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General linear matrix equations

Solve in X ∈ Rn×n

K∑
k=1

AkXBT
k = CDT

(GLME)

A1, . . . , AK , B1, . . . , BK ∈ Rn×n, C,D ∈ Rn×`

usually `� n

n2 unknowns = entries of X

applications in control theory (Simoncini, 2013), image
science (Bouhamidi et al., 2012), Focker-Planck equation
(Hartmann et al., 2010)

recent survey paper by V. Simoncini: "The efficient numerical
solution to (GLME) thus represents the next frontier for linear
matrix equations . . . "
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Important special case - Lyapunov equation

Solve in X ∈ Rn×n

AX + XAT = −BBT (LYAP)

ubiquitous in control theory

various efficient methods available (Simoncini, 2013) such as
Bartels-Stewart, Krylov subspace methods, low-rank ADI
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Derivation of Lyapunov equation I

Given the control system

x′(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Controllability Gramian P is defined as

P =

∫ ∞
0

eAtBBT eA
T tdt.

It can easily be shown that P is the solution of Lyapunov equation

AP + PAT + BBT = 0.
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Derivation of Lyapunov equation II

AP + PAT =

∫ ∞
0

(AeAtBBT eA
T t + eAtBBT eA

T tAT )dt

=

∫ ∞
0

∂

∂t
(eAtBBT eA

T t)dt

= (eAtBBT eA
T t) |∞t=0

= 0−BBT = −BBT
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Derivation of generalized Lyapunov equation

Given the control system

x′(t) = Ax(t) +

K∑
k=1

Nkx(t)u(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Controllability Gramian P is defined similarly as before, and it can
be shown that P is the solution of generalized Lyapunov equation

AP + PAT +

K∑
k=1

NkPNT
k + BBT = 0.
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Special case - Generalized Lyapunov equation

Solve in X ∈ Rn×n

AX + XAT +

K∑
k=1

NkXNT
k = −BBT (GLYAP)

applications in bilinearization of nonlinear problems,
Focker-Planck equation, heat equation with Robin boundary
conditions
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Solving GLME

General linear matrix equation

K∑
k=1

AkXBT
k = CDT

naive approach = transform GLME into linear system of size
n2 × n2:

K∑
k=1

(Bk ⊗Ak) vec (X) =: A vec (X) = vec (CDT ) (vGLME)

⇒ severe limitation on n with classical methods

most techniques for solving Lyapunov equations (e.g., Krylov
subspace methods) do not extend to (GLME) directly
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Singular value decay and low-rank approximations I

Solution of (GLME) often exhibits very strong singular value decay.

Example of GLYAP - Singular value decay
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Singular value decay and low-rank approximations II

Natural assumption:

Exact solution can be well approximated by low-rank
matrix.

Many existing algorithms exploit this idea for (LYAP). Existing
low-rank approaches to (GLYAP):

fixed-point method with ADI-preconditioning (Damm, 2008)

preconditioned Krylov subspace methods (Benner et al.,
2010),

Both mainly limited to the case where Lyapunov part AX + XAT

dominates (GLYAP).
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Low-rank approximations

X has low-rank structure⇒ can be written as a sum of
rank-1 matrices.

X ≈ + + . . . +



15 / 34

Outline

1 General linear matrix equations

2 Low-rank approximations

3 Greedy rank-1 updates

4 Improvements

5 Conclusions



16 / 34

Rank-1 updates

Idea how to exploit this: Greedy updates (inspired by Chinesta et
al., 2010)

Assume current approximation Xold = sum of i rank-1
matrices

Get new approximation Xnew ← Xold + uvT by choosing uvT

optimally
Optimality depends on the choice of target functional J . Two
possibilities:

energy norm J (Xa, u, v) = || vec(Xa + uvT )− vec(X)||A
residual J (Xa, u, v) = ||A vec (Xa + uvT −X)||2

For either criterion, ALS is used to determine minimum⇒
solution of one n× n linear system in every iteration
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ALS minimization I

Goal: Minimize || vec(Xa + uvT )− vec(X)||A
This is equivalent to

min
u,v

tr(vuT (

K∑
k=1

Akuv
TBT

k ))− 2 tr(vuTQi)

We alternate between optimization over u and v, other variable
stays fixed. For a fixed v, optimal û is a local minimum⇒ satisfies

tr(vûT (
K∑
k=1

Akûv
TBT

k ))− 2 tr(vûTQi) ≈

tr(v(û + ∆)T (

K∑
k=1

Ak(û + ∆)vTBT
k ))− 2 tr(v(û + ∆)TQi),

for all small ∆.
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ALS minimization II

After disregarding second-order terms we get following equation

1

2
(

K∑
k=1

(Akûv
TBT

k v + AT
k ûv

TBkv))−Qiv = 0

Since vTBkv is a scalar we get

1

2
(

K∑
k=1

(vTBT
k vAk + vTBkvA

T
k ))û = Qiv.

