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1 Medical background: Epilepsy

An epileptic seizure (convulsién) is the clinical manifestation of an abnormal,
excessive, purposeless and synchronized electrical discharge in the brain cells
called neurons [Wikipedia]

EEG (Electroencephalography) images the spontaneous

electrical activity of the brain.
Cap with EEG sensors [Wikipedia]

MEG (Magnetoencephalography) maps the brain activity by recording magnetic
fields produced by electrical currents in the brain.



For a presurgical epilepsy diagnosis it is important to detect the location of the
source sufficiently accurate (by non-invasing methods).

To be done:

¢ Imaging of the brain of the individual patient (no general model).

¢ Creating a Finite Element Mesh of the brain.

¢ EEG and MEG measurements of the epileptic activity.

¢ The EEG and MEG data measures the fields at the location of the electrodes.
The source reconstruction is an inverse problem. In general, such inverse prob-
lems are ill-posed. However, here the situation is simpler since the source is
concentrated at one neuron, i.e., the mathematical source term is a delta func-

tion.

¢ All this must be done in a short time.



Details

The brain (see cross section) consists of

B scalp - Cuero cabelludo - in green

B skull (bone) - Craneo - in yellow
B CSF (cerebrospinal fluid) - Liquido cefalorraquideo - in red
B gray matter - Sustancia gris - contains the neurons - in black

B white matter - Sustancia blanca - in white



2 The Physics Behind

2.1 Maxwell’s Equations

The electric and magnetic fields are described by Maxwell's equations. Here, the
magnetic permeability p is constant and equal to the permeability of vacuum.

The primary current during an epileptic seizure can be described by a mathe-
matical dipole at position xg € R3 with the moment M € R3:

j(x) := Mé(x — xq).
The electric field is
E = —gradu,
where the electric potential u is the solution of the Poisson-like equation
div (o gradu) = divj =:J.

Here, o € R3%3 is the so-called conductivity tensor.



The equation div (o grad u) = J¥ is be understood in the weak form.
At interior boundaries 7, where o has a jump discontinuity,

(o1graduy,n) |y = (oo gradup, n) |y

holds (n: normal direction, o1, ui limit values from the left, o, us limit values
from the right).
Finally, we have the boundary condition
(o gradu,n) |r = 0.
Since u is determined up to a constant, we may set
Upef = 0

for one reference electrode.



2.2 Magnetic Field

The magnetic field is measured by a magnetometer
as in the picture. Let T be the path corresponding
to the lower part of the magnetometer and set

C(y) := / ™ er3,
T|x -yl
v, = ﬁ (M, C(xg)), u permeability,

K
Vs = —— | (o(y)gradu(y), C(y)) dy.

Then ¥ := WV, 4 Vg is the magnetic flux through T.




2.3 Forward Problem - Inverse Problem

Forward Problem:

For a fixed source point X solve the PDE for u. Then an epileptic seizure at xg
would yield EEG values

ei(Xo) (2 € Iegg)

for the electric field £ = — grad u at sensor 7. Similarly, MEG would yield

m;(Xo) (2 € Iveg)-

The idea for solving the inverse problem is:

Given the tuples {(ei)iEIEEG} and {(mi)’iEIMEc;} for many source points xg,
search for xg with the best fit to the measured data (e;, m;).



3 FEM Approach

Repeated:



3.1 Mesh Generation

Simplest approach: direct use of the voxels of the MRI* images by cubes, possibly
after coarsening.

This is insufficient because of the interior boundaries. Remedy: node shift
(see picture)

Most flexible approach: tetrahedra, again alined to interior boundaries.

*MRI = Magnetic Resonance Imaging



More general FE approaches:

e Mixed finite elements

Vorwerk, J., Engwer, C., Pursiainen, S. and Wolters, C.H., A Mixed Finite
Element Method to Solve the EEG Forward Problem, IEEE Transactions on
Medical Imaging, 36(4):930-941 (2017).

e Discontinuous finite elements

Engwer, C., Vorwerk, J., Ludewig, J. and Wolters, C.H., A Discontinu-
ous Galerkin Method for the EEG Forward Problem, SIAM J. on Scientific
Computing, 39 (1), B138-B164 (2017)



Example of a FE triangulation (cross section) Local refinement / coarsening



The modelling needs special care in defining the electric conductivity, which is
anisotropic for the scull and white matter (direction of fibers).

Isotropic case: ¢ = ogl, anisotropic: o = UDUH.

Transversally: 1

anisotropy of White Matter illustration of the anisotropic behaviour



Details:
1) Scalp: 0 =0.33 S/m

2) Skull: higher conductivity in tangential direction, smaller conductivity in
normal(radial) direction: arzad = 0.0042 S/m, J;ang = 0.042 S/m

¢ The mesh has to be located inside the skull compartment.

