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Summary In this paper, we define a new class of finite elements
for the discretization of problems with Dirichlet boundary conditions.
In contrast to standard finite elements, the minimal dimension of the
approximation space is independent of the domain geometry and this
is especially advantageous for problems on domains with complicated
micro-structures. For the proposed finite element method we prove
the optimal-order approximation (up to logarithmic terms) and con-
vergence estimates valid also in the cases when the exact solution has
a reduced regularity due to re-entering corners of the domain bound-
ary. Numerical experiments confirm the theoretical results and show
the potential of our proposed method.
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1 Introduction

The problem of numerically solving partial differential equations on
complicated domains arises in many physical applications such as
environmental modelling, porous media flows, modelling of complex
technical engines and many others. In principle, this problem can be
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treated with the standard finite element method; however, the usual
requirement

the finite element mesh has to resolve the domain boundary (1)

makes a coarse-scale discretization impossible. Every reasonable dis-
cretization will necessarily contain a huge number of unknowns being
directly linked to the number of geometric details of the physical
domain.

This is in sharp contrast to a flexible, problem-adapted, and goal-
oriented discretization:

– The finite element discretization should allow the adaption to the
characteristic (possibly singular) behavior of the exact solution
without adding “too” many degrees of freedom but, e.g., by adapt-
ing the shape of the finite element functions to the behavior of the
solution by introducing slave nodes.

– Starting from a very coarse discretization and a very crude ap-
proximation of constraints such as Dirichlet boundary conditions,
an a-posteriori error estimation should be used to enrich the finite
element space to improve the local accuracy.

In [4], [5] the Composite Finite Elements (CFE) have been in-
troduced for coarse-level discretizations of boundary value problems
with Neumann-type boundary conditions. The minimal number of
unknowns in the method was independent of the number and size of
geometric details. For functions in Hk(Ω), the approximation prop-
erty was proven in an analogue generality as established for standard
finite elements (see [4]).

In this paper, we will introduce composite finite elements for an
adaptive approximation of Dirichlet boundary conditions. These fi-
nite elements can be interpreted as a generalization of standard finite
elements by allowing the approximation of Dirichlet boundary con-
ditions in a flexible adaptive manner. In this light, we will establish
in this paper the approximation and convergence properties of these
finite elements in the framework of an a-priori analysis.

In [8], we will introduce the combination of these finite element
spaces with an a-posteriori error estimator in order to improve the
approximation of Dirichlet boundary conditions in a problem-adapted
way.

Related approaches in the literature can be found in [1], [6], [14].
In those papers, the efficient solution of the fine-scale discretization
was the major goal and not the preservation of the asymptotic con-
vergence order of the underlying discretization on coarser meshes, as
in our two-scale approach.



Two-Scale Composite Finite Elements 3

We will introduce the composite finite element method for prob-
lems with Dirichlet boundary conditions via a two-scale discretiza-
tion: One coarse scale H describes the approximation of the solution
in the interior of the domain at a proper distance to the boundary
and one fine scale h describes the local mesh size which is used for
the approximation of Dirichlet boundary conditions.

As a model problem we consider the Poisson equation with homo-
geneous Dirichlet boundary condition

−∆u = f in Ω , (2)

u = 0 on Γ , (3)

where Ω ⊂ R2 is a bounded domain with Lipschitz boundary Γ
having a finite length. For the sake of simplicity, we assume that
Ω is a polygonal domain, but it may still have a very complicated
shape. We emphasis that the extension of the presented theory to
general 2nd-order elliptic problems or three-dimensional problems is
straightforward from the conceptional point of view.

The aim of this work is to set up a family of finite elements
which possesses the optimal approximation property (up to logarith-
mic terms) for functions in H1

0 (Ω)∩H1+s(Ω), s ∈
[
1
2 , 1
]
. If we denote

by NΓ the number of line segments in Γ , the minimal number of un-
knowns in the standard FEM ranges between O (NΓ ) and O

(
N2

Γ

)
,

depending on the mesh generator, which may exceed the memory
capacity of modern computers. In this paper, we define a two-scale
finite element space where the minimal dimension is independent of
NΓ ; thus, the number of unknowns can be adapted to a given, possi-
bly moderate accuracy requirement and is no more restricted by the
geometric condition (1).

To achieve this goal, we relax the condition (1) by introducing a
two-scale grid: The coarse scale grid TH which contains the degrees
of freedom and the fine scale grid Th which adaptively resolves the
boundary Γ and contains only slave nodes which are used to adapt the
shape functions to the Dirichlet boundary conditions. For a triangle
τ ∈ TH , we denote its diameter by hτ and the index H in TH is the
largest triangle diameter: H := max {hτ : τ ∈ T }. The index h in Th

is the smallest diameter of triangles in Th.
Below, we will summarize the main features of the two-scale CFE-

method. We will prove that

– the mesh width for the resolution of the boundary has to obey

the relation h = H
3
2 in order to preserve always the asymptotic

convergence rates with respect to H (independently of the precise
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knowledge of the regularity). In contrast, for the standard FEM,
the relation is more restrictive: h = H2.

– The resolution condition (1) is replaced by the overlap condition
for the mesh TH :

Ω ⊂
⋃

τ∈TH

τ

and hence, the minimal number of elements n in TH is independent
of the number and size of geometric details in Ω. The fine scale grid
is concentrated locally at the boundary Γ . The additional points
for the boundary resolution are slave nodes and employed only to
incorporate the Dirichlet boundary conditions into the coarse scale
discretization in a flexible way. Hence, the number of unknowns
is O(H−2). In contrast, the number of freedoms for the standard
FEM ranges from O(H−2 + |Γ |h−1) to O(h−2), depending on the
mesh generator.

– The two-scale CFE-method allows to employ an a posteriori error
indicator already on a very coarse discretization and to enrich the
CFE-space and/or to improve the non-conforming approximation
of the boundary conditions in a problem-adapted way. Current re-
search is devoted to the combination of the a posteriori error esti-
mator [8], which takes into account the approximation of Dirichlet
boundary conditions.

The paper is organized as follows. We define the two-scale com-
posite finite element space in Section 2 and prove the approximation
error estimates in Section 3. Section 4 is devoted to the convergence
analysis for the CFE solution of problem (2), (3). Numerical exper-
iments are reported in Section 5 and give insights in the practical
performance of the proposed method, especially in the constants of
the theoretical convergence estimates.

In this paper, we will use the standard notation ‖ · ‖s,Ω for the
norm in the Sobolev space Hs(Ω), s ≥ 0, and | · |k,Ω for the seminorm

in Hk(Ω), k = 1, 2 (i.e. |u|k,Ω = (
∑

|α|=k

‖Dαu‖2
0,Ω)1/2).

In order to improve readability, we have collected below the most
relevant notations, while their precise definitions will be given later
in the text.
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Notation 1

TH , ΘH Initial, overlapping coarse grid and corresponding
set of vertices,

TΓ subset of TH , which contains all near-boundary
triangles,

TH,h, ΘH,h two scale grid with corresponding set of grid
points,

T in
H , Θdof inner grid of TH,h with corresponding set of grid

points (degrees of freedom),
Θslave set of slave nodes Θslave := ΘH,h\Θdof ;
xΓ for x ∈ Θslave, xΓ ∈ Γ has min. distance to x,
∆x for x ∈ Θslave, ∆x ∈ T in

H has min. distance to x,
τ (closed) triangle,
V (τ) set of vertices of a triangle τ.

2 The composite finite element space

The construction of the composite finite element (CFE) space is real-
ized in three steps. We emphasize that all steps can be incorporated
easily in any standard grid refinement algorithm.

Step 1: Overlapping two-scale grid
Let TH = {τ1, τ2, . . . , τn} denote a conforming shape regular finite
element mesh (in the sense of Ciarlet [3]) consisting of (closed) trian-
gles with maximal diameter H.

