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Abstract

We consider the wave equation in a boundary integral formulation.
The discretization in time is done by using convolution quadrature
techniques and a Galerkin boundary element method for the spatial
discretization. In a previous paper, we have introduced a sparse ap-
proximation of the system matrix by cutoff, in order to reduce the
storage costs. In this paper, we extend this approach by introducing
a panel clustering method to further reduce these costs.

1 Introduction

When discretizing the wave equation, one has the choice of treating this par-
tial differential equation directly or to transform it into a boundary integral
equation. In this paper, we consider the boundary integral formulation. One
advantage of this approach is seen when considering an exterior problem, i.e.,
when the spatial domain is unbounded. The treatment of problems on un-
bounded domains using the original formulation usually requires a restriction
to an artificial finite domain, together with some additional non-reflecting
boundary conditions. In contrast, the boundary integral equation is formu-
lated on the (lower-dimensional) bounded surface of the domain. No artificial
boundary conditions are necessary. An additional advantage is the reduction
of the dimension of the problem by one: If we consider a three dimensional

1



problem and denote by h a typical meshsize in the spatial discretization, the
boundary integral equation leads to O(h−2) unknowns instead of O(h−3),
and, correspondingly, much smaller linear systems have to be solved. A
drawback of the boundary integral formulation is the fact that the corre-
sponding matrices are densely populated. This leads to at least quadratic
complexity. For potential problems of elliptic type, fast methods (panel clus-
tering, wavelets, multipole, H-matrices) have been developed which reduce
such costs to almost linear (linear up to a logarithmic factor) complexity.
In this paper, we develop a panel clustering method for retarded boundary
integral operators.

A way to discretize the wave equation in time is the convolution quadrature
method [6], [8]. In [2], [3], we have introduced two advanced versions of the
method in order to reduce its complexity. In [2], a sparse approximation tech-
nique has been developed, where a simple cutoff criterion allows to replace
the original system matrices by sparse approximations. By using a panel
clustering technique, the storage consumptions can be further reduced. In
order to analyse the panel clustering approximation, estimates for the deriva-
tives of the kernel functions in the boundary integral equation formulation
are required. These estimates are developed in the present paper.

The paper is organized as follows. In Sections 2 and 3, we formulate the
boundary integral equation and its discretization by using convolution quadra-
ture in time and a Galerkin boundary element method in space. In Section 4,
we recall the sparse approximation of the Galerkin matrices introduced in [2].
In Section 5, we consider a panel clustering approximation to further reduce
the storage and computational cost. To obtain error estimates, an analysis of
the kernel functions and their derivatives is required. The necessary bounds
are derived in Section 6.

2 Boundary Integral Formulation

In this paper, we consider the numerical solution of the three dimensional
wave equation. For this, let Ω ⊂ R3 be a Lipschitz domain with boundary
Γ. We consider the homogeneous wave equation

∂2
t u(x, t)−∆u(x, t) = 0 for (x, t) ∈ Ω× (0, T ) ,
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with zero initial condition

u(x, 0) = ∂tu(x, 0) = 0 for x ∈ Ω ,

and Dirichlet boundary conditions

u(x, t) = g(x, t) on Γ× (0, T ) .

To formulate the problem as a boundary integral equation, u(x, t) can be
written as a single layer potential

u(x, t) =

∫ t

0

∫
Γ

δ(t− τ − ‖x− y‖
4π ||x− y||

φ(y, τ)dsydτ ,

δ(t) being the Dirac delta distribution. Taking the limit x → Γ, we obtain
the following boundary integral equation for the unknown density φ,∫ t

0

∫
Γ

k (‖x− y‖ , t− τ) φ(y, τ)dsydτ = g(x, t) ∀(x, t) ∈ Γ× (0, T ) (1)

with the kernel function

k(d, t) =
δ (t− d)

4πd
.

3 Convolution Quadrature Method

A time discretization of (1) can be obtained by introducing a stepsize ∆t and
a maximal number of time steps N , and replacing the time convolution in
(1) at time step tn = n∆t by a discrete convolution,

n∑
j=0

∫
Γ

ω∆t
n−j(‖x− y‖)φ(y, tj)dsy = g(x, tn) ∀x ∈ Γ, 1 ≤ n ≤ N (2)

with convolution weights ω∆t
n (d).

We use the convolution quadrature method [6], [8], to obtain suitable weights
ω∆t

n (d). This method is based on a linear multistep method and inherits
its stability properties. For the derivation of the convolution quadrature
method, we refer to [2], [3], [8]. We here only give the definition of the
quadrature weights.
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Definition 1. Let

k∑
j=0

αju
n+j−k = ∆t

k∑
j=0

βjf(un+j−k) , (3)

be a linear multistep method for an ordinary differential equation u′(t) = f(u(t)),
where un ≈ u(tn). Define

γ(ζ) :=

∑k
j=0 αjζ

k−j∑k
j=0 βjζk−j

as the quotient of its generating polynomials.

Definition 2. Given a linear multistep method (3), the convolution weights
ω∆t

n (d) of the convolution quadrature method are the expansion coefficients in
the formal power series

k̂

(
d,

γ(ζ)

∆t

)
=

∞∑
n=0

ω∆t
n (d)ζn.

where k̂(d, s) := e−sd

4πd
is the Laplace transform of the kernel function k(d, t) =

δ(t−d)
4πd

in (1).

The convolution weights can be derived by Taylor expansion,

ω∆t
n (d) =

1

n!
∂n

ζ k̂

(
d,

γ(ζ)

∆t

)∣∣∣∣
ζ=0

.

Throughout this paper, we consider the second order accurate, A-stable
BDF2 scheme, with

γ(ζ) =
1

2

(
ζ2 − 4ζ + 3

)
.

In that case, using the formula for multiple differentiation of composite func-
tions (see, e.g., [1]), we obtain the explicit representation

ω∆t
n (d) =

1

n!

1

4πd

(
d

2∆t

)n/2

e−
3d

2∆t Hn

(√
2d

∆t

)
,

where Hn are the Hermite polynomials.

The convergence rate and stability properties of the convolution quadrature
method are inherited by the linear multistep method, i.e. if (3) is A-stable
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and second order accurate, then so is (2). Stability and convergence results
for the semi discrete problem can be found in [2] and [8].

For the space discretization, we employ a Galerkin boundary element method.
For this, we consider a boundary element space, e.g. of piecewise constant or
piecewise linear functions, and a basis (bi(x))M

i=1. For the Galerkin boundary
element method, we replace φ(y, tj) in (2) by

φj
∆t,h(y) =

M∑
i=1

φj,ibi(y)

and impose the integral equation in a weak form

n∑
j=0

M∑
i=1

φj,i

∫
Γ

∫
Γ

ω∆t
n−j(x− y)bi(y)bk(x)dsydsx =

∫
Γ

g(x, tn)bk(x)dsx ,

for all 1 ≤ k ≤ M and n = 1, . . . , N . This can be written as a linear system

n∑
j=0

An−jφj = gn , n = 1, . . . , N (4)

with

(An−j)k,i :=

∫
Γ

∫
Γ

ω∆t
n−j(x− y)bi(y)bk(x)dsydsx ,

and

(gn)k =

∫
Γ

g(x, n∆t)bk(x)dsx .

