∩ Γ| ≤ Chβτ
τ , (4.5)

ht ≤ Chατ
τ ∀t ∈ sonsΓ (τ) , (4.6)

with some parameters βτ > 0 and ατ ≥ 1.
Then, we have

‖v‖L2(Γ) ≤ C|v|1,Ω ∀v ∈ SCFE , (4.7)

and if, for all τ ∈ TΓ, it holds ατ ≥ max{1, 2 − βτ

2
}, we have

‖v‖L2(Γ) ≤ CH|v|1,Ω ∀v ∈ SCFE , (4.8)

where the constant C is independent of v and the mesh parameters H and h.

Proof. We have for any v ∈ SCFE:

‖v‖2
L2(Γ) =

∑

τ∈TΓ

∑

t∈sonsΓ(τ)

‖v‖2
L2(t∩Γ) ≤

∑

τ∈TΓ

∑

t∈sonsΓ(τ)

|t ∩ Γ| ‖v‖2
L∞(t) . (4.9)

In order to evaluate ‖v‖L∞(t), we may note that ‖v‖L∞(t) = max
x∈V(t)

|v(x)|.

According to the definition of the space SCFE, for any node x ∈ Θslave, we
have

v(x) = v∆x(x) − v∆x(x
Γ),
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where ∆x ∈ T in
H is a nearest triangle and v∆x ∈ � 1 (

� 2) the analytic (i.e.
affine) extension of v|∆x

onto
� 2 . This implies

v(x) =
〈
∇v∆x, x − xΓ

〉
. (4.10)

Next, we fix a triangle τ ∈ TΓ. Since x ∈ t ∈ TH,h \T
in

H we have |x−xΓ| ≤
ht (cf. (2.4)) and, from (4.10),

|v(x)| ≤ ht‖∇v‖L∞(∆x) .

By using an inverse inequality and the local quasi-uniformity (cf. (3.12)), we
get

|v (x)| ≤ C
ht

hτ
‖∇v‖L2(∆x) . (4.11)

Now we denote by Tτ ∈ T ext
τ the triangle characterized by

‖∇v‖L2(Tτ ) = max
T∈T ext

τ

‖∇v‖L2(T ) .

Then, from (4.11) we obtain the estimate

‖v‖L∞(t) ≤ C
ht

hτ
‖∇v‖L2(Tτ ) ∀t ∈ sonsΓ (τ) .

This estimate and (4.9) imply

‖v‖2
L2(Γ) ≤ C

∑

τ∈TΓ

‖∇v‖2
L2(Tτ )

∑

t∈sonsΓ(τ)

|t ∩ Γ|

(
ht

hτ

)2

.

Using the assumption (4.6) and, then, (4.5), we derive with

δ := min {2ατ + βτ − 2 : τ ∈ TΓ}

the estimate

‖v‖2
L2(Γ) ≤ C

∑

τ∈TΓ

h2ατ +βτ−2
τ ‖∇v‖2

L2(Tτ )

≤ CHδ
∑

τ∈TΓ

‖∇v‖2
L2(Tτ ) ≤ CCII

olH
δ ‖∇v‖2

L2(Ω) ,

which immediately yields (4.7) (since, for all τ ∈ TΓ, we assumed βτ > 0,
ατ ≥ 1) and (4.8), if ατ ≥ max{1, 2 − βτ

