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Abstract

In this paper� we de�ne a new class of conforming �nite elements for the ap�
proximation of functions in H�

� ���� In contrast to standard �nite elements� the
approximation property can be proved without any restrictions on the �mini�
mal� dimension of these so�called composite �nite element spaces also for very
complicated domains� Therefore� this class of �nite elements can be used for
coarse�level discretizations of PDEs on complicated domains�

� Introduction

In ���� a new class of �nite elements for the discretization of partial di�erential equa�
tions on complicated domains has been introduced� Such kinds of problems typically
arise in environmental modelling� porous media� modelling of complicated technical
engines� etc� In principle� these problems can be treated with standard �nite elements
as well� However� the usual requirement� namely� that the �nite element grid has to
resolve the boundary makes a coarse�scale discretization impossible� Every reasonable
discretization will contain a huge number of unknowns being directly linked to the
number of geometric details of the physical domain� On the other hand� the e�ciency
of many numerical solvers� e�g�� multi�grid methods� extrapolation� and wavelets are
based on a multi�scale discretization of the domain containing low�dimensional levels
as well�

The composite �nite elements introduced in ��� allow coarse�level discretizations of
partial di�erential equations� where the minimal number of unknowns is independent
of the number and size of geometric details� For functions in Hk 	
�� the approxima�
tion property is proved in an analogue generality as established for standard �nite
elements 	see ���� ���� �
����

Here� we will introduce composite �nite elements for problems with Dirichlet
boundary conditions� To be more concrete� the aim of this paper is to set up a
family of �nite elements which satisfy the approximation property for functions in






Hk 	
� � H�
� 	
�� where the domain 
� possibly� has a complicated boundary� The

minimal dimension of this �nite element space will be independent of the size and
number of geometric details�

� Composite Finite Elements

The de�nition of composite �nite elements is based on a sequence of grids� In contrast
to standard �nite element grids� only the �nest grid has to resolve the boundary� On
the �nest grid� the composite �nite element space coincides with the usual �nite
element space� All lower dimensional spaces are subspaces of the �ne grid space� The
de�nition of these subspaces is based on the principle that values at coarse grid points
are prolonged to values at the nodal points of the �nest grid� The nodal interpolation
of these �ne grid values de�nes a function of the coarse grid space�

In the next section� we will de�ne composite �nite element grids�

��� Composite Finite Element Grids

To explain the principle ideas we avoid at this point the most general de�nition of
composite �nite element grids and will explain more general situations at the end
of this chapter� In this light� we assume that 
 � R

� is a polygonal domain with
boundary � �� �
� The de�nition of composite �nite element grids consists of three
steps�

	
� In the �rst step� a hierarchy of reference grids will be de�ned� The domain 

has to be contained in the domain covered by the grids but it is not required that
the boundary � is resolved� To indicate that a quantity belongs to the reference grid
we will use a e�

	�� In the second step� the �nest grid will be adapted to the boundary by moving
�ne grid points� lying close to �� onto the boundary� The arising grids and quantities
will be indicated by a superscript ��

	�� Finally� we remove all triangles lying outside the domain from the grids�

We come now to the formal de�nition 	see Figure 
�� As reference grids� we use a
sequence of uniform triangulations of R�� To be more concrete� consider the following

partition of the unit square T � � The translates and dilations are denoted by
Tx�h �� h 	x� T �� For � � N�� let �h� �� ���� The grid ��� is given by the partition of
R
� into Tx��h� where x are the Cartesian grid points Z�� The set of vertices of ��� is

denoted by ���� Throughout this paper triangles are always considered as open sets�
These grids are logically and physically nested� i�e�� for each �K � ���� there exist

���
���� members �K � � ���� � �� � �� satisfying

�K � � �K�

This property motivates the de�nition of a parent�child relation�

�
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Figure 
� Grid generation� We start with the uniform reference grid on the �nest
level ���max

� Grid points lying close to the boundary are moved onto �� This results
in the intermediate grid ���max

� Rejecting all elements lying 	essentially� outside the
domain 	indicated with a black dot� results in the composite �nite element grid ��max

�

De�nition � For �K � ���� the set of children of �K on level �� � � is denoted by
��

�

�

�
�K
�
and de�ned by

��
�

�

�
�K
�
��

n
�K � � ���� j �K � � �K

o
�

On the other hand� the parent of an element �K � � ���� on a coarser level � � �� is
denoted by f ���

�
�K �
�
and de�ned by

f ���
�
�K �
�
� �K � �K � � ��

�

�

�
�K
�
�

These reference grids ��� will now be adapted to the domain in the following way�
Grid points of the �nest grid lying close to the boundary � are moved onto �� For
an element �K � ���� the set of edges is denoted by E	 �K�� We formulate the adaption
algorithm in a pseudo�computer language� For this� let tol � � be a user�speci�ed
tolerance re�ecting the size of the geometric details of 
 which have to be resolved by
the grid� Choose �max such that �h�max

� tol holds� Then� the adaption is performed
by the procedure adapt�

procedure adapt�
begin

for all �K � ���max
do for all �e � E

�
�K
�
do

if �e � �
 �� � then
replace one of the endpoints of �e by an appropriate boundary point�

end�

�



At this point we are not very precise which endpoint of �e is preferably moved onto
the boundary and which boundary point has to be picked for replacing the endpoint�
The reason is that this algorithm was already presented in ��� and �
�� 	cf� Figure ���
Here� the main concern is the de�nition of the �nite element spaces on these grids for
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Figure �� First line� Replacement of x� by z� leads to more favorable interior angles
of the arising triangles than replacement of x� by z�� Second line� Replacement by
the closest boundary point 	z�� � might result in better triangles than replacement by
the intersection point z�� � e � ��

problems with Dirichlet boundary conditions�
We emphasize that the procedure adapt also changes the shape of coarse grid

triangles� If� e�g�� a point �x � ���max
� ��� is replaced by a point x�� then� �x has to

be interchanged by x� on the coarse grid as well� The resulting grids are denoted by
��� � � � � � �max� The movement of grid points de�nes a mapping �� � R�	 R

� by
the following conditions


� If a grid point �x � ��� is replaced by x� we put �� 	x�� � �x� if �x remains
unchanged we put �� 	�x� � �x�

�� For all K� � ��� � the restriction �� jK� is a�ne�linear�

For the proof of the approximation property� we have to make appropriate as�
sumptions on the compatibility of ��� and ��� � This can conveniently be expressed
by assumptions on the mappings ��� However� for the de�nition of composite �nite
elements� these assumptions are not essential and therefore postponed to Chapter
�� Although the grid ��� is no longer physically nested� we adopt the parent�child�
relation from the reference grids�

�
j
� 	K

�� �� ���
j �

j
��� 	K

�� ��
n
���
j

�
�K �
�
� �K � � �

j
� 	�� 	K

���
o
�

�



The composite �nite element grids are now de�ned by rejecting all elements lying
outside the domain 
 �

�� �� fK � ��� j K � 
 �� �g � 	
�

The parent�child relation of the grid ��� is adopted to �� by

�
j
� 	K�
 �

j
� 	K� � �j �

The domain 
 was assumed to be polygonal� hence� the following assumption can
be interpreted as an assumption on the size of �h�max

and on the mapping �� which
describes the movement of grid points� Throughout this paper� we assume that