The compact formulation as a block triangular system is given by

−→
AN

−→
φ N = −→g N , (5)

where the block matrix
−→
AN ∈ RNM × RNM and the vector −→g N ∈ RNM are

defined by

−→
AN :=



A0 0 . . . 0

A1 A0
. . .

...

A2 A1
. . .

... A2
. . . . . .
. . . . . . . . . 0

AN . . . A2 A1 A0


and −→g N :=


g0

g1
...

gN

 . (6)
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The matrices Aj have dimension M × M and are fully populated. The
following simple procedure is the algorithmic formulation of (5).

procedure solve;
begin
for i := 0 to N do begin
s := gi;
for j := 0 to i− 1 do

s := s−Ai−jφj (7)

solve
A0φi = s; (8)

end; end;

The solution of the system A0φi = s should be realized by means of an
iterative solver.

4 Sparse Approximation by Cutoff

The matrices in (4) are densely populated. This is due to the fact that,
although the basis functions have local support, they are coupled by the
nonlocal convolution coefficients ω∆t

n (d). In [2], we have introduced a sparse
approximation of the matrices An to reduce the storage requirements. To find
such an approximation, we investigate the convolution coefficients ω∆t

n (d).
Although they are nonlocal functions, they can be replaced by more localized
functions. In Figure 1, ω1

100(d) and ω1
200(d) are shown. The functions ω∆t

n (d)
have their maximum at about d = n∆t and outside an interval of width
O(∆t

√
n), they are small enough to be replaced by 0. In [2], the following

results are shown.

Lemma 3. Let

I∆t
n,ε :=

{
[0, 2

3
∆t |log ε|] , n = 0,

[tn − 3∆t
√

n |log ε| , tn + 3∆t
√

n |log ε|] ∩ diam(Ω) , n > 0.
(9)

Then there holds ∣∣ω∆t
n (d)

∣∣ ≤ ε

4πd
∀d /∈ I∆t

n,ε . (10)

6



0 50 100 150 200 250 300
−5

0

5

10
x 10

−5

d

ω
10

0(d
)

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4
x 10

−5

d

ω
20

0(d
)

Figure 1: Convolution weight ω∆t
n (d), n = 100, n = 200, ∆t = 1.

Replacing ω∆t
n (d) by zero outside the interval I∆t

n,ε leads to the following sparse
approximation.

Definition 4. For a given error tolerance ε, let

Pε,n :=
{
(i, j) | ∃ (x, y) ∈ supp bi ∩ supp bj : ‖x− y‖ ∈ I∆t

n,ε

}
.

The sparse approximation Ãn is obtained by setting

(Ãn)i,j :=

{
(An)i,j if (i, j) ∈ Pε,n,
0 otherwise.

The solutions of the algebraic system

n∑
j=0

Ãn−jφ̃j = gn, n = 1, . . . , N (11)

are the coefficient vectors of the approximate Galerkin solutions

φ̃n
∆t,h :=

M∑
i=1

φ̃n,ibi.

Theorem 5. Assume that the exact solution φ(·, t) is in Hm+1 (Γ) for any
t ∈ [0, T ]. There exists a constant C > 0 such that for all 0 < ε < Ch∆t3,
the approximate Galerkin solutions φ̃n

∆t,h exist and satisfy the error estimate∥∥∥φ̃n
∆t,h − φ(·, t)

∥∥∥
H−1/2(Γ)

≤ Cg (T ) (εh−1∆t−5 + ∆t2 + hm+3/2). (12)
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Table 1: Storage requirements for Ãn

m = 0 m = 1

n = O(log M) CM1+ 1
4 log5/2 M CM

n = O(N) Ct
3/2
n M1+ 13

16 log M Ct
3/2
n M1+ 11

16 log M

Remark 6. The choice

∆t2 ∼ hm+3/2 and ε ∼ (∆t)7 h ∼ h7m/2+25/4 (13)

balances the three error terms in (12).

The storage cost for the matrix Ãn is given by

O
(
M max

{
1, t

3
2
n

√
∆tM log M

})
(14)

and some cases are summarized in Table 1, assuming that ∆t2 ∼ hm+ 3
2 . The

total storage amount follows by summing (14) for n = 0, 1, . . . , N . By using
(N∆t)2 ∼ 1 and M ≥ O (N) we obtain

total storage amount for all Ãn , 0 ≤ n ≤ N : O
(
N1/2M2 log M

)
.

This is a significant reduction of the storage cost by a factor of O
(
N1/2

)
com-

pared to the original Galerkin method where the storage cost is O (NM2).

Remark 7. In [5], [6], [7], [8], FFT-techniques have been introduced to solve
the system (5). While the storage costs stay unchanged O (NM2) the com-
putational complexity is reduced from O (N2M2) to O

(
N log2 N M2

)
. Our

cutoff strategy reduces the storage cost to O
(
N1/2M2

)
while the computa-

tional complexity is reduced less significantly. However, the use of panel
clustering (cf. Section 5) will further reduce the computational complexity of
our approach, see Remark 17.

The subroutine procedure solve (cf. Section 3) can easily be modified to
take into account the sparse approximation by replacing step (7) by

for all 1 ≤ k ≤ M : sk := sk −
∑

`:(k,`)∈Pε,i−j

(Ai−j)k,` φj,` (15)

while the iterative solution of (8) should take into account the sparsity of Ã0

as well.
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5 Panel Clustering

The panel clustering method was developed in [4] for the data-sparse approx-
imation of boundary integral operators which are related to elliptic boundary
value problems. Since then, the field of sparse approximation of non-local
operators has grown rapidly and nowadays advanced versions of the panel
clustering method are available and a large variety of alternative methods
such as wavelet discretizations, multipole expansions, H-matrices etc. exist.
However, these fast methods (with the exception of H-matrices) are devel-
oped mostly for problems of elliptic type while the data-sparse approximation
of retarded potentials is to our knowledge still in its infancies. In this section,
we develop the panel clustering method for retarded potentials.

5.1 The Algorithm

If we employ the cutoff strategy as in Section 4, a matrix-vector multiplication
Ãnφ with a vector φ = (φi)

M
i=1 ∈ RM can be written in the form

∀1 ≤ k ≤ M :
(
Ãnφ

)
k

=
∑

`:(k,`)∈Pε,n

φ`

∫
Γ

∫
Γ

ω∆t
n (‖x− y‖)b`(y)bk(x)dΓydΓx.

(16)

For the application of the panel clustering algorithm the set Pε,n is split into
admissible blocks which we are going to explain next. The panel clustering
method will be applied as soon as

n > npc := C max{log2 M, Mm− 1
2 log4 M} (17)

for some constant C. For n < npc, it will turn out that, for the simple cutoff
strategy, the complexity has the same asymptotic behaviour. (Note that for
the first time steps the simple cutoff strategy reduces the complexity much
more significantly than for the later time steps, see Table 1.)

