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Motivation poroied

Nano antennae: cavities for LSP.
OO L B
e : Strongly localized field in sub-wavelength region.

Possible applications: Sensing, enhancing solar cells, ...

Issue: Production inaccuracies can drastically affect optical
behavior.

— Sensitivity analysis is cruciall
It tells us the robustness of a design.



Perturbation of domains e SAIV

Transformation Ty, : Q —)@

given by
Ty =7T+V,

for a vectorfield V € C1(RV; RN).
Lemma 6.13 [Allaire! ]: |[V||c1 < 1 = Ty is a diffeomorphism.

Family of admissible domains:

Uaa(2) := {Tv(Q); [[V[lcr < 1}.

1Conception optimale de structures, 2007.
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Shape Differentiable Functionals e SAM

A shape functional
J 1 Ua(Q) = R

is shape differentiable if the map
Vi J(Ty(Q))

is Fréchet differentiable in 0 in the Banach space C1(RN;RN), i.e.,
there is a linear continuous map (shape gradient)

d7(Q;): CHRN;RN) - R

so that
i T(T(R) - I(@)

= Q).
V—0 V|| c 4T (V)
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Differentiation of domain integrals == SAM

ExaMmPLE: Consider J(Q) = |, f dx, with f € WLL(RN).

dJ(2;V) = lim

L / fdx—/fdx ,
V=0 [Vt \ J7u(@) Q

1
= lim / foTy detDTV—fdx>,
2T Ve ( oo |

_/ f+ f div(V) dx.
Q

Material derivative: f := Iimvﬁoﬁr;f VF-V.

Gauss's Theorem = d 7(Q; V) = [, fV - ndS.
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Differentiation of boundary integrals == SAM

ExaMPLE: Consider J(Q) = [, f dx, with f € W21(RV).

Lemma:

/ Fds — / (F o Ty)|det DTy| |(DTy) *nllgu dS
Tv(69) o9

S d7(@V)= [ VF-V+f(div(V) - DVn-n)dS.
[2)9]

::din %

Assuming € piecewise smooth, and defining V; :=V — (V- n)n,
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Differentiation of boundary integrals(2) FEL
it holds,

/Vf Y+ f dive VdS = Z Vf-V+fdivrVdS
o0

o0Q;
_Z —f+fK) 8fT-VT—|—fdierTd5
or
f'
= Z oK) +dive(fV;) dS
of M
x* a2t . N (+(3.) — (a4
mv n(an+fK)d5+Zf(a,)V(a,) (r—(a;) = 7H(a))

i=1

+
* diviV =divr V; + KV - n, /‘T/‘;&

**- Stokes' Theorem,
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The Hadamard's Structure Theorem poptes

If Q is smooth, there is a scalar distribution g(2) in C1(0Q)’ so that

dT(2;V) = (g(Q2),7rV - n) craay « c1(69)-

Proof: following closely Allaire's intuitive proof

e if V-n=0, then Ty(0Q) = 09,
e Ty is a homeomorphism, thus T,(Q2) = Q
o which implies 7(Ty(Q2)) = J(Q).



PDE constrained Shape Functionals == SAM
Consider
7@ = [ jwx,
Q
with j € CH(R; R) and u € H?(R) solution of

{—Au+u = f inQ,

U = g ondQ, }State problem

where f € HY(RN), g € H2(RV), Then
d7( V) = [ J(wi+ j(w) div(v) dx,
Q

but
u#Vu-V!
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Differentiation with Lagrangian Approach = SAM

We introduce the Lagrangian

Z(Qv,q,A) = /

j(v)+(Av—v+f)qu+/ Mg —v)dsS,
Q

o0

where the functions v, g and X are in H?(R"). The saddle point
of £(Q,-,-,) is characterized by

0ZL(Q,v,q,\) 0ZL(Q2,v,q,\)

B 0ZL(Q,v,q,N)
(e gy = (s PR EA

0 = (55

,¢) =0

for all ¢ € H2(RN).
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Characterisation of saddle points == SAM

By density we retrieve

{—Av—i—v = f inQ,

v — g ondQ, }State problem

—-Ag+qg = j'(v) inQ, Adjoint problem,
g = 0 on 09, solution p

)\:—g—z on 0f),

weakly in Hl(RN). Thus, for Q fixed,

Q — i f Q7 9 7)\ )
T veml(rﬂw)q,xen;ﬁ)((ﬂx'v) (2,v.9,4)

because

JQ) = 2(Q,u,q,)) forall g, \in H*RN).
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Volume and boundary representations == SAM

