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Abstract

In this paper, we define a new class of conforming finite elements for the ap-
proximation of functions in HJ (). In contrast to standard finite elements, the
approximation property can be proved without any restrictions on the (mini-
mal) dimension of these so-called composite finite element spaces also for very
complicated domains. Therefore, this class of finite elements can be used for
coarse-level discretizations of PDEs on complicated domains.

1 Introduction

In [8], a new class of finite elements for the discretization of partial differential equa-
tions on complicated domains has been introduced. Such kinds of problems typically
arise in environmental modelling, porous media, modelling of complicated technical
engines, etc. In principle, these problems can be treated with standard finite elements
as well. However, the usual requirement, namely, that the finite element grid has to
resolve the boundary makes a coarse-scale discretization impossible. Every reasonable
discretization will contain a huge number of unknowns being directly linked to the
number of geometric details of the physical domain. On the other hand, the efficiency
of many numerical solvers, e.g., multi-grid methods, extrapolation, and wavelets are
based on a multi-scale discretization of the domain containing low-dimensional levels
as well.

The composite finite elements introduced in [8] allow coarse-level discretizations of
partial differential equations, where the minimal number of unknowns is independent
of the number and size of geometric details. For functions in H* (), the approxima-
tion property is proved in an analogue generality as established for standard finite
elements (see [8], [6], [10]).

Here, we will introduce composite finite elements for problems with Dirichlet
boundary conditions. To be more concrete, the aim of this paper is to set up a
family of finite elements which satisfy the approximation property for functions in



H* (Q) N HL (), where the domain 2, possibly, has a complicated boundary. The
minimal dimension of this finite element space will be independent of the size and
number of geometric details.

2 Composite Finite Elements

The definition of composite finite elements is based on a sequence of grids. In contrast
to standard finite element grids, only the finest grid has to resolve the boundary. On
the finest grid, the composite finite element space coincides with the usual finite
element space. All lower dimensional spaces are subspaces of the fine grid space. The
definition of these subspaces is based on the principle that values at coarse grid points
are prolonged to values at the nodal points of the finest grid. The nodal interpolation
of these fine grid values defines a function of the coarse grid space.
In the next section, we will define composite finite element grids.

2.1 Composite Finite Element Grids

To explain the principle ideas we avoid at this point the most general definition of
composite finite element grids and will explain more general situations at the end
of this chapter. In this light, we assume that @ C R? is a polygonal domain with
boundary I' := 9. The definition of composite finite element grids consists of three
steps.

(1) In the first step, a hierarchy of reference grids will be defined. The domain 2
has to be contained in the domain covered by the grids but it is not required that
the boundary I' is resolved. To indicate that a quantity belongs to the reference grid
we will use a

(2) In the second step, the finest grid will be adapted to the boundary by moving
fine grid points, lying close to I', onto the boundary. The arising grids and quantities
will be indicated by a superscript *°.

(3) Finally, we remove all triangles lying outside the domain from the grids.

We come now to the formal definition (see Figure 1). As reference grids, we use a
sequence of uniform triangulations of R To be more concrete, consider the following

partition of the unit square T' = Z The translates and dilations are denoted by
Tpp:=h(x+T). For { € Ny, let hy := 27, The grid 7, is given by the partition of
R? into T, i, Where z are the Cartesian grid points Z*. The set of vertices of 7, is

denoted by O,. Throughout this paper triangles are always considered as open sets.
These grids are logically and physically nested, i.e., for each K € 7, there exist
4=0 members K’ € 7y, ' > (, satisfying

K'C K.

This property motivates the definition of a parent/child relation:
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Figure 1: Grid generation: We start with the uniform reference grid on the finest
level 74, ... Grid points lying close to the boundary are moved onto I'. This results
in the intermediate grid 72° . Rejecting all elements lying (essentially) outside the
domain (indicated with a black dot) results in the composite finite element grid ,,. .

Definition 1 For K € 7, the set of children of K on level I/ > ( is denoted by
ol (K) and defined by

of (K):={K" €% |K CK}.

On the other hand, the parent of an element K' € 7p on a coarser level { < ' is

denoted by fh ([{”) and defined by
fo(K') =K & K eaf (K).

These reference grids 7, will now be adapted to the domain in the following way.
Grid points of the finest grid lying close to the boundary I' are moved onto I'. For
an element A € 7, the set of edges is denoted by E([g’). We formulate the adaption
algorithm in a pseudo-computer language. For this, let tol > 0 be a user-specified
tolerance reflecting the size of the geometric details of {2 which have to be resolved by
the grid. Choose (yax such that h,_ .~ tol holds. Then, the adaption is performed
by the procedure adapt:

procedure adapt;
begin
for all K € #,,,, do for all ¢ € E (K) do
if €N 0O # () then
replace one of the endpoints of € by an appropriate boundary point;
end;



At this point we are not very precise which endpoint of é is preferably moved onto
the boundary and which boundary point has to be picked for replacing the endpoint.
The reason is that this algorithm was already presented in [7] and [10] (cf. Figure 2).
Here, the main concern is the definition of the finite element spaces on these grids for
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Figure 2: First line: Replacement of x5 by zr leads to more favorable interior angles
of the arising triangles than replacement of =y by zr. Second line: Replacement by
the closest boundary point (z}') might result in better triangles than replacement by
the intersection point z& € eNT.

problems with Dirichlet boundary conditions.

We emphasize that the procedure adapt also changes the shape of coarse grid
triangles. If, e.g., a point & € (:)gmx N O, is replaced by a point z°°, then, # has to
be interchanged by x* on the coarse grid as well. The resulting grids are denoted by
77°, 0 < 1 < lhax. The movement of grid points defines a mapping ®, : R? — R? by
the following conditions

1. If a grid point # € O is replaced by > we put @, () = &; if & remains
unchanged we put ®, (&) = 7.

2. For all K> € 7/°, the restriction ®, |~ is affine-linear.

For the proof of the approximation property, we have to make appropriate as-
sumptions on the compatibility of 7, and 77°. This can conveniently be expressed
by assumptions on the mappings ®,. However, for the definition of composite finite
elements, these assumptions are not essential and therefore postponed to Chapter
3. Although the grid 7;° is no longer physically nested, we adopt the parent/child-
relation from the reference grids:

o (K%)= 00}y () = {@7" (R") : K" € o} (0, (K>))}.

4



The composite finite element grids are now defined by rejecting all elements lying
outside the domain {2 :

:i={Kern|KNQ+0}. (1)
The parent/child relation of the grid 7, is adopted to 7, by
o) (K) < o} (K)N .

The domain () was assumed to be polygonal, hence, the following assumption can
be interpreted as an assumption on the size of hy__  and on the mapping ®, which
describes the movement of grid points. Throughout this paper, we assume that

Q.. =0

holds. This completes the definition of composite finite element grids. In the next
section, we will define composite finite element spaces on these grids.

