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Abstract

In this paper we consider the three-dimensional wave equation in unbounded domains
with Dirichlet boundary conditions. We start from a retarded single layer potential ansatz
for the solution of these equations which leads to the retarded potential integral equation
(RPIE) on the bounded surface of the scatterer. We formulate an algorithm for the space-
time Galerkin discretization with smooth and compactly supported temporal basis functions
which have been introduced in [S. Sauter and A. Veit: A Galerkin Method for Retarded
Boundary Integral Equations with Smooth and Compactly Supported Temporal Basis Func-
tions, Preprint 04-2011, Universität Zürich].

For the debugging of an implementation and for systematic parameter tests it is essential
to have some explicit representations and some analytic properties of the exact solutions for
some special cases at hand. We will derive such explicit representations for the case that the
scatterer is the unit ball. The obtained formulas are easy to implement and we will present
some numerical experiments for these cases to illustrate the convergence behaviour of the
proposed method.
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1 Introduction

Mathematical modeling of acoustic and electromagnetic wave propagation and its e�cient and
accurate numerical simulation is a key technology for numerous engineering applications as, e.g.,
in detection (nondestructive testing, radar), communication (optoelectronic and wireless) and
medicine (sonic imaging, tomography). An adequate model problem for the development of ef-
�cient numerical methods for such types of physical applications is the three-dimensional wave
equation in unbounded exterior domains. In this setting the method of integral equations is an
elegant approach since it reduces the problem in the unbounded domain to an retarded potential
integral equation (RPIE) on the bounded surface of the scatterer.
In the literature there exist di�erent approaches for the numerical discretization of these retarded
boundary integral equations. They include collocation schemes with some stabilization tech-
niques (cf. [7, 10, 11, 13, 8, 26]), methods based on bandlimited interpolation and extrapolation
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(cf. [31, 33, 32, 34]), convolution quadrature (cf. [5, 19, 18, 23, 30, 3, 4, 6]) as well as methods
using space-time integral equations (cf. [2, 16, 12, 17, 28]).
In [28], [29] a space-time Galerkin method for the discrectization of RPIEs with smooth and com-
pactly supported temporal basis functions has been introduced conceptually. In this paper we
present an algorithmic formulation of the method. The debugging of the implementation and the
investigation of the performance and senstivity of the method with respect to various parameters
require a careful implementation and some exact solutions for performing appropriate numerical
experiments. It turns out that the derivation of an explicit representation of the solution for some
special geometry (here: unit sphere in R3) and Dirichlet boundary conditions is by no means triv-
ial. We start from a retarded single layer potential ansatz for the solution of this equation which
results in a retarded boundary integral equation on the sphere with unknown density function
φ. We use Laplace transformations in order to transfer these problems to univariate problems
in time which we solve analytically. The obtained explicit formulas for φ lead to exact solutions
of the full scattering problem on the sphere and they are easy to implement. We employ these
reference solutions for verifying the accuracy of our new method by numerical experiments and
to study its performance and convergence behaviour. Furthermore these formulas are suitable to
study analytic properties of these density functions.
An easy to use MATLAB script is available at https://www.math.uzh.ch/compmath/?exactsolutions,
which implements the formulas obtained in this article.

2 Integral formulation of the wave equation

Let Ω ⊂ R3 be a Lipschitz domain with boundary Γ. We consider the homogeneous wave equation

∂2
t u−∆u = 0 in Ω× [0, T ] (2.1a)

with initial conditions
u(·, 0) = ∂tu(·, 0) = 0 in Ω (2.1b)

and Dirichlet boundary conditions

u = g on Γ× [0, T ] (2.1c)

on a time interval [0, T ] for T > 0. In applications, Ω is often the unbounded exterior of a bounded
domain. For such problems, the method of boundary integral equations is an elegant tool where
this partial di�erential equation is transformed to an equation on the bounded surface Γ. We
employ an ansatz as a single layer potential for the solution u

u(x, t) := Sφ(x, t) :=

∫
Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖

dΓy, (x, t) ∈ Ω× [0, T ] (2.2)

with unknown density function φ. S is also referred to as retarded single layer potential due to
the retarded time argument t− ‖x− y‖ which connects time and space variables.

The ansatz (2.2) satis�es the wave equation (2.1a) and the initial conditions (2.1b). Since
the single layer potential can be extended continuously to the boundary Γ, the unknown density
function φ is determined such that the boundary conditions (2.1c) are satis�ed. This results in
the boundary integral equation for φ,∫

Γ

φ(y, t− ‖x− y‖)
4π‖x− y‖

dΓy = g(x, t) ∀(x, t) ∈ Γ× [0, T ] . (2.3)

Existence and uniqueness results for the solution of the continuous problem are proven in [24].