Let NM := {1, 2, . . . ,M}.

Definition 8. A cluster c is a subset of NM . If c is a cluster, the corre-
sponding subdomain of Γ is Γc :=

⋃
i∈t supp (bi). The cluster box Qc ⊂ R3

is the minimal axisparallel cuboid which contains Γc and the cluster size Lc

is the maximal side length of Qc.
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Definition 9. Let ε > 0 and n > npc. Let η > 0 be some control parameter.
A pair of clusters (c, s) ⊂ NM × NM is admissible at time step tn if

max {Lc, Ls} ≤ η
∆tnb

|log ε|
. (18)

The power b in (18) is a fixed number. Some comments are given in Remark
10.

Remark 10. In Section 5.2 and 6, we will prove that the choice b = 1/4 pre-
serves the optimal convergence order of the unperturbed discretization (with-
out panel clustering and cut-off). However, a larger value of b would improve
the complexity estimates because, then, more blocks are admissible for panel
clustering. Numerical experiments indicate that a slightly increased value
b ≈ 0.3 preserves the optimal convergence rates as well. In this light, we
assume for some technical estimates that b in (18) satisfies

0.25 ≤ b ≤ 0.3. (19)

The panel clustering method starts by constructing a set Ppc
ε,n which consists

of admissible, pairwise disjoint pairs of clusters such that

(c, s) ∩ Pε,n 6= ∅

and
Pε,n ⊂

⋃
(c,s)∈Ppc

ε,n

(c, s) .

We skip here the explicit formulation of the divide-and-conquer algorithm
for the efficient construction of Ppc

ε,n by introducing a tree structure for the
clusters but refer, e.g., to [10] for the details.

Expression (16) becomes(
Ãnφ

)
k

=
∑

(c,s)∈Ppc
ε,n

∑
`:(k,`)∈(c,s)

φ`

∫
Γc

∫
Γs

ω∆t
n (‖x− y‖)b`(y)bk(x)dΓydΓx.

(20b)

The kernel function ω∆t
n is now approximated on Γc × Γs by a separable

expansion as follows. Since ω∆t
n (‖x− y‖) is defined in Qc × Qs we may

define an approximation by Čebyšev interpolation:

ω∆t
n (‖x− y‖) ≈ ω̌∆t

n (‖x− y‖) =
∑

µ,ν∈(Nq)3

L(µ)
c (x)L(ν)

s (y)ω∆t
n (‖xµ − yν‖),

(21)
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where L(µ)
c and L(ν)

s , resp., are the tensorized versions of the q−th order
Lagrange polynomials (properly scaled and translated to Qc and Qs, resp.)
corresponding to the tensorized Čebyšev nodes xµ and yν for Qc and Qs,
resp. Replacing the kernel functions ω∆t

n under the integral in (20b) allows
to perform the integration with respect to x and y separately. This leads to∑

`:(k,`)∈(c,s)

φ`

∫
Γc

∫
Γs

ω∆t
n (‖x− y‖)b`(y)bk(x)dΓydΓx

≈
∑

`:(k,`)∈(c,s)

∑
µ,ν∈(Nq)3

V(µ,k)
c Sµ,ν

(c,s)V
(ν,`)
s φ`,

where

V(µ,k)
c :=

∫
Γc

L(µ)
c (x)bk(x)dΓx and Sµ,ν

(c,s) := ω∆t
n (‖xµ − yν‖). (22)

Hence, the panel clustering approximation of (7) is given by replacing step
(7) by

sk := sk −
∑

(c,s)∈Ppc
ε,n

∑
`:(k,`)∈(c,s)

∑
µ,ν∈(Nq)3

V(µ,k)
c Sµ,ν

(c,s)V
(ν,`)
s φ`. (23)

Remember that for the first time steps, the matrices An are approximated
using the simple cutoff strategy.

Remark 11. To guarantee the existence of admissible clusters, we need at
least the smallest cluster pairs consisting of the support of the basis functions
bi to be admissible.

For m = 0, we require (according to (13))

η
∆tnb

|log ε|
= O

(
η
h3/4nb

|log h|

)
≥ O (h) = L{i}

which is always satisfied.

For m = 1, we get (with b = 1/4)

η
∆tnb

|log ε|
= O

(
η
h5/4nb

|log h|

)
= O

(
η

h

|log h|
(hn)1/4

)
.

Hence, the condition

n ≥ CM1/2 log4 M = O
(
h−1 |log h|4

)
ensures η ∆tnb

|log ε| ≥ Ch. Note, that this is guaranteed by (17).
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Although the admissibility criterion (18) differs from the standard criterion
for elliptic boundary value problems, the algorithmic formulation of the panel
clustering is as in the elliptic case and, hence, is described in numerous
papers; see e.g., [10] and we do not recall the details here.

5.2 Error Analysis

We proceed with the error analysis of the resulting perturbed Galerkin dis-
cretization which leads to an a-priori choice of the interpolation order q such
that the convergence rate of the unperturbed discretization is preserved.

Standard estimates for tensorized Čebyšev-interpolation yield

sup
z∈Qc−Qs

∣∣ω∆t
n (‖z‖)− ω̌∆t

n (‖z‖)
∣∣ ≤

C
Lq+1

(
1 + log5 q

)
22q+1 (q + 1)!

max
i∈{1,2,3}

sup
z∈Qc−Qs

∣∣∂q+1
zi

ω (‖z‖)
∣∣ ,

where C > 0 is some constant independent of all parameters, L denotes the
maximal side length of the boxes Qc and Qs and Qc − Qs is the difference
domain {x− y : (x, y) ∈ Qc ×Qs}.

Theorem 12. For (c, s) ∈ Ppc
ε,n, assume that the partial derivatives of ω∆t

n (‖x− y‖)
satisfy

max
1≤i≤3

∣∣∂q
zi
ω∆t

n (‖z‖)
∣∣ | ≤ q!‖z‖−1

(
Cλ

∆tnb

)q

∀z ∈ Qc −Qs . (24a)

Then

|ω̌∆t
n (‖x− y‖)− ω∆t

n (‖x− y‖)| ≤ C1

dist (Qc, Qs)

(
C2 max{Lc, Ls}λ

∆tnb

)q+1

.

(24b)

The validity of assumption (24a) with b as in Definition 9 and

λ := 2η + 3 |log ε| . (25)

will be derived in Theorem 23.

12



Remark 13. Note that the panel clustering is applied on blocks (c, s) ⊂ Pε,n

which satisfy (18) and, hence there exists (x0, y0) ∈ Γc × Γs such that

|‖x0 − y0‖ − tn| ≤ λ̃∆t
√

n with λ̃ := 3 |log ε| .