Notation 2 For any triangle τ , the set of vertices is denoted by
V (τ). The open interior of a (closed) triangle is denoted by int (τ).

The assumption on the grid conformity excludes the presence of
hanging nodes in TH . Further, we assume that TH is an overlapping
grid, i.e.

Ω ⊂
⋃

τ∈TH

τ and ∀τ ∈ TH : int(τ) ∩ Ω 6= ∅. (4)

It is evident that, for any bounded domain, there exists a triangula-
tion with very few elements which satisfies these conditions. In order
to resolve the boundary (conditions) in an adaptive way, the trian-
gles in a certain neighborhood of Γ will be refined. The width of
this neighborhood is controlled by a parameter cdist > 0. We employ
a simple coloring algorithm which marks two “layers” of triangles
about the boundary Γ provided the distance of such triangles from
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the boundary is not “too” far: dist (τ, Γ ) ≤ cdisthτ . The procedure re-
quires as input the mesh TH and the output is the near-boundary part
TΓ of the mesh. It is called by mark near boundary triangles and
defined by

procedure mark near boundary triangles;
begin

Ttemp := ∅; TΓ := ∅;
for all τ ∈ TH do

if int (τ) ∩ Γ 6= ∅ then Ttemp := Ttemp ∪ {τ} ;
for all τ ∈ Ttemp do

for all t ∈ TH with t ∩ τ 6= ∅ do
if dist (t, Γ ) ≤ cdistht then TΓ := TΓ ∪ {t} ;

end;

Next, the near-boundary triangles τ ∈ TΓ are refined adaptively
towards Γ until the fine scale triangles t ⊂ τ satisfy the following
condition

dist (t, Γ ) > 0 ∨ stop (t) = true, (5)

where stop (·) is an abstract stopping criterion which will be ad-
dressed in Remark 7 and Lemma 5 or replaced by an a-posteriori
error estimation (see [8]).

For a triangle τ , let refine(τ) denote the set of four triangles which
arise by connecting the midpoints of the edges in τ . The procedure
adapt boundary successively refines the near-boundary triangles,
i.e., which violate condition (5). In order to keep the procedure local
about the boundary, we employ an active set Tactive which contains
level-by-level the newly generated near-boundary triangles and is up-
dated via an auxiliary set Ttemp. It is called by

TH,h := TH ; Ttemp := TΓ ; adapt boundary;

and defined by

procedure adapt boundary;
begin

Tactive := {τ ∈ Ttemp : Condition (5) is violated}; Ttemp := ∅;
while Tactive 6= ∅ do begin

for all τ ∈ Tactive do begin
σtemp := {t ∈ refine (τ) : |t ∩ Ω| > 0} ;
TH,h := TH,h\ {τ} ∪ σtemp;
Ttemp := Ttemp ∪ σtemp;

end;
green closure(T ) ;
Tactive := {τ ∈ Ttemp : Cond. (5) is violated}; Ttemp := ∅;
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Ω in

Fig. 1. Two-scale grid TH,h. The dark-shaded triangles form the inner triangu-
lation T

in
H and contain the degrees of freedom. The near-boundary triangles are

surrounded by dotted lines and contain the slave nodes as vertices. The solid line
is the domain boundary.

end;
end;

Here, the procedure green closure eliminates all hanging nodes
in the actual triangulation TH,h. If a common triangle τ ∈ TH,h ∩
Ttemp is subdivided by the procedure green closure, we employ the
convention that the triangle τ is replaced by the refined triangles not
only in TH,h but also in the set Ttemp.

For any τ ∈ TH , we define the set of sons by

sons (τ) := {t ∈ TH,h : t ⊂ τ} (6)

and denote its number by nτ := ♯ sons (τ).
As a result of this algorithm, we obtain a new conforming and

shape regular grid that is more refined than TH in the vicinity of Γ
and does not differ from TH in the interior of Ω (see Figure 1).

The two-scale nature of the grid TH,h becomes apparent: In the
interior of the domain, at some distance from Γ , the submesh

T in
H := {t ∈ sons (τ) : τ ∈ TH\TΓ } ⊂ TH,h
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is characterized by the coarse-scale mesh parameter H. (Note that
T in

H differ from TH\TΓ only by those triangles t ∈ TH\TΓ which are
refined via the green-closure algorithm.)

In the neighborhood of Γ the two-scale mesh TH,h is characterized
by the fine-scale parameter h := min {ht : t ∈ TH,h}, h ≤ H. Later we
will see that, for the optimal convergence rate of the CFE solution,
the parameters should obey the relation h = O(Hs) and the choice
of s will be discussed in Section 4.

By choosing the stopping criterion (5) in an appropriate way, the
near-boundary triangles satisfy

dist (τ, Γ ) ≤ cdisthτ ∀τ ∈ TH,h\T
in

H . (7)

(More precisely, the stopping criterion must contain (7).)

Remark 1 For the constructed grid TH,h we can distinguish two lim-
iting cases.

1. The number nτ of subtriangles in τ ∈ TΓ equals 1; it means that
there is no subdivision of τ and the grid TH,h simply coincides with
the coarse-scale grid TH (h = O(H) in this case). The method
will be denoted as ’one-scale CFE-method’, whereas in the case
h << H it is called ’two-scale CFE-method’.

2. The number nτ is so large, that the domain Ω is fully resolved by
the grid TH,h (the full resolution of Ω can be achieved by applying
the above mentioned refinement algorithm until the connectivity
components τ\Γ can be meshed by only few triangles; then, fur-
ther subdivision of t ∈ sons (τ) into these triangles leads to the
grid exactly aligned with the boundary Γ ); in this case, h = O(hΓ )
where hΓ is the characteristic scale of Γ .

Step 2: Marking the degrees of freedom
Next, we will define the “free nodes” where the degrees of freedom
will be located and the “slave nodes” where the function values are
constraint. The degrees of freedom correspond to those vertices in the
coarse mesh TH – more precisely in the inner mesh T in

H – having a
proper distance to the boundary. Let ΘH denote the set of all vertices
in TH and define

Θdof :=
{
x ∈ V (τ) : τ ∈ T in

H

}
.

All other nodes in TH,h are slave nodes and the values of a composite
finite element function is determined by its values at the nodes x ∈
Θdof . In this light, the triangles and grid points which are generated
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by the procedure adapt boundary do not increase the dimension
of the finite element space but are used for adapting the shape of the
finite element functions to the Dirichlet boundary conditions.

Step 3: Definition of an extrapolation operator
The degrees of freedom of the composite finite element space are
located at the inner nodes Θdof and the values at the slave nodes of
the two-scale mesh TH,h are determined via a simple extrapolation
method.

Let ΘH,h denote the set of all vertices of the two-scale mesh TH,h.
The set of slave nodes is given by

Θslave := ΘH,h\Θdof .

For a slave node x ∈ Θslave, we determine a closest point xΓ on
the boundary Γ and a closest coarse grid triangle ∆x ∈ T in

H .

Remark 2 For x ∈ Θslave, the computation of a closest boundary point
xΓ and a closest coarse grid triangle ∆x can be performed efficiently
by using the hierarchical structure of the two-scale mesh.

Let u : Θdof → R denote a grid function. For any τ ∈ TH , there
exists an uniquely determined linear function uτ : P1

(
R2
)

which

interpolates u in the vertices of τ . Here, and in the sequel, P1

(
R2
)

denotes the space of bivariate polynomials on R2 of maximal degree
1. The values of the extension of u at a slave node x ∈ Θslave is defined
by

(Eu)x := u∆x (x) − u∆x

(
xΓ
)
.