2



3 Temporal Galerkin discretization of retarded potentials

with smooth basis functions

In this section we recall the Galerkin discretization of the boundary integral equation (2.3) using
smooth and compactly supported basis functions in time. For details and an analysis of the
scheme we refer to [28].
A coercive space-time variational formulation of (2.3) is given by (cf. [2, 16]): Find φ in an
appropriate Sobolev space V such that∫ T

0

∫
Γ

∫
Γ

φ̇(y, t− ‖x− y‖)ζ(x, t)

4π‖x− y‖
dΓydΓxdt =

∫ T

0

∫
Γ

ġ(x, t)ζ(x, t)dΓxdt (3.1)

for all ζ ∈ V , where we denote by φ̇ the derivative with respect to time. The Galerkin discretiza-
tion of (3.1) now consists of replacing V by a �nite dimensional subspace VGalerkin being spanned
by L basis functions {bi}Li=1 in time and M basis functions {ϕj}Mj=1 in space. This leads to the
discrete ansatz

φGalerkin(x, t) =

L∑
i=1

M∑
j=1

αjiϕj(x)bi(t), (x, t) ∈ Γ× [0, T ] , (3.2)

for the approximate solution, where αji are the unknown coe�cients. As mentioned above we will
use smooth and compactly supported temporal shape functions bi in (3.2). Their de�nition was
addressed in [28] and is as follows. Let

f (t) :=


1
2 erf (2 artanh t) + 1

2 |t| < 1,
0 t ≤ −1,
1 t ≥ 1

and note that f ∈ C∞ (R).∗ Next, we will introduce some scaling. For a function g ∈ C0 ([−1, 1])
and real numbers a < b, we de�ne ga,b ∈ C0 ([a, b]) by

ga,b (t) := g

(
2
t− a
b− a

− 1

)
.

We obtain a bump function on the interval [a, c] with joint b ∈ (a, c) by

ρa,b,c (t) :=

 fa,b (t) a ≤ t ≤ b,
1− fb,c (t) b ≤ t ≤ c,
0 otherwise.

Let us now consider the closed interval [0, T ] and l (not necessarily equidistant) timesteps

0 = t0 < t1 < . . . tl−2 < tl−1 = T.

A smooth partition of unity of the interval [0, T ] then is de�ned by

µ1 := 1− ft0,t1 , µl := ftl−2,l−1
, ∀2 ≤ i ≤ l − 1 : µi := ρti−2,ti−1,ti .

Smooth and compactly supported basis functions bi in time can then be obtained by multiplying
these partition of unity functions with suitably scaled Legendre polynomials (cf. [28] for details).
For the discretization in space we use standard piecewise polynomials basis functions ϕj . The
solution of (3.1) using the discrete ansatz (3.2) leads to a linear system with L ·M unknowns.

∗Note that this choice of f is by no means unique. In [9, Sec. 6.1], C∞ (R) bump functions are considered (in
a di�erent context) which have certain Gevrey regularity. They also could be used for our partition of unity.
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We partition the resulting system matrix A and right-hand side g as a block matrix/block vector
according to

A :=


A1,1 A1,2 · · · A1,L

A2,1 A2,2 · · · A2,L

...
...

. . .
...

AL,1 AL,2 · · · AL,L

 , g :=


g1

g2

...
gL

 , (3.3)

where
Ak,i ∈ RM×M , gk ∈ RM for i, k ∈ {1, · · · , L}.

Furthermore we denote

mink := min supp bk =, maxk := max supp bk

for k ∈ {1, · · · , L}. The following algorithm computes the unknown coe�cients αji in (3.2) and
leads to a solution of the boundary integral equation (2.3).
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Algorithm 1 Computation of the coe�cients αji in (3.2)

Input: • A triangulation G :=
{
τi : 1 ≤ i ≤M

}
of Γ consisting of (possibly curved) triangles τi.

• L: number of timesteps ti (not necessarily equidistant).
• Time derivative ġ(x, t) of right-hand side.

{Generation of right-hand side}
for k = 1 to L do

gk ←

(∫ T

0

∫
Γ

ġ(x, t)ϕl(x) bk(t)dΓxdt

)M
l=1

∈ RM

{Blockwise generation of system matrix}
for i = 1 to L do

if mini ≥ maxk then

Ak,i ← 0 ∈ RM×M (3.4)

else

for j, l = 1 to M do

mindist← dist(suppϕj , suppϕl)
maxdist← sup(x,y)∈suppϕl×suppϕj ‖x− y‖

if [mink −maxi,maxk −mini] ∩ [mindist,maxdist] = ∅ then

Ak,i(j, l)← 0 ∈ R (3.5)

else

Ak,i(j, l)←
∫ T

0

∫
Γ

∫
Γ

ϕj(y)ϕl(x)

4π‖x− y‖
ḃi(t− ‖x− y‖)bk(t) dΓydΓxdt (3.6)

end if

end for

end if

end for

end for

{Solution of linear system}
Solve:

A · x = g with x ∈ RLM

Output: The vector x corresponds to the unknown coe�cients in (3.2).

Remark 1. (Numerical quadrature)
The most time consuming part of this algorithm is the computation of the matrix entries Ak,i(j, l)
by numerical quadrature. De�ne

ψk,i(r) =

∫ T

0

ḃi(t− r)bk(t)dt =

∫ maxk

mink

ḃi(t− r)bk(t)dt (3.7)

with suppψk,i = [mink −maxi,maxk −mini]. Then, we can rewrite (3.6) as

Ak,i(j, l) =

∫
Γ

∫
Γ

ϕj(y)ϕl(x)

4π‖x− y‖
ψk,i(‖x− y‖) dΓydΓx. (3.8)

In order to compute integrals of the form (3.8) the regularizing coordinate transform as explained
in [27] can be applied. This transform removes the spatial singularity at x = y via the determinant
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of the Jacobian. The resulting integration domain is the four-dimensional unit cube. In order
to approximate the transformed integrals, tensor-Gauss quadrature can be used. Note that the
integrands in (3.8) are C∞-smooth but not analytic and therefore classical error estimates are not
valid. In [28] we have developed a quadrature error analysis for this type of integrand. Instead
of tensor-Gauss quadrature it might also be suitable to use other quadrature schemes like sparse
grid or adaptive quadrature in order to reduce the computational complexity. In [21] we proposed
a method based on sparse tensor approximation to evaluate these integrals.
For the approximation of the matrix entries (3.8) the function ψk,i has to be evaluated multiple
times. Since such an evaluation by a quadrature rule is costly we suggest to approximate ψk,i on
its support accurately by a polynomial (e.g. by interpolation), which can be evaluated e�ciently.