2.2 Composite Finite Element Spaces

First, we recall the definition of (standard) finite element spaces. Let 7 be a con-
forming triangulation, i.e., two elements K, K’ either coincide or the intersection
K N K’ is either empty, a common edge, or a common point. Then, the (standard)
finite element space is given by

Sei={ue C () |VK €7 :ulk is affine-linear} .
The nodal basis corresponding to a grid point y € O, is denoted by c,of; :

995; - Sg,

‘ 1 ifz =y,
#yl2) = {0 if 2 € 0\ {y}.

The composite finite element space can be regarded as an adaption of the space S, to
the boundary. On the finest grid, the assumption €, ., = ) motivates the following
definition

SCFE.— S, A HL(Q).

max

All coarse-level spaces S{EF will be subspaces of the fine grid space Sgnif. The

SC’FE

definition of appropriate prolongation operators I, ., ¢ : S¢ — Sy will play the key

role for the definition of S§¥F:

Definition 2 Let a suitable operator Ip,, o : S¢ — SEEF be given. Then, the com-
posite finite element space for the approximation of functions with zero traces is de-
fined by

SEFE .G, NHF(Q),  for = lna

max

and, for { < lpax, by
SfFE = Range (Iy,,,0) ={u € C(Q) | Jue € Sy u= Iy, 0w} (2)



The rest of this section is concerned with the definition of an appropriate prolon-
gation operator I, ., It turns out that the definition of I, , can be reduced to
the definition of single-step prolongations Iy : S¢ — Sep1. For @ > £, we define the
multi-step (or iterated) prolongation I, by the composition:

Liv=1ii-1lic1-0 - Liga . (3)

Formally, we define I, as the identity operator. We distinguish two cases. In the
interior of the grid 7, the operator I,41, will be nothing but the standard nodal
interpolation (see (7)). However, near the boundary, 41, has to be modified such
that zero boundary conditions are satisfied (at least on the finest grid 7, ). To
measure the distance of an element K € 7, from the boundary we define a special
distance function by counting the minimal numbers of elements necessary to connect
the boundary and K. The formal definition is given below and illustrated in Figure

3.

Figure 3: Layers around a set w. The elementwise distance of K and w is dist, (K, w).

Definition 3 For a set T of triangles, we define the domain covered by the triangles
of T by

domT = int U K,

KeT

where int (M) denotes the interior of a set M. Let w C R% Fori € Ny, we define
layers L (w) C T around w via the recursion:

Lh(w) « ={KeT|Knw+#0},
Lt (w) @ =1Lk (dom L (w)) :



The elementwise distance of two subset wy,wy C domT' is defined by
disty (wy,wq) := min{i : g Ndom Ly (wy) # @} )

We emphasize that, in practical implementations, it is a much simpler task to
compute the elementwise distance of two sets compared to the computation (or ap-
proximation) of the Euclidean distance of the sets. Furthermore, it turns out that,
for the local analysis of the approximation error, it is essential to work with the
elementwise distance to include adaptive refinement.

For the definition of Ip41 ¢, we have to specify first appropriate subsets of 7, (see
Figure 4).

Figure 4:  is the square indicated by the blue boundary. The triangles on level
{ = lhax — 2 are depicted with black, the triangles on level £ + 1 with red lines. The
light shaded region shows the near-boundary grid T{_l_l. The triangles of 7, in the
light and dark shaded region form the grid 7/ being close to T{_l_l. The green shaded
triangles form a maximal independent set 75! of 7/

Definition 4 Let 7, be a composite finite element grid as defined in the previous
section (see (1)). The “near-boundary grid” v} and the “interior grid” 7o are defined
by
of =m0 L), O :=domrf, OI:=0,naQl, )
Toi= T\TE Q= dom 794, Q= 0,\6}
with
br = 1. (5)



The grid 7} contains those coarse grid triangles which lie “close” to the near-boundary

grid of the finer level:
= {K cr | distree, (K, QE_H) < 1} (6)

t 1

and 7£% is a mazimal independent subset of 77 :

7,7 1= argmax {#T T Ctl VK, K" €7} :either K = K' or KNK' = @}

Let, in the following, u, € Sy be a standard finite element function. We will define
the operator [,41, by explaining how the function wey1 ¢ = 410 [ws] is computed.

First, the nodal values {us10(y)} will be assigned. Then, the nodal inter-

. y€O 1y
polation of these values defines the function weyq o
Uyt () = Z Ut (Y) ¢§+1 (), r € Qg (7)

yEOB,
For y Gég+1, we simply evaluate the function u, at the fine grid point y:

o1, (y) = ue (y) - (8)

The computation of the values at the remaining grid points y € ®£+1 is more involved
and split into the following steps:

1. To each grid point y € O}, we assign a coarse grid triangle K € 7, lying “close”
to y.

2. To each grid point y € ®£+17 we assign a point yr € [' having minimal element-
wise distance from y.

3. Let u$*" be the analytic (natural) continuation of u |k onto R Then, we put
urpre (y) = uil" (y) — uy” (yr).- (9)
4. For { + 1 = lpax, we set upp1(y) =0 for ally € O, NT.

The choice of the coarse grid triangle lying close to y (cf. Step 1) is the essential
step in this algorithm. The formal definition is given below (see Figure 5).

'TIf there are several elements # € M maximizing a functional F : M — R, then,
argmax {F (z) : # € M} is one arbitrary but fixed maximizer. The function argmin is defined anal-
ogously.



Figure 5: Prolongation from 7, to 7441. A detail of the near-boundary grids is de-
picted. The green triangles correspond to the grids /%, 77{. The blue arrows
represent the function Wfﬂ while the red arrows illustrate the function &j,; . The

function Wf_l_l is the composite mapping /iﬁ_l_l 0 Wfﬂ.

Definition 5 The auxiliary function rj,, : 77 — 7670 defined by

L 1IN . . Y 7 v r
Keyq (K) = argmin dlStTé’.il (K',K), VK™ € 7.
Kerp®

The function which maps a grid point x € ®£+1 onto a coarse grid element (cf. Step
1) is denoted by Wf_l_l : ®£+1 — TZZ“ and defined by the following procedure. For later
purpose, an auziliary function ngi : ®£+1 — TZF_H is defined, too. Let V (K') denote
the set of vertices of K.
procedure define_r;
begin
for all y € O, do m/,, (y) := undefined;
for all K" € 7;71 do for all y € V(K') do begin
T (y) = Ky (K) il (y) := K end;
for all K’ € 7/, \77} do for all y € V(1) do
if 7,1 (y) = undefined then begin
T () = Ky (K)5mif] (y) i= K'send
end;

It remains to define the function needed in Step 2 which assigns a closest boundary
point to a grid point y € Of;.