This relation defines an extrapolation operator E : RΘdof → RΘH,h

for grid functions:

(Eu)x :=

{
ux x ∈ Θdof ,
u∆x (x) − u∆x

(
xΓ
)

x ∈ Θslave.
(8)

Let S denote the continuous, piecewise linear finite element space on
the mesh TH,h

S :=
{
u ∈ C0 (ΩH,h) | ∀τ ∈ TH,h : u|τ ∈ P1

}
,

where ΩH,h := int


 ⋃

τ∈TH,h

τ


. The composite finite element space is

a subspace of S, where the values at the slave nodes are restricted by
the extrapolation.
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Definition 1 The composite finite element space for the two-scale
approximation of Dirichlet boundary conditions on the mesh TH,h is

SCFE :=
{
u ∈ S | ∃u ∈ RΘdof ∀x ∈ ΘH,h : u (x) = (Eu)x

}
.

Remark 3 From the viewpoint of the approximation quality of the
composite finite element space, it is essential that the extrapolation
from an inner triangle ∆x to a slave node x is not performed over a
“too” large distance. (Such a situation might appear if a slave node
is located in a long outlet of the domain, far away from an inner
triangle). If such situations arise, we simply modify the definition (8)
by employing a control parameter ηext > 0 and using the generalized
definition

(Eu)x :=





ux x ∈ Θdof ,
u∆x (x) − u∆x

(
xΓ
)

x ∈ Θslave ∧ dist (x,∆x) ≤ ηexth∆x ,
0 otherwise.

(9)

Remark 4

1. Obviously, SCFE ⊂ S; since the dimension of SCFE is determined
only by the number of nodes in Θdof , it may be much smaller
than the dimension of S, especially in the case of very complicated
boundary Γ .

2. A composite finite element function u ∈ SCFE is, in general, not
affine inside of each triangle τ ∈ TH but continuously composed
of affine pieces on triangles of TH,h. However, in the interior of the
domain (i.e. on triangles τ ∈ T in

H ) it is a standard finite element
function being piecewise affine on these triangles.

Remark 5 The space SCFE is, in general, non-conforming in the sense
that the triangles in TH,h might overlap the boundary Γ and, then,
the functions from SCFE satisfy the homogeneous boundary condition
only approximately. However, as we will see in Section 4, a small error
in the approximation of boundary conditions is harmless for the quasi-
optimal (with respect to the coarse-scale parameter H) convergence
rate of the CFE solution.

3 Approximation property

In this section we investigate the approximation property of the com-
posite finite element space. The error estimates for composite finite
elements will be based on the existence of an appropriate extension
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operator for the given domain Ω. It is known that, for a bounded
Lipschitz domain Ω ⊂ Rd, there exists a continuous, linear extension
operator E : Hk(Ω) → Hk(Rd), k ∈ N, such that

∀u ∈ Hk(Ω) : Eu|Ω ≡ u and ‖Eu‖Hk(Rd) ≤ Cext‖u‖Hk(Ω)

with the constant Cext depending only on k and Ω (cf. [11]). It is
worth noting that, for domains containing a large number of holes and
possibly a rough outer boundary, there exists an extension operator
with the bounded norm Cext independent of the number of the holes
and of their sizes. For all details including the characterisation of the
class of domain geometries, we refer to [10].

To derive the approximation error estimates, we will need a prepara-
tory Lemma. Let τ denote an arbitrary triangle with diameter hτ and
mass center Mτ . For c ≥ 1, we introduce the scaled version of τ by

Tc := {Mτ + c (y − Mτ ) : y ∈ τ} . (10)

Lemma 1 (neighborhood property) Let u ∈ H2(R2) and τ be
an arbitrary triangle with diameter hτ . Let uτ ∈ P1

(
R2
)

denote the
affine interpolation of u at the vertices of τ and let TR be the scaled
version of τ as in (10) for some R ≥ 1 about the mass center of τ .
For m ∈ {0, 1} and 1 ≤ p ≤ ∞ with the exception (m,p) 6= (1,∞),
we have the error estimate

|u − uτ |W m,p(TR) ≤ C (1 + R) (Rhτ )
1+ 2

p
−m |u|H2(TR) , (11)

where C only depends on the minimal angles of τ .

Proof For R ≥ 1, we write T short for TR. Obviously τ and T are con-
gruent and the diameter of T satisfies hT = Rhτ . For u ∈ H2

(
R2
)
,

let IT u ∈ P1 (resp. Iτu ∈ P1) denote the affine function which inter-
polates u at the vertices of T (resp. τ). The projection property of
Iτ on P1 leads to

u − Iτu = (I − Iτ ) (u − IT u) , (12)

where I is the identity. Hence,

|u − Iτu|W m,p(T ) ≤ |u − ITu|W m,p(T ) (13)

+

(
sup

v∈C0(T )\{0}

|Iτv|W m,p(T )

‖v‖L∞(T )

)
‖u − ITu‖L∞(T ) .

The estimates

|u − IT u|W m,p(T ) ≤ Ch
1+ 2

p
−m

T |u|H2(T ) and

‖u − ITu‖L∞(T ) ≤ ChT |u|H2(T ) (14)
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are well known (see, e.g. [3, Theorem 3.1.6]).
Next, we will estimate the supremum in (13). Let zi, 1 ≤ i ≤ 3,

denote the vertices of τ with corresponding shape functions bi ∈
P1

(
R2
)

defined by bi (zi) = 1 and bi (zj) = 0 for i 6= j.

|Iτv|W m,p(T ) =

∣∣∣∣∣

3∑

i=1

v (zi) bi

∣∣∣∣∣
W m,p(T )

≤ max
1≤i≤3

|v (zi)|
3∑

i=1

|bi|W m,p(T )

(15)

≤ ‖v‖L∞(τ)

3∑

i=1

|bi|W m,p(T ) .

Since bi is affine, we obtain the estimate for all y ∈ T

|bi (y)| = |bi (Mτ ) + 〈∇bi, y − Mτ 〉| ≤ 1 + |bi|W 1,∞(τ) ‖y − Mτ‖

≤ 1 + Ch−1
τ hT ≤ 1 + CR,

where C only depends on the minimal angles in τ . Thus, for m = 0,
we get

‖bi‖Lp(T ) ≤ (1 + CR)h
2/p
T .

The estimate for m = 1 is simpler since ∇bi is constant and an inverse
inequality leads to

|bi|W 1,p(T ) ≤ Ch−1
τ h

2/p
T ≤ C

hT

hτ
h

2/p−1
T ≤ CRh

2/p−1
T .

Taking into account (15), we have proven

|Iτv|W m,p(T ) ≤ C (1 + CR)h
2/p−m
T ‖v‖L∞(τ) . (16)

The combination of (13)-(16) yields the assertion

|u − Iτu|W m,p(T ) ≤ C (1 + R)h
1+2/p−m
T |u|H2(T ) . ⊓⊔

Now we are able to prove the main result concerning the approxima-
tion properties of the proposed composite finite elements. In order
to avoid too many technicalities, we assume that there is a constant
ηext > 0 such that

dist (x,∆x) ≤ ηexth∆x ∀x ∈ Θslave (17)

and, thus, definition (9) reduces to (8). With Condition (17) at hand
one may deduce from (11) the estimate:

|u (x) − u∆x (x)| ≤ ChT |u|H2(T ) ∀x ∈ Θslave, (18)
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where T is the minimal scaled version of ∆x (cf. (10)) such that x ∈ T .
The constant C only depends on the minimal angle in ∆x and the
constant ηext.

In the following, we define certain geometric constants which will
enter the error estimates.

1. For a triangle τ and a point x ∈ R2, let Tx,τ denote the triangle
TR as in Lemma 1, where R is chosen as the minimal number such
that x, τ are contained in TR.

2. For τ ∈ TΓ , let T ext
τ ⊂ T in

H denote the set of triangles in T in
H , which

are employed for the extrapolation on Θslave ∩ τ :

T ext
τ := {∆z | ∀z ∈ Θslave ∩ τ} . (19a)

The constant Next is defined by

Next := max
τ∈TΓ

♯T ext
τ (19b)

and Next ∼ 1 expresses the fact that only triangles in a local
neighborhood of τ are employed for the extrapolation.