Remark 2. (Sparsity pattern of the matrix)
The matrix A in (3.3) is a blockmatrix where the lower triangular part in general is non-zero while
- according to (3.4), (3.5) only very few upper o�-diagonals are non-vanishing. The matrix blocks
Ak,i in general are sparse - only the entries which are enlighted by the support of the relevant
temporal basisfunctions are non-zero.
In Figure 3.1 the sparsity pattern of A and its matrix blocks are depicted. For illustration purpose,
we choose Γ to be the one-dimensional interval [0, 2], subdivided into 80 equidistant subintervals,
and that the time interval is given by [0, 3], subdivided into 30 equidistant subintervals. As tem-
poral basis functions we used the smooth partition of unity described above.

Figure 3.1: Sparsity pattern of the matrix A and its blocks Ak,i .

4 Exact solutions of the wave equation for Γ = S2

The systematic numerical testing of the convergence behaviour of our discretization requires the
knowledge of exact solutions for some speci�c model problems whose derivation is far from trivial.
Hence, a substantial part of this paper is devoted to the derivation of such solutions for a spherical
scatterer. In Section 5 we will report on the approximation of these solutions by our method.

In this section we will derive analytic solutions of (2.3) for the special case that the boundary
of the scatterer Γ is the unit sphere in R3. Note that an equivalent formulation of the retarded
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single layer potential (2.2) is given by

Sφ(x, t) =

∫ t

0

∫
Γ

k(x− y, t− τ)φ(y, τ)dΓydτ, (x, t) ∈ Ω× [0, T ] , (4.1)

where k(z, t) is the fundamental solution of the wave equation,

k(z, t) =
δ(t− ‖z‖)

4π‖z‖
,

δ(t) being the Dirac delta distribution. This representation is usually the starting point of
discretization methods based on convolution quadrature, where only the Laplace transform of
the kernel function is used. We introduce the single layer potential for the Helmholtz operator
∆U − s2U = 0 which is given by

(V (s)ϕ)(x) :=

∫
Γ

K(s, x− y)ϕ(y, τ)dΓy, x ∈ R3

where

K(s, z) :=
e−s‖z‖

4π‖z‖
is the fundamental solution of the Helmholtz equation in three spatial dimensions. We now adopt
the setting in [5]. We want to solve the boundary integral equation (2.3) in the case where Γ is
the unit sphere S2. For the right-hand side g we assume causality i.e. g(x, t) = 0 for t ≤ 0 and
furthermore that at least the �rst time derivative of g vanishes at t = 0. Moreover, g is supposed
to be of the form

g(x, t) = g(t)Y mn

where Y mn denotes a spherical harmonic of degree n and order m. The Y mn are eigenfunctions of
the single layer potential for the Helmholtz operator i.e.

V (s)Y mn = λn(s)Y mn (4.2)

with eigenvalues λn(s).

Remark 3. The availability of eigenfunctions and eigenvalues of the frequency domain operator
is crucial for the computation of exact solutions of (2.3). We refer to [22, 25] for the derivation
of those in case of the single layer potential for the stationary Helmholtz equation. For the double
layer potential, the adjoint double layer potential and the hypersingular operator in the frequency
domain similar formulas exist (cf. [25]). In the same way as described below we can therefore
obtain exact solutions also for other time-domain boundary integral equations arising in Dirichlet
and Neumann problems in acoustic scattering. Details and explicit formulas for other problems
can be found in [29].

We express the eigenvalues λn(s) in terms of modi�ed Bessel functions Iκ and Kκ (see [1])

λn(s) = In+ 1
2
(s)Kn+ 1

2
(s).

Next, we will reduce equation (2.3) to a univariate problem in time. Recall the de�nition of the
Laplace transform

φ̂(s) := (Lφ)(s) =

∫ ∞
0

φ(t) e−st dt

with inverse

(L−1φ̂)(s) =
1

2π i

∫ σ+i∞

σ−i∞
φ̂(s) est ds for some σ > 0.
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Note that the fundamental solution of the Helmholtz equation is the Laplace transform of the
fundamental solution of the wave equation. Using the representation (4.1) for S and expressing
k in terms of its Laplace transform leads to the integral equation

g(t)Y mn =

∫ t

0

∫
Γ

k(t− τ, ‖x− y‖)φ(y, τ)dΓydτ

=
1

2π i

∫ σ+i∞

σ−i∞

∫ t

0

esτ
∫

Γ

K(s, ‖x− y‖)φ(y, t− τ)dΓydτds

=
1

2π i

∫ σ+i∞

σ−i∞

∫ t

0

esτ (V (s)φ(·, t− τ))(x)dτds.

Inserting the ansatz φ(x, t) = φ(t)Y mn into (4.2) leads to the one dimensional problem: Find φ(t)
s.t.

g(t) =

∫ t

0

L−1(λn)(τ)φ(t− τ)dτ. (4.3)

Applying the Laplace transformation to both sides yields

ĝ(s) = λn(s)φ̂(s).

