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Bayesian Inverse Problems (Stuart 2010)

Find the unknown data « € X from noisy observations

0=G(u)+n,

@ X separable Banach space
@ G: X+~ X the forward map

Abstract Operator Equation

GivenueX, findge X: A(u;q) =f
with A € £(X,)"), X, Y reflexive Banach spaces, a(v,w) :=y (w,Av)y W€ X,w € Y
corresponding bilinear form

@ O : X — RX bounded, linear observation operator
@ G : X — RX uncertainty-to-observation map, G = O o G
@ 1 ¢ R¥ the observational noise (n ~ A(0,T))
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Bayesian Inverse Problems (Stuart 2010)

Find the unknown data « € X from noisy observations

§=G(u)+mn,

@ X separable Banach space

@ G: X~ X the forward map

@ O : X — R¥ bounded, linear observation operator

@ G : X — RX uncertainty-to-observation map, G = O o G
@ 7 € RX the observational noise (n ~ N (0,T))

Least squares potential ® : X x RK — R

2(u;6) = 5 (6~ 6) T (5~ 6w)))

Reformulation of the forward problem with unknown stochastic input
data as an infinite dimensional, parametric deterministic problem
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Bayesian Inverse Problems (Stuart 2010)

Parametric representation of the unknown u

w=uly) = () + Yy € X

Jjel

@ y = (yj)jes i.i.d sequence of real-valued random variables y; ~ U[—1, 1]
@ (u),heX
@ J finite or countably infinite index set

Prior measure on the uncertain input data

po(dy) = (X) %Al(dy,-) :

Jjel

@ (U,B)= ([—1, 1Y, ®;e;B'[-1, 1}) measurable space
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(p, €) Analyticity

(p,€) : 1 (well-posedness)

For each y € U, there exists a unique realization u(y) € X and a unique solution
q(y) € X of the forward problem. This solution satisfies the a-priori estimate

WweU: [lqb)lx < Coly),

where U 3y — Co(y) € L' (U; o).

(p, €) : 2 (analyticity)

There exist 0 < p < 1 and b = (b;);cy € ¢’ (J) such that for 0 < e < 1, there exist Cc > 0
and p = (p;)jes of poly-radii p; > 1 such that

> pb<1—ce,

JET

and U 5y — ¢(y) € X admits an analytic continuation to the open polyellipse
& =Ly &, C C* with

Vze&p: lg@)llx < Cely).

v
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Sparsity of the Forward Solution

Theorem (Chkifa, Cohen, DeVore and Schwab)
Assume that the parametric forward solution map ¢(y) admits a (p, €)-analytic
extension to the poly-ellipse &, c C”.

@ The Legendre series converges unconditionally,

ay) =Y _ qbPu(y) in L®(U, uo; X)
veF
with Legendre polynomials Pi(1) = 1, ||Pt||ec(—1,y =1, k=0,1,....

@ There exists a p-summable, monotone envelope g = {q, }.cr,
ie. g, :=sup,>, [lg,]|lx with C(p,q) = [|q|lerr) < oo
and monotone Ak C F corresponding to the N largest terms of ¢

with
sup Hq(y) -> quPu(y)HX < C(p,g)N~ /P71

yev V€A§
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(p, €) Analyticity of Affine Parametric Operator Families

Affine Parametric Operator Families

Aly) =Ao+ Y _yiAj € L(X,V) .

Jjel

Assumption A1 There exists x> 0 such that

inf _o(v,w) > po, inf  sup _Go(v, ) > o
0£vEX oey [Vl 2wy 0£weY omvex [Vl x|wlly

Assumption A2 There exists a constant0 < x < 1

Dob<k<1, where b= Ay Ajllccxom
JEJ

Assumption A3 Forsome 0 <p < 1

”b“Zz(J) = be < oo

2
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(p, €) Analyticity of Affine Parametric Operator Families

Theorem (Cohen, DeVore and Schwab 2010)

Under Assumption A1 - A3, for every realization y € U of the
parameters, A(y) is boundedly invertible, uniformly with respect to the
parameter sequencey € U.