Correa-Seeger?: we can swap d and min max.

dj(Q;V) — lim g(TV(Q)aquv >\) —.,?(Q, Vvqa)‘) ,
V0 Wlle: (v.aN) =(u,p.— 22)

:/Q(vu.(Dv+DvT)VpvP-Vg+(j’(U)P)g

+Fp +div(V) (j(u) = Vu-Vp—up+ fp) ) dx,

;/(;Qlﬁn(j(u)%—gﬁa(ua;g)) ds.

*. Gauss's theorem and integration by parts on boundaries.

2Directional derivatives of a minimax function, 1985.
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Reasonable Approximations == SAM

Let’s define

dj(Qa u, p; V)V01 =

5~

(vu-(Dv+DvT)vp+ ) dx,

V-n <j(u)+8”8(”_g)> ds .

dJT(Q, u, p; V)P = dn_ on

—
Q

Note that
dT(QV) = dT(Q, u, p; V)V = dT(Q, u, p; V)BEY

Question :up ~ uand py~p = dJ(...) vs d7(...)BM?
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Convergence theorem =L

Let up and p, be Ritz—Galerkin linear Lagrangian finite elements
approximations of the solutions v and p . Furthermore, assume that
the source function f and that the boundary data g are restrictions of
H(R?)-, H?(R?)-functions, respectively, and that the state problem
is 2-regular. Then

|dj(QV) - dJ(Q Unh, Ph; V)VO]| < C(Qu f,g,j)”VHC1O(h2),

where h is the meshwidth of the mesh.
In addition to the previous hypothesis, let assume that

lullwz@) < Clifllr(@
forl < p < pu, > d, where d =2 is the dimension of €. Then

[dT(2,V) = dT(Q, up, pr; V)| < C(Q, F,8,))|[V - nllcoO(h).

14 /22



Seminar for

Key steps for a proof =L

o |dT(QV)—dT(Q, up, pr; V)V
< Wles(1 [(9F-1+F - g 1)(p- o] CS
Taylor, CS  + I/QJ'(U) — j(un) + (J'(u) —j'(un)) Vg - 1 dx|
Gal. Orth. + \/QVU -Vp+ up—Vup-Vpy— uppp dx|
Duslity 1 [ V(o= pr) - (V(Ve - 1) + (Ve - 1) e
Duality + 2|/Q Vu-1Vp—Vu,-1Vp, dx|> ,

o W1:>°(Q) approximation properties of FEM, cf. [Brenner Scott]
U
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NumExp: setup S

Discretization: Piecewise linear nodal FE on triangular meshes.

~Au+u = f inQ, j(Q):/u2dx,
u = g ondf. Q

Tracked

Vol ,_ 1dT(Q,V) — dT(Q, up, pn; V)V
' |[dT (2, V)]

err

and
eI‘I'Bdry - ’dj(Q. V) - dJ(Q/ Uh./. ph, V)B(h'Y‘

[dT (2, V)]
on different nested meshes generated through uniform refinement,

for )
X X —
ae() ()
y yo—Xx
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NumExp: smooth domain == SAM

Sorce function and boundary data from solution u = cos(x) cos(y).
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NumExp: Lipschitz domain == SAM

Source function: f = x> — y?, boundary data: g=x+y.
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NumExp: Reentrant corner e SAM

State problem:

{—Au—i—u = 1 inQ,

u = 0 onof.
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NumExp: Neumann Boundary Conditions == SAM

Sorce function and boundary data from solution u = cos(x) cos(y).

dJ(Q,V) = V-n(j(u) —VruVrp—up+ fp+Kgp) dS,
Ele}
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Summary

e Sensitivity of a design can be investigated with Shape
Gradients,

e Shape Gradients belong to the dual of Cl(RN;}RN),

e Formulas in volume are better suited for FEM-based
approximations,

e Smoothness of boundary is not strictly necessary, what is
relevant is the 2-regularity of the state problem,

e Approximations of formulation on boundary work surprisingly
well when the constraint is a Neumann BVP.

)
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