�max
� 


holds� This completes the de�nition of composite �nite element grids� In the next
section� we will de�ne composite �nite element spaces on these grids�

��� Composite Finite Element Spaces

First� we recall the de�nition of 	standard� �nite element spaces� Let �� be a con�
forming triangulation� i�e�� two elements K� K � either coincide or the intersection
K �K � is either empty� a common edge� or a common point� Then� the 	standard�
�nite element space is given by

S� �� fu � C 	
�� j �K � �� � u jK is a�ne�linearg �
The nodal basis corresponding to a grid point y � �� is denoted by ��

y �

��
y � S��

��
y 	x� �

�

 if x � y�

� if x � ��n fyg �
The composite �nite element space can be regarded as an adaption of the space S� to
the boundary� On the �nest grid� the assumption 
�max

� 
 motivates the following
de�nition

SCFE
�max

�� S�max
�H�

� 	
� �

All coarse�level spaces SCFE
� will be subspaces of the �ne grid space SCFE

�max
� The

de�nition of appropriate prolongation operators I�max�� � S� 	 SCFE
�max

will play the key
role for the de�nition of SCFE

� �

De�nition � Let a suitable operator I�max�� � S� 	 SCFE
�max

be given� Then� the com�
posite �nite element space for the approximation of functions with zero traces is de�
�ned by

SCFE
�max

�� S�max
�H�

� 	
� � for � � �max

and� for � � �max� by

SCFE
� �� Range 	I�max��� � fu � C 	
� j �u� � S� � u � I�max�� �u��g � 	��

�



The rest of this section is concerned with the de�nition of an appropriate prolon�
gation operator I�max��� It turns out that the de�nition of I�max�� can be reduced to
the de�nition of single�step prolongations I����� � S� 	 S���� For i � �� we de�ne the
multi�step 	or iterated� prolongation Ii�� by the composition�

Ii�� � Ii�i��Ii���i�� 
 
 
 I������ 	��

Formally� we de�ne I��� as the identity operator� We distinguish two cases� In the
interior of the grid ��� the operator I����� will be nothing but the standard nodal
interpolation 	see 	���� However� near the boundary� I����� has to be modi�ed such
that zero boundary conditions are satis�ed 	at least on the �nest grid ��max

�� To
measure the distance of an element K � �� from the boundary we de�ne a special
distance function by counting the minimal numbers of elements necessary to connect
the boundary and K� The formal de�nition is given below and illustrated in Figure
��

K

ω
L1

L2

L3

Figure �� Layers around a set 	� The elementwise distance of K and 	 is dist� 	K�	��

De�nition � For a set T of triangles� we de�ne the domain covered by the triangles
of T by

domT � int
�
K�T

K�

where int 	M� denotes the interior of a set M � Let 	 � R�� For i � N�� we de�ne
layers Li

T 		� � T around 	 via the recursion�

L�
T 		� � �

n
K � T j K � 	 �� �

o
�

Li��
T 		� � � L�

T

�
domLi

T 		�
�
�

�



The elementwise distance of two subset 	�� 	� � domT is de�ned by

distT 		�� 	�� �� min
n
i � 	� � domLi

T 		�� �� �
o
�

We emphasize that� in practical implementations� it is a much simpler task to
compute the elementwise distance of two sets compared to the computation 	or ap�
proximation� of the Euclidean distance of the sets� Furthermore� it turns out that�
for the local analysis of the approximation error� it is essential to work with the
elementwise distance to include adaptive re�nement�

For the de�nition of I������ we have to specify �rst appropriate subsets of �� 	see
Figure ���

Figure �� 
 is the square indicated by the blue boundary� The triangles on level
� � �max � � are depicted with black� the triangles on level � � 
 with red lines� The
light shaded region shows the near�boundary grid ������ The triangles of �� in the
light and dark shaded region form the grid �P� being close to ������ The green shaded
triangles form a maximal independent set � ext� of �P� �

De�nition � Let �� be a composite �nite element grid as de�ned in the previous

section �see ����� The �near�boundary grid	 ��� and the �interior grid	
�
� � are de�ned

by
��� � �� � Lb�

� 	�� � 
�
� �� dom ��� � ��

� �� �� � 
�
� �

�
� ��� ��n��� �

�


��� dom
�
� ��

�

���� ��n��
�

	��

with
b� � 
� 	��

�



The grid �P� contains those coarse grid triangles which lie �close	 to the near�boundary
grid of the �ner level�

�P� ��
n
K � ��� j dist�����

�
K�
�

���

�
� 


o
	��

and � ext� is a maximal independent subset of �P� � �

� ext� �� argmax
n
�� � � � �P� j �K�K � � �P� � either K � K � or K �K � � �

o
�

Let� in the following� u� � S� be a standard �nite element function� We will de�ne
the operator I����� by explaining how the function u����� � I����� �u�� is computed�

First� the nodal values fu����� 	y�gy�����
will be assigned� Then� the nodal inter�

polation of these values de�nes the function u������

u����� 	x� �
X
y���

u����� 	y��
���
y 	x� � x � 
���� 	��

For y � �

����� we simply evaluate the function u� at the �ne grid point y�

u����� 	y� � u� 	y� � 	��

The computation of the values at the remaining grid points y � ��
��� is more involved

and split into the following steps�


� To each grid point y � ��
��� we assign a coarse grid triangleK � �� lying �close 

to y�

�� To each grid point y � ��
���� we assign a point y� � � having minimal element�

wise distance from y�

�� Let uextK be the analytic 	natural� continuation of u jK onto R�� Then� we put

u����� 	y� � uextK 	y�� uextK 	y�� � 	!�

�� For � � 
 � �max� we set u����� 	y� � � for all y � ��max
� ��

The choice of the coarse grid triangle lying close to y 	cf� Step 
� is the essential
step in this algorithm� The formal de�nition is given below 	see Figure ���

�If there are several elements x � M maximizing a functional F � M � R� then�
argmaxfF �x� � x �Mg is one arbitrary but �xed maximizer� The function argmin is de�ned anal�
ogously�

�



Figure �� Prolongation from �� to ����� A detail of the near�boundary grids is de�
picted� The green triangles correspond to the grids � ext� � � ext���� The blue arrows
represent the function 
������ while the red arrows illustrate the function ����� � The
function 
���� is the composite mapping ����� � 
�������

De�nition � The auxiliary function ����� � ����� 	 � ext� de�ned by

����� 	K
�� � argmin

K��ext
�

dist��
���

	K ��K� � �K � � ������

The function which maps a grid point x � ��
��� onto a coarse grid element �cf� Step

�� is denoted by 
���� � ��
��� 	 � ext� and de�ned by the following procedure� For later

purpose� an auxiliary function 
������ � ��
��� 	 ����� is de�ned� too� Let V 	K� denote

the set of vertices of K�

procedure de�ne 
�
begin

for all y � ��
��� do 
���� 	y� �� undefined�

for all K � � � ext��� do for all y � V 	K �� do begin


���� 	y� �� ����� 	K
�� �
������ 	y� �� K �
end�

for all K � � �����n� ext��� do for all y � V 	K �� do
if 
���� 	y� � undefined then begin


���� 	y� �� ����� 	K
�� �
������ 	y� �� K �
end

end�

It remains to de�ne the function needed in Step � which assigns a closest boundary
point to a grid point y � ��

����

De�nition � The function �� maps a subset 	 � 
� to a closest boundary point
with respect to the elementwise distance� Let i � dist��

�
	�� 	�� Then �� 		� � � is a

boundary point satisfying

dist��
�

�
�� 		� � 	

�
� i if i � 
�

dist
�
�� 		� � 	

�
� dist 	�� 	� if i � 
�

!