For the parametric bilinear form a(y;-,) : X x Y — R, there holds the
uniform inf-sup conditions with 1 = (1 — &) uo,

Vy e U: inf  su M > e a(y;v,w)

Z M, sup =
0Av€X oswey V]| x[wlly 0AweY ovex [IVllxllwlly

The forward map g : U — X, g := G(u) and the
uncertainty-to-observation map G : U — RX are globally Lipschitz and
(p, €)-analytic with 0 < p < 1 as in Assumption A3.
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Examples

Stationary Elliptic Diffusion Problem

Ai(u;q) == —V-(qu) =f in D, q=0 in 0D
with X =Y = V = H} (D).

Time Dependent Diffusion

Az (y) := (0: +A1(y), t0)
where (y denotes the time r = 0 trace,
X =1*0,T;V)NH(0,T; V"), Y = [*(0,T; V) x H.
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Bayesian Inverse Problem

Theorem (Schwab and Stuart 2011)

Assume that G(u) is bounded and continuous.
”:<u>+2jej Vi

Then x4 (dy), the distribution of y € U given 6, is absolutely continuous

with respect to 1o (dy), ie.
dpd 1

i ) =-00)

with the parametric Bayesian posterior © given by

O(y) = exp(~2(u;9))|

u=(u)+3" ey i
and the normalization constant

z:ﬁewmw»
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Bayesian Inverse Problem

Expectation of a Quantity of Interest ¢ : X — S
o) =27 [ exp(-~0(ws5)(w
U

With Z = [ _ exp(— 4 (8 — G(u) "D (6 — G(u))) oldy).

dy) =717
A 1/leto( y) /

@ Reformulation of the forward problem with unknown stochastic input data
as an infinite dimensional, parametric deterministic problem

@ Parametric, deterministic representation of the derivative of the posterior
measure with respect to the prior g

@ Approximation of Z’ and Z to compute the expectation of Qol under the
posterior given data

Efficient algorithm to approximate the conditional expectations given
the data with dimension-independent rates of convergence
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Sparsity of the Posterior Density

Theorem (C.S. and Ch. Schwab 2013)

Assume that the forward solution map U >y — q(y) is (p, €)-analytic for
some 0 < p < 1.

Then the Bayesian posterior density ©(y) is, as a function of the
parameter y, likewise (p, €)-analytic, with the same p and the same e.

N-term Approximation Results

sup [€0) = 3= eLr, <N gy 5= -1

yeU
veAl

Adaptive Smolyak quadrature algorithm with convergence rates
depending only on the summability of the parametric operator
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Univariate Quadrature

Univariate quadrature operators of the form

ng
“(g) =) wi-a(z)
i=0

with g : [-1, 1] — S for some Banach space S

@ (0")i>0 sequence of univariate quadrature formulas
@ (), C[-1,1] with 2} € [~1,1],Vj, k and zf = 0, Vk quadrature points
wi,0 <j <n, Vk € No quadrature weights

Assumption 1

(i) (I—0"(gk) = ng € Py = span{y : j € No,j < k}
with I(g) = f VA1 (dy)
(ii) Wj>0, 0 <j<m, Yk € Np.
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Univariate Quadrature

Univariate quadrature operators of the form
Ny
0 (9) =Y _wk-9(d)
i=0

with g : [—1, 1] — S for some Banach space S

(*] (Q")kzo sequence of univariate quadrature formulas
@ (), C [-1,1] with z} € [~1,1],Vj, k and z{ = 0, Vk quadrature points
@ wh,0<j<m, Vke N, quadrature weights

Univariate quadrature difference operator
Aj = Q] - Qj_lv .] > 0

with@=' =0andz) = 0,w) =1
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Univariate Quadrature

Univariate quadrature operators of the form
Ny
0 (g) =) wi-a(z)
i=0

with g : [-1, 1] — S for some Banach space S

@ (0")i>0 sequence of univariate quadrature formulas
@ (7)), C [-1,1] with zf € [-1,1],Vj,kand z; = 0, Vk quadrature points
@ w/,0<j<mn, Vk € Ny quadrature weights

Univariate quadrature operator rewritten as telescoping sum

k
QkZZAj

J=0

with 2% = {Z/ : 0 <j < m} C [-1, 1] set of points corresponding to Q*
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Tensorization