Definition 6 The function ¥* maps a subset w C Q, to a closest boundary point
with respect to the elementwise distance. Let 1 = dist, (I,w). Theny*(w) €T is a
boundary point satisfying

dist 0 (’yé (w) ,w) = ifi1>1,
dist (’yé w) ,w) =dist (I'w) ifi=1.

Ne)



For K € 7, we write vx short for 4* (K') and, for y € 0y, v, instead of v* (y) if
no confusion is possible.

Now, we have all ingredients for the formal definition of the single-step prolonga-
tion operator Iyyq1, (cf. Figure 6). We use the following notations. Let u, € S,. For

Vv
T
| 'V£+1, 0 o
L I I |
[ — ‘ ‘ 1
YK') K K

Figure 6: Prolongation operator: The function v, on the coarse-level element K is
extended linearly on K’ and the constant boundary value vf% (vx) is subtracted.

K € 74, the analytic extension of the affine-linear function w, |x is denoted by u§*.
For y € ©},,, we put K, = 7{; (y) and K, = Wf_l"j (y) . The prolonged function is

denoted by wey10 = lp41,0 [te] Where o4 0 is defined in the following definition.

Definition 7 For y € Oy, we set

if 04+ 1 = lpax and KI N T 0,
yr = { %’/y fth . Y 7 (10)
Vi, otherwise
and
Uesie (y) = uiw(ty) - Ty €041, (11)
ui, (y) — ug, (yr) otherwise.
The nodal interpolation of {ust1. (y)}yee)ul on Tey1 defines the continuous function
Ugy1,0 -
Upyr e () = Z Upt1 (y)gf;“ (x), € Wyyy.

YEO 41

Remark 1 We use the same notation as in the previous definition. Let y € ®£+1'
We assume £ + 1 = L. and K,nr # (. Since uy |Ky is affine-linear, the gradient
on K, is constant and denoted by g. Then, the value wppy o (y) can be rewritten as

Uerre (Y) = {9, ¥ — Vo) - (12)

The function value w10 (y) depends linearly on the values of wuy (Z)Zev(
braic manipulation yields the formula

Uer,e (y) = Z a (y)ue (2)

z€V(Ky)

) An alge-

K,

10



with
— det [y — Ty A+ Z—]
det[z — z_,z4 — 2_]

a (y)

Y

where z_, z, zy denote the vertices of K,. Having computed the three values o, (y) for
each grid poinl y € Oy, the evaluation of Iiyq requires only 5 operations per grid
point.

Remark 2 The definition of the composite finite element space implies that the

CFE
S

spaces are nested:

SEFE — §oFE

for all ' > (. Furthermore, the inclusion S§TY C HL(Q) holds (cf. (12)).

The shape of a typical basis function is illustrated in Figure 7.

Figure 7: Basis function for problems with Dirichlet boundary conditions

In the rest of this chapter, we will explain how to extend the definitions above to

more general situations.
(a) Higher approximation order.

Instead of linear elements, composite finite elements can be defined by using
higher polynomial orders as well. Then, the definition is related to the standard
finite element space of order p :

Se:={veC () |VK e€mn:v|ge P},

where P, is the space of polynomials in two variables of total degree p. The set
of grid points O, has to be redefined as the set of unisolvent nodal points, i.e., the
interpolation problem of seeking u € Sy such that

u(x)=f(x), r €0y

has a unique solution for any continuous function f € (Q_g) Using these notations,
the definitions above define the composite finite element space of order p with the

11



exception that, in Definition 7, the function u5*' is no longer affine-linear but the

analytic (natural) extension of the polynomial u, |x. Obviously, Remark 1 applies
only to the case of linear composite finite elements.

(b) Non-uniform reference grids and adaptive refinement

We have never used the fact that the reference grids 7, are uniform. Instead,
one could start with an arbitrary (conforming) finite element grid 7, satisfying © C
dom 7y. This grid can now be refined step by step by any nested refinement strategy
including adaptivity. Since the arising hierarchy of grids will still be used as reference
grids we assume that these grids as well as the triangles are again physically and
logically nested. This requires that during the refinement of the reference grids no
grid points will be moved onto the boundary. Afterwards, the adaption is again
performed by moving grid points of the finest reference grid which lie close to the
boundary onto the boundary.

We recommend that, although adaptivity is allowed in principle, the elements of
a coarse reference grid 7, lying close to the boundary (to be more precise: satisfying
K € LI (D)) will be refined instead of staying unrefined.

(¢) Quadrilateral elements

The definition of composite finite elements is not restricted to triangular grids.
Quadrilateral elements can be used as well. In order to avoid too many technicalities,
we consider only parallelograms. Assume that 7, is a conforming finite element grid
containing parallelograms and triangles. The space of polynomials in two variables
of degree p in each variable is denoted by (),. Then, S5, is defined by

. P, if K is a triangle
Se = {U €CQ) VK em:ve { QZ; if Kisa paral%elogram }

Then, by using the same modifications as explained in (a), the composite finite ele-
ment space is defined by Definition 7 and (3), (2). We recommend that, close to the
boundary, triangular grids should be used. Movement of grid points of parallelograms
would result in quadrilaterals which are not necessarily parallelograms. Furthermore,
by numerical experiments we found that the adaption of quadrilateral reference grids
to the boundary is much more involved as the adaption of triangular meshes.

(d) Three-dimensional case

The definition of composite finite elements is independent of the space dimension.
After having adapted a three-dimensional reference grid to the boundary the defini-
tion of the corresponding composite finite element spaces stays the same. Similarly
as in the two-dimensional case, we recommend to use tetrahedral grids close to the
boundary.

(e) Reduction of unknowns for linear elements

Since, for problems with complicated boundaries, the regularity of the solution
of a partial differential equation usually is low one should use low order elements in

12



the neighborhood of the boundary. This motivates a modification of the definition
of linear composite finite elements which has, furthermore, the following numerical
advantages. The grids 7, defined by (1) typically overlap the boundary. On the other
hand, it appears to be somewhat strange that, for the approximation of functions
having zero boundary traces, we are using degrees of freedom belonging to nodal
points outside the domain. In addition, the following stability problem might arise.
Let z € ©,\Q a grid point lying outside the domain. Consider the basis function
¢t of S;. The corresponding composite finite element function I, [c,oﬂ will be
identically zero or have very small function values. If we represent the solution of the
partial differential equation in the form

> w () Lot |74] (@)

UISCY;

the matrix line of the arising linear system which corresponds to the nodal point z
will vanish or contain only very small entries. This might cause instabilities for the
solver of the linear system.

