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Model Problem

Let (2, F, P) be a complete probability space and D C R" a
domain in n = 2,3 dimensions. We consider the stochastic
diffusion problem

find u(w) € H3(D) such that for almost all w € Q
—div (a(w)Vu(w)) = f in D.

The logarithm of the diffusion coefficient is supposed to be a
centered Gaussian field which can be represented by a
Karhunen-Loéve expansion

K(x,w) := log (a Z\/>90k JVk(w
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Assumptions:
» The functions {pg}x C L>(D) are pairwise
L?(D)-orthonormal,
» the sequence
e = vV Mllewll (o)
satisfies {7y}« € £1(N),

» the random variables {tx } x are independent, standard
normally distributed, i.e. 1, ~ N(0,1).

In practice the Karhunen-Loéve expansion is appropriately
truncated after m terms.
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Parametrized problem
The last assumption implies that the pushforward measure
Py := P o) is given by the joint density function

m 2
o) = TL o). where 40) = \/%exp<—y2>.

Thus the parametrized and truncated diffusion coefficient is
m
K(x,y) := Z VApk(X)yk  and  a(x,y) = exp (k(x,y))
k=1

forallx e Dandy = (y1,y2,...,Ym) € R™.
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The corresponding parametrized problem is
find u € L3(R™; Hy(D)) such that
—div (a(x,y)Vu(x,y)) = f(x) in D for all y € R™.

Note that the diffusion coefficient a is not uniformly elliptic in y.
But the diffusion coefficient satisfies

0 < amin(y) = essinfyep a(x,y) < esssup,cp a(x,y) =: amax(y) < 0o
for all y € R™. Thus for every fixed y € R™ the problem
—div (a(x,y)Vu(x,y)) = f(x) in D

u(x,y) =0on 0D
is elliptic and admits a unique solution u(-,y) € H}(D) with

. < -
luCY)lmnoy S S5 IFllezo):
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We will not compute an approximation of the solution itself.
Instead we consider the computations of statistical quantities of
the solution, like its moments. This means that we have to
approximate high-dimensional integrals of the form

Ma(u)()i= [ uP(x.y)p(3)dy.

QMC quadrature rules use classically points in the hypercube
[0,1]™. Hence we transform the integral:

/Rm uP(x,y)p(y) dy =/ uP (x,®7(2)) dz,

(0,1]m

where ®~1(z) denotes the inverse of the m-dimensional cumulative

normal distribution.
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QMC quadrature

A QMC quadrature rule for v € L1([0,1]™; X), where X is a
Banach space of functions defined on D, is of the form

1 N
(QV)(x) = 5 D vix.&).
i=1

Here N denotes the number of samples and §; € R™ is one sample
point. In contrast to the MC quadrature, where the set of sample
points is chosen randomly, QMC quadrature constructs the sample
points. One classical construction was developed by Halton.
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Halton sequence

Let by,..., by, denotes the first m prime numbers. The
m-dimensional Halton sequence is given by

ﬁi:[hbl(i)v"'?hbm(i)]T7 i:0>1,27"'a

where hp, (i) denotes the i-th element of the van der Corput
sequence with respect to bj. That is, if i = --- 3oy (in radix bj),
then hp, (i) = 0.cicocz - -+ (in radix by).

The Halton sequence belongs to the class of low discrepancy
sequences.
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Koksma-Hlawka-inequality
For a function v € Wmlx([O 1™ HY(D)), i.e.

HVHWU([O 1]m;H(D)) Z / \8qv(y HHI dy < 00,
llalleo<1

the error of QMC quadrature can be estimated by
10 = QVlin0) £ D@Vl oo

The L*-star discrepancy D% (=) of the set of sample points
= ={&,...,én} C[0,1]™ is defined by

Vol ([0, t)) —onOt) (&)].

i=1

D5 (2):= sup
tel0,1]m
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There arise two main problems:
> The function u(x, ®~!(z)) does not belong to
WEL([0,1]™; HE(D)) since it is unbounded at the boundary of

mix
[0,1]™.

» The L*°-star discrepancy of low discrepancy sequences is
bounded by O(N~tlog™ N). Thus, even if the integrand
belongs to WL ([0, 1]™; HE(D)), the cost for QMC
quadrature to reach a certain accuracy may grow
exponentially in the dimension m. If we observe such a

behaviour then the method is called intractable.

In the following we show that the QMC quadrature with Halton
points is polynomial tractable for our model problem, under certain
decay properties of the series {~}«. Polynomial tractable means
that we achieve a convergence order O(N~*m¢9) for some s, g > 0.
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Convergence analysis

» The Halton sequence avoids the region around the boundary
of the hypercube. More precisely there exists a constant
r € [1,2] such that = C Ky with Ky := [en,1 —en]™ and
ey =CN™".

» The derivatives of the solution u satisfy

~ « dmax\yY
) Oy o)

105 uC ey = ’a“<|og2 amin(¥)

The first property means that the QMC quadrature introduces a
truncation error since it does not reflect the behaviour of the
integrand in [0,1]™ \ K.