As a consequence we have, for any (x, y) ∈ Γc × Γs, (recall b < 1/2)

|‖x− y‖ − tn| ≤ |‖x− y‖ − ‖x0 − y0‖|+ λ̃∆t
√

n ≤ Lc + Ls + λ̃∆t
√

n

≤
(
2ηnb−1/2 + λ̃

)
∆t
√

n ≤ λ∆t
√

n

with (cf. (25))
λ = 2η + 3 |log ε| . (26)

Theorem 14. Let 0 < ε < 1
8

and n > 16| log2 ε|. Let the assumptions
of Theorem 12 be satisfied and the interpolation order chosen according to
q ≥ |log ε| / log 2. Let (c, s) ∈ Ppc

ε,n be admissible for some 0 < η ≤ η0 and
sufficiently small η0 = O (1). Then

|ω̌∆t
n (‖x− y‖)− ω∆t

n (‖x− y‖)| ≤ C
ε

‖x− y‖
∀ (x, y) ∈ Γc × Γs (27a)

for some C independent of n and ∆t.

Proof. Assume that (c, s) ∈ Ppc
ε,n. As derived above,

|‖x− y‖ − tn| ≤
λtn√

n
∀(x, y) ∈ Γc × Γs .

Thus, if λ <
√

n, we have

tn ≤
(

1− λ√
n

)−1

‖x− y‖ .

We also have

dist(Qc, Qs) ≥ ‖x− y‖ −
√

3(Lc + Ls) ≥ ‖x− y‖ − 2
√

3ηtnn
b−1

≥ ‖x− y‖

(
1− 2

√
3ηnb−1

1− λ√
n

)
.

Under the assumptions
n ≥ 16| log ε|2 (28)
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and

η <
| log ε|

4
,

we have λ <
√

n and we obtain

dist(Qc, Qs) ≥ ‖x− y‖

(
1−

√
3

2
| log ε|−

1
2

)
.

Assuming that ε ≤ 1
8
, we obtain

1

dist(Qc, Qs)
≤ 2

‖x− y‖
. (29)

Conditions (18) and (28) and the definition of λ imply

C2 max{Lc, Ls}λ
∆tnb

≤ C3η.

Hence, from Theorem 12, we obtain the estimate

|ω̌∆t
n (‖x− y‖)− ω∆t

n (‖x− y‖)| ≤ C1

dist (Qc, Qs)
(C3η)q+1 .

Inserting (29) leads to

|ω̌∆t
n (‖x− y‖)− ω∆t

n (‖x− y‖)| ≤ 2C1

‖x− y‖
(C3η)q+1 .

Finally, the condition η0 ≤ (2C3)
−1 implies that the interpolation order

q ≥ |log ε|
log 2

leads to an approximation which satisfies

|ω̌∆t
n (‖x− y‖)− ω∆t

n (‖x− y‖)| ≤ 2C1ε

‖x− y‖
.

In [2] an analysis of the Galerkin method has been derived which takes into
account additional perturbations. Since it is only based on abstract approx-
imations which satisfy an error estimate of type (27), we directly obtain a
similar convergence theorem also for the panel clustering method. In the
following, we denote by φ̃n

∆t,k the solution at time tn of the Galerkin dis-
cretization with cutoff strategy and panel clustering.
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Theorem 15. Let the assumption of Theorem 14 be satisfied. We assume
that the exact solution φ (·, t) is in Hm+1 (Γ) for any t ∈ [0, T ]. Then there
exists C > 0, such that for all cutoff parameters ε in (9) such that 0 <
ε < Ch∆t3 and interpolation orders q ≥ |log ε| / log 2, the solution φ̃n

∆t,h with
cutoff and panel clustering satisfies the error estimate∥∥∥φ̃n

∆t,h − φ (·, tn)
∥∥∥

H−1/2(Γ)
≤ Cg (T )

(
εh−1∆t−5 + ∆t2 + hm+3/2

)
.

Corollary 16. Let the assumptions of Theorem 15 be satisfied. Let ∆t ∼
hm+3/2 and choose ε ∼ h7m/2+25/4. Then, the solution φ̃∆t,h exists and con-
verges with optimal rate∥∥∥φ̃n

∆t,h − φ (·, tn)
∥∥∥

H−1/2(Γ)
≤ Cg (T ) hm+3/2 ∼ Cg (T ) ∆t2.

5.3 Complexity Estimates

In this subsection, we investigate the complexity of our sparse approximation
of the wave discretization. We always employ the theoretical value 1/4 for
the exponent b in (18) (cf. Remark 10).

Sparse approximation of the system matrix Ãn

To simplify the complexity analysis we assume that only the simple cutoff
strategy and not the panel clustering method is applied for the first time
steps:

0 ≤ n ≤ npc , (30)

By using (13) and (14), the number of nonzero entries of all Ãn in the case

(30) is estimated from above by O(NM
7
8 log6 M) and O(NM1+ 3

8 log11 M))
for m = 0 and m = 1, respectively.

Panel Clustering

The tree structure for the panel clustering algorithm has to be generated
only once and, hence, the computational and storage complexity is negligible
compared to the other steps of the algorithm. The entries of the matrices V
(cf. (22)) are computed recursively by using the tree structure. The details
can be found in [3], [10]. In [3], it is shown that the computational and
storage complexity is negligible compared to the generation of the influence
matrices S(c,s) (cf. (22)).
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Computation of the Influence Matrices

First, we compute the cardinality of Ppc
ε,n. Note that the maximal diameter

of a cluster c satisfying condition (18) is bounded by

Lc ≤ η
∆tnb

|log ε|
. (31)

An assumption on the cluster tree and the geometric shape of the surface is
that ∣∣{(x, y) ∈ Γ× Γ | ‖x− y‖ ∈ I∆t

n,ε

}∣∣ = O
(√

∆t t3/2
n |log ε|

)
,

where |ω| denotes the area measure of some ω ⊂ Γ × Γ (cf. [3]) and that
not only inequality (31) but also the reverse inequality holds for some other
constant η′. Hence, for sufficiently small ∆t the number of pairs of clusters
satisfying (18) is bounded by

O

√∆t t
3/2
n |log ε|(

η′ ∆tnb

|log ε|

)4

 . (32)

The storage requirements per matrix S(c,s) are given by q6 ∼ | log6 ε| and this
leads to a storage complexity of

O

(
n3/2−4b |log ε|11

η′4∆t2

)
. (33)

Using the relations as in Corollary 16

∆t2 ∼ hm+3/2, ε ∼ h7m/2+25/4, M = O
(
h−2
)

,

we see that (33) is equivalent to (we use here 4b = 1)

O
(
n1/2 |log M |11 Mm/2+3/4

)
.

To compute the total storage cost we sum over all n ∈ {npc, . . . , N} and
obtain

N∑
n=npc

n
1
2 |log ε|11 M

m
2

+ 3
4 ≤ C1N

3
2 |log M |11 M

m
2

+ 3
4 ≤ C2NM

5m
8

+ 15
16 |log M |11

= C2

{
NM

15
16 |log M |11 m = 0,

NM1+ 9
16 |log M |11 m = 1.
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full matrix representation cutoff strategy panel clustering+cutoff strategy

m = 0 O (NM2) O
(
NM1+ 13

16 log M
)

O
(
NM1− 1

16 |log M |11
)

m = 1 O (NM2) O
(
NM1+ 11

16 log M
)

O
(
NM1+ 9

16 |log M |11
)

Table 2: Storage requirements for the panel clustering approximation and
sparse approximation

The total storage requirements are summarized in Table 5.3. The table
shows that the panel clustering method combined with the cutoff strategy
reduces the complexity of the space-time discretization of retarded integral
equations significantly. For piecewise constant boundary elements we get a
storage complexity with behaves even better than linearly, i.e., O (NM).