3. Let τ ∈ TΓ . For t ∈ sons (τ) and any pair of vertices x, y ∈ V (t),
let Qt,x,y denote the minimal rectangle, which contains xΓ , yΓ , and

t with one side being parallel to xΓ yΓ (if xΓ = yΓ , the alignment
condition is skipped).

Let Qt denote the minimal rectangle which contains
⋃

x,y∈V(t)

Qt,x,y

and define the constant CQ by

CQ := max
τ∈TΓ

max
t∈sons(τ)

(diam Qt) /ht. (20)

Condition (7) implies that CQ = O (1).

For τ ∈ TΓ , the minimal ball which contains the set

τ ∪


 ⋃

x∈Θslave∩τ

(
Tx,∆x ∪ TxΓ ,∆x

)

 ∪


 ⋃

t∈sons(τ)

Qt




is denoted by Bτ . For τ ∈ T in
H we set Bτ = τ . The constant Cuni,

defined by

Cuni := max
τ∈TΓ

max
t∈TH

t∩Bτ 6=∅

diam Bτ

ht
, (21)

describes the local quasi-uniformity of the initial overlapping mesh
TH near the boundary.
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The approximation error estimates for the near-boundary trian-
gles τ ∈ TΓ will be decomposed into a sum of error estimates on the
sons, t ∈ sons (τ). For each t ∈ sons (τ), these estimates will involve
the given function in the neighborhood Qt of t. As a consequence,
a quantity which measures the overlap of such neighborhoods will
enter the error estimates. In this light we define, for τ ∈ TΓ and
t ∈ sons (τ), the set

Tol (t) :=
{
t̃ ∈ sons (τ) : Qt̃ ∩ t 6= ∅

}
.

The number of elements in Tol (t) can be estimated by the following
technical lemma.

Lemma 2 For any τ ∈ TΓ and t ∈ sons (τ), we have

♯Tol (t) ≤ C (1 + log (hτ/ht)) ,

where C only depends on CQ as in (20) and the shape regularity of
the mesh.

Proof Fix t ∈ sons (τ). For R > 0, let Bt (R) denote the disc with
radius R > 0 about the mass center of t. Obviously, there holds
τ ⊂ Bt (hτ ). Let L denote the smallest integer such that 2−Lhτ ≤
8ht. (This implies ht ≤ 2−2−Lhτ and L ≤ C (1 + log (hτ/ht)).) We
introduce annular regions about t by

Aℓ := Bt

(
2−ℓhτ

)
\Bt

(
2−ℓ−1hτ

)
ℓ = 0, 1, . . . , L − 1

(cf. Figure 2) and set AL := Bt

(
2−Lhτ

)
. For 0 ≤ ℓ ≤ L, we define

(non-disjoint) subsets T ℓ
ol (t) ⊂ Tol (t) by

T ℓ
ol (t) :=

{
t̃ ∈ Tol (t) : t̃ ∩ Aℓ 6= ∅

}
.

Obviously, we have Tol (t) =
L⋃

ℓ=0

T ℓ
ol (t). For ℓ < L we have

dist (Aℓ, t) ≥ 2−ℓ−1hτ − ht ≥ 2−ℓ−2hτ ,

while t̃ ∈ T ℓ
ol (t) and Qt̃ ∩ t 6= ∅ lead to diam Qt̃ ≥ 2−ℓ−2hτ . The

definition of CQ as in (20) yields the second estimate in

2−ℓ−2hτ ≤ diam Qt̃ ≤ CQht̃.

The shape regularity of the triangles leads to the estimate
∣∣t̃
∣∣ ≥ CC−2

Q 2−2ℓ−4h2
τ
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A l

t

Fig. 2. Triangle τ ∈ TΓ and (black-shaded) son t ∈ sons (τ ). The concentric an-
nular regions Aℓ contain triangles t̂ (marked with ×), where the boxes Qt̃ intersect
t and, hence, belong to T

ℓ
ol (t).

of the area of t̃. Since the area of Aℓ is 3πh2
τ2−2ℓ−2, i.e., is of the same

order as
∣∣t̃
∣∣, it is easy to see that ♯T ℓ

ol (t) ≤ C, where C only depends
on the shape regularity of the triangles and the constant CQ. Hence

L−1∑

ℓ=0

♯T ℓ
ol (t) ≤ CL.

It remains to investigate ♯T L
ol (t). First, we will show that each t̃ ∈

T L
ol (t) satisfies ht̃ ≥ cht. Let

Ut :=
{
t̃ ∈ T L

ol (t) : t̃ ∩ t 6= ∅
}

.

The shape regularity of the mesh TH,h implies that ht̃ ≥ c1ht holds
for all t̃ ∈ Ut . Now consider t̃ ∈ T L

ol (t) \Ut. Again from the shape reg-
ularity of the mesh TH,h we conclude dist

(
t̃, t
)
≥ c2ht. The condition

t̃ ∈ T L
ol (t) implies Qt̃∩ t 6= ∅ and, by taking into account the previous

estimate, diam Qt̃ ≥ c3ht. From the definition of the constant CQ we
conclude

c3ht ≤ diam Qt̃ ≤ CQht̃.

The shape regularity of the mesh directly implies for the area of t̃
∣∣t̃
∣∣ ≥ c4h

2
t ≥ c42

−6−2Lh2
τ .

Since the area of AL is π2−2Lh2
τ , i.e., of the same order as the area

of t̃ the number ♯T L
ol (τ) is bounded by constant depending only on

the shape regularity of the mesh and the constant CQ. ⊓⊔
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In order to measure the cardinality of the set Tol (t) globally we
introduce CI

ol as the minimal constant such that,

♯Tol (τ) ≤ CI
ol max

t∈sons(τ)
(1 + log (hτ/ht)) =: l̃og

(
hτ/h

min
τ

)
∀τ ∈ TΓ ,

holds, where hmin
τ := mint∈sons(τ) ht. For τ ∈ T in

H , we put

l̃og
(
hτ/hmin

τ

)
:= 1. The global analogue is

L̃og (H/h) := max
{

l̃og
(
hτ/hmin

τ

)
: τ ∈ TΓ

}
.

Related to the constant Cuni is the second overlap constant CII
ol de-

fined by
CII

ol := max
t∈TΓ

♯ {τ ∈ TH : |Bτ ∩ t| > 0} .

Theorem 1 Let u ∈ H1
0 (Ω) ∩ H2(Ω) and let assumptions (7) and

(17) be satisfied. Then, there exists uCFE ∈ SCFE such that
√ ∑

t∈sons(τ)

‖u − uCFE‖2
m,t ≤ Ch2−m

τ l̃og
m/2 (

hτ/hmin
τ

)
|u|2,Bτ ∀τ ∈ TH ,

(22)
∥∥u − uCFE

∥∥
m, Ω

≤ CH2−mL̃og
m/2

(H/h) ‖u‖2, Ω , (23)

where m = 0, 1 and u – in the neighborhood Bτ of the triangle τ ∈ T
– is identified with its extension Eu. The constant C only depends
on the minimal angles in the triangulation TH,h and Cdist, ηext, Cext,
Next, Cuni, CI

ol, CII
ol .

Proof For u ∈ H1
0 (Ω) ∩ H2 (Ω), we define the grid function u :

Θdof → R by ux := u (x), x ∈ Θdof . Let the extension operator E
be as in (8) and let uCFE be the P1-nodal interpolant of Eu on TH,h.
We identify u with its extension Eu.

We will show that uCFE satisfies the estimates stated in the the-
orem.

1. Local estimate:

For any τ ∈ T in
H , the function uCFE

∣∣
τ

is the affine interpolant on
τ of the values (u (x))x∈V(τ) and the estimate (22) is the standard

interpolation estimate (see, e.g., [3]).