Rearranging terms and applying an inverse Laplace transformation �nally leads to an expression
for φ:

φ(t) =

∫ t

0

g(τ)L−1

(
1

λn

)
(t− τ)dτ. (4.4)

Note that φ(t)Y mn with φ(t) as above is a solution of the full problem (2.3) in the case where
Γ = S2 and g(x, t) = g(t)Y mn .
Before we proceed with the computation of (4.4), note that with the above formulas it is also
possible to �nd an expression for the solution φ(x, t) in (2.3) for more general right-hand sides.
If we choose the normalization convention for Y mn such that they form an orthonormal system in

L2
(
S2
)
:
(
Y mn , Y m

′

n′

)
L2(S2)

= δn,n′δm,m′ , the following Theorem holds.

Theorem 4. Let the right-hand side in (2.3) be causal and assume that ∂t g (x, 0) = 0,∀x ∈ S2.
Let g be of the form

g(x, t) =

∞∑
n=0

n∑
m=−n

gn,m(t)Y mn .

Then, the solution φ has the form

φ (x, t) =

∞∑
n=0

n∑
m=−n

φn,m(t)Y mn ,

where

φn,m =

∫ t

0

gn,m (τ)L−1

(
1

λn

)
(t− τ) dτ.

Note that the expressions in Theorem 4 are considered as formal series. However, the existence
and uniqueness results in [16] imply that for given right-hand side g with ġ ∈ H1/2,1/2(Γ ×
[0, T ]) := L2(0, T ;H1/2(Γ)) ∩H1/2(0, T ;L2(Γ)) the solution φ exists in H−1/2,−1/2(Γ× [0, T ]) :=
L2(0, T ;H−1/2(Γ)) +H−1/2(0, T ;L2(Γ)).
If only �nitely many Fourier coe�cients of g are non-zero, then, the expansion of φ and the
existence in the classical pointwise sense is obvious.
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For simplicity we return to the situation in (4.4) where we consider only one mode of such an
expansion. In order to �nd an analytic expression for φ(t), it is necessary to �nd a representation
for the inverse Laplace transform of 1

λn(s) . With the formulas [15, Sec. 8.467 and 8.468] we get:

λn(s) = In+ 1
2
(s)Kn+ 1

2
(s) =

yn(− 1
s )yn( 1

s ) + (−1)n+1y2
n( 1

s ) e−2s

2s
(4.5a)

where

yn(s) :=

n∑
k=0

(n, k)sk and (n, k) :=
(n+ k)!

2kk!(n− k)!
(4.5b)

are the Bessel polynomials (see [20, Sec. 4.10]). This is equivalent to

λn(s) = (−1)n
θn(s)

2s2n+1

(
θn(−s)− θn(s) e−2s

)
where θn are the reversed Bessel polynomials

θn(s) :=

n∑
k=0

(n, k)sn−k.

After some manipulations we therefore get for the inverse Laplace transform

L−1

(
1

λn

)
= 2δ′ + (−1)n2 ∂tL−1

(
θ̃2n−2(s) + (−1)nθn(s)2 e−2s

θn(−s)θn(s)− θn(s)2 e−2s

)
(4.6)

where

Pmax(0,2n−2) 3 θ̃2n−2(s) = s2n − (−1)n θn(−s)θn(s).

We expand the term in the brackets in the right-hand side of (4.6) with respect to ε = e−2s about
0 and obtain

θ̃2n−2(s) + (−1)nθn(s)2 e−2s

θn(−s)θn(s)− θn(s)2 e−2s
=

θ̃2n−2(s)

θn(−s)θn(s)︸ ︷︷ ︸
R

(1)
n

(4.7)

+

∞∑
k=1

{
(−1)n

θn(s)k

θn(−s)k
e−2ks︸ ︷︷ ︸

R
(2)
n,k

+
θ̃2n−2(s)θn(s)k−1

θn(−s)k+1
e−2ks︸ ︷︷ ︸

R
(3)
n,k

}
.

The computation of the inverse Laplace transforms of R
(1)
n , R

(2)
n,k and R

(3)
n,k boils down to the

inversion of rational functions. This is done with the formulas in [14, Sec. 5.2]. Note that θn(s)
is a polynomial of degree n and has exactly n complex-valued, simple zeros (cf. [20]). Let

θn(αi) = 0 for i = 1 . . . n where αi = αre
i + iαim

i with αre
i , α

im
i ∈ R.

It follows that the zeros of θn(−s) are −α1, . . . ,−αn. Thus we get

L−1
(
R(1)
n

)
(t) =

n∑
j=1

c
(1)
n,j eαjt +c̃

(1)
n,j e−αjt .

Since the solution φ is real, we may restrict our consideration to the real part of L−1(R
(1)
n ). We

denote the real part of c
(1)
n,j by c

(1),re
n,j and its imaginary part by c

(1),im
n,j . The notations for c̃

(1)
n,j are

chosen accordingly. We get

L−1
re

(
R(1)
n

)
(t) =

n∑
j=1

c
(1),re
n,j eα

re

j t cos(αim
j t)− c

(1),im
n,j eα

re

j t sin(αim
j t)

+ c̃
(1),re
n,j e−α

re

j t cos(−aimj t)− c̃
(1),im
n,j e−α

re

j t sin(−αim
j t).
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Remark 5. In Section 4.1 and 4.2 we will state explicit representations of φ for n = 0, 1. In this
case the above formula simpli�es considerably. We get

L−1
re

(
R

(1)
0

)
(t) = 0

and

L−1
re

(
R

(1)
1

)
(t) =

1

2

(
e−t− et

)
= − sinh(t). (4.8)

For larger n the arising coe�cients from the inversions can be easily computed with computer al-
gebra systems (see https: // www. math. uzh. ch/ compmath/ ?exactsolutions for a MATLAB
implementation).