2
: τ ∈ TΓ}.
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Remark 4.3

1. The condition ατ ≥ 1 in (4.6) is always satisfied, as ht ≤ hτ ≤ H holds
for all t ∈ sons (τ).

2. The condition βτ > 0 in (4.5) is obvious, if Γ has a finite length,
but it is possible to show that, in fact, βτ ≥ 1 for all τ ∈ TΓ. To
sketch the idea, we consider the quasi-uniform case, where the diam-
eter of all triangles in TH are of order H. We argue as follows: Let
nΓ be the number of elements in TΓ; it is clear that nΓ is not less
than O(H−1), i.e., in general, nΓ = O(H−β), where β ≥ 1; since
|Γ|/nΓ =: average length(τ ∩ Γ) and the length of Γ is independent of
H, we obtain average length(τ ∩ Γ) = O(|Γ|Hβ) with β ≥ 1.
In this light, and if we assume that the length |Γ| is moderately bounded,
condition (4.5) in Lemma 4.2 is satisfied with βτ ≥ 1. Hence, if we
choose (4.6) with ατ = max {1, 2 − βτ/2} ≤ 3/2 as the stopping crite-
rion in (2.2), the estimate (4.8) will always hold true.

Now we are able to prove the uniform coercivity of the bilinear form a(·, ·)
on SCFE.

Theorem 4.4 Let the assumptions of Lemma 4.2 be satisfied. The bilinear
form a(·, ·) defined in (4.2) is uniformly coercive on SCFE, that is (4.4) holds
with the constant γ independent of H and h.

Proof. Without loss of generality, we assume that Ω is a connected
domain. Then, for any function v ∈ SCFE, we have from Lemma 4.1

‖v‖1,Ω ≤ C1

(
|v|1,Ω +

∣∣∣∣
∫

Γ

v ds

∣∣∣∣
)

, (4.12)

since SCFE ⊂ H1(Ω), and from Lemma 4.2

‖v‖L2(Γ) ≤ C2|v|1,Ω (4.13)

with the constants C1 and C2 independent of v, H and h. Noticing that

∣∣∣∣
∫

Γ

v ds

∣∣∣∣ ≤ |Γ|1/2‖v‖L2(Γ) ,
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where |Γ| is the length of Γ, and combining (4.12) and (4.13), we obtain (4.4)
with the constant γ = 1

C2
1 (1+|Γ|1/2C2)2

.

To analyze the rate of convergence of the composite finite element solution
uCFE to the exact solution u, we need the following abstract Lemma.

Lemma 4.5 Let V and Vh be subspaces of a Hilbert space W . Assume that
a(·, ·) is a continuous bilinear form on W which is coercive on Vh, with re-
spective continuity and coercivity constants K and γ. Let u ∈ V solve

a(u, v) = F (v) ∀v ∈ V ,

where F ∈ W ′. Let uh ∈ Vh solve

a(uh, vh) = F (vh) ∀vh ∈ Vh .

Then

‖u − uh‖W ≤

(
1 +

K

γ

)
inf

vh∈Vh

‖u − vh‖W +
1

γ
sup

wh∈Vh\{0}

|a(u − uh, wh)|

‖wh‖W

.

Proof. See Lemma (10.1.1) in [2].

In our case, W is the space H1(Ω), V is H1
0 (Ω), Vh is SCFE, and the

continuity constant K equals 1. Lemma 4.5 shows that the error in the
energy norm consists of two parts: the approximation error and the error
stemming from the non-conformity (i.e. from the violation of the Galerkin
orthogonality), since, in general, SCFE � H1

0 (Ω).
Using this Lemma we can prove the main result on the convergence of

the CFE solution uCFE.

Theorem 4.6 Let the exact solution u to problem (4.1) belong to H 1
0 (Ω) ∩

H1+s(Ω), 1/2 ≤ s ≤ 1. Let the conditions of Lemma 4.2 be satisfied with
ατ = max{1, 2 − βτ

2
: τ ∈ TΓ}.

Then, for sufficiently small H, there holds

‖u − uCFE‖1, Ω ≤ CHs L̃og
s/2

(H/h)‖u‖1+s,Ω .

Proof. The approximation error can be immediately estimated by virtue
of Theorem 3.5 as

inf
v∈SCFE

‖u − v‖1,Ω ≤ CHs L̃og
s/2

(H/h)‖u‖1+s,Ω . (4.14)
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To estimate the non-conformity error, we first note that, for all w ∈ SCFE ⊂
H1(Ω), we have

a(u − uCFE, w) = a(u, w)− (f, w) =

∫

Ω

(−∆u)w dx +

∫

Γ

∂u

∂n
w ds

−

∫

Ω

fw dx =

∫

Γ

∂u

∂n
w ds .