For K � ��� we write �K short for �� 	K� and� for y � ��� �y instead of �� 	y� if
no confusion is possible�

Now� we have all ingredients for the formal de�nition of the single�step prolonga�
tion operator I����� 	cf� Figure ��� We use the following notations� Let u� � S�� For

Ω

KK'K'γ( )

v
v K

ext

v +1,

Figure �� Prolongation operator� The function v� on the coarse�level element K is
extended linearly on K � and the constant boundary value vext��K 	�K�� is subtracted�

K � ��� the analytic extension of the a�ne�linear function u� jK is denoted by uextK �
For y � ��

���� we put Ky � 
���� 	y� and K �
y � 
������ 	y� � The prolonged function is

denoted by u����� � I����� �u�� where I����� is de�ned in the following de�nition�

De�nition � For y � ����� we set

y� ��

�
�y if � � 
 � �max and K �

y � � �� ��
�K�

y
otherwise

	
��

and

u����� 	y� �

��� u� 	y� if y � �
�����

uextKy
	y�� uextKy

	y�� otherwise�
	

�

The nodal interpolation of fu����� 	y�gy�����
on ���� de�nes the continuous function

u����� �
u����� 	x� �

X
y�����

u����� 	y��
���
y 	x� � x � 
����

Remark � We use the same notation as in the previous de�nition� Let y � ��
����

We assume � � 
 � �max and K �
y � � �� �� Since u� jKy is a�ne�linear� the gradient

on Ky is constant and denoted by g� Then� the value u����� 	y� can be rewritten as

u����� 	y� � hg� y � �yi � 	
��

The function value u����� 	y� depends linearly on the values of u� 	z�z�V�Ky�
� An alge�

braic manipulation yields the formula

u����� 	y� �
X

z�V�Ky�


z 	y�u� 	z�


�



with


z 	y� �
det �y � �y� z� � z��

det �z � z�� z� � z��
�

where z�� z� z� denote the vertices of Ky� Having computed the three values 
z 	y� for
each grid point y � ����� the evaluation of I����� requires only � operations per grid
point�

Remark � The de�nition of the composite �nite element space implies that the
spaces SCFE

� are nested�
SCFE
� � SCFE

��

for all �� � �� Furthermore� the inclusion SCFE
� � H�

� 	
� holds �cf� ��
���

The shape of a typical basis function is illustrated in Figure ��

Figure �� Basis function for problems with Dirichlet boundary conditions

In the rest of this chapter� we will explain how to extend the de�nitions above to
more general situations�

	a
 Higher approximation order�

Instead of linear elements� composite �nite elements can be de�ned by using
higher polynomial orders as well� Then� the de�nition is related to the standard
�nite element space of order p �

S� �� fv � C 	
�� j �K � �� � v jK� Ppg �
where Pp is the space of polynomials in two variables of total degree p� The set
of grid points �� has to be rede�ned as the set of unisolvent nodal points� i�e�� the
interpolation problem of seeking u � S� such that

u 	x� � f 	x� � x � ��

has a unique solution for any continuous function f � C
�

�

�
� Using these notations�

the de�nitions above de�ne the composite �nite element space of order p with the







exception that� in De�nition �� the function uextK is no longer a�ne�linear but the
analytic 	natural� extension of the polynomial u� jK� Obviously� Remark 
 applies
only to the case of linear composite �nite elements�

	b
 Non�uniform reference grids and adaptive re�nement

We have never used the fact that the reference grids ��� are uniform� Instead�
one could start with an arbitrary 	conforming� �nite element grid ��� satisfying 
 �
dom ���� This grid can now be re�ned step by step by any nested re�nement strategy
including adaptivity� Since the arising hierarchy of grids will still be used as reference
grids we assume that these grids as well as the triangles are again physically and
logically nested� This requires that during the re�nement of the reference grids no
grid points will be moved onto the boundary� Afterwards� the adaption is again
performed by moving grid points of the �nest reference grid which lie close to the
boundary onto the boundary�

We recommend that� although adaptivity is allowed in principle� the elements of
a coarse reference grid ��� lying close to the boundary 	to be more precise� satisfying
K � Lb���

� 	��� will be re�ned instead of staying unre�ned�

	c
 Quadrilateral elements

The de�nition of composite �nite elements is not restricted to triangular grids�
Quadrilateral elements can be used as well� In order to avoid too many technicalities�
we consider only parallelograms� Assume that �� is a conforming �nite element grid
containing parallelograms and triangles� The space of polynomials in two variables
of degree p in each variable is denoted by Qp� Then� S� is de�ned by

S� ��

�
v � C 	
�� j �K � �� � v �

�
Pp if K is a triangle
Qp if K is a parallelogram

�
�

Then� by using the same modi�cations as explained in 	a�� the composite �nite ele�
ment space is de�ned by De�nition � and 	��� 	��� We recommend that� close to the
boundary� triangular grids should be used� Movement of grid points of parallelograms
would result in quadrilaterals which are not necessarily parallelograms� Furthermore�
by numerical experiments we found that the adaption of quadrilateral reference grids
to the boundary is much more involved as the adaption of triangular meshes�

	d
 Three�dimensional case

The de�nition of composite �nite elements is independent of the space dimension�
After having adapted a three�dimensional reference grid to the boundary the de�ni�
tion of the corresponding composite �nite element spaces stays the same� Similarly
as in the two�dimensional case� we recommend to use tetrahedral grids close to the
boundary�

	e
 Reduction of unknowns for linear elements

Since� for problems with complicated boundaries� the regularity of the solution
of a partial di�erential equation usually is low one should use low order elements in


�



the neighborhood of the boundary� This motivates a modi�cation of the de�nition
of linear composite �nite elements which has� furthermore� the following numerical
advantages� The grids �� de�ned by 	
� typically overlap the boundary� On the other
hand� it appears to be somewhat strange that� for the approximation of functions
having zero boundary traces� we are using degrees of freedom belonging to nodal
points outside the domain� In addition� the following stability problem might arise�
Let z � ��n
 a grid point lying outside the domain� Consider the basis function

��
z of S�� The corresponding composite �nite element function I�max��

h
��
z

i
will be

identically zero or have very small function values� If we represent the solution of the
partial di�erential equation in the formX

y���

u 	y� I�max��

h
��
y

i
	x�

the matrix line of the arising linear system which corresponds to the nodal point z
will vanish or contain only very small entries� This might cause instabilities for the
solver of the linear system�

As mentioned above� for linear elements� the mesh �� can be reduced to a mesh
lying inside of 
� A simple de�nition would be

�� 
 ��nL�
� 	��

which works in practical all situations� However� it might happen that there exist
elements K � � ���� having too large distance from the coarse grid domain 
� such
that extrapolation from 
� onto K � 	cf� !� will not be su�ciently accurate� This�
typically� arises ifK � is an isolated element surrounded by boundary pieces 	cf� Figure
��� Since we know that functions in H�

� 	
� have zero traces one could hope that

P

ε
K

K

2

K 1 0

x
2

Figure �� Coarse grid and re�ned grid lying completely in 
� The distance of the �ne
grid element K� from the nearest coarse grid element K is much larger than O 	hK�

�
and� hence� extrapolation from K is too inaccurate� For linear elements� the zero
function is a su�ciently good approximation on K��

the zero function on K � will be a good approximation for a function u � Hk 	
� �


�



H�
� 	
�� However� one can construct examples where the boundary pieces have too

large distance to K � such that the zero function does not satisfy the approximation
property� In these cases� one has to enrich the coarse grid space� In this light we
de�ne� for a �ne grid element K � � ����� a subset of �� which covers K � and contains
a minimal number of unknowns�

U �
��� 	K

�� �� argminf�� � � � �� j K � � dom �g �

In order to decide whether zero is a good approximation or not we de�ne the function
zero 	K �� as follows�

De�nition 
 Let T be either a triangle or a tetrahedron� Then� we set

hT �� diamT� hmaxT � max
e�E�T �

jej � hmin
T � min

e�E�T �
jej �

�T �� maxfdiamB � B is a ball contained in Tg �

where jej denotes the length of an edge�
Let K � � ����� If� for all y � V 	K ��� there exists a triangle �tetrahedron in ��d�

Ty satisfying

�� Ty � domLnT
��� 	K

�� with
nT � �� 	
��


�
hTy
�Ty

�
hmaxTy

hmin
Ty

� Creg�

�� y � Ty�

�� V 	Ty� � ��

then we set zero 	K �� � admissible� otherwise� we set zero 	K �� � non �
admissible�

The de�nition of the reduced grids for linear elements takes the form�

procedure generate Dirichlet grid
�
f��g�max

�	�

�
�

begin
for � �� � to �max � 
 do �� �� ��nL�

� 	�� �
for � �� �max � 
 downto � do for all K � � ���� do

if zero 	K �� � non � admissible and dist��
���

	K ��
�� � 
 then

�� �� �� � U �
��� 	K

�� �

end�

A typical sequence of reduced grids is depicted in Figure !� By the reduction of the


�



Figure !� Sequence of reduced grids for linear elements�

grids� the condition
�

����� 
� is no longer guaranteed� In other words� there might

exist points y � �

���� where the prolongation cannot be de�ned via interpolation 	see

	���� This fact leads to the following modi�cation of the sets
�
���� and ��

����

�
�
new

��� � �
�
���� �
��

���new
��� � � ����n

�

�
new

��� �

Since no ambiguity is possible� we write
�

����� ��
��� short for

�

�
new

��� � �
��new
��� �

Since we now have a new category of elements� the prolongation operator has to be
modi�ed� too� The function ����� will be extended to a function ����� � �

�
� 	 � ext� �f�g

by

����� 	K
�� �

�����
� if dist��

���
	K ��K� � 
�

argmin
K��ext

�

dist��
���

	K ��K� otherwise�

According to procedure de�ne 
 the function 
���� is then extended to a function

���� � �

�
� 	 � ext� �f�g � The de�nition of u����� 	see 

� is now extended by a further


�



category�

u����� 	y� �

�������
u� 	y� if y � �

�����

� if 
���� 	y� � ��
uextKy

	y�� uextKy
	y�� otherwise�

	
��

where y� is de�ned by 	
��� We emphasize that the proposed modi�cation for linear
elements has several advantages compared to the original de�nition and should be
used instead�

	f
 Relaxing the condition 
�max
� 


We assumed that� after adapting the reference grid to � and removing elements
lying outside the domain� 
�max

� 
 holds� This condition can be relaxed to the
condition that the boundary of 
�max

can be mapped onto � by a Lipschitz�continuous
mapping g � �
�max

	 � and the restriction of g to the edges of ��max
lying on

�
�max
is smooth� In other words� the grid ��max

is not regarded as the �nest grid
in the discretization process but the coarsest grid where standard �nite elements
discretizations can be applied�

� Approximation property

In the previous section� we have de�ned composite �nite elements of 	polynomial�
order p� Next� we will show that these elements satisfy the so�called approximation
property for functions in Sobolev spaces�

De�nition � Let k � p � 
 � � and SCFE
� the composite �nite element space of

�polynomial� order p� SCFE
� satis�es the approximation property if the following two

estimates are valid�
�a� There exists r � N such that� for all u � Hk 	
� � H�

� 	
�� there exists a
function u� � SCFE

� satisfying the local approximation property

ju� u�jm���K� � Ch
p���m
K kukp���Lr

�
�K� � �K � ���m � �� 
 	
��

where � 	K� �� ��max

� 	K� denotes the children of K on the �nest level�
�b� For m � �� 
 and m� 
 � k � p� 
� the global estimate

ju� u�jm�
 � Chk�m� kukk�

is satis�ed�

In the following� we will prove the approximation property for composite �nite
elements� In order to illustrate the principle ideas we take the uniform triangular
reference grid and a polygonal domain in Rd with d � � as a basis and consider the
composite �nite element space based on linear elements� p � 
� We have chosen
b� � 
 and nT � � in 	�� and 	
�� because we found by numerical experiments that


�



this choice leads to the best multigrid convergence results� For the theory� however�
it turns out that the choice b� � nT � � leads to less technicalities in the estimates�
Therefore� we assume for the following convergence analysis that the parameters b�
and nT are chosen according to

b� � nT � �

while the proof for the other case will be included in ����
Furthermore� we assume that ��� � ��� holds� i�e�� the adaption procedure does

not move any grid points of the reference grid� In other words� we �rst consider
the situation that there exists a subset ��max

� ���max
which covers 
� Later� we will

explain how to extend the results to the general case� In view of 	
��� we assume that
u � H� 	
� �H�

� 	
� holds� The approximation of u will be based on an extension of
u onto R�� Since we assumed that 
 is a polygonal domain we know that there is a
continuous extension operator E � H� 	
�	 H� 	R�� denoted by E �u�� satisfying

E �u� j
� u�

kE �u�k��R� � CE kuk��
 � 	
��

In the error estimates derived below the constant CE will appear� In order to get
a robust method with respect to the size and the number of geometric details it is
important to elaborate the dependence of CE on the geometry� This was done in �!�
and �
�� Section ��
�� Roughly speaking it was proved that the continuity constant
CE neither depends on the size nor on the number of geometric details as long as
the distance of� e�g�� holes is comparable to or larger than the minimum of their
diameters�

In the following� the extension of a function u is again denoted by u if no confusion
is possible�

The approximation of a function u � H� 	
� � H�
� 	
� is constructed as follows�

Sobolev"s imbedding theorem guarantees that u is continuous and� hence� the function
u��� � S� is uniquely determined by the condition

u��� 	x� � E �u� 	x� � �x � ���

Transporting this function on the �nest grid by u�max�� �� I�max�� �u���� de�nes a func�
tion in the composite �nite element space u�max�� � SCFE