12 /23
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Let now fi(x,z) := u(x,®7*(z)). For z € (0,1)™\ Ky we replace
0 by its low variation extension Ueyt, i.€.

aext(z) = fl(Zo)—I— Z /[( o®) ] ]lyvazoeKNaaa(yvaZO)d(Y)a-
20)as\Z)x

l[eelloo=1

Given a vector z € R™, with (z)q € R/t we mean the vector

obtained by omitting every entry z; for which «; = 0. For two
vectors y,z € R™ we define y \j, z := (y,.‘”z.(l_a"))fll. The anchor

1

point zg is an arbitrary element of K. In the foIIovVing we will
assume that zg = [1/2,...,1/2]|T. Fory € Ky we set
aext(Z) = l/_\l(Z)

L3p428
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We split the integration error into three parts:

10 = @)l ) < 1@ = Bext) 41
+ HQ(i\l - aext)HHl(D) + H(I - Q)Z\leXtHHl(D)'

The second term vanishes since f,\I‘KN = E/ext}KN. For the first term

we have to estimate || &(-,2) — fext(, 2)|| 1(D)-

14 /23
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It holds for a multiindex a with ||a||sc = 1:

H@Zau(-,(b_l(z)

Moy =

H D, &1

H(D)

m

< H D, 71

yu(, & (Z))HHl(D)'

Furthermore we find
(9z¢71(z) = (’)( min(z,1 — 2)71*5/2) for every 6 > 0
and

exp (ccb_l(z)) = O(min(z, 1—2)_5/2) for c € R and every § > 0.
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Since ®1(1/2) =0 and

O‘max(q)il( )
amin(d) (z 3

| /\

)

H min(zx, 1 — zx)~ ‘WQ)

k=1

N

we can prove that

otz 20 o S ol (125 ) 120

m

H (min(zk, 1-— zk)_1_5k)ak

k=1
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Since

i(2) ~ fea(2) = 3 / Loz iy O°D(Y Vo 20) A(Y)

o=t [0)ae]
we can establish with the above estimation on the derivative that
18-, 2) — Bext (- 2) | H1(D)

0 k
Sl I (1 + w) H min{z, 1 — z}
k=1

holds for all z € [0,1]™ \ K.
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Thus, it holds for the first term in the error splitting

HI(Z’ - LA’ext)HHl(D)

< 0 yZ) — Uex d
B /(o,l)m\KN HU( B HHI z

m

O k
S ’fHL?(D)/( — H min{zx,1 — zx}~ o dz H <1 + 'Yk>
ENSETENTT =1

k

—1
<|If 2 Y2 e . k'yk
H ||L2(D)2 Z dz, H dz; H 14+ =

i=1,i#k k=1

e e )]
k=1

k=1

m
_ kK 1
“ i MKt 6 —1) 14+ S0k (2 )od|
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The aim to proof tractability is to find an error bound, which grows
at most polynomially in m. Thus we have to treat the product in
the above estimate carefully. Since we can choose arbitrary d, > 0
we can assume that 6, ~ k~17¢ for some € > 0. Then it holds

m

m 1
H 20k < 22 km1% < 50 and H < 00.
k=1 k=1

Both terms can be bounded independent of m. If we furthermore
assume that v, < k=27%6, for &€ > 0 then

is also bounded independent of m.
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Finally, we bound the third term H(I — Q)antHHl(D)' Therefore we

define the centered discrepancy for a given set of N sample points
= CR™ and a point z € R™ by

m

_ 1 7
Dz, 3) =[] (Caetlaorz) =55 2 I (e —Tasen)-
k=1 £e= k=1

We further denote by (=), the projection of = given by
(2 := {(£)a, € € =}. Then it holds

0= Qierllnoy = 3 [ 08 2020 o) e

Jafmey /01

sp D ((2)as (B)a).

(za)€[0,1]1
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We introduce weights wy, k =1,..., m and define product

weights corresponding to an multiindex o as weq = [ [} w/*.

Multiplying and dividing by these weights yields
H(I o Q)antHHl(D)

< Z W;1/2/

[0,1]le Hagae’(t(" Z\a ZO)HHl(D) d2)a
lleelloo=1 ’

wi? sup DY((2)ay (D)a)
(za)€[0,1]1|

< sup Wa1/2/ O Uext (+, Z Viex 20) dz)
i oy 105 B2 20) [ ) A2)e

. Z W;/Q sup DC((Z)aa(E)a)

leoeljoo=1 (za)€[0,1]1e!
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k2’72

4
62 log

If we choose the weights as wy = we are able to show

sup el /[o 1]ied 195 et (-2 Vo 20) | 1 ) A )

llee[=1

S NP [ 2y
If moreover vy satisfies for £ > 0

(5/( |Og2

<
Yk S 2

KT - 3—

then we can achieve the discrepancy bound

Z Wcly/2 sup DC((Z)a,(E)a) < N1
lafloo=1 (za)€[0,1]lel
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Theorem
The QMC quadrature rule Q using N Halton points satisfies

for an arbitrarily chosen § > 0 and 0 < 6 < k=< for some £ > 0,
under the condition that the sequence {v}« fulfills
i S WI082p =3¢ for some £ >0 .
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