As mentioned above, for linear elements, the mesh 7, can be reduced to a mesh
lying inside of Q). A simple definition would be

Ty < TZ\L% (F)

which works in practical all situations. However, it might happen that there exist
elements K’ € 7,41 having too large distance from the coarse grid domain 2, such
that extrapolation from €, onto K’ (cf. 9) will not be sufficiently accurate. This,
typically, arises if K’ is an isolated element surrounded by boundary pieces (cf. Figure
8). Since we know that functions in Hj (2) have zero traces one could hope that

K| 0

—

Figure 8: Coarse grid and refined grid lying completely in Q. The distance of the fine
grid element K from the nearest coarse grid element K is much larger than O (hx,)
and, hence, extrapolation from K is too inaccurate. For linear elements, the zero
function is a sufficiently good approximation on K.

the zero function on K’ will be a good approximation for a function v € H* (Q) N

13



Hj (). However, one can construct examples where the boundary pieces have too
large distance to K’ such that the zero function does not satisfy the approximation
property. In these cases, one has to enrich the coarse grid space. In this light we
define, for a fine grid element K’ € 7,41, a subset of 7, which covers K’ and contains
a minimal number of unknowns:

Uf_l_l (K'):= argmin{#7:7C 7| K’ Cdomr7}.

In order to decide whether zero is a good approximation or not we define the function
zero (K') as follows.

Definition 8 Let T' be either a triangle or a tetrahedron. Then, we set

hr = diamT maX — max |e pEn — mip e
9 T eEE(T) | | ” T eeE(T) | | 9

pr ;= max {diam B : B is a ball contained in T},

where |e| denotes the length of an edge.
Let K" € 1opq. 1f, for all y € V (K'), there exists a triangle (tetrahedron in 3-d)
T, salisfying

1. T, C dom L?_fl (K') with

nr = 2, (13)
b, S
2. —L 4+ —2— < Oy,
ory g =
3. yeT,
4.V (T, CT,
then we set zero(K') = admissible, otherwise, we set zero(K') = non —
admassible.

The definition of the reduced grids for linear elements takes the form:

procedure generate _Dirichlet_grid ({Tg}ﬁzgx);
begin
for (:=0to lpax — 1 do 7, := 7\ L} (T);
for /:= (,.x — 1 downto 0 do for all K’ € 7,; do
if zero(K') = non — admissible and dlistT;_i1 (K',y) > 1 then

=1 U UL, (K');

end;

A typical sequence of reduced grids is depicted in Figure 9. By the reduction of the

14



Figure 9: Sequence of reduced grids for linear elements.

grids, the condition (2)g_|_1C ) is no longer guaranteed. In other words, there might
exist points y €041 where the prolongation cannot be defined via interpolation (see
(8)). This fact leads to the following modification of the sets (2)44_1 and Op;:

o New o N
Oy =01 NGy,
I'ynew o mew
®é-i-1 L= ®€+1\ Opy1 -
. Co . . . 0 r o new C.new
Since no ambiguity is possible, we write @¢y1, Oy, short for ©,,,, ©,77".

Since we now have a new category of elements, the prolongation operator has to be
modified, too. The function s}, ; will be extended to a function xf,; : O — 777 U{0}
by

0 if distreo, (K7, K) > 1,
£ o . . , , .
ko (K') =3 aremin dist;~ (K’ K) otherwise.
IX”% ext £+1 ’
Te

According to procedure define_r the function 7j,; is then extended to a function
Wf_l_l 10 — 728U {0} . The definition of ugyi, (see 11) is now extended by a further
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category:

we (y) if y G(S)z-u,
eyt (Y) =9 0 if 7 (y) =0, (14)

ext

u?f; (y) — Uy, (yr) otherwise.

where yr is defined by (10). We emphasize that the proposed modification for linear
elements has several advantages compared to the original definition and should be
used instead.

(f) Relaxing the condition Q,_ = Q

We assumed that, after adapting the reference grid to I' and removing elements
lying outside the domain, €, . = ) holds. This condition can be relaxed to the
condition that the boundary of €);___can be mapped onto I' by a Lipschitz-continuous
mapping g : Q.. — I and the restriction of ¢ to the edges of 7, .. lying on
0y, is smooth. In other words, the grid 7, is not regarded as the finest grid
in the discretization process but the coarsest grid where standard finite elements
discretizations can be applied.

3 Approximation property

In the previous section, we have defined composite finite elements of (polynomial)
order p. Next, we will show that these elements satisfy the so-called approximation
property for functions in Sobolev spaces.

Definition 9 Let & > p+ 1 > 2 and SF¥E the composite finite element space of

SC’FE

(polynomial) order p. S; satisfies the approximation property if the following two

estimates are valid.

(a) There exists 1 € N such that, for all v € H* (Q) N HL(Q), there exists a

function u, € SEYE satisfying the local approzimation property

| — ) ) < Chpttm HquJrLL;(K) , VK € m,m=0,1 (15)

m,o (K

where o (K) := o (K) denotes the children of K on the finest level.
(b) Form=10,1 and m+ 1<k <p+1, the global estimate

lu — W|m,9 < Chif—m HquQ
is satisfied.

In the following, we will prove the approximation property for composite finite
elements. In order to illustrate the principle ideas we take the uniform triangular
reference grid and a polygonal domain in R? with d = 2 as a basis and consider the
composite finite element space based on linear elements: p = 1. We have chosen
br =1 and ny = 2 in (5) and (13) because we found by numerical experiments that
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this choice leads to the best multigrid convergence results. For the theory, however,
1t turns out that the choice by = nt = 5 leads to less technicalities in the estimates.
Therefore, we assume for the following convergence analysis that the parameters br
and n7 are chosen according to

br =nr = 5

while the proof for the other case will be included in [3].

Furthermore, we assume that 77 = 7, holds, i.e., the adaption procedure does
not move any grid points of the reference grid. In other words, we first consider
the situation that there exists a subset 7, C 74, which covers Q. Later, we will
explain how to extend the results to the general case. In view of (15), we assume that
u e H*(Q)N H} (Q) holds. The approximation of u will be based on an extension of
u onto R% Since we assumed that © is a polygonal domain we know that there is a
continuous extension operator F : H* (Q) — H?* (R?) denoted by E [u], satisfying

Eu] lo= u,

16
IE [ullly 22 < O [l - (16)

In the error estimates derived below the constant Cg will appear. In order to get
a robust method with respect to the size and the number of geometric details it is
important to elaborate the dependence of C'g on the geometry. This was done in [9]
and [10, Section 5.1]. Roughly speaking it was proved that the continuity constant
Cr neither depends on the size nor on the number of geometric details as long as
the distance of, e.g., holes is comparable to or larger than the minimum of their
diameters.

In the following, the extension of a function w is again denoted by w if no confusion
is possible.

The approximation of a function v € H? () N Hy (£2) is constructed as follows.
Sobolev’s imbedding theorem guarantees that u is continuous and, hence, the function
uge € S 1s uniquely determined by the condition

g () = Fu] (z), Yo € Oy.