Next, we consider τ ∈ TΓ . Recall the definition of the set of sons
as in (6).

For any t ∈ sons (τ), we can write

‖u − uCFE‖m, t ≤ ‖u − Itu‖m, t + ‖Itu − uCFE‖m,t , (24)
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t
xx G

D x

G
Fig. 3. Slave node x, closest boundary point xΓ , and closest inner triangle ∆x.

where, as in (12), It is the Lagrange linear interpolation operator on
t, It : C0(t) → P1 (t). For the first term on the right-hand side of (24)
we have the standard interpolation estimate

‖u − Itu‖m, t ≤ Ch2−m
t |u|2, t , (25)

where ht is the diameter of t. For the second term, we use the inverse
estimate (see, e.g. [2, Section 4.5]):

‖Itu − uCFE‖m, t ≤ Ch1−m
t ‖Itu − uCFE‖L∞(t) . (26)

Now we notice that ‖Itu − uCFE‖L∞(t) = max
x∈V(t)

∣∣Itu(x) − uCFE(x)
∣∣.

Then, from (26) we obtain

‖Itu − uCFE‖m, t ≤ Ch1−m
t max

x∈V(t)

∣∣u (x) − uCFE (x)
∣∣ . (27)

We have

uCFE (x) =

{
u (x) if x ∈ Θdof ,
u∆x (x) − u∆x

(
xΓ
)

if x ∈ Θslave,

where ∆x and xΓ are as in (8). As before, the function u∆x ∈ P1

(
R2
)

denotes the unique affine function which interpolates the values of u
at the vertices of ∆x. The case x ∈ Θdof is trivial. For the other case,
x ∈ Θslave, we can write (see Figure 3)

∣∣u(x) − uCFE(x)
∣∣ ≤ |u(x) − u∆x(x)| +

∣∣u
(
xΓ
)
− u∆x

(
xΓ
)∣∣ , (28)
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using the fact that u
(
xΓ
)

= 0. Since dist(x,∆x) ≤ ηexth∆x (cf. (17))

and dist(x, xΓ ) ≤ (Cdist + 1) ht (cf. (7)), we may infer that both terms
on the right-hand side of (28) can be estimated by (18) and we obtain

∣∣u(x) − uCFE (x)
∣∣ ≤ ChT |u|2,T ∀x ∈ V(t),

where T is a triangle with diameter hT ∼ (h∆x + ht) which contains
x, xΓ , and ∆x.

In combination with (27), we get
∥∥Itu − uCFE

∥∥
m, t

≤ Ch1−m
t ChT |u|2,T . (29)

A summation over all t ∈ sons (τ) yields:

∑

t∈sons(τ)

∥∥Itu − uCFE
∥∥2

m, t
≤ Ch2

T |u|22,T

∑

t∈sons(τ)

h2−2m
t . (30)

The shape regularity of the triangles implies h2
t ∼ |t| and, for m = 0,

we obtain
∑

t∈sons(τ)

h2
t ≤ C

∑

t∈sons(τ)

|t| ≤ C |τ | ≤ Ch2
τ .

Plugging this estimate into (30) and employing (21) yields
√ ∑

t∈sons(τ)

‖Itu − uCFE‖2
0, t ≤ Ch2

τ |u|2,Bτ
.

For m = 1, this estimate becomes too pessimistic since
∑

t∈sons(τ) h2−2m
t

in (30) equals ♯ (sons τ) and this number cannot be, in general, bounded
in terms of hT .

Hence, for m = 1, we refine our analysis as follows. Let t ∈ sons (τ)
and let z ∈ V (t) be an arbitrary chosen vertex of t.

Then, the function uCFE
∣∣
t
can be written in the form

uCFE
∣∣
t
=

∑

x∈V(t)

(
u∆x (x) − u∆x

(
xΓ
))

bx,t = u∆z − u∆z

(
zΓ
)

+
∑

x∈V(t)




{
u∆x (x) − u∆x

(
xΓ
)}

−
{
u∆z (x) − u∆z

(
xΓ
)}

︸ ︷︷ ︸
d1(x)

−
(
u∆z

(
xΓ
)
− u∆z

(
zΓ
))

︸ ︷︷ ︸
d2(x)





bx,t.
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As before, for any triangle T , the function uT ∈ P1

(
R2
)

is the unique
affine interpolation of the values of u at the vertices V (T ). Further,
u∆z

(
zΓ
)

is the function on t with constant value u∆z

(
zΓ
)

and bx,t

is the finite element basis function on t corresponding to the vertex
x. Note that d1 (x) can be rewritten as

d1 (x) =
〈
∇u∆x −∇u∆z , x − xΓ

〉
.

Thus,

∇
(
uCFE − u

)∣∣
t
= ∇ (u∆z − u)|t+

∑

x∈V(t)

{d1 (x) − d2 (x)}∇bx,t (31)

and we estimate all three terms separately.
For the first term in (31) we employ Lemma 1 and obtain (recall

the definition of T ext
τ and Next as in (19))

∑

t∈sons(τ)

‖∇ (u∆z − u)‖2
L2(t) =

∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

‖∇ (uT − u)‖2
L2(t)

≤
∑

T∈T ext
τ

‖∇ (uT − u)‖2
L2(τ) ≤ Next ‖∇ (uT − u)‖2

L2(τ)

≤ Ch2
τ |u|

2
H2(Bτ ) .

Next, we will consider the term in (31) related to d2:
∑

x∈V(t)

(
u∆z

(
xΓ
)
− u∆z

(
zΓ
))

∇bx,t.

The case xΓ = zΓ is trivial and we assume from now on that zΓ 6= xΓ .
Condition (7) yields

∥∥xΓ − zΓ
∥∥ ≤

∥∥xΓ − x
∥∥+ ‖x − z‖ +

∥∥z − zΓ
∥∥ ≤ Cht. (32)

By a rotation of the coordinate system we may assume xΓ =
(
xΓ

1 , 0
)
,

zΓ =
(
zΓ
1 , 0

)
, and t, xΓ and zΓ are contained in the minimal axes-

parallel rectangle Qt,x,z = (a1, b1) × (a2, b2) with diam Qt,x,z ≤ Cht.
We employ u

(
xΓ
)

= u
(
zΓ
)

= 0 and Hölder’s inequality to obtain

∣∣u∆z

(
xΓ
)
− u∆z

(
zΓ
)∣∣2

=
∣∣u∆z

(
xΓ
)
− u∆z

(
zΓ
)
−
(
u
(
xΓ
)
− u

(
zΓ
))∣∣2

=

∣∣∣∣∣

∫ zΓ
1

xΓ
1

∂1 (u∆z − u) ds

∣∣∣∣∣

2

≤
∣∣zΓ

1 − xΓ
1

∣∣
∫ zΓ

1

xΓ
1

|∂1 (u∆z − u)|2 ds

≤ Cht

∫ b1

a1

|∂1 (u∆z − u)|2 ds.
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Integration over Qt,x,z yields, along with an inverse inequality for
∇bx,t,

∥∥(u∆z

(
xΓ
)
− u∆z

(
zΓ
))

∇bx,t

∥∥2

L2(Qt,x,z)

≤ Ch−2
t

∫ b1

a1

∫ b2

a2

∣∣u∆z

(
xΓ
)
− u∆z

(
zΓ
)∣∣2 dx2dx1

≤ Ch−1
t

∫ b1

a1

∫ b2

a2

∫ b1

a1

|∂1 (u∆z − u)|2 dsdx2dx1

≤ C |u∆z − u|2H1(Qt,x,z) . (33)

Thus, the combination of (33) with (31) yields

∑

t∈sons(τ)

∥∥∥∥∥∥

∑

x∈V(t)

(
u∆z

(
xΓ
)
− u∆z

(
zΓ
))

∇bx,t

∥∥∥∥∥∥

2

L2(t)

=
∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

∥∥∥∥∥∥

∑

x∈V(t)

(
uT

(
xΓ
)
− uT

(
zΓ
))

∇bx,t

∥∥∥∥∥∥

2

L2(t)

≤ C
∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

∑

x∈V(t)

|uT − u|2H1(Qt,x,z)

≤ C
∑

T∈T ext
τ

∑

t∈sons(τ)
T=∆z

|uT − u|2H1(Qt)

≤ C l̃og
(
hτ/hmin

τ

) ∑

T∈T ext
τ

|uT − u|2H1(Bτ )

≤ C l̃og
(
hτ/hmin

τ

)
Next max

T∈T ext
τ

|uT − u|2H1(Bτ )

≤ C l̃og
(
hτ/hmin

τ

)
h2

τ |u|
2
H2(Bτ ).