Tensorized multivariate operators

QV:@Qyja AV:®AVJ

jz21 jz1

with associated set of multivariate points 2 = x> 2% € U

@ Ifv=0r,then Ayg=0"g =g(z0,) = g(0F)
@ If0r #v e F,with o = (1)
Q'g=0"(t—Q0%), i€l

izl

and
Avg=A,(t— Q) Asg), i€l
i1
for g € Z, g, is the function defined on 2% by
gl‘(j)) :g(y)ay = ("’7yi*17t7yi+17"‘)7i > 1 andy = (tayza"')ai: 1
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Sparse Quadrature Operator

For any finite monotone set A C F, the quadrature operator is defined

by
A=) A=) KA,

veA veA j>1

with associated collocation grid

Zp =UpepZ”

Theorem

For any monotone index set Ay C F, the sparse quadrature Q,, is
exact for any polynomial g € Py, , i.e. it holds

QAN(g):I(g)7 VgEIPANu

with Py, = span{y” : v € Ay} and I(g) = [, g(y)po(dy).

v

C. Schillings (SAM) Sparsity in Bayesian Inversion Pro*Doc - August 15, 2013 13/24



Convergence Rates for Adaptive Smolyak Integration

Theorem

Assume that the forward solution map U >y — ¢(y) is (p, €)-analytic for some
0<p<l.

Then there exist two sequences (A} )y>1, (A%)y>1 of monotone index
sets Ay® C F such that #Ay> < N and
[1[6] — @,y 0] < C'N 7,

withs = 1/p — 1,1[0] = [,, ©(y)po(dy) and,

1
9] - Q¥ < N7, 5= -1,

with s = 1/p — 1, I[¥] = [, ¥(y)po(dy), C', C* > 0 independent of N.

C.S. and Ch. Schwab. Sparsity in Bayesian Inversion of Parametric Operator Equations, 2013.
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Convergence Rates for Adaptive Smolyak Integration

Sketch of proof

@ Relating the quadrature error with the Legendre coefficients

1(©) = Qa (@) <2- > wloy|

vEA
and
11(®) = Qa(®)|lx <2+ > wllvrfx

vEA

for any monotone set A C F, where ., := [T, (1 + ).

® (W0 ver € tn(F) and (w17 llx)ver € In(F).

= J sequence (Ay)y>1 of monotone sets Ay C F, #Ay < N, such that
the Smolyak quadrature converges with order 1/p — 1.
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Adaptive Construction of the Monotone Index Set

Successive identification of the N largest contributions

1A,(0)| = Q) A,0)], veF

jzl1

— A. Chkifa, A. Cohen and Ch. Schwab. High-dimensional adaptive sparse polynomial

interpolation and applications to parametric PDEs, 2012.

Set of reduced neighbors
NA)={v¢gA:v—eecAVjel,andry; =0,V > j(A) + 1}

with j(A) = max{j: v, > 0forsomev € A}, I, ={j e N: 1, #0} CN
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Adaptive Construction of the Monotone Index Set

1: function ASG

2: Set A} = {0} ,k =1 and compute Ay(O).

3 Determine the set of reduced neighbors A/(Ay).

4 Compute A, (0©),Vv € N(Ay).

5: while 3" . \(a,) |A0(©)] > tol do

6: Select v € N (Ay) with largest |A, | and set Ay = Ay U {v}.
7 Determine the set of reduced neighbors N (A4 1).
8 Compute A, (0),Vv € N(Ags1).

9 Setk=k+ 1.

0 end while

1: end function

10:
1

T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature, Computing, 2003
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Numerical Experiments

Model parametric parabolic problem

Orq(t, x) — div(u(x)Vg(t,x)) = 100 - rx (t,x) €T x D,
q(0,x) =0 xeD,
q(t,0) =¢q(t,1) =0 teT
with
u(x,y) )+ Zy,w, ,Where (u) = 1 and ¢; = a;xp,
j=1

where D; = [(j — 1) gg,jggls ¥ = (0)i=1,..s and oy = §2,¢ =2,3,4.