Thus, using the Cauchy-Schwarz inequality, we get

|a(u − uCFE, w)| ≤

∥∥∥∥
∂u

∂n

∥∥∥∥
L2(Γ)

‖w‖L2(Γ)

and, with the trace theorem,

|a(u − uCFE, w)| ≤ C‖u‖3/2, Ω‖w‖L2(Γ) ∀w ∈ SCFE .

Combining the latter inequality and (4.8) of Lemma 4.2, we derive the esti-
mate for the non-conformity error:

sup
w∈SCFE\{0}

|a(u − uCFE, w)|

‖w‖1,Ω

≤ CH‖u‖3/2,Ω . (4.15)

The result of the Theorem follows from Lemma 4.5, (4.14) and (4.15).

Remark 4.7

1. Since we assume f ∈ L2(Ω), the regularity of the exact solution u ∈
H1+s(Ω), 1/2 ≤ s ≤ 1, is typical for the two-dimensional Dirichlet
problem on a polygonal domain. The maximal possible regularity u ∈
H2(Ω) may deteriorate to u ∈ H3/2(Ω) because of the boundary’s re-
entrant corners whose angles are close to 2π.

2. In the situation described in Remark 4.3, the conditions of Lemma 4.2
are always satisfied and (4.8) holds true, if the stopping criterion in
(2.2) is chosen such that the smallest triangles in TH,h, which are used
for the resolution of the boundary, satisfy h ≤ CH3/2. Thus, the lat-
ter condition is sufficient to obtain the quasi-optimal error-estimate of
Theorem 4.6.
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5 Concluding remarks

We have presented the two-scale composite finite element method for approx-
imating the Dirichlet problem on a domain whose boundary may contain a
large number of geometric details. The dimension of the proposed approxi-
mation space does not depend on the number or size of the geometric details
and is characterized by the coarse-scale parameter H only. The refined trian-
gulation in the near-boundary region is governed by the fine-scale parameter
h and is intended to improve the approximation of the boundary condition;
the nodes in this region are not, however, the degrees of freedom, as the
function values at these nodes are obtained by using the boundary condition
and the information on the behavior of the solution in the interior of the
domain. The total number of degrees of freedom in our method is O(H−2),

while in the standard finite element method it rises up to O(H−2 + n |Γ|
h

),
where n corresponds to the number of elements in the direction normal to
the boundary Γ in the near-boundary region. Since h must be of order of H2

in the standard FEM, and the boundary length |Γ| can be very large (also,
in the worst case n can be of order of H−1), the dimension of the standard
finite element space is, usually, much greater than the CFE-space dimension.
In addition, with the CFE method a weakened condition h = O(H3/2) (in
contrast to classical h = O(H2), see [13]) on the closeness of the actual and
the mesh boundaries yields the optimal convergence rate of the approximate
solution with respect to H.

We have also shown that the composite finite element space has the opti-
mal approximation property (up to logarithmic terms) independently of the
fine-scale parameter h. The efficient algorithmic realization of our approach
will be presented in [7] and we will show that CFE stiffness matrix can be ob-
tained by a simple modification of the stiffness matrix corresponding to the
problem with the homogeneous Neumann boundary condition. The latter
fact indicates the simplicity of the implementation of the proposed method.

The presented a-priori analysis concerns the asymptotic behavior of the
approximation when the mesh parameter H is sufficiently small. For con-
crete values of the mesh parameter, it would be, however, more advantageous
to consider the a-posteriori error estimation that delivers also the necessary
information on the local error distribution, which, in its turn, can be used
to adaptively improve the approximation. In [9] we have developed the a-
posteriori error estimator for non-conforming approximations of the Dirichlet
problem, and the work on combining this estimator with the proposed CFE
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method is currently under way.
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