Finally, we will estimate the term in (31) related to d1. A triangle
inequality in combination with condition (7) and an inverse inequality
for the basis functions yields

∣∣∣∣∣∣

∑

x∈V(t)

d1 (x)∇bx,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

x∈V(t)

〈
∇u∆x −∇u∆z , x − xΓ

〉
∇bx,t

∣∣∣∣∣∣
≤ C max

x∈V(t)
‖∇ (u∆x − u∆z)‖ ,
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where the gradients on the right-hand side are constant vectors in
R2. Thus,

∑

t∈sons(τ)

∥∥∥∥∥∥

∑

x∈V(t)

d1 (x)∇bx,t

∥∥∥∥∥∥

2

L2(t)

≤ C
∑

t∈sons(τ)

∑

x∈V(t)

‖∇ (u∆x − u∆z)‖
2 |t|

≤ C
∑

T,T̃∈T ext
τ

∥∥∇
(
uT − uT̃

)∥∥2
∑

t∈sons(τ)

∆z=T̃

∑

x∈V(t)
∆x=T

|t|

≤ 3C
∑

T,T̃∈T ext
τ

∥∥∇
(
uT − uT̃

)∥∥2
|τ |

≤ C̃N2
exth

2
τ max

T,T̃∈T ext
τ

∥∥∇
(
uT − uT̃

)∥∥2
.

The estimate

∥∥∇
(
uT − uT̃

)∥∥2
=

1

|Bτ |

∥∥∇
(
uT − uT̃

)∥∥2

L2(Bτ )

≤ Ch−2
τ

{
‖∇ (uT − u)‖2

L2(Bτ ) +
∥∥∇
(
uT̃ − u

)∥∥2

L2(Bτ )

}

≤ C̃ |u|2H2(Bτ )

follows from the neighborhood property (Lemma 1) and finishes the
proof of the local estimate.

2. Global estimate:
The global estimate (23) follows immediately from the local one:

∥∥u − uCFE
∥∥2

m, Ω
≤
∑

τ∈TH

∑

t∈sons τ

‖u − uCFE‖2
m,t

≤ CL̃og
m

(H/h)
∑

τ∈TH

h2(2−m)
τ ‖Eu‖2

2,Bτ

≤ CCII
olL̃og

m
(H/h) H2(2−m)

∑

t∈TH

‖Eu‖2
2,t

≤ CCII
olC

2
extL̃og

m
(H/h) H2(2−m)‖u‖2

2, Ω . ⊓⊔

Theorem 1 concerns the basic approximation property of the com-
posite finite element space SCFE in the case when the approximated
function (we think of the exact solution to our problem) u belongs
to H2(Ω). However, especially when the polygonal boundary Γ is
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complicated, it is very likely for the exact solution of the Dirich-
let problem to have a lower regularity owing to possible re-entrant
corners of the boundary. Thus, we need some generalization of The-
orem 1 for the case u ∈ H1+s(Ω), 0 ≤ s ≤ 1 (in fact, it would be
sufficient to consider 1/2 ≤ s ≤ 1).

First, we need the following result from the interpolation theory
of Sobolev spaces.

Lemma 3 Let Ω be a domain with Lipschitz boundary. Let L be a
linear operator mapping Hm0(Ω) to Hk0(Ω) and, also, Hm1(Ω) to
Hk1(Ω), where m0, m1, k0, k1 are arbitrary real numbers.
Then, L maps H(1−θ)m0+θm1(Ω) to H(1−θ)k0+θk1(Ω) and, moreover,

‖L‖H(1−θ)m0+θm1 (Ω)→H(1−θ)k0+θk1(Ω)

≤ ‖L‖1−θ
Hm0 (Ω)→Hk0 (Ω)

· ‖L‖θ
Hm1 (Ω)→Hk1 (Ω)

for all θ ∈ (0, 1).

Proof See Proposition (14.1.5) and Theorem (14.2.7) in [2]. ⊓⊔
Now we can prove the generalized approximation property of the

space SCFE.

Theorem 2
Let u ∈ H1

0 (Ω)∩H1+s(Ω), 0 ≤ s ≤ 1. Then, there exists uCFE ∈ SCFE

such that

‖u − uCFE‖m, Ω ≤ CH1+s−mL̃og
sm/2

(H/h)‖u‖1+s, Ω , (34)

where m = 0, 1.

Proof Let m ∈ {0, 1} and Let Lmu := u − PCFE
m (u), where PCFE

m (u)
is the Hm-orthogonal projection of u onto SCFE. Evidently, Lm is a
linear operator, as the projection in Hilbert spaces is a linear opera-
tion.

It follows from Theorem 1 that Lm maps H2(Ω) to Hm(Ω) (m =
0, 1) and

‖Lm‖H2(Ω)→Hm(Ω) ≤ CH2−mL̃og
m/2

(H/h) .

At the same time, Lm also maps Hm(Ω) to Hm(Ω) and

‖Lm‖Hm(Ω)→Hm(Ω) ≤ 1 ,

since ‖u − PCFE
m (u)‖m, Ω ≤ ‖u − 0‖m, Ω = ‖u‖m, Ω .

Then, according to Lemma 3, Lm maps H1+s(Ω), 0 ≤ s ≤ 1, to
Hm(Ω) and

‖Lm‖H1+s(Ω)→Hm(Ω) ≤ CH1+s−mL̃og
sm/2

(H/h) . ⊓⊔
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Remark 6 The approximation theorems do not pose any restriction
on the fine-scale parameter h. In fact, the approximation property
of the composite finite element space SCFE holds also when the grid
TH,h coincides with the coarse grid TH , i.e. in the case h = O(H).

4 Convergence estimates for the composite finite element
solution

The given Dirichlet problem (2), (3) can be recast in the following
variational form: Find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω) , (35)

where

a(u, v) :=

∫

Ω
〈∇u,∇v〉 dx , (f, v) :=

∫

Ω
fv dx . (36)

We assume that f ∈ L2(Ω); then, problem (35) has a unique solution.
The approximation of (35) with the composite finite elements leads

to the discrete problem: Find uCFE ∈ SCFE such that

a(uCFE, v) = (f, v) ∀v ∈ SCFE . (37)

The unique solvability of problem (37) for any mesh width H ∈ (0, 1)
would immediately follow from the Lax-Milgram lemma, if we can
show the uniform coercivity of the bilinear form a(·, ·) on SCFE, i.e.

∃γ > 0 s.t. γ‖v‖2
1, Ω ≤ a (v, v) ∀v ∈ SCFE , (38)

with the constant γ independent of the mesh parameters H and h.
We prove this result with the help of the following two Lemmas.

Lemma 4 Let Ω be a bounded domain with Lipschitz boundary Γ .
Then, there exists a positive constant C depending only on Ω such
that

‖u‖1, Ω ≤ C

(
|u|1, Ω +

∣∣∣∣
∫

Γ
u ds

∣∣∣∣
)

∀u ∈ H1(Ω) .