For the computation of L−1
(
R

(2)
n,k

)
we use the time shifting property of the Laplace transfor-

mation. We employ the Heaviside step function

H(t) =

{
0 t ≤ 0,
1 t > 0,

to obtain

L−1
(
R

(2)
n,k

)
(t) = L−1

(
θn(s)k

θn(−s)k
e−2ks

)
(t) = H(t− 2k)L−1

(
θn(s)k

θn(−s)k

)
(t− 2k)

= (−1)nkδ(t− 2k)H(t− 2k) +

n∑
i=1

k∑
j=1

c
(2)
n,k,j,iH(t− 2k)(t− 2k)j−1 e−αi(t−2k)

with some complex coe�cients c
(2)
n,k,j,i = c

(2),re
n,k,j,i + i c

(2),im
n,k,j,i. For the real part of L−1

(
R

(2)
n,k

)
we

get:

L−1
re

(
R

(2)
n,k

)
(t) = (−1)nkδ(t− 2k)H(t− 2k) (4.9)

+

n∑
i=1

k∑
j=1

c
(2),re
n,k,j,iH(t− 2k)(t− 2k)j−1 e−α

re

i (t−2k) cos
(
−αim

i (t− 2k)
)

−
n∑
i=1

k∑
j=1

c
(2),im
n,k,j,iH(t− 2k)(t− 2k)j−1 e−α

re

i (t−2k) sin
(
−αim

i (t− 2k)
)
.

For the inverse Laplace transform of R
(3)
n,k we use again the shift property and get

L−1
(
R

(3)
n,k

)
(t) = L−1

(
θ̃2n−1(s)θn(s)k−1

θn(−s)k+1
e−2ks

)
(t)

= H(t− 2k)L−1

(
θ̃2n−1(s)θn(s)k−1

θn(−s)k+1

)
(t− 2k)

= H(t− 2k)

 n∑
i=1

k∑
j=1

c
(3)
n,k,j,i(t− 2k)j e−αi(t−2k)

 .
The real part of L−1

(
R

(2)
n,k

)
can therefore be written as

L−1
re

(
R

(3)
n,k

)
(t) =

n∑
i=1

k∑
j=1

c
(3),re
n,k,j,iH(t− 2k)(t− 2k)j e−α

re

i (t−2k) cos
(
−αim

i (t− 2k)
)

(4.10)

−
n∑
i=1

k∑
j=1

c
(3),im
n,k,j,iH(t− 2k)(t− 2k)j e−α

re

i (t−2k) sin
(
−αim

i (t− 2k)
)
.
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Figure 4.1: Complex zeros of θ10(s), θ15(s) and θ20(s).

With these formulas for L−1
re

(
R

(1)
n

)
,L−1

re

(
R

(2)
n,k

)
and L−1

re

(
R

(3)
n,k

)
it is now possible to invert the

remaining term in (4.6). Inserting this in (4.4) leads to explicit formulas for the exact solution
φ(t).

Note that the complex zeros of θn(s) are located in left half plane of R2, i.e., −αre
i > 0 for

any i and n (cf. Figure 4.1, [20]). The representations of φ(t) that we will derive, have therefore
to be handled with care when being evaluated numerically because they contain exponentially
increasing functions which cancel each other and the behaviour of the �nal solution typically is
bounded and oscillatory.

4.1 The case n = 0

For n = 0 the eigenfunctions in (4.2) are constant. We are therefore in the case where

g(x, t) := 2
√
πY 0

0 g(t) = g(t)

is purely time-dependent. This case was already treated in [5] and an explicit representation
of φ(t) in (4.4) was given for t ∈ [0, 2[. We generalize this to t ≥ 0. Therefore note that the
associated eigenvalue in this case is given by

λ0(s) =
1− e−2s

2s

and from the above computations we can see that

L
(

1

λ0

)
(t) = 2δ′(t) + 2∂t

( ∞∑
k=1

δ(t− 2k)H(t− 2k)

)
.
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Therefore the exact solution in this simple case is given by

φ(t) =

∫ t

0

g(t− τ)

[
2δ′(τ) + 2∂τ

( ∞∑
k=1

δ(τ − 2k)H(τ − 2k)

)]
dτ

= 2g′(t) + 2

∞∑
k=1

∫ t

0

g(t− τ)∂t (δ(τ − 2k)H(τ − 2k)) dτ

= 2g′(t) + 2

∞∑
k=1

g′(t− 2k)

= 2

bt/2c∑
k=0

g′(t− 2k) (4.11)

due to the causality of g. Figure 4.2 shows a typical behaviour of φ(t). Note the oscillatory,
non-decaying shape of the solution for larger times t. This is due to the fact that in indirect
methods φ(t) is the trace di�erence of the solution of the exterior and the solution of the interior
wave equation. The latter is determined by the many re�ections inside the sphere and therefore
causes the oscillations in the solution.

Figure 4.2: Exact solution φ(t) of (4.3) with n = 0 for g(t) = t4e−2t and g(t) = sin(2t)2te−t.

