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1 Introduction

Although the Boundary Element Method (BEM) enjoys the boundary only discretization, a serious
computational difficulty arises due to its dense matrix formulation, particularly for large scale three
dimensional problems arising in engineering. This is because the method requires O(N?) memory and
O(N? ~ N3) computation using the conventional approach, where N is the number of unknowns.

The situation is even worse for the three dimensional elastostatic problem, where the number of
unknowns is three times that of the potential problem, since the unknowns at each node is a vector
instead of a scalar.

Rokhlin[1] and Hackbusch and Nowak[2] independently proposed the multipole method and the panel
clustering method, respectively, in order to overcome this difficulty. The main idea 1s to approximate
the far field using multipole or polynomial expansions around a centre of a cluster of panels or boundary
elements, thus reducing the O(N?) dense matrix vector multiplication to a O(N (log N')*+?) sparse matrix
vector multiplication for each iteration of the iterative linear solver, where d is dimension of the space.

Yamada and Hayami[3] proposed a multipole boundary element method for two dimensional elas-
tostatics. In this paper, we will present a formulation of the panel clustering method for the three
dimensional elastostatic problem. The formulation is also applicable to the multipole method.

2 Boundary Element Formulation of 3-D Elastostatics

The boundary integral equation for the three dimensional (linear, isotropic) elastostatic problem is given
by
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where I' is the boundary of the domain under consideration, ug, px are the displacement and traction,
respectively, ¢ (x) = %511« when T' is smooth at x, and we have neglected the body force term. u} (x,¥)
is the fundamental solution corresponding to the k-th component of the displacement at x due to a unit
point load in the I-direction at y, which is usually given by
u;‘k = ;{(3—41/)(5”@—%7“[7“;@}, (2)
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where p is the shear modulus, v is the Poisson’s ratio, r =| y — x | and v, = 9r/9yx, y = (1, ¥2,y3)"

For the sake of the expansions for the panel clustering method, it will prove convenient (cf. [4]) to
rewrite equation (2) using
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Since the strain corresponding to uj, is
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Hooke’s law:
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Then, the traction pj, = O'l*kjnj corresponding to uj,, where n; is the unit outward normal vector at
y € I, is given by
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3 Polynomial Expansions for the Panel Clustering Method

where A =

is the volumetric component, gives

The panel clustering method[2, 4] makes use of polynomial expansions of the integral kernels of equation
(1) for cluster of elements which are sufficiently far from the observation point x, in order to reduce
the amount of computation and required memory. This can be achieved by first considering Taylor
expansions of r and % around the centre of a cluster y = (y9,49,49)7, e.g.
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where h = (hq, ko, hg)T, s =uv, 4+ vy + va.

Next, the expansion of equation (5) is expressed in terms of polynomial expansions in y; instead of
hi =y — .

Similar expansions are formed for % Then, the expansions for the spatial derivatives of r and %
appearing in equations (3) and (4) can be easily derived using the expansions obtained for » and %

We conclude by pointing out that equations (3) and (4) are also convenient for deriving multipole
expansions using spherical harmonics in the multipole method.
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