� � We will prove that this
function satis�es the approximation property� We will need the following intermediate
functions ui�j � Si� i � j� de�ned by

ui�i 	x� � E �u� 	x� � �x � �i�

ui�j � Ii�j �uj�j� �
	
��

This leads to the following splitting 	m � �� 
�

ju� u�max��jm���K� � ju� u�max��max
jm���K� �

�maxX
i	���

ju�max�i � u�max�i��jm���K� � 	
��


�



To estimate the seminorms above we introduce the following mesh dependent norms�
For u � S� and K � ��� we de�ne

jjjujjj��K �� kuk��K �

jjjujjj��K ��

��� juj��K if K � 
�
� � ��q

juj���K � hd��K kuk�����K otherwise�

jjjujjj����K ��

��� juj����K if K � 
�
� � ��

max
n
juj����K � h��K kuk����K

o
otherwise�

	
!�

For a subset of elements � �� � ��� the global norm is de�ned by

jjjujjj�m�� �
�
��

X
K�� �

�

jjjujjj�m�K �

The estimate of the terms in the telescope sum 	
�� will be split in a stability and a
consistency part� In this light� we de�ne a local stability constant for the multi�step
prolongation� For a triangle K � ��� the aim is to prove the local error estimate on
� 	K�� For a function I�max�� �u���� �� u�max�� � SCFE

� � the values of u�max�� jdom��K�

depend on the values of u��� in a neighborhood of K� To be more precise we de�ne
the in�uence set for an element K � ���

De�nition �� Let K � �� and � 	K� denote the children of K on the �nest level�
The in�uence sets describing which elements on level � � j � �max are used for the
evaluation of the prolongation I�max�� on the �nest level are de�ned via the following
recursion�

On the �nest level� we set

I�max�� 	K� �� � 	K� � Y�max�� 	K� �� ��max
� dom� 	K�

and� for j � �max � 
� �max � �� � � � � �� we de�ne

Ij�� 	K� �� fK � � �j j K � � domIj���� 	K� �� �g
�
n
K � � 
jj�� 	x� � x � Yj���� 	K�

o
�

Yj�� 	K� �� �j � domIj�� 	K��

In order to avoid too many technicalities in the proof of the approximation prop�
erty we assume that domIj�� 	K� is connected� This property can easily be ensured by
enriching I�max

or�and �� by appropriate elements K � ��� The following assumption
can then be interpreted as an assumption on the domain� For all x� y � domIj�� 	K��
there exists a path sxy with endpoints x� y satisfying

sxy � domIj�� 	K� �

jsxyj � Ch� 	���


�



with jsxyj denoting the length of sxy� This assumption can be problematic if� e�g�
slit�domains are considered� Then� the condition that domIj�� 	K� is connected can
be in con�ict with condition 	���� In �
�� Bemerkung !��� it is explained how to
modify the prolongation to cover such cases� too�

Using this de�nition the local stability of the multi�step prolongation can be ex�
pressed as follows�

De�nition �� Let m � f�� 
g and K � ��� For j � �� we de�ne the local stability

constant #�m�
j�� 	K� as the smallest constant satisfying

ju�max�jjm���K� � C jjjuj�jjjjm�Ij���K� � �uj�j � Sj �

By using this de�nition� the terms in the telescope sum 	
�� can be estimated by

ju�max�i � u�max�i��jm���K� � #�m�
i�� 	K� jjjui�i � ui�i��jjjm�Ii���K� � 	�
�

In other words� one has to prove the local stability of the iterated prolongation I�max�i

and the approximation property for the single�step prolongation Ii�i��� We begin with
estimating the error of ei�i�� � ui�i � ui�i��� For x � K � � Ii�� 	K�� the error has the
representation

ei�i�� 	x� �
X

y�V�K��

	u� ui�i��� 	y��
i
y 	x� �

Using the inverse inequality we obtain

jjjei�i��jjjm�K� � Ch
d���m
i max

y�V�K��
j	u� ui�i��� 	y�j � 	���

The estimate of the error in the vertices V 	K �� is given in the following Lemma� We
recall that p � 
 holds�

Lemma �� Let K � � �i and y � V 	K ��� Then� the estimate

ju 	y�� ui�i�� 	y�j � Ch
p���d��
i jujp���L�

i
�K��

is satis�ed�

Proof� We consider the two cases y � �

�i and y � ��
i separately�

	a� y � �

�i� Then� ui�i�� 	y� � ui���i�� 	y�� Let FK� � f i��i 	K �� denote the father of
K �� We assumed that �� � ��� and� therefore� y � FK� holds� By using the pointwise
error estimate for standard �nite elements 	cf� ��� Theorem ��
���� we obtain

ju 	y�� ui�i�� 	y�j � ju� ui���i��j����FK�
� Ch

p���d��
i�� juj��FK� �


!



A simple consequence of the de�nition of the uniform reference grids is

hi�� � �hi

FK� � L�
i 	K

��

resulting in
ju 	y�� ui�i�� 	y�j � �Ch

p���d��
i juj��L�

i
�K�� �

	b� y � ��
i � The functions 
����� 


���
��� are de�ned in De�nition �� We put K �� ��


ii 	y� and Kext �� 
i��i 	y�� The analytic extension of the restriction ui���i�� jKext is
denoted by uexti��� Then� u 	y� � uexti�� 	y�� uexti�� 	y�� holds� where y� � � is de�ned by
	
��� Since Kext � � ext� and � ext� was de�ned as a maximal independent subset of �P�
	see 	��� we know that

dist��
i

�
K ��Kext

�
� �

and� hence�
Kext � L�

i 	K
�� �

From 	��� it follows y� � L�
i 	K

��� too� This results in

y �Kext � y� � domL�
i 	K

�� � 	���

Taking into account u 	y�� � � we derive to the error estimate

jei�i�� 	y�j �
			u 	y�� uexti�� 	y�

			� 			u 	y��� uexti�� 	y��
			 � �

			u� uexti��

			
����L�i �K

��
�

Since the triangles of �i are uniform� we know that

diam
�
domL�

i 	K
��
�
� 

hi 	���

holds� As in the proof of �
� Theorem ��
�			u� uexti��

			
����L�

i
�K��

� Ch
p���d��
i juj��L�i �K��

follows�
Using this Lemma we can prove the approximation property for the single�step

prolongation Ii�i���

Lemma �� Let K � �� and ui�i� ui�i�� be de�ned by ����� Then� the estimates

jjjei�i��jjjm�Ii���K� � Ch
p���m
i juj��Ln

I

�
�K�

jjjei�i��jjjm�
 � Ch
p���m
i juj��


	���

are satis�ed with nI � O 	
��

��



Proof� Inserting the error estimate of the previous Lemma into the splitting 	���
results in

jjjei�i��jjjm�K� � Chp���mi juj��L�
i
�K�� �

To obtain an estimate on domIi�� we sum over all K � � Ii�� 	K��

jjjei�i��jjj�m�Ii���K� �
X

K��Ii���K�

jjjei�i��jjj�m�K� � Ch
��p���m�
i

X
K��Ii���K�

juj���L�
i
�K��

� Ch
��p���m�
i

X
K��L�

i 	Ii���K��

juj���K�

X
K���Ii���K�

K��L�i �K
���


�

Since all triangles are uniform the number of elements K �� � Ii�� 	K� satisfying K � �
L�
i 	K