A closer look at Figure 4.2 suggests that φ(t) becomes a very regular function for large times.
Indeed it can be shown that φ(t) tends to a periodic function for su�ciently fast decaying right-
hand sides g(t). In order to see that we set

t = 2l + τ τ ∈ [0, 2[, l ∈ N0

and get

φ(2l + τ) = 2

l∑
k=0

g′(2k + τ).

Suppose that g(t) satis�es

g(0) = g′(0) = 0, (4.12)

|g′(t)| ≤ C t−α, (4.13)

for t > 0 with α > 1 and a positive constant C . With these assumptions, the following Lemma
holds.

12



Lemma 6. Let (4.12) and (4.13) be satis�ed. Then the sequence of functions {φ(2l + τ)}l∈N0

converges uniformly to a function f(τ) : [0, 2[→ R.

Proof. Let ε > 0. Since α > 1, we �nd N ∈ N such that

m∑
k=l+1

(2k + 2)−α <
ε

2C

for all m > l > N . Thus,

|φ(2m+ τ)− φ(2l + τ)| ≤ 2

m∑
k=l+1

|g′(2k + τ)| ≤ 2C

m∑
k=l+1

(2k + τ)−α

≤ 2C

m∑
k=l+1

(2k + 2)−α ≤ ε

for all m > l > N and therefore the uniform convergence.

Corollary 7. The limit function f(τ) is continuous and satis�es

f(0) = lim
τ→2

f(τ).

The solution of the scattering problem therefore tends to a periodic function for large times for
every right hand side satisfying (4.12) and (4.13).

Proof. f(τ) is continuous since the uniform limit of continuous functions is continuous. Further-
more,

lim
τ→2

f(τ) = lim
τ→2

lim
n→∞

φ(2n+ τ) = lim
n→∞

lim
τ→2

φ(2n+ τ) = lim
n→∞

φ(2n+ 2) = f(0)

again due to the continuity of φ.

Let us suppose now that g(t) is of the form

g(t) = v(t) e−αt with v(t) = t2p(t), (4.14)

where p ∈ Pq is a polynomial of degree q. In this case we can compute the limit function f(τ)
explicitly. Let the constant cm be de�ned as

cm :=
v(m+1)(0)− αv(m)(0)

m!
.

Expanding v(t) and v′(t) about 0 leads to

φ(2l + τ) = 2

l∑
k=0

[v′(2k + τ)− αv(2k + τ)] e−ατ−2αk

= 2

l∑
k=0

[
q∑

m=1

cm(2k + τ)m

]
e−ατ−2αk

= 2 e−ατ
q∑

m=1

l∑
k=0

cm(2k + τ)m e−2αk

= 2 e−ατ
q∑

m=1

l∑
k=0

cm

 m∑
j=0

(
m

j

)
τm−j(2k)j

 e−2αk
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= 2 e−ατ
q∑

m=1

m∑
j=0

2j
(
m

j

)
cmτ

m−j
l∑

k=0

kj e−2αk

︸ ︷︷ ︸
=:Rl,j,α

.

We are interested in φ(t) for large times t. Therefore we need an expression for Rl,j,α when l
tends to in�nity.

Lemma 8. Let j ∈ N and α ∈ R>0 be �xed. Then

∞∑
k=0

kj e−2αk =

j∑
m=0

m∑
q=0

(−1)m−q qj
(
j+1
m−q

)
e2α(j−m+1)

(e2α−1)j+1
.

Proof. Since we want to compute liml→∞Rl,j,α, we assume that l ≥ j. We get[
l∑

k=0

kj e−2αk

]
(e2α−1)j+1 =

l∑
k=0

j+1∑
q=0

(−1)j−q+1kj
(
j + 1

q

)
e−2α(k−q)

=

−1∑
m=−(j+1)

j+1∑
q=−m

(−1)j+1−q(q +m)j
(
j + 1

q

)
e−2αm

+

l−j−1∑
m=0

j+1∑
q=0

(−1)j+1−q(q +m)j
(
j + 1

q

)
e−2αm

+

l∑
m=l−j

l−m∑
q=0

(−1)j+1−q(q +m)j
(
j + 1

q

)
e−2αm .

The second double sum in the last term is zero since for any polynomial p of degree less than j
the equation

j∑
q=0

(−1)qp(q)

(
j

q

)
= 0

holds. Therefore[
l∑

k=0

kj e−2αk

]
(e2α−1)j+1 =

−1∑
m=−(j+1)

j+1∑
q=−m

(−1)j+1−q(q +m)j
(
j + 1

q

)
e−2αm

+

0∑
m=−j

−m∑
q=0

(−1)j+1−q(q + l +m)j
(
j + 1

q

)
e−2α(l+m) .

Now we can pass to the limit for l→∞ where the second double sum vanishes. After a reordering
of the terms we get[ ∞∑

k=0

kj e−2αk

]
(e2α−1)j+1 =

j∑
m=0

m∑
q=0

(−1)m−qqj
(
j + 1

m− q

)
e2α(j−m+1) .

Dividing by (e2α−1)j+1 leads to the desired result.

If we assume a right-hand side of the form (4.14) we get by Lemma 8 that

φ(2l + τ) −→
l→∞

f(τ) τ ∈ [0, 2[, (4.15)
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where f is given by

f(τ) = 2 e−ατ
q∑

m=1

m∑
j=0

c̃m,j,ατ
m−j (4.16)

and

c̃m,j,α = cm

j∑
k=0

k∑
q=0

(−1)k−q(2q)j
(
m

j

)(
j + 1

k − q

)
e2α(j−k+1)(e2α−1)−j−1.