Transporting this function on the finest grid by we,,, ¢ := Io,., ¢ [tes] defines a func-
tion in the composite finite element space u,, ., , € SFFF. We will prove that this
function satisfies the approximation property. We will need the following intermediate
functions u; ; € S;, 1 > 7, defined by

ui;(x) = Flu](z), Y€ o,

17
uij = Iijlujl, (17)
This leads to the following splitting (m = 0,1)
Zmax
|u - uémaX7Z|m7g(I() S |u - uémax%max |m7g(]\") —I_ Z |uémaX7i - uémaX7i_1|m7g(I\") ° (18)
1={+1
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To estimate the seminorms above we introduce the following mesh dependent norms.
For v € S, and K € 7, we define

|||u|||0,K = HUHO,K? o
el lul, if KNQL =0,
U = : .
VTl e+ T Tl otherwise, (19)
el |u|1ooK if KNy = 0,
u L= '
1,00,K max {|u|17oo7K 7 hf_(l HuHo,oo,K} otherwise.

For a subset of elements 7, C 74, the global norm is defined by

el g o= > el

I(ETé

The estimate of the terms in the telescope sum (18) will be split in a stability and a
consistency part. In this light, we define a local stability constant for the multi-step
prolongation. For a triangle K € 7, the aim is to prove the local error estimate on
o (K). For a function Ip, ¢[use] =: ue,.,0 € SFTY, the values of ug,,, ¢ |dom o (K)
depend on the values of u,, in a neighborhood of K. To be more precise we define
the influence set for an element K € 7.

Definition 10 Let K € 7, and o (K) denote the children of K on the finest level.
The influence sets describing which elements on level { < 57 < lhax are used for the
evaluation of the prolongation Iy, , on the finest level are defined via the following
Tecursion.

On the finest level, we set

jéma)ué ([X’) :: 0- ([X’) Y @Zmax 7'€ ([X7) :: ®Zmax m dom 0- ([X7)
and, for 7 = lnax — 1, lmax — 2, ..., L, we define

j]}f ([() = {[XH SE | K'Ndom j]‘_|_17g ([() 7£ @}
U{K" =7, (2) 12 € Djpre (K)}
@]‘74 ([() = @j N dom j]}f ([().

In order to avoid too many technicalities in the proof of the approximation prop-
erty we assume that domJ,, (K') is connected. This property can easily be ensured by
enriching J, . or/and 7, by appropriate elements K € 7,. The following assumption
can then be interpreted as an assumption on the domain. For all z,y € dom3J,, (K),
there exists a path s,, with endpoints z,y satisfying

Szy  C dOHljjx([(),
|5xy| S Ché (20)

18



with |s;,| denoting the length of s,,. This assumption can be problematic if, e.g.
slit-domains are considered. Then, the condition that dom3J;, (K) is connected can
be in conflict with condition (20). In [10, Bemerkung 97], it is explained how to
modify the prolongation to cover such cases, too.

Using this definition the local stability of the multi-step prolongation can be ex-
pressed as follows.

Definition 11 Let m € {0,1} and K € 7,. For j > (, we define the local stability
(

constant A]‘?) (K') as the smallest constant satisfying

Wias il oy < C Wil s, aeys Vi € S5

By using this definition, the terms in the telescope sum (18) can be estimated by

[Utrnani = Wmansiot Ly iy < ALE OB i = il s, 00y - (21)
In other words, one has to prove the local stability of the iterated prolongation I, _;
and the approximation property for the single-step prolongation I; ;_;. We begin with
estimating the error of €;,_1 = u;; — u;;—1. For @ € K’ € J3,,(K), the error has the

ciimi(2) = 3 (u—uii) (y) ¢ (2).

yEV(K')

representation

Using the inverse inequality we obtain

d/2—m
llesimll, e = CRT miae [ = wiis) (W) (22)

The estimate of the error in the vertices V (K”) is given in the following Lemma. We
recall that p = 1 holds.

Lemma 12 Let K' € 7; and y € V (K'). Then, the estimate
+1-d/2
[ (y) = wiica ()] < CAEF ™ Jul g o en

is satisfied.

Proof. We consider the two cases y E(i)i and y € O} separately.

(a) y E(i)i. Then, w; ;-1 (y) = wi—1,-1 (y). Let Fr = fit (K") denote the father of
K’. We assumed that 7, C 7, and, therefore, y € Fi holds. By using the pointwise
error estimate for standard finite elements (cf. [2, Theorem 3.1.5]) we obtain

1-d/2
[ (y) = w1 (W) < Ju = wicr izl o, < CHT P July g
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A simple consequence of the definition of the uniform reference grids is

hioi = 2N
Fxr C LK)

resulting in )
= p1—d/2
u(y) — w1 (y)] < Chi luly o sy -

b) y € OF. The functions 74, ,, 7/} are defined in Definition 5. We put K" :=
Y i ; 41 Togt p

7 (y) and Kt := 7!7" (y). The analytic extension of the restriction w;_;;_;
denoted by uf*. Then, u(y) = uf* (y) — us™ (yr) holds, where yr € I is defined by
(10). Since K¢' € 7/t and 7£*' was defined as a maximal independent subset of 7/’

(see (6)) we know that

Kext iS

dist (K’, Km) <3

and, hence,

K" C L (K").
From (4), it follows yr C L? (K'), too. This results in

yUK“ Uyr C dom L] (K"). (23)

Taking into account u (yr) = 0 we derive to the error estimate

esimn ()] < Ju () = w3 ()| fu (or) = i (om)| < 2= wZh]

Since the triangles of 7; are uniform, we know that
diam (dom L? (K')) < 11h; (24)
holds. As in the proof of [1, Theorem 7.1]

0,00,L2(K') — ¢

|u|2,L§ (K"

follows. W
Using this Lemma we can prove the approximation property for the single-step
prolongation [;;_;.

