Greedy low-rank approaches to general linear matrix equations

Daniel Kressner and Petar Sirković

EPF Lausanne, MATHICSE, ANCHP

Disentis, 14-16 August, 2013

Outline

- General linear matrix equations
- 2 Low-rank approximations
- Greedy rank-1 updates
- 4 Improvements
- 6 Conclusions

Outline

- General linear matrix equations
- 2 Low-rank approximations
- Greedy rank-1 updates
- 4 Improvements
- 6 Conclusions

General linear matrix equations

Solve in $X \in \mathbb{R}^{n \times n}$

$$\sum_{k=1}^{K} A_k X B_k^T = C D^T$$
 (GLME)

- $A_1, \ldots, A_K, B_1, \ldots, B_K \in \mathbb{R}^{n \times n}, C, D \in \mathbb{R}^{n \times \ell}$
- usually $\ell \ll n$
- n^2 unknowns = entries of X
- applications in control theory (Simoncini, 2013), image science (Bouhamidi et al., 2012), Focker-Planck equation (Hartmann et al., 2010)
- recent survey paper by V. Simoncini: "The efficient numerical solution to (GLME) thus represents the next frontier for linear matrix equations ..."

Important special case - Lyapunov equation

Solve in $X \in \mathbb{R}^{n \times n}$

$$AX + XA^T = -BB^T (LYAP)$$

- ubiquitous in control theory
- various efficient methods available (Simoncini, 2013) such as Bartels-Stewart, Krylov subspace methods, low-rank ADI

Derivation of Lyapunov equation I

Given the control system

$$x'(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Controllability Gramian P is defined as

$$P = \int_0^\infty e^{At} B B^T e^{A^T t} dt.$$

It can easily be shown that P is the solution of Lyapunov equation

$$AP + PA^T + BB^T = 0.$$

6/3

Derivation of Lyapunov equation II

$$AP + PA^{T} = \int_{0}^{\infty} (Ae^{At}BB^{T}e^{A^{T}t} + e^{At}BB^{T}e^{A^{T}t}A^{T})dt$$
$$= \int_{0}^{\infty} \frac{\partial}{\partial t} (e^{At}BB^{T}e^{A^{T}t})dt$$
$$= (e^{At}BB^{T}e^{A^{T}t}) \mid_{t=0}^{\infty}$$
$$= 0 - BB^{T} = -BB^{T}$$

Derivation of generalized Lyapunov equation

Given the control system

$$x'(t) = Ax(t) + \sum_{k=1}^{K} N_k x(t)u(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Controllability Gramian P is defined similarly as before, and it can be shown that P is the solution of generalized Lyapunov equation

$$AP + PA^{T} + \sum_{k=1}^{K} N_{k} P N_{k}^{T} + BB^{T} = 0.$$

8/3

Special case - Generalized Lyapunov equation

Solve in $X \in \mathbb{R}^{n \times n}$

$$AX + XA^T + \sum_{k=1}^K N_k X N_k^T = -BB^T$$
 (GLYAP)

applications in bilinearization of nonlinear problems,
 Focker-Planck equation, heat equation with Robin boundary conditions

Solving GLME

General linear matrix equation

$$\sum_{k=1}^{K} A_k X B_k^T = C D^T$$

• naive approach = transform GLME into linear system of size $n^2 \times n^2$:

$$\sum_{k=1}^{K} (B_k \otimes A_k) \operatorname{vec}(X) =: \mathcal{A} \operatorname{vec}(X) = \operatorname{vec}(CD^T) \text{ (vGLME)}$$

- \Rightarrow severe limitation on n with classical methods
- most techniques for solving Lyapunov equations (e.g., Krylov subspace methods) do not extend to (GLME) directly

Outline

- General linear matrix equations
- 2 Low-rank approximations
- Greedy rank-1 updates
- 4 Improvements
- 6 Conclusions

Singular value decay and low-rank approximations I

Solution of (GLME) often exhibits very strong singular value decay.

Example of GLYAP - Singular value decay

Singular value decay and low-rank approximations II

Natural assumption:

Exact solution can be well approximated by low-rank matrix.

Many existing algorithms exploit this idea for (LYAP). Existing low-rank approaches to (GLYAP):

- fixed-point method with ADI-preconditioning (Damm, 2008)
- preconditioned Krylov subspace methods (Benner et al., 2010),

Both mainly limited to the case where Lyapunov part $AX + XA^T$ dominates (GLYAP).