�� is bounded by a constant C
 � O 	
�� Hence� we get

jjjei�i��jjj�m�Ii���K� � CC
h
��p���m�
i juj���L�

i 	Ii���K�� �

In �
�� Lemma ���� it was shown that L�
i 	Ii�� 	K�� � LnI

� 	K� with a constant nI �
O 	
� which leads to the asserted local estimate�

For the global estimate� we sum over all K � � �i�

jjjei�i��jjj�m�
 � X
K���i

jjjei�i��jjj�m�K� �
X

K��i��

jjjei�i��jjj�m�Ii�i���K�

� Ch
��p���m�
i

X
K��i��

juj���L�
i
�Ii�i���K��

� Ch
��p���m�
i

X
K�L�i ��i�

juj���K
X

K���i��
K�L�i �Ii�i���K

���


�

Again� it is easy but technical to prove that the number of K � � �i�� satisfying
K � L�

i 	Ii�i�� 	K
��� is bounded by a constant C �


 � O 	
� 	see �
�� Lemma 
� and
Lemma ����� This leads to

jjjei�i��jjj�m�
 � CC �

h

��p���m�
i

X
K�L�

i
��i�

juj���K �

Finally� we need the continuity of the extension operator E 	see 	
��� to get

jjjei�i��jjjm�
 � CE

q
CC �


h
p���m
i kuk��
 �

The stability of the iterated prolongation I�max�i is concerned in the next step�

Lemma �� Let K � ��� There exists a constant # � � independent of �� �max and
K such that� for m � �� 
� and all � � � � i � �max the prolongation Ii�� is bounded
by # �

#�m�
i�� � #� 	���

where #�m�
i�� denotes the local stability constant of De�nition ���

�




Since the proof of this Lemma is rather technical� we postpone it to the end of
this chapter� We proceed with the proof of the approximation property�

Theorem �� Let u � H� 	
� � H�
� 	
� and u�max�� de�ned by ����� For m � f�� 
g�

the local and global approximation properties are valid�

ju� u�jm���K� � Ch
p���m
� jujp���LnI

�
�K� � �K � ���

ju� u�jm�
 � Ch
p���m
� jujp���


with nI of Lemma ���

Proof� We begin with the local estimate� We insert 	��� and 	��� into 	�
�� This
results in

ju�max�i � u�max�i��jm���K�
� C#hp���mi juj��LnI

�
�K� �

The function u�max��max
is the standard nodal interpolation on the �nest grid and�

hence� the standard error estimate applies 	see� e�g�� ��� Lemma ��������

ju� u�max��max
jm���K� � Ch

p���m
�max

jujm���K� �

Plugging these estimates in 	
�� results in the local estimate

ju� u�max��jm���K� � Ch
p���m
�max

jujm���K� � C# juj��LnI
�

�K�

�maxX
i	���

h
p���m
i

� C# juj��LnI
�

�K�


����p���m��max �
�maxX
i	���

���p���m�i

�A � Ch
p���m
� juj��LnI

�
�K� �

We come now to the global estimate and have to sum over all elements K � ���

ju� u�max��j�m�
 � X
K���

ju� u�max��j�m���K� � Ch
��p���m�
�

X
K���

juj���LnI
�

�K�

� Ch
��p���m�
�

X
K���

juj���K
X
K����

K�L
nI
�

�K��


�

In �
�� Lemma 
��� it was proved that the number of elements K � � �� satisfying
K � LnI

� 	K �� is bounded by the constant C
 appearing in the proof of Lemma 
��
The results in

ju� u�max��jm�
 � CC
h
p���m
� juj��
�

�

Using the continuity of the extension operator proves the assertion�
It remains to prove the stability of the prolongation Ii���

Proof of Lemma ���
For the following� we �x an element $K � �� and choose i� j such that � � j �

i � �max is ful�lled� Let uj�j � Sj be an arbitrary �nite element function and

��



ui�j �� Ii�j �uj�j � � Si the prolonged version� The aim is to estimate jui�jjm�Ii��	 �K�

by juj�jjm�Ij��	 �K�� In this light� we consider a triangle K � � Ii��
�
$K
�
� For x � K �� the

derivatives �� �ui�j�� 
 � N��� can be written in the form

�� �ui�j� 	x� �
X

y�V�K��

ui�j 	y� �
�
h
�i
y

i
	x� � 	���

The values ui�j 	y� are computed from ui���j according to 	

�� We distinguish the
following cases�


� K � � � exti and K �� �i��i 	K ��� Then� for all y � V 	K ��� ui�j 	y� was de�ned by

ui�j 	y� � hg� y � y�i � 	���

where the gradient g � rui���j jK is constant and the boundary point y� is
de�ned by 	
���

�� K � � �
� i and K � � 
�

i � �� Then� for all y � V 	K ��� ui�j 	y� was de�ned by

ui�j 	y� � ui���j 	y� �

�� In all other cases� ui�j 	y� is computed by di�erent strategies 
�� for di�erent
nodal points y � V 	K ��� In that case we say that ui�j jK� was averaged�

For the computation of ui�j j
�
i
� only the values of ui���j jdom �ext

i��
are needed� Hence�

for the stability of the iterated prolongation Ii�j only cases 
�� are relevant� For Case �
one has to prove stability only for the single�step prolongation� The closest boundary
point y� on the �nest level was de�ned di�erently as on coarser levels� Again� for
the stability of the iterated prolongation� only the de�nition for the coarser levels
are relevant� We employ formula 	��� and consider the above cases separately� Let
m � �� 
 and 
 � N�� satisfying j
j � 
� � 
� � m�


� K � � � exti and K �� �i��i 	K ��� We �rst consider the case that y� � �K� holds
	cf� 	
���� On K �� the restriction ui�j jK� has the representation 	���� Hence� the
W ��q�seminorm of ui�j jK� coincides with the W ��q�seminorm of ui���j jK�

jui�jj����K� � jui���jj����K � 	�!�

For the L��Norm� we obtain

kui�jk����K� � kgk ky � y�k �
p
� jui���jj����K ky � y�k �

From the de�nition of the near�boundary grid ��i � it follows that y � L�
i 	y�� and� due

to the uniformity of the triangulation� we get

ky � y�k � �hi�

��



Using the inverse inequality results in

kui�jk����K�
� �

p
�hi jui���jj����K � C kui���jk����K � 	���

Multiplying 	�!� and 	��� with the area of K � results in

jui�jjm�K�
� C jui���jjm�K � 	�
�

We will also need an estimate of the modi�ed H��seminorm jjjui�jjjj��K� 	see 	
!���

Since K � � 
�
i �� � we have to estimate the additional term Z �� h

d����
i kui�jk����K��

We get

Z � Ch
d����
i kui���jk����K 	���

jjjui�jjjj��K� �

r
jui�jj���K� � hd��i kui�jk�����K� 	���

�
r
C jui���jj�����K � Chd��i kui���jk�����K � C jjjui���jjjj��K �

It remains to consider the case that i � �max and K � � � �� �� Then� y� � �y holds�
Estimate 	�!� is no longer true� Instead� we get