With Lemma 8 it is also possible to show that the convergence in (4.15) is exponentially fast in
l up to a polynomial factor if g(t) is decaying exponentially.

Lemma 9. Suppose that g(t) is of the form

g(t) = v(t) e−αt (4.17)

with α > 0, where v(t) is a continuous function satisfying

v(0) = v′(0) = 0,

|v(t)| ≤ C1 t
p1 ,

|v′(t)| ≤ C2 t
p2 ,

for some p1, p2 ∈ N and positive constants C1 and C2. For l ≥ max{p1, p2} we have

sup
τ∈[0,2[

|f(τ)− φ(2l + τ)| ≤ p(l + 1) e−2α(l+1),

where p is a polynomial of degree max{p1, p2} and f is as in Lemma 6.

Proof. From the proof of Lemma 8 it follows

∞∑
k=l+1

kj e−2αk ≤ lj e−2αl
0∑

m=−j

−m∑
i=0

(
j+1
i

)
e−2αm

(e2α−1)j+1︸ ︷︷ ︸
=:cα,j

for l ≥ j. Then we get

|f(τ)− φ(2l + τ)| ≤ 2

∞∑
k=l+1

|g′(2k + τ)|

= 2

∞∑
k=l+1

|u′(2k + τ)− αu(2k + τ)| e−ατ−2αk

≤ 2 e−ατ

( ∞∑
k=l+1

|u′(2k + τ)| e−2αk +

∞∑
k=l+1

α|u(2k + τ)| e−2αk

)

≤ 2 e−ατ

( ∞∑
k=l+1

C2 (2k + τ)p2 e−2αk +

∞∑
k=l+1

αC1 (2k + τ)p1 e−2αk

)

≤ C22p2+1
∞∑

k=l+1

(k + 1)p2 e−2αk +αC12p1+1
∞∑

k=l+1

(k + 1)p1 e−2αk

= C22p2+1 e2α
∞∑

k=l+2

kp2 e−2αk +αC12p1+1 e2α
∞∑

k=l+2

kp1 e−2αk

≤
[
C22p2+1cα,p2(l + 1)p2 + αC12p1+1cα,p1(l + 1)p1

]
e−2α(l+1)

for arbitrary τ ∈ [0, 2[.
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4.2 The case n = 1

In the case of linear eigenfunctions in (4.2) the representation of the solution φ(t) becomes more
complicated than in the previous case. For n = 1 the eigenvalue is given by

λ1(s) =
−θ1(−s)θ1(s) + θ2

1(s) e−2s

2s3

where
θ1(s) = s+ 1.

Note that λ1has one real zero namely α1 = −1. With the above computations we get

L−1

(
θ̃0(s)− θ1(s)2 e−2s

θ1(−s)θ1(s)− θ1(s)2 e−2s

)
(t)

(4.7)
= L−1

(
R

(1)
1

)
(t) +

∞∑
k=1

(
−L−1

(
R

(2)
1,k

)
(t) + L−1

(
R

(3)
1,k

)
(t)
)

(4.8)
= − sinh(t)

(4.9)
−

∞∑
k=1

(−1)kδ(t− 2k)H(t− 2k)−
∞∑
k=1

k∑
j=1

c
(2),re
1,k,j,1H(t− 2k)(t− 2k)j−1 et−2k

(4.10)
+

∞∑
k=1

k∑
j=1

c
(3),re
1,k,j,1H(t− 2k)(t− 2k)j et−2k

= − sinh(t) +

∞∑
k=1

(−1)k+1δ(t− 2k)H(t− 2k)

+

∞∑
k=1

 k∑
j=1

(
c
(2)
k,j + c

(3)
k,jt− c

(3)
k,j2k

)
(t− 2k)

j−1
et−2k

H(t− 2k),

where
c
(2)
k,j := c

(2),re
1,k,j,1 and c

(3)
k,j := c

(3),re
1,k,j,1.

With the formulas in [14, Sec 5.2] we obtain the following explicit expressions for these constants:

c
(2)
k,j = (−1)k+1

j−1∑
m=0

(1− (−1)j−m)k!

(j − 1)!m!(k − j)!(j −m)!
and

c
(3)
k,j = (−1)k+1 2j−1(k − 1)!

(j − 1)!j!(k − j)!
,

where we used
(1 + s)k

(1− s)k
= (−1)k +

∑k−1
i=0

(
k
i

)
(−1)k(1− (−1)k−i)si

(s− 1)k

in order to compute c
(2)
k,j . With (4.6) and (4.4) we therefore get for the solution

φ(t) =

∫ t

0

g(t− τ)L−1

(
1

λ1

)
(τ)dτ

= 2g′(t)− 2

∫ t

0

(
− sinh(τ) +

∞∑
k=1

(−1)k+1δ(τ − 2k)H(τ − 2k)