Low-rank approximations

X has low-rank structure \Rightarrow can be written as a sum of rank-1 matrices.

Outline

- General linear matrix equations
- 2 Low-rank approximations
- Greedy rank-1 updates
- 4 Improvements
- 6 Conclusions

Rank-1 updates

Idea how to exploit this: **Greedy updates** (inspired by Chinesta et al., 2010)

- Assume current approximation $X_{\mathrm{old}} = \mathrm{sum} \ \mathrm{of} \ i \ \mathrm{rank-1}$ matrices
- Get new approximation $X_{\text{new}} \leftarrow X_{\text{old}} + uv^T$ by choosing uv^T optimally
- Optimality depends on the choice of target functional \mathcal{J} . Two possibilities:
 - energy norm $\mathcal{J}(X_a, u, v) = ||\operatorname{vec}(X_a + uv^T) \operatorname{vec}(X)||_{\mathcal{A}}$
 - residual $\mathcal{J}(X_a, u, v) = ||\mathcal{A} \operatorname{vec} (X_a + uv^T X)||_2$
- For either criterion, ALS is used to determine minimum \Rightarrow solution of **one** $n \times n$ **linear system** in every iteration

ALS minimization I

Goal: Minimize
$$|| \operatorname{vec}(X_a + uv^T) - \operatorname{vec}(X) ||_{\mathcal{A}}$$

This is equivalent to

$$\min_{u,v} \operatorname{tr}(vu^T(\sum_{k=1}^K A_k uv^T B_k^T)) - 2\operatorname{tr}(vu^T Q_i)$$

We alternate between optimization over u and v, other variable stays fixed. For a fixed v, optimal \hat{u} is a local minimum \Rightarrow satisfies

$$\operatorname{tr}(v\hat{u}^T(\sum_{k=1}^K A_k \hat{u}v^T B_k^T)) - 2\operatorname{tr}(v\hat{u}^T Q_i) \approx$$

$$\operatorname{tr}(v(\hat{u} + \Delta)^T(\sum_{k=1}^K A_k (\hat{u} + \Delta)v^T B_k^T)) - 2\operatorname{tr}(v(\hat{u} + \Delta)^T Q_i),$$

for all small Δ .

ALS minimization II

After disregarding second-order terms we get following equation

$$\frac{1}{2} \left(\sum_{k=1}^{K} (A_k \hat{u} v^T B_k^T v + A_k^T \hat{u} v^T B_k v) \right) - Q_i v = 0$$

Since $v^T B_k v$ is a scalar we get

$$\frac{1}{2} (\sum_{k=1}^{K} (v^T B_k^T v A_k + v^T B_k v A_k^T)) \hat{u} = Q_i v.$$

To compute \hat{u} , $n \times n$ linear system has to be solved.

For fixed u, we get similar equation for \hat{v} .

Algorithm - Greedy rank-1 updates

```
Require: A_1, \ldots, A_K, B_1, \ldots, B_K, C, D
Ensure: low rank approximation X_a
 1: X_a = 0
 2: Q = CD^T
 3: for i = 1, \ldots, \#maxrank do
 4:
    u_i, v_i random n \times 1 matrices
 5: for until convergence do
          u_i \leftarrow \arg\min_{u_i} \mathcal{J}(X_a, u_i, v_i)
 7: v_i \leftarrow \arg\min_{v_i} \mathcal{J}(X_a, u_i, v_i)
 8: end for
9: X_a \leftarrow X_a + u_i v_i^T
10: Q \leftarrow Q - \sum_{k=1}^K A_k u_i v_i^T B_k^T
11: end for
12: X_a wanted approximation
```

Lyapunov equation - convergence

Figure: Convergence of successive rank-1 updates for symmetric positive definite (LYAP) - comparison of singular values and error.

Analysis

Theorem

For symmetric positive-definite (LYAP) with symmetric semidefinite right-hand side, minimum of ALS is always attained in a point where U=V.

Corollary

For symmetric positive-definite (LYAP) with symmetric semidefinite right-hand side convergence is monotonic in Löwner ordering on positive semidefinite matrices.