Proof See, e.g., Lemma (10.2.20) in [2].

The uniform coercivity will rely on the local mesh width of the
triangles t ∈ TH,h, which intersect the boundary Γ . In this light, for
τ ∈ TΓ , we introduce the set sonsΓ (τ) := {t ∈ sons (τ) : |t ∩ Γ | > 0};
here |t ∩ Γ | is the length of t ∩ Γ .
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Lemma 5 Suppose that inside of each element τ ∈ TΓ the following
conditions are satisfied:

|τ ∩ Γ | ≤ Chβτ
τ , (39)

ht ≤ Chατ
τ ∀t ∈ sonsΓ (τ) , (40)

with some parameters βτ > 0 and ατ ≥ 1.
Then, we have

‖v‖L2(Γ ) ≤ C|v|1, Ω ∀v ∈ SCFE , (41)

and if, for all τ ∈ TΓ , it holds ατ ≥ max{1, 2 − βτ

2 }, we have

‖v‖L2(Γ ) ≤ CH|v|1, Ω ∀v ∈ SCFE , (42)

where the constant C is independent of v and the mesh parameters
H and h.

Proof We have for any v ∈ SCFE

‖v‖2
L2(Γ ) =

∑

τ∈TΓ

∑

t∈sonsΓ (τ)

‖v‖2
L2(t∩Γ )

≤
∑

τ∈TΓ

∑

t∈sonsΓ (τ)

|t ∩ Γ | ‖v‖2
L∞(t) . (43)

In order to evaluate ‖v‖L∞(t), we note that ‖v‖L∞(t) = max
x∈V(t)

|v(x)|.

According to the definition of the space SCFE, for any node x ∈ Θslave,
we have

v(x) = v∆x(x) − v∆x(xΓ ),

where ∆x ∈ T in
H is a nearest inner triangle and v∆x ∈ P1

(
R2
)

the
analytic (i.e. affine) extension of v|∆x

onto R2. This implies

v(x) =
〈
∇v∆x , x − xΓ

〉
. (44)

Next, we fix a triangle τ ∈ TΓ . Since x ∈ t ∈ TH,h \ T in
H we have

|x − xΓ | ≤ ht (cf. (7)) and, from (44),

|v(x)| ≤ ht‖∇v‖L∞(∆x) .

By using an inverse inequality and the local quasi-uniformity (cf.
(21)), we get

|v (x)| ≤ C
ht

hτ
‖∇v‖L2(∆x) . (45)
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Now we denote by Tτ ∈ T ext
τ the triangle characterized by

‖∇v‖L2(Tτ ) = max
T∈T ext

τ

‖∇v‖L2(T ) .

Then, from (45) we obtain the estimate

‖v‖L∞(t) ≤ C
ht

hτ
‖∇v‖L2(Tτ ) ∀t ∈ sonsΓ (τ) .

This estimate and (43) imply

‖v‖2
L2(Γ ) ≤ C

∑

τ∈TΓ

‖∇v‖2
L2(Tτ )

∑

t∈sonsΓ (τ)

|t ∩ Γ |

(
ht

hτ

)2

.

Using the assumption (40) and, then, (39), we derive with

δ := min {2ατ + βτ − 2 : τ ∈ TΓ}

the estimate

‖v‖2
L2(Γ ) ≤ C

∑

τ∈TΓ

h2ατ +βτ−2
τ ‖∇v‖2

L2(Tτ )

≤ CHδ
∑

τ∈TΓ

‖∇v‖2
L2(Tτ ) ≤ CCII

olH
δ ‖∇v‖2

L2(Ω) ,

which immediately yields (41) (since, for all τ ∈ TΓ , we assumed

βτ > 0, ατ ≥ 1) and (42), if ατ ≥ max{1, 2 − βτ

2 : τ ∈ TΓ}. ⊓⊔

Remark 7

1. The condition ατ ≥ 1 in (40) is always satisfied, as ht ≤ hτ ≤ H
holds for all t ∈ sons (τ).

2. The condition βτ > 0 in (39) is obvious, if Γ has a finite length,
but it is possible to show that, in fact, βτ ≥ 1 for all τ ∈ TΓ .
To sketch the idea, we consider the quasi-uniform case, where the
diameter of all triangles in TH are of order H. We argue as follows:
Let nΓ be the number of elements in TΓ ; it is clear that nΓ is not
less than O(H−1), i.e., in general, nΓ = O(H−β), where β ≥ 1;
since |Γ |/nΓ =: average length(τ ∩ Γ ) and the length of Γ is
independent of H, we obtain average length(τ ∩ Γ ) = O(|Γ |Hβ)
with β ≥ 1.
In this light, and if we assume that the length |Γ | is moderately
bounded, condition (39) in Lemma 5 is satisfied with βτ ≥ 1.
Hence, if we choose (40) with ατ = max {1, 2 − βτ/2} ≤ 3/2 as
the stopping criterion in (5), the estimate (42) will always hold
true.
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Now we are able to prove the uniform coercivity of the bilinear
form a(·, ·) on SCFE.

Theorem 3 Let the assumptions of Lemma 5 be satisfied. The bilin-
ear form a(·, ·) defined in (36) is uniformly coercive on SCFE, i. e. ,
(38) holds with the constant γ independent of H and h.

Proof For any function v ∈ SCFE, we have from Lemma 4

‖v‖1, Ω ≤ C1

(
|v|1, Ω +

∣∣∣∣
∫

Γ
v ds

∣∣∣∣
)

, (46)

since SCFE ⊂ H1(Ω), and from Lemma 5

‖v‖L2(Γ ) ≤ C2|v|1, Ω (47)

with the constants C1 and C2 independent of v, H and h. Noticing
that ∣∣∣∣

∫

Γ
v ds

∣∣∣∣ ≤ |Γ |1/2‖v‖L2(Γ ) ,

where |Γ | is the length of Γ , and combining (46) and (47), we obtain
(38) with the constant γ = 1

C2
1 (1+|Γ |1/2C2)2

. ⊓⊔

To analyze the rate of convergence of the composite finite element
solution uCFE to the exact solution u, we need the following abstract
Lemma.

Lemma 6 Let V and Vh be subspaces of a Hilbert space W . Assume
that a(·, ·) is a continuous bilinear form on W which is coercive on
Vh, with respective continuity and coercivity constants K and γ. Let
u ∈ V solve

a(u, v) = F (v) ∀v ∈ V ,

where F ∈ W ′. Let uh ∈ Vh solve

a(uh, vh) = F (vh) ∀vh ∈ Vh .

Then

‖u−uh‖W ≤

(
1 +

K

γ

)
inf

vh∈Vh

‖u−vh‖W +
1

γ
sup

wh∈Vh\{0}

|a(u − uh, wh)|

‖wh‖W
.

Proof See Lemma (10.1.1) in [2]. ⊓⊔

In our case, W is the space H1(Ω), V is H1
0 (Ω), Vh is SCFE, and

the continuity constant K equals 1. Lemma 6 shows that the error
in the energy norm consists of two parts: the approximation error
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and the error stemming from the non-conformity (i.e. from the viola-
tion of the Galerkin orthogonality), since, in general, SCFE * H1

0 (Ω).

Using this Lemma we can prove the main result on the convergence
of the CFE solution uCFE.

Theorem 4 Let the exact solution u to problem (35) belong to H1
0 (Ω)∩

H1+s(Ω), 1/2 ≤ s ≤ 1. Let the conditions of Lemma 5 be satisfied

with ατ = max{1, 2 − βτ

2 : τ ∈ TΓ}. Then, for sufficiently small H,
there holds

‖u − uCFE‖1, Ω ≤ CHs L̃og
s/2

(H/h)‖u‖1+s, Ω .