@ Finite element method using continuous, piecewise linear ansatz functions in
space, backward Euler scheme in time

@ Uniform mesh with meshwidth Ay = hp = 27"
@ LAPACK’s DPTSV routine

C. Schillings (SAM) Sparsity in Bayesian Inversion Pro*Doc - August 15, 2013 16/24



Numerical Experiments
Find the unknown data « for given (noisy) data ¢,
d=G(u)+n,

Expectation of interest Z'/Z

d
u=(u)+ fil)’ﬂﬁjm)( b)

7 - /U exp(=®(u; 5)) ()
z = /UeXp(—<1>(u;5))‘ f1o(dy)

u=(u)+3°32 ) vt

@ Observation operator O consists of system responses at K observation points in 7 x D at
tp = ﬁ:l: 1’~~472NK’T - l,xj = ZN%’](: 1,...,2NK*D — I,Ok(',') = 6( —lk)6(~ —xk)
withK =1, Nyp = I,Ngr =1, K=3, Nyp =2,Nxk,r =1, K=9, Nx.p = 2,Ng,7 =2

@ G:X — RK with K =1,3,9, ¢(u) = G(u)

@ = (n)j=1,... .k iid with n; ~ N(0,1), n; ~ N(0,0.52) and n; ~ N(0,0.1%)
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Numerical Experiments

Quadrature points
@ Clenshaw-Curtis (CC)

Zjl.c = —cos( ) ),j:(),...,l’lk—l,ifnk>1and
nk—l

4 = 0,ifm=1

withng = land e =28+ 1, fork > 1

@ MR-Leja sequence (RL)
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Numerical Experiments

Quadrature points
@ Clenshaw-Curtis (CC)
@ R-Leja sequence (RL)
projection on [—1, 1] of a Leja sequence for the complex unit disk initiated at i

ZI(() = 07211(:1’2];:—17”‘]':0,1,2and
j—1
4 = N, withzzargmaXH\z—zlfI,j:3,---,nk,ifj0dd,
Jz[<1 =1
k koo if
i = —Z_1,j=3,...,mif jeven,

withm, =2-k+ 1, fork >0

J.-P. Calvi and M. Phung Van. On the Lebesgue constant of Leja sequences for the unit disk and
its applications to multivariate interpolation Journal of Approximation Theory, 2011.

J.-P. Calvi and M. Phung Van. Lagrange interpolation at real projections of Leja sequences for
the unit disk Proceedings of the American Mathematical Society, 2012.

A. Chkifa. On the Lebesgue constant of Leja sequences for the unit disk Journal of
Approximation Theory, 2013.
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Leja quadrature points

Proposition
Let OF" denote the sparse quadrature operator for any monotone set A based on the

univariate quadrature formulas associated with the 93-Leja sequence.

If the forward solution map U > y — ¢(y) is (p, €)-analytic for some
0<p<lande>0,then (7,0F)),cr € I (F) and
(wll?lls)ver € tn(F).

Furthermore, there exist two sequences (AL"")ys1, (ARF?))ys ) of
monotone index sets AN~ ¢ F such that #AX" <N, i = 1,2, and
such that, for some C', C*> > 0 independent of N, with s = | — 1,

l1[e] — o AL [0]| < C!N~*,

and

l1[¥] — QA[R;IL,Z[\II[HS < C’N~*.
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Leja quadrature points
Sketch of proof

Univariate polynomial interpolation operator

ny,
(@)=Y a1
i=0

withg: U — S, E(y) :==

IL%, it Z — “ the Lagrange polynomials.
-]

(I = Qo) (gx) = (I = I[Tg,)) (8) = I(g — Tee(81)) = O
Vegr € Py = span{y : j € No,j < k}.
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Leja quadrature points
Sketch of proof

Univariate polynomial interpolation operator

n
The(8) =D g () - 1,
i=0

withg: U — S, E(y) == [T yjf’ the Lagrange polynomials.
()

(I—Qk)(gk) =0, Vg€l

k
sup |Qk(9)ls
0£ecc(uss) 19l (vss)

Ikl

7K oo ([)-
< I RL(g)HL (U;S) < 3(k+ 1)210g(k—|— 1)
0#£g€C(U;S) H gHL‘X’(U;S)
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Leja quadrature points
Sketch of proof

Univariate polynomial interpolation operator

f(8) =Y g ()
i=0

withg: U — S, E(y) :==
o

(I— O )(gr) =0, Vg ePy

IQk.ll < 3(k + 1)* log(k + 1)

[T, 2 s % the Lagrange polynomials.