Generalized Lyapunov equation I

Heat equation with the control in the boundary condition:

$$\begin{aligned} x_t &= \Delta x \\ n \cdot \nabla x &= 0.5 \cdot u(x-1) & \text{on } \Gamma_1, \Gamma_2 \\ x &= 0 & \text{on } \Gamma_3, \Gamma_4 \end{aligned}$$

Each Robin boundary condition introduces a coupling between x(t) and $u(t) \Rightarrow$ two matrices $N_i \Rightarrow$ resulting equation:

$$AX + XA^{T} + N_{1}XN_{1}^{T} + N_{2}XN_{2}^{T} = -BB^{T}$$

System matrix
$$\mathcal{A} = (A \otimes I) + (I \otimes A) + (N1 \otimes N1) + (N2 \otimes N2)$$

Generalized Lyapunov equation II

Convergence of algorithm depends on the fact if the system matrix \mathcal{A} in (vGLME) is positive definite.

Figure: GLYAP heat equation with Robin b.c. - positive definite A, minimization of energy norm

Figure: GLYAP heat equation with Robin b.c. - indefinite \mathcal{A} , minimization of residual

Outline

- General linear matrix equations
- 2 Low-rank approximations
- Greedy rank-1 updates
- 4 Improvements
- Conclusions

Galerkin projections

Greedy rank-1 updates

$$X_a = u_1 v_1^T + u_2 v_2^T + \dots + u_m v_m^T$$

• Idea: Collect direction of updates in subspaces

$$\mathcal{U} = \operatorname{span}(\{u_1, \dots, u_m\}), \mathcal{V} = \operatorname{span}(\{v_1, \dots, v_m\})$$

 \bullet Obtain (hopefully) improved approximation by Galerkin projection on $\mathcal{V}\otimes\mathcal{U}$

approximate solution $X_a = UYV^T, Y \in \mathbb{R}^{m \times m}$

• Cost = solving linear system of size $m^2 \times m^2$

Galerking projections example

Approach actually fixes convergence problems for indefinite (GLYAP).

Figure: Greedy rank-1 updates

Figure: Greedy rank-1 updates + Galerkin

Bilinearization of RC circuit I

$$v_t = f(v) + bu(t)$$

$$f(v) = [f_k(v)] = \begin{pmatrix} -g(v_1) - g(v_1 - v_2) \\ g(v_1 - v_2) - g(v_2 - v_3) \\ \vdots \\ g(v_{N_0 - 1} - v_{N_0}) \end{pmatrix}$$

$$g(v) = exp(40v) + v - 1$$

Carleman bilinearization \Rightarrow matrix equation of size $(N_0+N_0^2)\times (N_0+N_0^2).$

$$AX + XA^T + NXN^T = -BB^T$$

Bilinearization of RC circuit II

Figure: Bilinearization of RC circuit - convergence of the residual with Galerkin approach

- convergence is slow
- possibly needs preconditioning

Preconditioned residual I

Idea: Inject few dominant vectors of preconditioned residual to the subspaces U and V.

- preconditioner \mathcal{P}^{-1} = one iteration of iterative Lyapunov solver (using matrix sign function)
- $P_U\Sigma P_V=\mathcal{P}^{-1}(Q_i)$ and truncate

•

$$\mathcal{U} \leftarrow \operatorname{span}(\mathcal{U} \cup P_U)$$

 $\mathcal{V} \leftarrow \operatorname{span}(\mathcal{V} \cup P_V)$

- ullet Galerking projection on ${\mathcal U}$ and ${\mathcal V}$
- truncation of subspaces if needed

Preconditioned residual II

Using preconditioned residual improves the convergence!

Figure: Bilinear RC circuit - no preconditioning

Figure: Bilinear RC circuit - preconditioned residual

Outline

- General linear matrix equations
- 2 Low-rank approximations
- Greedy rank-1 updates
- 4 Improvements
- 6 Conclusions

Conclusions

- general linear matrix equations
- low-rank approximation Greedy rank-1 updates
- Galerkin projection fixes indefinite case
- using preconditioned residual accelerates the convergence

Thank you for your attention!

Selected references

- Bai, Z. and Skoogh, D., A projection method for model reduction of bilinear dynamical systems, 2006
- Benner, P. and Breiten, T., Low rank methods for a class of generalized Lyapunov equations and related issues, 2012
- Bouhamidi, A. and Jbilou, K. and Reichel, L. and Sadok, H., A generalized global Arnoldi method for ill-posed matrix equations, 2012
- Chinesta, F. and Ammar, A. and Cueto, E., Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models, 2010
- Damm, T., Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations, 2008
- Simoncini, V., Computational methods for linear matrix equations, 2013