Proof The approximation error can be immediately estimated by
virtue of Theorem 2 as

inf
v∈SCFE

‖u − v‖1, Ω ≤ CHs L̃og
s/2

(H/h)‖u‖1+s, Ω . (48)

To estimate the non-conformity error, we first note that, for all w ∈
SCFE ⊂ H1(Ω), we have

a(u − uCFE, w) = a(u,w) − (f,w) =

∫

Ω
(−∆u)w dx +

∫

Γ

∂u

∂n
w ds

−

∫

Ω
fw dx =

∫

Γ

∂u

∂n
w ds .

Thus, using the Cauchy-Schwarz inequality, we get

|a(u − uCFE, w)| ≤

∥∥∥∥
∂u

∂n

∥∥∥∥
L2(Γ )

‖w‖L2(Γ )

and, with the trace theorem,

|a(u − uCFE, w)| ≤ C‖u‖3/2, Ω‖w‖L2(Γ ) ∀w ∈ SCFE .

Combining the latter inequality and (42) of Lemma 5, we derive the
estimate for the non-conformity error:

sup
w∈SCFE\{0}

|a(u − uCFE, w)|

‖w‖1, Ω
≤ CH‖u‖3/2, Ω . (49)

The result of the Theorem follows from Lemma 6, (48) and (49). ⊓⊔
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Remark 8

1. Since we assume f ∈ L2(Ω), the regularity of the exact solution
u ∈ H1+s(Ω), 1/2 ≤ s ≤ 1, is typical for the two-dimensional
Dirichlet problem on a polygonal domain. The maximal possible
regularity u ∈ H2(Ω) may deteriorate to u ∈ H3/2(Ω) because of
the boundary’s re-entrant corners whose angles are close to 2π.

2. In the situation described in Remark 7, the conditions of Lemma 5
are always satisfied and (42) holds true, if the stopping criterion
in (5) is chosen such that the smallest triangles in TH,h, which

are used for the resolution of the boundary, satisfy h ≤ CH3/2.
Thus, the latter condition is sufficient to obtain the quasi-optimal
error-estimate of Theorem 4.

Fig. 4. Unit square, L-shape and zic-zac domain.
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Fig. 5. Left: Two-scale CFE-solution on zic-zac-domain. Right: Zoom into
boundary region.
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Fig. 6. Trace of CFE1- (left) and CFE2-solution (right) on part of the boundary
of zic-zac domain Ω.
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Fig. 7. H1-error versus N = #dof: Square (left), L-shape domain (right). Ob-
serve that only CFE2 converges at optimal rate as the standard finite element
method. The ratio between the relative error of CFE2 to FE, depending on N ,
is about 2-3. The ratio between the error of FE0 to CFE2 rises up to 17 on the
finest mesh.

5 Numerical experiments

Typical applications for the CFE-method are boundary value prob-
lems on domains with a large number of geometric details. As an
illustrative example we have chosen the Poisson model problem on a
domain with 200 re-entering corners (cf. Fig. 4, right). However, we
emphasize that our approach is by no means restricted to a periodic
or regular distribution of the geometric details. Figure 5 shows the
two-scale CFE solution and the non-conforming, adaptive approxi-
mation of the Dirichlet boundary conditions.

Figure 6 displays the (one-dimensional) traces of the one-scale
and the two-scale solution along the zic-zac boundary (Remark 1 1.)
and illustrates how the error in the approximation of the boundary
conditions is reduced by using the two-scale approach.
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Fig. 8. Error of CFE2 (1769 dof) and FE0 (2002 dof) on L-shape domain.

# dof CFE1 # dof CFE2

81 0.25975 81 0.24007
417 0.07730 417 0.11373
1869 0.03516 1869 0.04891
7893 0.01869 7893 0.01720
32313 0.01213 32313 0.00755

# dof FE # dof FE0

225 0.03447 129 0.56466
961 0.01721 517 0.34355
3969 0.00862 2073 0.26244
16129 0.00431 8277 0.19477
65025 0.00216 33097 0.13132

Table 1. Ω: Unit square. Relative H1-error on different levels and corresp.
number of dof.

# dof CFE1 # dof CFE2

70 0.37232 70 0.39336
386 0.15888 386 0.18581
1769 0.08113 1769 0.09143
7557 0.04547 7557 0.04273
31138 0.02687 31138 0.02762

# dof FE # dof FE0

161 0.06271 125 0.68137
705 0.03359 499 0.51745
2945 0.01866 2002 0.33884
12033 0.01066 8009 0.24497
48641 0.00625 32026 0.16600

Table 2. Ω: L-shape domain. Relative H1-error and corresp. number of dof.

In previous sections we proved convergence for the CFE-method.
We showed, that – up to logarithmic terms – the error of the CFE-
solution uCFE behaves like

‖u − uCFE‖1,Ω ≤ C Hs ‖u‖1+s,Ω ,

provided that u ∈ H1
0 (Ω)∩Hs(Ω), s ∈ [12 , 1]. In order to validate the

sharpness of the theoretical estimates and the size of the constants
therein we have performed various parameter tests. We consider the
problem (2), (3) on the unit square (full regularity) resp. L-shape
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domain (reduced regularity). In order to study the effect of an over-
lapping mesh and the approximation of the Dirichlet boundary con-
ditions we have chosen the initial mesh such that the intersections of
triangles with the boundary are of general shape.

The reference solutions are

us(x) = (1 − x2
1) (1 − x2

2) (Unit square)

uL(x) = us(x) · r2/3 sin
2

3
ϕ (L-shape domain)

and the right-hand sides are chosen accordingly. We have taken these
examples to determine the convergence rates systematically. We em-
phasize that the typical applications for the two-scale CFE-method
are very complicated domains (cf. Fig. 4, right). We have compared
the convergence rates of the one- and the two-scale method with the
standard FEM in order to study the quantitative convergence be-
haviour. As a further alternative we have considered the following
method: Replace the physical domain Ω by the domain

ΩH =
⋃

τ∈TH

τ ,

covered by the overlapping coarse scale mesh and apply standard
FEM. The distance from the artificial boundary ∂ΩH to the physical
boundary Γ is in general of order O(H), especially if the length scales
of the geometric details vary continuously over a large range. Theory
predicts a suboptimal convergence rate 1/2. We compare the following
methods:

1. One-scale Composite Finite Element Method (CFE1),
2. Two-scale Composite Finite Element Method (CFE2),
3. Standard FEM (FE),
4. Standard FEM on overlapping domain ΩH (FE0).

The errors are listed in Table 1, 2, and depicted in Figure 7, 8.

Observations

– CFE2 (cf. Fig. 7 dashed line) shows optimal convergence and dis-
tinguishes from FE (lower solid line) just by a constant factor of
about 2 - 3. CFE1 (dotted line) asymptotically has suboptimal
convergence rates. The energy-error, e. g. for N = 32313, differs
by a factor 1.6 for the unit square (cf. Tab. 1).

– The experiments support the theoretically predicted suboptimal
convergence rate of FE0 (upper solid line) (Figure 7).
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– Since the CFE basis functions have larger support near to the
boundary, which can be interpreted as a discretization with slightly
increased mesh width, the error distribution concentrates at the
boundary Γ (Figure 8, left). A remarkable detail is that the CFE
error is concentrated sharply at the domain boundary and does
not significantly pollute the accuracy in the interior of Ω. In con-
trast, the error of FE0 is larger not only at the boundary but
smeared into the whole domain Ω. (Fig. 8, right). Note that the
construction of the extrapolation process ensures that – depending
on the regularity of the exact solution – the optimal convergence
rate is preserved. The FE0- and the CFE1-meshes are identical
and the two-scale mesh of CFE2 differs just by the introduction
of additional slave nodes. The computational complexity of CFE1

and CFE2 however is the same because the numerical integration
is carried out in both cases on the two-scale mesh. For an efficient
algorithmic realization we refer to [5] and [7].
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