To compute û, n× n linear system has to be solved.

For fixed u, we get similar equation for v̂.
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Algorithm - Greedy rank-1 updates

Require: A1, . . . , AK , B1, . . . , BK , C,D
Ensure: low rank approximation Xa

1: Xa = 0
2: Q = CDT

3: for i = 1, . . . , #maxrank do
4: ui, vi random n× 1 matrices
5: for until convergence do
6: ui ← arg minui

J (Xa, ui, vi)
7: vi ← arg minvi J (Xa, ui, vi)
8: end for
9: Xa ← Xa + uiv

T
i

10: Q← Q−
∑K

k=1Akuiv
T
i B

T
k

11: end for
12: Xa wanted approximation
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Lyapunov equation - convergence

Figure: Convergence of successive rank-1 updates for symmetric
positive definite (LYAP) - comparison of singular values and error.
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Analysis

Theorem
For symmetric positive-definite (LYAP) with symmetric semidefinite
right-hand side, minimum of ALS is always attained in a point
where U = V .

Corollary
For symmetric positive-definite (LYAP) with symmetric semidefinite
right-hand side convergence is monotonic in Löwner ordering on
positive semidefinite matrices.
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Generalized Lyapunov equation I

Heat equation with the control in the boundary condition:

xt = ∆x

n · ∇x = 0.5 · u(x− 1)

x = 0

on Γ1,Γ2

on Γ3,Γ4

Each Robin boundary condition introduces a coupling between
x(t) and u(t)⇒ two matrices Ni ⇒ resulting equation:

AX + XAT + N1XNT
1 + N2XNT

2 = −BBT

System matrix
A = (A⊗ I) + (I ⊗A) + (N1⊗N1) + (N2⊗N2)
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Generalized Lyapunov equation II

Convergence of algorithm depends on the fact if the system matrix
A in (vGLME) is positive definite.

Figure: GLYAP heat equation with
Robin b.c. - positive definite A,
minimization of energy norm

Figure: GLYAP heat equation with
Robin b.c. - indefinite A,
minimization of residual
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Galerkin projections

Greedy rank-1 updates

Xa = u1v
T
1 + u2v

T
2 + · · ·+ umvTm

Idea: Collect direction of updates in subspaces

U = span({u1, . . . , um}),V = span({v1, . . . , vm})

Obtain (hopefully) improved approximation by Galerkin
projection on V ⊗ U

m
approximate solution Xa = UY V T , Y ∈ Rm×m

Cost = solving linear system of size m2 ×m2
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Galerking projections example

Approach actually fixes convergence problems for indefinite
(GLYAP).

Figure: Greedy rank-1 updates Figure: Greedy rank-1 updates +
Galerkin
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Bilinearization of RC circuit I

vt = f(v) + bu(t)

f(v) = [fk(v)] =


−g(v1)− g(v1 − v2)

g(v1 − v2)− g(v2 − v3)
...

g(vN0−1 − vN0)


g(v) = exp(40v) + v − 1

Carleman bilinearization⇒ matrix equation of size
(N0 + N2

0 )× (N0 + N2
0 ).

AX + XAT + NXNT = −BBT



28 / 34

Bilinearization of RC circuit II

Figure: Bilinearization of RC circuit - convergence of the residual with
Galerkin approach

convergence is slow

possibly needs preconditioning
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Preconditioned residual I

Idea: Inject few dominant vectors of preconditioned
residual to the subspaces U and V .

preconditioner P−1 = one iteration of iterative Lyapunov solver
(using matrix sign function)

PUΣPV = P−1(Qi) and truncate

U ← span(U ∪ PU )

V ← span(V ∪ PV )

Galerking projection on U and V
truncation of subspaces if needed
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Preconditioned residual II

Using preconditioned residual improves the
convergence!

Figure: Bilinear RC circuit - no
preconditioning

Figure: Bilinear RC circuit -
preconditioned residual
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Conclusions

general linear matrix equations

low-rank approximation - Greedy rank-1 updates

Galerkin projection - fixes indefinite case

using preconditioned residual - accelerates the convergence
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Thank you for your attention!
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