Remark 17. a. The panel clustering method is based on a two-fold hier-
archical structure1: The clusters are organized in a cluster tree and the
expansion system on each cluster are polynomials. Hence, by elemen-
tary properties of polynomials, the expansion system on a cluster can
be build from the expansion systems of the sons of the cluster. By em-
ploying this double hierarchy the computational cost for a matrix-vector
multiplication is proportional to the storage cost of the matrix (in the
sparse panel clustering format).

b. Note that in the panel clustering regime (n > npc), the integration of
the highly oscillatory kernel functions is no longer necessary (cf. 23).
Efficient quadrature methods for the integrals for n < npc is a topic of
further research and we skip this aspect from the investigation of the
computational costs here.

6 Estimate of the derivatives of the convo-

lution coefficients

In the previous sections, to obtain suitable error estimates, bounds for the
derivatives of ω∆t

n (‖x − y‖) were required. In this section, we derive such
bounds and estimates on b in Theorem 12.

In Remark 13, we have seen that the panel clustering algorithm is applied

1In the context of H-matrices this two-fold hierarchy is called H2 format.
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on pairs of clusters (c, s) such that for all (x, y) ∈ Γc × Γs we have

|d− n| ≤ λ
√

n with d = ‖x− y‖ /∆t and λ as in (26). (34)

Hence, we will investigate the function ωn (d) only for values of d which satisfy
(34).

The estimates are obtained in several steps. In the first step, we consider the
auxiliary functions

ω̃n (d) := 4πd∆tω∆t
n (d∆t) =

1

n!

(
d

2

)n
2

e−
3d
2 Hn

(√
2d
)

, (35)

which are independent of ∆t. We will determine bounds for the derivatives
of ω̃n(d) with respect to d in Theorem 22.

Using the Leibniz rule, the derivatives of the original convolution coefficients
ω∆t

n (d) with respect to d are given by

∂q
dω

∆t
n (d) =

1

4πd

q!

∆tq

q∑
l=0

1

l!

(
− d

∆t

)l−q

ω̃(l)
n

(
d

∆t

)
,

where ω̃
(l)
n (·) denotes the l-th derivative. In the final step, estimates for

∂q
xi

ω∆t
n (‖x− y‖) are obtained in Theorem 23.

To find estimates for ω̃
(l)
n (d), we first consider the functions and their first

derivatives. For this, we use an approximation for the Hermite polynomials
given by Olver [9]. The proof of the following lemma is postponed to the
appendix.

Note that in this paper, C denotes a generic constant independent of n, ∆t,
and h with, possibly, different values for each inequality.

Lemma 18. The following estimates are valid for x ≥ 0 and n ≥ 1,

|e−
x2

2 Hn(x)| ≤ Cn!e
n
2

(
2

n

)n
2

n−
1
3 (36)

and

|∂x

(
e−

x2

2 Hn(x)
)
| ≤ Cn!e

n
2

(
2

n

)n
2

n−
1
6 max{

∣∣x2 − (2n + 1)
∣∣ 14 n−

1
12 , x

5
12 n−

29
24 , 1} .

(37)
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With Lemma 18, we obtain the following estimate for ω̃n(d) and ω̃′
n(d).

Lemma 19. For ω̃n(d) as defined in (35), the following bound holds for
n ≥ 1,

|ω̃n(d)| ≤ Cn−
1
3

(
d

n

)n
2

e−
d−n

2 ≤ Cn−
1
3 . (38)

For n ≥ 2 and |d− n| ≤ λ
√

n,

|ω̃′
n(d)| ≤ Cλn−

5
8

(
d

n

)n
2
−1

e
d−n

2 ≤ Cλn−
5
8 (39)

with λ as in (26).

Proof. Due to (36), we have

|ω̃n(d)| = 1

n!

(
d

2

)n
2

e−
d
2 |e−dHn(

√
2d)| ≤ Cn−

1
3

(
d

n

)n
2

e−
d−n

2 .

The last inequality in (38) follows from a straightforward analysis which

shows that the maximum of
(

d
n

)n
2 e−

d−n
2 is taken at n = d and hence(

d

n

)n
2

e−
d−n

2 ≤ 1. (40)

For the first derivative, we have

ω̃′
n(d) =

1

n!

((
d

2

)n
2

e−
d
2 ∂d(e

−dHn(
√

2d)) + ∂d

((
d

2

)n
2

e−
d
2

)
e−dHn(

√
2d)

)

=
1

n!

(
d

2

)n
2

e−
d
2 ∂x(e

−x2

2 Hn(x))|x=
√

2d(2d)−
1
2 − 1

2

(
d

n

)−1(
d

n
− 1

)
ω̃n(d) .

With (37) and |d− n| ≤ λ
√

n, we obtain

|ω̃′
n(d)| ≤ C

(
d

n

)n
2
− 1

2

e−
d−n

2 n−
2
3 max

{∣∣∣∣d− (n +
1

2
)

∣∣∣∣ 14 n−
1
12 , d

5
24 n−

29
24 , 1

}

+ Cλn−
5
6

(
d

n

)n
2
−1

e−
d−n

2

≤ Cλ1/4

(
d

n

)n
2
− 1

2

e−
d−n

2 n−
2
3 n

1
24 + Cλn−

5
6

(
d

n

)n
2
−1

e−
d−n

2 .
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Finally, with (13)(
d

n

) 1
2

≤
(

1 +
|d− n|

n

) 1
2

≤
(

1 +
λ√
n

) 1
2

≤
(

1 + C
1 + log n√

n

) 1
2

≤ C

and by using (40), we arrive at (39).

To obtain estimates for the higher derivatives of ω̃n(d), we use the following
two lemmas.

Lemma 20. For n ∈ N0, the following relation holds

ω̃′
n(d) = −3

2
ω̃n(d) + 2ω̃n−1(d)− 1

2
ω̃n−2(d) (41)

where formally ω̃−1 := ω̃−2 := 0.

Proof. We recall

k̂(d,
γ(ζ)

∆t
) =

e−
γ(ζ)d
∆t

4πd
=

∞∑
n=0

ω∆t
n (d)ζn .

Using the definition of ω̃n(d), we obtain

e−γ(ζ)d =
∞∑

n=0

ω̃n(d)ζn . (42)

Differentiating both sides of (42) with respect to d, we obtain

−γ(ζ)e−γ(ζ)d = −
∞∑

n=0

ω̃n(d)γ(ζ)ζn =
∞∑

n=0

ω̃′
n(d)ζn .