+

∞∑
k=1

k∑
j=1

(c
(2)
k,j + c

(3)
k,jτ − c

(3)
k,j2k)(τ − 2k)j−1 eτ−2kH(τ − 2k)

 g′(t− τ)dτ
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= 2g′(t) + 2

bt/2c∑
k=1

(−1)kg′(t− 2k) + 2

∫ t

0

sinh(τ)g′(t− τ)dτ

− 2

∞∑
k=1

k∑
j=1

∫ t

0

(c
(2)
k,j + c

(3)
k,jτ − c

(3)
k,j2k)(τ − 2k)j−1 eτ−2kH(τ − 2k)g′(t− τ)dτ

= 2

bt/2c∑
k=0

(−1)kg′(t− 2k) + 2

∫ t

0

sinh(τ)g′(t− τ)dτ

− 2

bt/2c∑
k=1

k∑
j=1

∫ t

2k

(c
(2)
k,j + c

(3)
k,jτ − c

(3)
k,j2k)(τ − 2k)j−1 eτ−2k g′(t− τ)dτ. (4.18)

Figure 4.3 shows solutions for di�erent right-hand sides g(t). As for the case n = 0 we have an
oscillatory behaviour for larger times t which is again due to shape of the solution of the interior
wave problem. Similar properties of these solutions as before could not be observed i.e. in general
φ(t) does not seem to adopt a simple periodic pattern as time evolves.

Figure 4.3: Exact solution φ(t) of (4.3) with n = 1 for g(t) = t4e−2t and g(t) = sin(2t)2te−t.

5 Numerical experiments

In this section we present the results of numerical experiments. We �rst want to verify the
sharpness of Lemma 9 for di�erent right hand sides g. Let

g1(t) = t4 e−2t, g2(t) = t2 e−2t,

g3(t) = t sin(t) e−t, g4(t) =
1

4
t sin(5t) e−t,

and denote by φj , j ∈ {1, 2, 3, 4} the corresponding solutions of the boundary integral equation.
Let fj : [0, 2[→ R, j ∈ {1, 2, 3, 4} be the limit functions corresponding to these solutions as in
Lemma 6. We de�ne the errors

errj(l) := ‖fj(·)− φj(2l − ·)‖L∞([0,2[), j ∈ {1, 2, 3, 4}

and illustrate the convergence in Figure 5.1 and 5.2. As predicted by Lemma 9 the solutions
converge in all cases exponentially fast against the corresponding limit functions due to the
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Figure 5.1: errj(l) for j = 1, 2, 3, 4. Figure 5.2: Log-log scale plot of e4(l+1) ·errj(l)
for j = 1, 2.

exponential decay of the right-hand sides. Since the degree of the increasing polynomial factor in
g1 is higher than in g2 the error err1 decays slower than err2 by a polynomial factor (cf. Figure
5.2). The cases g3 and g4 indicate that more oscillatory right-hand sides (and therefore more
oscillatory solutions) do not lead to a slower convergence rate if the decay behaviour of these
functions is the same.

We now turn our attention on the approximation of φ in (4.3) by a Galerkin method using
the basis functions bi de�ned in Section 3 (cf. [28] for details). We compute approximations of
the form

φS =

Np∑
i=1

αibi, αi ∈ R, i = 1, . . . , Np, (5.1)

where the number of basis function Np depends on the number of timesteps and the degree p of
the local polynomial approximation spaces used. We measure the resulting error, φ− φS , in the
L2(0, T ) norm.
Figure 5.3 shows the exact solutions of problem (4.3) for g(t) = t4 e−2t and n = 2, 3. They were
computed using the formulas derived in the last section. Figure 5.4 shows the error that results
from approximating these solutions by functions of the form (5.1). In this case we computed
approximations in the time interval [0, 6] using equidistant time steps and local polynomial ap-
proximation spaces of degree p = 0, i.e., the approximations are simply linear combinations of
the partition of unity functions de�ned in Section 3. In both cases a convergence order of N−1 is
obtained, where N is the number of timesteps.
In order to obtain a higher convergence order we use local polynomial approximation spaces
of degree p = 1 to approximate the solutions shown in Figure 5.5 for the right-hand side
g(t) = t2 sin(t)2 e−t and n = 2, 3. Figure 5.6 shows the again the error ‖φ − φS‖L2(0,6) for
di�erent numbers of timesteps. As expected, the convergence is quadratic in this case.

6 Conclusion

We considered retarded boundary integral formulations of the three-dimensional wave equation
in unbounded domains. We formulated an algorithm for the space-time Galerkin discretization
using the smooth and compactly supported temporal basis function developed in [28]. In order
to test these basis functions numerically we derived explicit representations of the exact solutions
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Figure 5.3: Exact solution φ(t) of (4.3) for
g(t) = t4 e−2t and n = 2, 3.

Figure 5.4: ‖φ − φS‖L2(0,T ) for T = 6, g(t) =

t4 e−2t and n = 2, 3, where local polynomial ap-
proximation spaces of degree p = 0 were used.

Figure 5.5: Exact solution φ(t) of (4.3) for
g(t) = t2 sin(t)2 e−t and n = 2, 3.

Figure 5.6: ‖φ − φS‖L2(0,T ) for T = 6, g(t) =

t2 sin(t)2 e−t and n = 2, 3, where local polynomial
approximation spaces of degree p = 1 were used.
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of the integral equations in the case that the scatterer is the unit ball in R3 and special Dirichlet
boundary conditions have to be satis�ed. Furthermore we showed some analytic properties of
these solutions in the case that the right-hand side is purely time-dependent.
The implementation of the obtained formulas is simple since only the right-hand side, its �rst
derivative with respect to time and, depending on n, numerical quadrature is needed for the
numerical evaluation. They can therefore serve as reference solutions in order to test numerical
approximations schemes.
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