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� Introduction

Although the Boundary Element Method �BEM� enjoys the boundary only discretization� a serious
computational di�culty arises due to its dense matrix formulation� particularly for large scale three
dimensional problems arising in engineering� This is because the method requires O�N�� memory and
O�N� � N�� computation using the conventional approach� where N is the number of unknowns�

The situation is even worse for the three dimensional elastostatic problem� where the number of
unknowns is three times that of the potential problem� since the unknowns at each node is a vector
instead of a scalar�

Rokhlin��� and Hackbusch and Nowak��� independently proposed the multipole method and the panel
clustering method� respectively� in order to overcome this di�culty� The main idea is to approximate
the far 	eld using multipole or polynomial expansions around a centre of a cluster of panels or boundary
elements� thus reducing the O�N�� dense matrix vector multiplication to a O�N �logN �d��� sparse matrix
vector multiplication for each iteration of the iterative linear solver� where d is dimension of the space�

Yamada and Hayami�
� proposed a multipole boundary element method for two dimensional elas�
tostatics� In this paper� we will present a formulation of the panel clustering method for the three
dimensional elastostatic problem� The formulation is also applicable to the multipole method�

� Boundary Element Formulation of ��D Elastostatics

The boundary integral equation for the three dimensional �linear� isotropic� elastostatic problem is given
by
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where 
 is the boundary of the domain under consideration� uk� pk are the displacement and traction�
respectively� clk�x� �

�
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�lk when 
 is smooth at x� and we have neglected the body force term� u�lk�x�y�

is the fundamental solution corresponding to the k�th component of the displacement at x due to a unit
point load in the l�direction at y� which is usually given by
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where � is the shear modulus� � is the Poisson�s ratio� r �j y � x j and r�k � �r��yk� y � �y�� y�� y��
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For the sake of the expansions for the panel clustering method� it will prove convenient �cf� ���� to
rewrite equation ��� using
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Since the strain corresponding to u�lk is
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Then� the traction p�lk � 	�lkjnj corresponding to u�lk� where nj is the unit outward normal vector at
y � 
� is given by
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� Polynomial Expansions for the Panel Clustering Method

The panel clustering method��� �� makes use of polynomial expansions of the integral kernels of equation
��� for cluster of elements which are su�ciently far from the observation point x� in order to reduce
the amount of computation and required memory� This can be achieved by 	rst considering Taylor
expansions of r and �

r
around the centre of a cluster y� � �y�� � y
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where h � �h�� h�� h��
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Next� the expansion of equation ��� is expressed in terms of polynomial expansions in yi instead of
hi � yi � y�i �

Similar expansions are formed for �

r
� Then� the expansions for the spatial derivatives of r and �

r

appearing in equations �
� and ��� can be easily derived using the expansions obtained for r and �

r
�

We conclude by pointing out that equations �
� and ��� are also convenient for deriving multipole
expansions using spherical harmonics in the multipole method�
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