The statement of the lemma now follows by equating the powers of ζ.

The following lemma can be obtained from the recursion formula for the
Hermite polynomials,

Hn+1(x) = 2xHn(x)− 2nHn−1(x) .

Lemma 21. For n ∈ N≥1, the recursion

ω̃n(d) =
d

n
(2ω̃n−1(d)− ω̃n−2(d)), (43)

holds.
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Now we can prove a bound for the derivatives of ω̃n(d).

Theorem 22. Let n
2
≥ q, n ≥ 1, and |d− n| ≤ λ

√
n with λ as in (26). Then

|ω̃(q)
n (d)| ≤ q! (Cλ)q n−aq

(
d

n

)n
2
−q

e−
d−n

2 ≤ q! (Cλ)q n−aq , (44)

with

a0 =
1

3
, a1 =

5

8
, and aq =

{
a1 + q−1

4
, q odd ,

a0 + q
4
, q even ,

(45)

and a generic constant c.

Proof. The proof is done by induction. For q = 0 and q = 1, the statement
follows from Lemma 19.

Next, we show the statement for q = 2. For simplicity, we omit the argument
d in ω̃n(d) and ω̃′

n(d) . When differentiating (41), we obtain (recall ω̃−1 =
ω̃−2 = 0)

ω̃′′
n = −3

2

(
ω̃′

n − ω̃′
n−1

)
+

1

2

(
ω̃′

n−1 − ω̃′
n−2

)
. (46)

Using (41) and (43), we obtain (recall n ≥ 1)

ω̃′
n = −3

2
ω̃n + 2ω̃n−1 −

1

2
ω̃n−2

= −3

2
ω̃n +

n− 1

2n
ω̃n−1 +

1

2n
ω̃n−1 +

3

2
ω̃n−1 −

1

2
ω̃n−2

=
d

n

(
−3ω̃n−1 +

5

2
ω̃n−2 −

1

2
ω̃n−3

)
+

1

2n
ω̃n−1 +

3

2
ω̃n−1 −

1

2
ω̃n−2

=
d

n

(
ω̃′

n−1 −
3

2
ω̃n−1 +

1

2
ω̃n−2

)
+

1

2n
ω̃n−1 +

3

2
ω̃n−1 −

1

2
ω̃n−2

=
d

n
ω̃′

n−1 −
3

2

(
d

n
− 1

)
ω̃n−1 +

1

2

(
d

n
− 1

)
ω̃n−2 +

1

2n
ω̃n−1 .

Thus

ω̃′
n − ω̃′

n−1 =

(
d

n
− 1

)(
ω̃′

n−1 −
3

2
ω̃n−1 +

1

2
ω̃n−2

)
+

1

2n
ω̃n−1

=

(
d

n
− 1

)(
−3ω̃n−1 +

5

2
ω̃n−2 −

1

2
ω̃n−3

)
+

1

2n
ω̃n−1. (47)

By using
∣∣ d
n
− 1
∣∣ ≤ λn−

1
2 and Lemma 19, we obtain
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∣∣ω̃′
n − ω̃′

n−1

∣∣ ≤ Cλn−
1
2 (|ω̃n−1|+ |ω̃n−2|+ |ω̃n−3|)

≤ Cλn−
1
2
− 1

3 e−
d−n

2

min{n−1,3}∑
k=1

(
n− k

n

)
− 1

3

(
d

n

n

n− k

)n−k
2

 .

Note that, for any α ≥ 0,

max
k=1,2,3

sup
n≥k+1

(
n− k

n

)−α

= 2α and max
k=1,2,3

sup
n≥k+1

(
n

n− k

)n−k
2

= e3/2 (48)

and, hence, ∣∣ω̃′
n − ω̃′

n−1

∣∣ ≤ Cλn−
1
2
− 1

3 e−
d−n

2

(
d

n

)n−3
2

.

Using (46), (48), and Lemma 19, we obtain

|ω̃′′
n| ≤ Cλn−a2e−

d−n
2

(
d

n

)n
2
−2

(49)

with

a2 = a0 +
1

2
.

For the induction step q → q + 1, we assume that (44) holds for q. To show
that (44) also holds for q + 1, we first differentiate (41) q times to obtain

ω̃(q+1)
n = −3

2
(ω̃(q)

n − ω̃
(q)
n−1) +

1

2
(ω̃

(q)
n−1 − ω̃

(q)
n−2) . (50)

Furthermore, by differentiating (47), we get

ω̃(q)
n − ω̃

(q)
n−1 =

q − 1

n

(
−3ω̃

(q−2)
n−1 +

5

2
ω̃

(q−2)
n−2 − 1

2
ω̃

(q−2)
n−3

)
+

1

2n
ω̃

(q−1)
n−1

+

(
d

n
− 1

)(
−3ω̃

(q−1)
n−1 +

5

2
ω̃

(q−1)
n−2 − 1

2
ω̃

(q−1)
n−3

)
. (51)
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q 0 1 2 3 4 5 6
0.33 0.63 0.92 1.24 1.50 1.82 2.13

Table 3: ãq for 0 ≤ q ≤ 6

Taking into account (34) and the induction assumption we get∣∣∣ω̃(q)
n − ω̃

(q)
n−1

∣∣∣ ≤ c1

{
q − 1

n

(∣∣∣ω̃(q−2)
n−1

∣∣∣+ ∣∣∣ω̃(q−2)
n−2

∣∣∣+ ∣∣∣ω̃(q−2)
n−3

∣∣∣)
+λn−

1
2

(∣∣∣ω̃(q−1)
n−1

∣∣∣+ ∣∣∣ω̃(q−1)
n−2

∣∣∣+ ∣∣∣ω̃(q−1)
n−3

∣∣∣)}
≤ c1

(q − 1)!

n
(Cλ)q−2 e−

d−n
2

min{n−1,3}∑
k=1

(n− k)−aq−2

(
d

n− k

)n−k
2
−q+2

+ λn−
1
2 (q − 1)! (Cλ)q−1 e−

d−n
2

min{n−1,3}∑
k=1

(n− k)−aq−1

(
d

n− k

)n−k
2
−q+1


(48)

≤ c1 (q + 1)! (Cλ)q e−
d−n

2

(
d

n

)n−3
2
−q+1 {

n−aq−2−1 + n−aq−1− 1
2

}
.

The combination with (50) yields

∣∣ω̃(q+1)
n

∣∣ ≤ (q + 1)! (Cλ)q+1 e−
d−n

2

(
d

n

)n
2
−(q+1)

n−aq+1

with some

aq = min

{
aq−2 +

1

2
, aq−3 + 1

}
=

{
a1 + q−1

4
, q odd,

a0 + q
4
, q even.

We have computed the maximum of the derivatives in numerical experiments
to verify the sharpness of estimate (44). The results are shown in Table 3.
We compare the derivatives of ω̃400(d) and ω̃600(d) with respect to d and give

ãq = − log

(
‖ω̃(q)

400(d)‖∞
‖ω̃(q)

600(d)‖∞

)
/ log(2/3). It can be seen that ãq ≈ 0.33 + 0.3q, i.e.,

b ≈ 0.3 which compares well with the theoretical result b ≥ 0.25.