��ui�j 	x� �
X

y�V�K��

hg� y � y�i ���i
y 	x� � �x � K ��

Using the inverse inequality results in

jui�jjm���K� � C kgk



max
y�V�K��

ky � y�k
�
h�mi �

As in 	��� we conclude that

jui�jjm���K� � C jui���jj����K h��mi � C jui���jjm���K hm��i�� h
��m
i � C jui���jjm���K

	���
holds� Estimates 	���� 	�
�� and 	��� are derived as before� Summarizing we have
shown that� for i � �max�

jui�jj��K� � jui���jj��K
holds and in the general case

jui�jjm�K� � C jui���jjm�K

jjjui�jjjjm�K�
� C jjjui���jjjjm�K

is satis�ed�
��� K � � �

� i and K � � 
�
i � �� Since the triangulations are physically nested� it

follows that
ui�j 	x� � ui���j 	x� � �x � K �

��



holds� Hence� all norms and seminorms of ui�j and ui���j coincide on K ��

��� We now come to the case K � � �in� exti and K � � 
�
i �� �� First� we consider

the case that K � � ��i � Then� all values ui�j 	y�� y � V 	K �� are computed according
to

ui�j 	y� �
D
gKy � y � y�

E
	���

with Ky �� 
i��i 	y�� gKy �� rui���j jKy� and y� de�ned by 	
��� Hence� we obtain�
similarly as for 	��� and 	���� the estimate

jui�jjm�K� � C max
y�V�K��

���gKy

��� ky � y�kh�mi � Ch��mi max
y�V�K��

jui���jj����Ky

� C max
y�V�K��

jui���jjm���Ky
�

The estimate of the modi�ed H��seminorm is derived in the same way as 	����

It remains to consider the case that K � � �
� i but K ��
�

i �� �� Let �ext
K� �� ��

i �K �

and �int
K� ��

�

�i �K �� From K � � �
� i� it follows that K ��� � � holds� Hence� the values

fui�j 	y�gy��ext
K�

are computed by

ui�j 	y� � uextKy
	y�� uextKy

	y��

with Ky de�ned as in 	��� and y� �� �K� � The function uextKy
denotes the analytic

	a�ne�linear� extension of ui���j jKy� The father of K
� is denoted by fK� � Let $y � �int

K�

be �xed and zy � Ky be a point having minimal distance to $y� Then� for x � K �� we
get

�� �ui�j� 	x� �
X

y��int
K�

ui���j 	y� �
��i

y 	x� �
X

y��ext
K�

�
uextKy

	y�� uextKy
	y��

�
���i

y 	x�

�
X

y��int
K�

	ui���j 	y�� ui���j 	$y�� �
��i

y 	x� � ���mui���j 	$y�

�
X

y��ext
K�

�
uextKy

	y�� ui���j 	$y�
�
���i

y 	x��
X

y��ext
K�

uextKy
	y�� �

��i
y 	x�

�
X

y��int
K�

D
gfK� � y � $y

E
���i

y 	x� � ���mui���j 	$y�

�
X

y��ext
K�

�
uextKy

	y�� ui���j 	zy�
�
���i

y 	x��
X

y��ext
K�

uextKy
	y�� �

��i
y 	x�

�
X

y��ext
K�

	ui���j 	zy�� ui���j 	$y�� �
��i

y 	x� �� S� � S� � S� � S� � S�

These �ve terms Si will be estimated step by step� We begin with the �rst sum�

jS�j����K� � hi jui���jj����fK�

X
y��int

K�

			���i
y 	x�

			
����K�

� Chi jui���jj����fK�
h�mi � Ch��mi hm��i�� jui���jjm���fK�

� C jui���jjm���fK�
�

��



For the second term� we get

jS�j����K� � ���m jui���jjm���fK�
�

To estimate third one we observe that uextKy
	zy� � ui���j 	zy� holds� Furthermore� we

have to estimate the distance ky � zyk� From the de�nition of the in�uence sets� it
follows that fK� and all Ky are contained in Ii���i�� 	fK��� Hence� in view of 	���� we

conclude that there exists a path szy�y � domIi���i��
�
$K
�
with length

			szy�y			 � Chi��
connecting zy and y implying

ky � zyk � Chi�� � �Chi� 	���

Now� we can estimate S� by

jS�j����K� �

							
X

y��ext
K�

�
uextKy

	y�� uextKy
	zy�

�
���i

y 	x�

							
����K�

�

							
X

y��ext
K�

D
gKy� y � zy

E
���i

y 	x�

							
����K�

� hi max
y�V�K��

jui���jj����Ky

X
y��int

K�

			���i
y 	x�

			
����K�

� C max
y�V�K��

jui���jjm���Ky
�

We proceed with the fourth term� We observe that

uextKy
	y�� � uextKy

	zy� � uextKy
	y��� uextKy

	zy� � ui���j 	zy� �
D
gKy � y� � zy

E
holds� Using 	���� 	���� and �� in combination with the triangle inequality the
di�erence kzy � y�k can be estimated from above by Chi� This leads to

jS�j����K� �

							
X

y��ext
K�

�
ui���j 	zy� �

D
gKy � y� � zy

E�
���i

y 	x�

							
����K�

� C max
y�V�K��

�
jui���jj����Ky

h�mi � jui���jj����Ky
h��mi

�
� C max

y�V�K��

�
jui���jj����Ky

h�mi � jui���jjm���Ky

�
�

This is the stability in L�� i�e�� m � ��

jS�j����K� � C max
y�V�K��

jui���jj����Ky

and the stability in the modi�ed W ����seminorm 	m � 
�

jS�j����K� � C max
y�V�K��

jjjui���jjjj����Ky
�

The estimate of the �fth term is obtained as follows� Let szy��y � domIi���i�� 	fK��

be a path connecting zy and $y with length
			szy��y			 � Chi� The restriction ui���j jszy��y

is Lipschitz�continuous leading to

jS�j����K� � C jui���jj����szy��y

			szy��y			 h�mi � C jui���jj����m�Ii����	 �K� h
��m
i �

��



Together� we have shown that

jui�jjm�K� � C jjjui���jjjjm�Ii����	 �K�

is valid� The estimate of the additional term appearing in the de�nition of modi�ed
H��seminorm can be performed in the same way as the estimate of Z in 	���� This
results in

jjjui�jjjjm�K� � C jjjui���jjjjm�Ii����	 �K� �

Now� the proof of the single�step prolongation is complete and we come to the stability
of the iterated prolongation Ii�j�

First� let � � j � i � �max� We consider an element K � � Ii��
�
$K
�
� � exti � We

build a sequence via the recursion�

Ki � K ��

Kr � �rr�� 	Kr��� r � i� 
� i� �� � � � � j�

In view of Kr � � extr � we know that ur�i jKr is not averaged for all r resulting in

ui�j 	x� � uextKj
	x�� uextKj

	�K�� � �x � K ��

The proof of stability is therefore the same as for the single�step prolongation�

jjjui�jjjjm���K� � C jjjuj�jjjjm���Ij��	 �K� � 	���

Now� we consider the case of K � � Ii��
�
$K
�
satisfying K � � 
�

i �� �� The stability
of the single�step prolongation yields

jjjui�jjjjm���K�
� max

�
jjjui���jjjjm���fK�

� max
y�V�K��

jjjui���jjjjm���Ky

�
�

In �
�� Lemma �
�� it is proved that fK� and all Ky� y � V 	K ��� belong to � exti���
Hence� we can apply 	��� and obtain the stability of the iterated prolongation for K ��

It remains to consider those elements K � � �i satisfying K � � 
�
i � �� We build a

sequence of triangles by the following procedure�

Ki �� K �� r �� i�
while Kr � 
�

r � � and r � j do begin
r �� r � 
�Kr �� f rr�� 	Kr��� �

end�
The triangulations are physically nested� therefore� ui�jjK� � ur�jjKr

holds and
all seminorms coincide� Hence� if r � j there is nothing to prove since all norms
coincide� For the following� we assume r � j implying Kr � 
�

r �� �� Applying the
previous results proves the stability for all cases provided i � �max� For i � �max�
follows from this results and the stability of the single�step prolongation I�max��max���
This completes the proof of the stability of the iterated prolongation Ii�j �

From the proof of the stability� the following corollary follows directly�

��



Corollary �� There exists a constant For j � � and all K � ��� the multi�step
prolongation is also stable in W ����

ju�max�jj������K� � C jjjuj�j jjj����Ii���K� �

In �
�� Section ������� a proof of the approximation property for the general situa�
tions described at the end of the previous section is given� One has to impose technical
assumption on the mapping �� which can be satis�ed by using an appropriate algo�
rithm for adapting the reference grid ���max

to the boundary� Roughly speaking� the
composite �nite elements grids �� have to be shape�regular and the diameters of the
triangles of �� must be comparable to the diameters of the corresponding triangles of
the reference grids� In �
�� Annahme ��� six conditions are formulated which ensures
that the approximation property is valid also for the general case�

The general proof can be obtained by transferring all Lemmata and auxiliary
statements of this section to the general case�

In the next section� we explain how to use composite �nite elements for the dis�
cretization of partial di�erential equations�

� Discretization with composite �nite elements and

numerical results

We have introduced composite �nite elements for the discretization of partial dif�
ferential equations on complicated domains� As a model problem� we consider the
problem of �nding u � H�

� 	
� such that� for given functional F � H�� 	
��Z


	hru�rvi� uv� dz � F 	v� � �v � H�

� 	
�

is satis�ed� We focus our attention on domains containing small geometric details as
holes� etc� The Galerkin discretization based on composite �nite elements takes the
form� Find u� � SCFE

� such thatZ


	hru��rv�i � u�v�� dz � F 	v�� � �v� � SCFE

� 	
� 	���

is ful�lled� For the reformulation of this problem as a system of linear equations we
introduce the space of grid functions R�� containing all mappings � � �� 	 R� Any
function u� can be represented by

u� 	x� �
X
y���

� 	y� I�max��

h
��
y

i
	x� ��

X
y���

� 	y� b�y 	x� �

Hence� equation 	��� is equivalent to �nding �� � R�� such thatX
y���

K� 	x� y��� 	y� � f� 	x� � �x � R���

��



where K� � R����� and f� � R�� are de�ned by

K� 	x� y� �
R



�D
rb�y�rb�x

E
� b�yb

�
x

�
dz� x� y � ���

f� 	x� � F
�
b�x

�
� x � ���

The matrix K�max
and right�hand side f�max

on the �nest grid can be assembled as
for standard �nite elements since SCFE

�max
� S�max

�H�
� 	
� holds� The coarser matrix

and right�hand side can be obtained by coarsening the �ne�grid system� Let us
introduce the 	discrete� prolongation and restriction operators P����� � R������� and
R����� � R������� by

P����� 	x� y� � I�����
h
��
y

i
	x� � �x � ����� �y � ��� 	�!�

hR����� �v� � wi� � hv� P����� �w�i��� � �v � R����� �w � R���

where h
� 
i� � R��R� denotes the Euclidean scalar product� Then� the coarser system
is de�ned by

K� � R�����K���P����� 	���

f� � R�����f����

We state that the complexity of assembling the whole sequence of linear systems
fK�g�max

�	� � ff�g�max

�	� is proportional to the work needed for the generation of the �ne
grid system� i�e�� proportional to the number of �ne grid points ���max

� However�
if one is interested only in the generation of a coarse grid system it is possible to
localize the prolongation and restriction to the near�boundary region and reduce

the arithmetic work for assembling K� from O 	N�max
� to O 	N�� � O

�
N

d��
d

�max

�
� The

implementation and complexity analysis are worked out in detail in ����
For numerical tests� we have chosen the unit disc and considered the approxima�

tion of the function u 	x� � e���kxk
� � e���� We have used the uniform triangulation

described in the beginning of Section ��
 as reference grids� This problem is well
suited for testing the approximation quality of composite �nite elements since the
composite �nite element grids on the coarse levels cannot be regarded as an approx�
imation of the domain� We have employed composite �nite elements based on linear
elements 	p � 
� and� hence� restricted the grids to the interior of the domain as
described in Section ��� 	e�� A sequence of grids is depicted in Figure !� We �rst
veri�ed the approximation property� We have proven that there exists a function
u� � SCFE

� such that

ju� u�jm�
 � Ch��m� kuk��
 � m � �� 


holds� The following table reports the observed convergence rates�

�!



Level dim ke�k� ke���k�
ke�k�

je�j� je���j�
je�j�


 ! 
���e�
 ����e�

� �� ���
e�� 
�� ����e�
 
�

� 
!� ����e�� ��� ����e�
 
��
� ��� ����e�� ��� ����e�
 ���
� �
�
 
���e�� ���� 
�
�e�
 ���
� 
���� ����e�� ���� ����e�� ���
� �!��� ����e�� ���� ����e�� ���

As a further application of composite �nite elements we have tested the e�ciency
of multi�grid methods 	see ���� based on composite �nite elements� The coarse�level
matrices are characterized byK� from 	���� The intergrid transfer is performed by the
prolongation and restriction operators de�ned in 	�!�� We have used the symmetric
Gau%�Seidel method as a smoother and the W�cycle multi�grid method with two pre�
and two post�smoothing steps� The iteration was stopped as soon as the ���norm of
the residual was smaller than 
����

Level dim � iterations

 ! direct solver
� �� �
� 
!� �
� ��� �
� �
�
 �
� 
���� �
� �!��� �

Obviously� the numbers of iterations are very low and independent of the re�nement
level� Finally� we report also the computing times of the various steps of the algorithm�
The CPU�time 	in milli�seconds� for the time for assembling the �ne�grid system is
denoted by t �K�max

�� the time needed for the generation of all coarser systems by

t
h
fK�g�max��

�	�

i
� and the time needed for the multi�grid solver is denoted by t �mg��

The time of adapting the �nest grid to the boundary and rejecting elements from all
grids lying 	essentially� outside of the domain is denoted by t �grids��

level dim t �grids� t �K�max
� t

h
fK�g�max��

�	�

i
t �mg�

� ! 
 ��
� �� 
� 
� �
�
� 
!� 
�� �� 
���
� ��� ��� 
�� �

�
� �
�
 
�
� ��� 
����
� 
���� �!�� ���� !����
! �!��� ������ ����� ���� ������

��



It clearly can be seen that the CPU�time for all quantities grows linearly with
respect to the number of unknowns� The most time consuming step is the generation
of the composite �nite element grids followed by the multi�grid solver�
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