Lemma 13 Let K € 7y and w;;, u;;—1 be defined by (17). Then, the estimates

1—
|||€i’i_1|||mvji,Z(I() < Ch?-l— " |u|2,LZ3(K)

& 2%
|||€i,i—1|||m79§0hf+l |uly 0 %)

are satisfied with ny = O (1).
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Proof. Inserting the error estimate of the previous Lemma into the splitting (22)
results in
+1-m
leimllyer < CHEI™ ful o

To obtain an estimate on dom J,, we sum over all K" € 3, , (K):

2 2 2(p+1— 9
lewrlles ey = > Mewimllls oo < CHHT™ 37 Jul} o
, K'eJ; o(K) K€, o(K)
2(p+1— 9
= Chl(p m) Z |u|27](/ Z 1.
K'eL8(3,0(K)) K€%, ¢(K)
K'eL8(K")

-

Since all triangles are uniform the number of elements K € 3, , (K) satisfying K’ €
LS (K") is bounded by a constant C'y = O (1). Hence, we get

2 1-m
|||€¢,i—1|||3n,3i,z(1v) < CCyh; (1 =m) |U|§,L§(3 (K))

it

In [10, Lemma 75], it was shown that L¢(J;,(K)) C L;” (K) with a constant ny =
O (1) which leads to the asserted local estimate.
For the global estimate, we sum over all K’ € 7;:

2 2 2
lewimllia < 22 Mewimllmr < D0 Meiiztll s, )

Kler, Ker,_4
2(p+1-m) 2
< Ch; Z |u|2,L?(3,‘7,'_1(K))
Ker_
_ 2(p+1-m) 2
= Ch; Z |u|2,K Z L.
KeL8 () K'eri_y

KeL8(T3;—1(K"))

Again, it is easy but technical to prove that the number of K’ € 7,_; satisfying
K € LY (3;;-1(K")) is bounded by a constant Cy = O(1) (see [10, Lemma 15 and
Lemma 75]). This leads to

2 2(p+1— 2
llewi-1ll}, o < CCRRITHT™ 32 July -
I(EL?(T,‘)

Finally, we need the continuity of the extension operator F (see (16)) to get
llewizall,g < Coy/OCRRE ™ [lullg -

|
The stability of the iterated prolongation [, ; is concerned in the next step.

Lemma 14 Let K € 7y, There exists a constant A < oo independent of £, . and
K such that, for m = 0,1, and oll 0 < 1 <1 < lyax the prolongation I, is bounded
by A :

Al <A, (26)

where AEZL) denotes the local stability constant of Definition 11.
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Since the proof of this Lemma is rather technical, we postpone it to the end of
this chapter. We proceed with the proof of the approximation property.

Theorem 15 Let v € H? (2) N Hy () and uq,,, ¢ defined by (17). For m = {0,1},

the local and global approximation properties are valid:

p+1—-m v
u— uf|m,a(K) < Chy |u|p+1,LZ3(K) , VK e,

1—
|u - ué|m,Q S Chi?-l— " |u|p-|—1,Q

with ny of Lemma 13.

Proof. We begin with the local estimate. We insert (26) and (25) into (21). This
results in
|uémaX7i - uémaX7i_1|m7g(I() S CAhf-I—l_m |u|27LZj(IX’7) ‘

The function wg,,, ... 18 the standard nodal interpolation on the finest grid and,
hence, the standard error estimate applies (see, e.g., [5, Lemma 8.4.3]):

< OpEti-m

|u - uéma)ﬁ Cinax |u|m,0'(1() ‘

Lmax |m,cr(]&")

Plugging these estimates in (18) results in the local estimate

Zmax
1-m 1-m
u — uémaxv£|m,0’([{) < Chp;x |u|m,a(K) +CA |u|2,L33(K) Z hf-l—
1=0+1
Zmax 1
- —m)fmax — —m)t +1-m
e CA|U|2,LZ3(K) 2 (p+1 ) —|— Z 2 (p-l—l ) S C/’L? |u|27LZj(I() .
1=0+1

We come now to the global estimate and have to sum over all elements K € 7;:

2 2 2(p+1— 2
|u - uéma)ﬁdm’Q S Z |u - uémaX7Z|m7g(Ix") S Chf(p m) Z |u|2,L?j(IX’7)
Ker, Kerg

= ChPHT ST b > L

Kery, K'er,
KeL,(K")

In [10, Lemma 15], it was proved that the number of elements K’ € 7, satisfying
K € L7 (K") is bounded by the constant Cx appearing in the proof of Lemma 13.
The results in

hi?—l—l_m

|u - uémaX7Z|m7Q S CC# |u|2,QZ .

Using the continuity of the extension operator proves the assertion. B

It remains to prove the stability of the prolongation I; ,.

Proof of Lemma 14. )
For the following, we fix an element K € 7, and choose 7,7 such that { < ; <
i < lyax 1s fulfilled. Let w;; € 5; be an arbitrary finite element function and
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wi; = I;;[u;;] € S; the prolonged version. The aim is to estimate |uivi|m,3,‘7g(I§')
by |u]‘7]‘|m7jﬂ(1§,). In this light, we consider a triangle K’ € J,, (K). For x € K’, the
derivatives 0 [u; ;], o € N2, can be written in the form

O fui)(2) = Y wij(y) 0[] (x). (27)

yEV(K')

The values u;; (y) are computed from w;_; ; according to (11). We distinguish the
following cases:

1. K' €7 and K := &' (K'). Then, for all y € V (K'), u; ; (y) was defined by

uij (y) = {9,y —yr), (28)

where the gradient ¢ = Vu;_1; |k is constant and the boundary point yr is

defined by (10).
2. K'er; and K/ N Q_f = (). Then, for all y € V (K"), u;; (y) was defined by
wij (y) = tiz1; (y)

3. In all other cases, u;;(y) is computed by different strategies 1,2 for different
nodal points y € V (K”). In that case we say that u, ; |k was averaged.

For the computation of u; ; |er, only the values of ;1 ; |qom rext are needed. Hence,
for the stability of the iterated prolongation I; ; only cases 1,2 are relevant. For Case 3
one has to prove stability only for the single-step prolongation. The closest boundary
point yr on the finest level was defined differently as on coarser levels. Again, for
the stability of the iterated prolongation, only the definition for the coarser levels
are relevant. We employ formula (27) and consider the above cases separately. Let
m = 0,1 and o € N2 satisfying |a| = a3 + ay = m.

1) K" € 77" and K := g (K'). We first consider the case that yr = vyx+ holds
(cf. (10)). On K’, the restriction u;; |k has the representation (28). Hence, the
Whi-seminorm of w;; |+ coincides with the W' %-seminorm of w;_; ; |k:

(il e rer = Ntiztg ]y oo - (29)

For the L*°-Norm, we obtain
il 0. < Nl ly = well < V2 uica gl o lly — wrll-

From the definition of the near-boundary grid 7}, it follows that y € L? (yr) and, due
to the uniformity of the triangulation, we get

ly —yr|| < 5h;.
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Using the inverse inequality results in

Hui,jHo,oo,K' < 5\/§hi |ui—17j|1,oo,K <C Hui_l,jHo,oo,K‘ (30)
Multiplying (29) and (30) with the area of K’ results in
(31)

s < C il

We will also need an estimate of the modified H'-seminorm [[u;lll, xr (see (19)).