From the bounds on the derivatives of ω̃n(d), we now obtain estimates for
|∂q

xi
ω∆t

n (‖x− y‖)|.
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Theorem 23. For n
2
≥ q and

∣∣∣‖x−y‖
∆t

− n
∣∣∣ ≤ λ

√
n with λ as in (26), we have

|∂q
xi

ω∆t
n (‖x− y‖)| ≤ (Cλ)q q!

4π‖x− y‖
∆t−qn−aq

(
‖x− y‖

n∆t

)n
2
−q

e−
‖x−y‖

∆t
−n

2

≤ (Cλ)q q!

‖x− y‖
∆t−qn−aq ,

where C > 0 is a generic constant independent of the discretization parame-
ters.

For the proof of Theorem 23, we need the following lemma.

Lemma 24. Let d = d(x, y) =
√∑3

i=1(xi − yi)2. For a function f(d), we

have for q ≥ 1,

|∂q
xi

f(d)| ≤ Cqq! max
1≤ν≤q

1

ν!
|f (ν)(d)| 1

dq−ν
.

Proof. By induction, one can easily prove that

∂q
xi

f(d) =

q∑
ν=1

gν,q(x, y)f (ν)(d) ,

with g1,1(x, y) = xi−yi

d
and for q ≥ 2 and 1 ≤ ν ≤ q,

gν,q(x, y) = ∂xi
gν,q−1(x, y) + gν−1,q−1(x, y)

xi − yi

d
,

with g0,q = gq,q−1 = 0. In addition, we show by induction that

gν,q(x, y) =

min{b q
2
c,q−ν}∑

µ=0

αq
µ,ν

(xi − yi)
q−2µ

d2q−ν−2µ
, 1 ≤ ν ≤ q (52)

for some coefficients αq
µ,ν . For q = 1, the statement follows from the definition

of g1,1(x, y) with a1
0,1 = 1.
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Assume that (52) holds for some q. Then

gν,q+1(x, y) = ∂xi
gν,q(x, y) + gν−1,q(x, y)

xi − yi

d

=

min{b q
2
c,q−ν}∑

µ=0

(q − 2µ)αq
µ,ν

(xi − yi)
q−2µ−1

d2q−ν−2µ

−
min{b q

2
c,q−ν}∑

µ=0

(2q − ν − 2µ)αq
µ,ν

(xi − yi)
q+1−2µ

d2q+2−ν−2µ

+

min{b q
2
c,q−ν}∑

µ=0

αq
µ,ν−1

(xi − yi)
q−2µ+1

d2q−ν+2−2µ

=

min{b q+1
2
c,q+1−ν}∑

µ=0

αq+1
µν

(xi − yi)
(q+1)−2µ

d2(q+1)−ν−2µ

with
αq+1

µ,ν = (q − 2(µ− 1))αq
µ−1,ν − (2q − ν − 2µ)αq

µ,ν + αq
µ,ν−1 , (53)

where we set all coefficients αq
µ,ν not occurring in (52) to 0. Thus,

We show by induction that |αq
µ,ν | ≤ cq

1
(q−1)!

ν!
for some constant c1. First, for

q = 1, we have α1
0,1 = 1.

Let |αq
µ,ν | ≤ cq

1
(q−1)!

ν!
for some q. We use (53) and ν ≤ q + 1 to obtain

|αq+1
µ,ν | ≤ 3qcq

1

(q − 1)!

ν!
+ cq

1ν
(q − 1)!

ν!
≤ cq+1

1

q!

ν!
,

when choosing c1 large enough. The combination with (52) results in

|gν,q(x, y)| ≤ cq
1

q!

ν!

1

dq−ν
.

Using q ≤ 2q, we obtain

|∂q
xi

f(d)| ≤ q max
1≤ν≤q

|gν,q(x, y)||f (ν)(d)|

≤ (2c1)
qq! max

1≤ν≤q

1

ν!
|f (ν)(d)| 1

dq−ν
.
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Proof of Theorem 23.

For simpler notation, we write d = ‖x− y‖. We have

ω∆t
n (d) =

1

4πd
ω̃n

(
d

∆t

)
,

and

∂q
dω

∆t
n (d) =

1

4πd

1

∆tq

q∑
l=0

q!

l!

(
− d

∆t

)l−q

ω̃(l)
n

(
d

∆t

)
(54)

For q = 0, the statement of the theorem follows easily by combining (38)
with (54). For q ≥ 1, from Theorem 22 and Lemma 24, we conclude that
(recall n/2 ≥ q)∣∣∂q

xi
ω∆t

n (d)
∣∣ ≤ Cqq! max

1≤ν≤q

1

ν!
|∂ν

dω∆t
n (d)|d−q+ν

≤ Cqq!

4πd
max
1≤ν≤q

1

∆tν

ν∑
l=0

1

l!

(
d

∆t

)l−ν

d−q+ν

∣∣∣∣ω̃(l)
n

(
d

∆t

)∣∣∣∣
≤ Cqq!

4πd
max
1≤ν≤q

ν∑
l=0

(Cλ)l dl−qn−al∆t−l

(
d

n∆t

)n
2
−l

e−
d

∆t
−n

2

=
Cqq!

4πd
∆t−q

(
d

n∆t

)n
2
−q

e−
d

∆t
−n

2 max
1≤ν≤q

ν∑
l=0

(Cλ)l n−al−q+l.

From (45), it is easy to see

aq − al − q + l ≤ 0

and, hence,

∣∣∂q
xi

ω∆t
n (d)

∣∣ ≤ Cqq!

4πd
∆t−q

(
d

n∆t

)n
2
−q

e−
d

∆t
−n

2 n−aq
(Cλ)q+1 − 1

Cλ− 1

where as before c denotes a generic constant. The last term is bounded by
2 (Cλ)q provided Cλ ≥ 2.

7 Outlook

In this paper, we have analysed a panel clustering approximation for the wave
equation. We have derived upper bounds for both storage requirements and
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computational complexity. From the theoretical point of view, the cutoff
and panel clustering approximation results in a significant reduction of the
complexity. However, in a next step, it is important to perform numerical
experiments to see at what problem size the asymptotic gain of our method
becomes dominant.

We have not yet addressed the need of special quadrature techniques. One
benefit of the panel clustering technique is the fact that no integration of the
kernel functions is necessary. The only integrals required involve Lagrange
polynomials and the basis functions of the boundary element space. For
the cutoff approximation, we still need to integrate the kernel functions ω∆t

n .
For the efficient computation of these integrals, the choice of the quadrature
method is important.

A Proof of Lemma 18

Lemma 25. The following estimates are valid for x ≥ 0 and n ≥ 1,

|e−
x2

2 Hn(x)| ≤ Cn!e
n
2

(
2

n

)n
2

n−
1
3 ,

and

|∂x

(
e−

x2

2 Hn(x)
)
| ≤ Cn!e

n
2

(
2

n

)n
2

n−
1
6 max{

∣∣x2 − (2n + 1)
∣∣ 14 n−

1
12 , x

5
12 n−

29
24 , 1} .