@ Relating the quadrature error with the Legendre coefficients 6% of g
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Normalization Constant Z
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set Ay based on the sequence CC with K = 1,3,9, n ~ N(0,1) and with { =2
(1), ¢ =3 (m.) and ¢ =4 (r.), hy = hp = 27! for the reference and the adaptively
computed solution.
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Normalization Constant Z

z. =2~ N(0,0.5%) Z, =4 N(0,0.5%)

Z,¢8.n N(0,0.5%)
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set Ay based on the sequence CC with K = 1,3,9, n ~ A/(0,0.5%) and with
¢=2(),¢=3(m.)and ¢ =4 (r), hr = hp = 27" for the reference and the adaptively
computed solution.
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Normalization Constant Z
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Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set Ay based on the sequence CC with with K = 1,3,9, n ~ N(0,0.1?) and with
¢=2(),¢=3(m.)and ¢ =4 (r), hr = hp = 2" for the reference and the adaptively

computed solution.
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Normalization Constant Z

2,02, n-N©.1) 2,03, m-N@.1) 2, =4, N(,1)

© Stimated error, N,=2 L o Estimated arror, N, =2 L o Estimated error, N, =2 R
Estimated error, Ny=3 AL Estimated error, N,=3 AL Estimated error, N,=3 AL

| Estmated aror, Ned AL Estimated error, N4 AL | Estmated oror N-s AL

107 - Error ref. 501, N,=2 RL 107 Error (ref. s0l), =2 AL 107 _ - Error (ref. 501, N,=2 RL
. Error (rel. sol), N,=3 RL " (ref. s0L), N=3 RL _Error ref. sol), N,=3 RL

1o, sol), N =4 RL " (1o, ol), Nd AL " (ro. Sol), N=4 AL

supremum error

supremum error
supremum error

Figure: Comparison of the estimated error and actual error. Curves computed by the
reference solution of the normalization constant Z with respect to the cardinality of the
index set Ay based on the sequence RL with K = 1,3,9, n ~ N(0, 1) and with ¢ = 2
(1), ¢ =3 (m.) and ¢ =4 (r.), hy = hp = 27! for the reference and the adaptively
computed solution.
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Normalization Constant Z
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Numerical Experiments

Model parametric parabolic problem

Orq(t,x) — div(u(x)Vq(t,x)) = 100 - 1x (t,x) e T x D,
q(0,x) =0 xeD,

at,0) =g(t,1) =0  reT

with
128

u(x,y) )+ Zyﬂb] ,Where (u) = 1 and ¢); = a;xp,

j=1

where D; = [(j — 1) i35, J135]s ¥ = ()j=1....128 and oy = &¢ , ¢ =2,3,4.

@ Finite element method using continuous, piecewise linear ansatz functions in
space, backward Euler scheme in time

@ Uniform mesh with meshwidth 4y = hp = 27"
@ LAPACK’s DPTSV routine
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computed solution.
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solution.
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Conclusions and Outlook

@ New class of sparse, adaptive quadrature methods for Bayesian
inverse problems for a broad class of operator equations

@ Dimension-independent convergence rates depending only on the
summability of the parametric operator

@ Numerical confirmation of the predicted convergence rates

C. Schillings (SAM) Sparsity in Bayesian Inversion Pro*Doc - August 15, 2013 23/24



Conclusions and Outlook

@ New class of sparse, adaptive quadrature methods for Bayesian
inverse problems for a broad class of operator equations

@ Dimension-independent convergence rates depending only on the
summability of the parametric operator

@ Numerical confirmation of the predicted convergence rates

@ Gaussian priors and lognormal coefficients

@ Adaptive control of the discretization error of the forward problem
with respect to the expected significance of its contribution to the
Bayesian estimate

@ Efficient treatment of large sets of data §
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