Since K' N OF # () we have to estimate the additional term 7 := i

i Hui,jHo,oo,K"

We get
Z < ChP T el ek (32)
il o = wuz’,j|im+h§l_2 il oo (33)

2 _ 2
< ¢C |ui—1,j|17oo,]( + Ch? ? Hui—lJHo,oo,K <C |||ui—1,j|||17[(-
It remains to consider the case that i = {yae and K' N T # (). Then, yr = v, holds.
Estimate (29) is no longer true. Instead, we get

Fuij(x)= Y (gy—ur)d¢,(x), VYeek'

yeEV(K')

Using the inverse inequality results in

m

il < €l sy = ol ) 0

As in (30) we conclude that

[isi | orcr < C izt jly o i hiT™ < Cluiza RIS < Cluica gl ook

(34)
holds. Estimates (30), (31), and (33) are derived as before. Summarizing we have
shown that, for ¢ < .,

m 00, K

|ui,j|17](/ = |ui—17j|1,K

holds and in the general case
il o < Cluicagl, i
sl < Clltisilly s

is satisfied. o
2.) K’ er; and K' N OF = (. Since the triangulations are physically nested, it
follows that
Ui (l‘) = U;—1, (l‘) , Vo € K’
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holds. Hence, all norms and seminorms of u; ; and u;_y ; coincide on K”.

3.) We now come to the case K’ € 7,\77" and K’ N QF # (. First, we consider
the case that K’ € 71'. Then, all values u;; (y), y € V (K’) are computed according
to

wiy (y) = (g, v — yr) (35)

with K, := 77" (y), 9k, = Vu;_1; |k,, and yr defined by (10). Hence, we obtain,
similarly as for (30) and (34), the estimate

1—
|wigly o < C Jmax, |lgr, ly —yrl[ he™ < Chy™™ JDax [wiz1ly o re,
S LS

The estimate of the modified H'-seminorm is derived in the same way as (33).
It remams to consider the case that K’ €7; but K'n QF £ 0. Let ©5% := @Y N K’

and O :=@; NK’. From K’ €7, it follows that KNI = § holds. Hence, the values
{1 (Y)},coear are computed by
K!

ext ext

iy (y) = Ug, (y) — Ug, (yr)
with K, defined as in (35) and yr := vyx. The function ue“ denotes the analytic
(affine-linear) extension of u;_y ; |k,. The father of K" is denoted by frr. Let j € O

be fixed and z, € K, be a point having minimal distance to §. Then, for € K’,
get

O fui)(2) = 3wy (W) 0% (0) + S (ug (y) — ui! (ur)) 9} (2)

yeont yeoss
= > (i (y) — wimr; (9) 9%y (2) + Somttio; (9)

e@ir}t

2 (i () =i () 9y (0) = X0 uil) () 0%} ()
yeosr yeosr!

yee)ir}t

+ Y (W) —wing (2)) 076 (1) — Y wi (yr) 9% (@)
yeeemt yee);fﬁt

+ Z wi—,; (2y) — wiz1,; (9)) aa(p; (x) =514 524 534 5S4+ 55
yeosr!

These five terms S; will be estimated step by step. We begin with the first sum:

Sty = i ltietil e, X (070, @),
ye@}?/

hi™ < Chi " h |uicy ]

Ch; |Uz’—1
C iy gl

7J|1,oo,fK/ m,00, frer

IA A

m,00, frer
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For the second term, we get
|52|07OO,I(/ S (SOJH |ui_17j|m7oo7fj\,/ °

To estimate third one we observe that uex; (zy) = ui—1; (zy) holds. Furthermore, we
have to estimate the distance ||y — z,||. From the definition of the influence sets, it
follows that fx+ and all K, are contained in J;_; ;1 (fx+). Hence, in view of (20), we
conclude that there exists a path s., , C domJ;_;;_; (R’) with length Szwy‘ < Chi_;
connecting z, and y implying

ly — 2|l < Chi_y < Chs. (36)
Now, we can estimate S5 by
Sslo i = | 2 (R (y) — uit! (2,)) 9} (x) =1 > (o, y = 2) %9} (2)
= oo |19 oo
< i Bl e, 2 (076 ()], SO e Tl o,

int
Z/GG)K/

We proceed with the fourth term. We observe that

ext

Uk, (yr) = quy (2y) + ulxxy (yr) — ulxxy (2y) = wiz1,5 (2y) + <9Ky7 yr — Zy>

holds. Using (23), (24), and 36 in combination with the triangle inequality the
difference ||z, — yr|| can be estimated from above by Ch;. This leads to

|S4|o,oo,K/ = Z (uz 1,7 (2) + <gI‘y’ yr— >) aa(p; ()
yEG);\ff 0,00,K"
< (C max (|ui—17j|o,oo,Ky hi™ + Jui- 17]|1 100,Ky hl m)

yeV(K')

= Cyé{l’?lig/) (|ui—1,j|o,oo,Ky hi™ + |ui_1vj|m7w71"y) )

This is the stability in L™, i.e., m = 0:

1S4l 0,0 < € Er{l,?x i 17]|0<>0,Ky

and the stability in the modified W*-seminorm (m = 1)

|S4|Ooofx < er{l,?x [ ei— 17]|||1,oo,f(y'

The estimate of the fifth term is obtained as follows. Let s 5 C dom J;_y ;-1 (fx)
5z, y‘ < Ch;. The restriction w;_q,; |

be a path connecting z, and ¢ with length

SZy,f/
is Lipschitz-continuous leading to

1—-m

|S5|0,oo,K’ <C |u2 1 7J|1,oo,m,3i—1,Z(R') i

m
7J|10052yy Szy.d hi™ < C|uz 1
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Together, we have shown that

|u27]|me < C|||u2 17]|||m3@ 1@( )

is valid. The estimate of the additional term appearing in the definition of modified
H'-seminorm can be performed in the same way as the estimate of Z in (32). This
results in

il g < € Mol )
Now, the proof of the single-step prolongation is complete and we come to the stability
of the iterated prolongation I; ;.

First, let £ < 7 < 1 < lipax. We consider an element K’ € J,, (R’) N et We
build a sequence via the recursion:

K, =K',
K, =r, (Koq) r=1—1,1—2,...,7.

t

In view of K, € 77", we know that w,; |k, is not averaged for all r resulting in

uij (2) = ug) (¢) —ug (ywr), Ve € K.
The proof of stability is therefore the same as for the single-step prolongation:
Mot sl e < € Wil ) - 1)

Now, we consider the case of K’ € J;, (R’) satisfying K’ N Q_f # (). The stability
of the single-step prolongation yields

sl Wl g, sl o,

In [10, Lemma 71], it is proved that fx: and all K, y € V (K'), belong to 7.
Hence, we can apply (37) and obtain the stability of the iterated prolongation for ]& .