Proof. The proof employs some special functions. Recall the definition of the
Airy function (cf. [11])

Ai(x) :=
1

2πi

∫ i∞

−i∞
exz−z3/3dz ∀x ∈ R.

We introduce the function ξ : R≥−1 → R by

ξ(x) :=


(

3
2

) 2
3

(
x(x2 − 1)

1
2 − arccosh (x)

) 2
3

, for x > 1 ,

−
(

3
2

) 2
3

(
arccos (x)− x(1− x2)

1
2

) 2
3

, for − 1 ≤ x ≤ 1 ,
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and the function Φ : R>−1 → R

Φ(x) :=

(
ξ(x)

x2 − 1

) 1
4

.

Note that the functions ζ in [9, (8.0.4,5)] and φ in [9, (8.0.6)] satisfy

ζ (x) =

(
n +

1

2

) 2
3

ξ (y) and φ (x) = 2−
1
4

Φ (y)(
n + 1

2

) 1
12

where here and in the sequel we employ the convention

y =
x√

2n + 1
. (55)

a. A straightforward but somewhat tedious analysis shows that ξ ∈ C1 ([−1,∞[)
and Φ ∈ C1 (]−1,∞]). The function ξ (x) tends to +∞ as x → +∞
and Φ (x) is unbounded as x → −1, see Figures 2(a) and 2(b). Conse-
quently, there exists a constant CΦ such that

|Φ (x)| ≤ CΦ ∀x ≥ 0. (56)

Furthermore, there exists a constant CAi such that

|Ai (x)| ≤ CAi ∀x ∈ R. (57)
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(a) The Airy function (solid line) and
its derivative (dashed line).
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(b) The function Φ (solid line) and its
derivative (dashed line).
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b. The function Φ : R>−1 → R is strictly monotonously decreasing and is
positive

∀x > −1 Φ(x) > 0. (58)

For large arguments, we have

Φ (x) = x−1/6 (C + g (x))

with some C > 0 and a continuous function g (x) which vanishes at
infinity. Hence, ∣∣Φ−1 (x)

∣∣ ≤ Cx1/6 as x → +∞. (59)

The function ξ : R>−1 → R is strictly monotonously increasing and has
a zero at x = 1.

c. We use [9, (8.12)] and employ, for the estimate of ε1 therein, the combi-
nation of [9, (8.03)] and [9, (8.22)] with [9, (2.11)] and [9, pp. 750-751]
to obtain

e−
x2

2 Hn(x) = (2π)
1
2 e−

n
2
− 1

4 (2n + 1)
n
2
+ 1

6 Φ (y)
{
Υ1 (y) +O(n−1)

}
, (60)

where Υ1 (y) := Ai
(
ξ (y)

(
n + 1

2

) 2
3

)
. Since x ≥ 0 implies y ≥ 0 we

obtain from (56), (57), (60)

|e−
x2

2 Hn(x)| ≤ Ce−
n
2 (2n)

n
2 n

1
6

and the first statement of the lemma is obtained using Stirling’s formula

e−nnn

n!
≤ e−nnn

√
2πnn+ 1

2 e−n
= Cn−

1
2 .

d. Let Υ2 (y) := Ai′
(
ξ (y)

(
n + 1

2

) 2
3

)
. The modulus |Υ2| is bounded ex-

cept for the case when the argument z := ξ(y)
(
n + 1

2

) 2
3 tends to −∞

(see [9, (2.0.4,5)]) which is equivalent to −1 < y < 1 and n → ∞.

In this case, the growth behaviour is given |Υ2 (y)| ≤ C |z|1/4 (see [9,
(2.0.5)]).

For y → ∞, |Υ2 (y) | decays exponentially (see [9, (2.0.4)]) since z (y)
as well as ξ (y) tends to +∞ if y → +∞ (cf. a.).
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e. We take the derivative of [9, (8.11)] and use [9, (4.17)]. As stated in
[9], similar estimates as [9, (8.22)] can be obtained for η1 occuring in
[9, (4.17)]. We obtain

∂x

(
e−

x2

2 Hn(x)
)

= (2π)
1
2 e−

n
2
− 1

4 (2n + 1)
n
2
+ 1

3 (Φ (y))−1

×
{
Υ2 (y) + n−1ηn(x)

+Φ′ (y) Φ (y) 2−1

(
n +

1

2

)− 2
3 {

Υ1 (y) +O(n−1)
}}

, (61)

where |ηn(x)| ≤ max{x 1
4 n−

1
8 , 1}. We have all ingredients to show the

second statement. We apply Stirling’s formula to (61) to obtain

|∂x

(
e−

x2

2 Hn(x)
)
| ≤ Cn!e

n
2

(
2

n

)n
2

n−
1
6 (62)

×
(∣∣Φ (y)−1 Υ2 (y)

∣∣+ n−1
∣∣Φ (y)−1

∣∣max{x
1
4 n−

1
8 , 1}+ n−

2
3 |Φ′ (y)|

)
.

From (58) we conclude that Φ(y)−1 exists for all y. To find a bound in
terms of n, we consider the three terms in (62) separately. The term

|Φ(y)−1| is bounded for bounded y and grows like y
1
6 (cf. (59)). We

distinguish between two cases.

i. x ≥ 1. In this case, z = ξ(y)
(
n + 1

2

) 2
3 is non-negative. Hence, the

function Υ2 is bounded and decays exponentially as y → ∞ (cf.
Property (d)). As a consequence, the slow growth behaviour of
Φ (y)−1 (cf. (59) is dominated by the decay of Υ2 and we have∣∣Φ(y)−1Υ2 (y)

∣∣ ≤ C.

ii. 0 < x ≤ 1. In this case, the function Φ (y)−1 is uniformly bounded
and we get by using Property (d)

∣∣Φ(y)−1Υ2 (y)
∣∣ ≤ C

∣∣∣∣∣ξ(y)

(
n +

1

2

) 2
3

∣∣∣∣∣
1/4

≤ C

(
n +

1

2

) 1
6

|ξ(y)|1/4 .

A Taylor argument yields for, 0 ≤ y ≤ 1,

|ξ (y)| ≤ C
∣∣y2 − 1

∣∣ .
Hence,

|Φ(y)−1Υ2 (y) | ≤ C
∣∣y2 − 1

∣∣ 14 n
1
6 .

From Property (a) we conclude that Φ′(y) is uniformly bounded
for all y ≥ 0.
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Summarizing, we have, for y ≥ 0,∣∣Φ(y)−1Υ2 (y)
∣∣ ≤ C max

{
1,
∣∣y2 − 1

∣∣ 14 n
1
6

}
,∣∣Φ(y)−1

∣∣ ≤ C max{1, y
1
6} ,

|Φ′(y)| ≤ C .

When inserting y = x√
2n+1

, we arrive at the second statement of the
lemma.
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