It remains to consider those elements K’ € 7; satisfying K’ N QF (). We build a
sequence of triangles by the following procedure:

K, :=K'r:=u;

while K, N1 QI = §) and r > j do begin

ri=r— 1K =l (Keq);

end;

The triangulations are physically nested, therefore, w; ;| = u,,7]‘|KT holds and
all seminorms coincide. Hence, if r = j there is nothing to prove since all norms
coincide. For the following, we assume r > j implying K, N Q_E # (. Applying the
previous results proves the stability for all cases provided ¢ < fac. For ¢ = lax,
follows from this results and the stability of the single-step prolongation I, ¢.. 1.
This completes the proof of the stability of the iterated prolongation /; ;. W

From the proof of the stability, the following corollary follows directly.
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Corollary 16 There exists a constant For j > ( and all K € 7, the multi-step
prolongation is also stable in W :

|uémaX7j|17oo7g(I() <C |||uj,j|||17oo,jil(1() :

In [10, Section 5.2.2], a proof of the approximation property for the general situa-
tions described at the end of the previous section is given. One has to impose technical
assumption on the mapping ®, which can be satisfied by using an appropriate algo-
rithm for adapting the reference grid 7, ., to the boundary. Roughly speaking, the
composite finite elements grids 7, have to be shape-regular and the diameters of the
triangles of 7, must be comparable to the diameters of the corresponding triangles of
the reference grids. In [10, Annahme 27] six conditions are formulated which ensures
that the approximation property is valid also for the general case.

The general proof can be obtained by transferring all Lemmata and auxiliary
statements of this section to the general case.

In the next section, we explain how to use composite finite elements for the dis-
cretization of partial differential equations.

4 Discretization with composite finite elements and
numerical results

We have introduced composite finite elements for the discretization of partial dif-
ferential equations on complicated domains. As a model problem, we consider the
problem of finding v € H} (Q) such that, for given functional F' € H™' (),

/Q(<VU,VU> +uv)dz = F (v), Yo € H} (Q)

is satisfied. We focus our attention on domains containing small geometric details as

holes, etc. The Galerkin discretization based on composite finite elements takes the
form: Find u, € SYIF such that

/Q(<VW, V) + upve)dz = F (vg) Yo, € SETE (Q) (38)

is fulfilled. For the reformulation of this problem as a system of linear equations we
introduce the space of grid functions R®¢ containing all mappings 3 : ©, — R. Any
function u, can be represented by

we(2) = 2 B(Y) Lt [95] (2) =0 3 B0) 0, (2).

UISCY; UISCY;

Hence, equation (38) is equivalent to finding 3, € R® such that
> Ke(e,y)Be(y) = fe(x),  YeeR®,

UISCY;
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where K, € R®*9¢ and f, € R®¢ are defined by

Ke(w.y) = o ((VB, VBE) + b6 ) dz, 2,y € O,
fg(l’):F(bﬁ,), x € O,

The matrix Ky, and right-hand side f, . on the finest grid can be assembled as
for standard finite elements since S = 5, N H} () holds. The coarser matrix
and right-hand side can be obtained by coarsening the fine-grid system. Let us
introduce the (discrete) prolongation and restriction operators Ppyqs € RO+1%9¢ and
Ry € RPXOu1 by

Prove(2.y) = Il |h] (2), Yo €0u, Wy €0y, (39)
<RZ,Z+1 [U] 7w>g = <U7 PZ-I—I,Z [w]>5+1 ’ Vo € RGZ-H? Vw € R®z7

where (-,-), : R x R denotes the Euclidean scalar product. Then, the coarser system

is defined by

Ky = Roppi K1 Py (40)
fo = Repv1fosr.

We state that the complexity of assembling the whole sequence of linear systems
{]&”g}ﬁig", {fe ﬁzg" is proportional to the work needed for the generation of the fine
grid system, i.e., proportional to the number of fine grid points #0,_. . However,
if one is interested only in the generation of a coarse grid system it is possible to
localize the prolongation and restriction to the near-boundary region and reduce

d—1
the arithmetic work for assembling K, from O (Ny,,,) to O (Ny) + O (Ngg). The

implementation and complexity analysis are worked out in detail in [7].

For numerical tests, we have chosen the unit disc and considered the approxima-
tion of the function u (z) = ¢=0l=l — ¢=10 We have used the uniform triangulation
described in the beginning of Section 2.1 as reference grids. This problem is well
suited for testing the approximation quality of composite finite elements since the
composite finite element grids on the coarse levels cannot be regarded as an approx-
imation of the domain. We have employed composite finite elements based on linear
elements (p = 1) and, hence, restricted the grids to the interior of the domain as
described in Section 2.2 (e). A sequence of grids is depicted in Figure 9. We first

verified the approximation property. We have proven that there exists a function
up € SETE such that

|u_uf|m,9 < Ch?_mHqu,Qv m = 0,1

holds. The following table reports the observed convergence rates.
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Level | dim lleelo Il lee], el
1 9 1.22e-1 8.83e-1
2 45 7.51e-2 1.6 8.27e-1 1.1
3 193 | 2.07e-2 3.6 4.48e-1 1.8
4 777 | 5.43e-3 3.8 2.28e-1 | 2.0
5 3101 | 1.37e-3 | 4.00 | 1.15e-1 | 2.0
6 12365 | 3.45e-4 | 4.00 | 5.74e-2 | 2.0

7 49473 | 8.62e-5 | 4.00 | 2.87e-2 | 2.0

As a further application of composite finite elements we have tested the efficiency
of multi-grid methods (see [4]) based on composite finite elements. The coarse-level
matrices are characterized by K from (40). The intergrid transfer is performed by the
prolongation and restriction operators defined in (39). We have used the symmetric
GauB-Seidel method as a smoother and the W-cycle multi-grid method with two pre-
and two post-smoothing steps. The iteration was stopped as soon as the /*-norm of
the residual was smaller than 1073,

Level | dim # iterations

1 9 direct solver
45
193
77T
3101
12365
49473

=IO O W= WO DD
| =3 Ot O ~T| OO

Obviously, the numbers of iterations are very low and independent of the refinement
level. Finally, we report also the computing times of the various steps of the algorithm.
The CPU-time (in milli-seconds) for the time for assembling the fine-grid system is
denoted by ¢ [K,,, ], the time needed for the generation of all coarser systems by

t {{[(g ﬁzg"_l}, and the time needed for the multi-grid solver is denoted by ¢[mg].

The time of adapting the finest grid to the boundary and rejecting elements from all
grids lying (essentially) outside of the domain is denoted by ¢ [grids].

level | dim | ¢ [grids] | ¢ [Ks..] | ¢ |{K: Y= | ¢ [mg]
3 9 1 33
4 45 16 17 417
5 | 193 100 33 1466
6 | 777 400 133 5117
7 | 3101 1517 533 16883
8 | 12365 5950 2050 95000
9 | 49473 | 455283 | 34233 8000 220550
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It clearly can be seen that the CPU-time for all quantities grows linearly with
respect to the number of unknowns. The most time consuming step is the generation
of the composite finite element grids followed by the multi-grid solver.

Acknowledgment: Thanks are due to L. Grasedyck for performing the numerical
experiments.
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