¢ The mesh has to approximate the outer surface of the skull spongiosa [Hueso
esponjoso].

¢ The mesh has to be smooth, so that normal directions are not changing too
strongly for neighboured points in the skull.

See §3.3 in

Carsten H. Wolters: Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG

base Source Localization in the Human Brain. Doctoral Thesis. Leipzig University, 2003
3) CSF (liquor): 0 =1.79 S/m
4) White matter: See §3.4

5) Gray matter: 0 = 0.33 S/m



3.2 Finite Element Accuracy

Scenario 1:

Piecewise linear finite elements of size h, smooth coefficients of L smooth,
smooth boundary of Q (or convex).

Then f € L?(Q) implies that the solution of Lu = f satisfies u € H?(Q).
FE space V}, C H1(Q). FE triangulation: T},. FE solution uj, € V3.

Lemma of Céa:
- 11/2

|lu — uh||H1(Q) <C wig{/h |lu — wHHl(Q) =C | inf ) Ju-— w”Hl(A)

leads to

lu— unllgrigy < C'hllull gy < "R 11l 2y -

With the help of the adjoint problem we get ||u — uh||L2(Q) < ch||lu— Uh”Hl(Q) ,
so that

lu —upllp2(q) < Ch? 12 ) -



Scenario 2:

As in Scenario 1, but the coefficients of L are only
piecewise smooth, e.g. smooth (or even constant)
in Q1 C Q and Q5 C Q with the interior boundary
v = 021 N 0.

Then f € L?(Q) does not imply u € H?(Q), ‘
but u|g, € H2(Ql) and ulq, € H2(Qg). i

If the finite elements are aligned with the interior boundary -, each finite element
A € Tj, satisfies either A C €1 or A C Q5. Hence each term ||u — 'w||§{1(A)

in ||u— uh||H1(Q) <C [inf {ZAETh |u — wH%{l(A)} Tw € Vh] yields the same
estimate as before. Hence

|u — uh||L2(Q) < Ch? ||f||L2(Q) :

Scenario 3: The divergence of the Delta function does not satisfy f € L2 —
loss of accuracy



4 Subtraction Approach

General form of the Subtraction Approach:

Assume that we want to solve a linear PDE

Lu=f with  f = g+ dp.

Solution of Lui = g possible, but solution of Luy = dg difficult (e.g. since dj
has a singularity).

Assumption: ug is the solution of

Loug = dg

with another differential operator Lo # L.

We try to represent the solution of Lu = f by the ansatz

u = ug + u°".



corr

Repeated: Lu = f = g + dg, Loug = dp, u = ug + u

Then u*°" is the solution of

Lu™" = L(u— ug)

Lu — Lug

g+ dog — Lug

g + Loug — Lug
= g+ (Lo — L) uo.

Possibly, the right-hand side g + (Lo — L) ug is more regular and
Lu®" =g+ (Lo — L) ug

Is easler to solve.



We recall: Lu = div (o gradu) = J := divj with j(x) := Md(x — xq).
Assumption: xg € g, where Qg is an (open) domain with constant o = ogl.

Then

is the solution of

Loug = div (oggradug) = j = divMé§(- — xg) in R3.
Proof: Lo = ogA, use the well known Green function of the Laplace equation.
REMARK: ug(x) is bounded, but discontinuous at x = xg.

On the other hand, ug(x) is analytic in R3\{xg}.
The larger |x — xg|, the smoother is ug.



The desired solution u is the sum ug + u®°"™" with u°"" being the solution of

corry —div ((o0 — og) gradug) in Q\Qq
0 in Qo

<0' %> on [.
on

div (o grad u

auCOI’I’
o,
)

Is smooth enough:
support of r.h.s. in Q\Qg and |x — xg| > dist(xg, 9g) > 0 for x €Q\ Qg
= —div((o — gg) gradug) € L?(Q) (even ... € L™(Q)).

Now, uCorr

i ﬂ--"'_"""'"f
f/f.r
L\-"\
/r;\
/S Re N
&
Modification: Replace ug by xug with a cut-off function v, z X, /J
i.e., x = 1 in a neighbourhood g of xq, /
x smooth, x = 0 outside of £21: Qo CC 1 CC Q. ﬂ

y\_‘ R ., e -



Literature:

C.H. Wolters, L. Grasedyck, W. Hackbusch: Efficient computation of lead field bases and in-
fluence matrix for the FEM-based EEG and MEG inverse problem. Inverse Problems 20 (2004)
1099-1116

C. Wolters, H. Kostler, C. Moller, J. Hardtlein, L. Grasedyck, W. Hackbusch: Numerical math-
ematics for the modeling of a current dipole in EEG source reconstruction using finite element

head models. SIAM J. on Scientific Computing 30:24-45, 2007.

F. Drechsler, C. Wolters, T. Dierkes, H. Si, L. Grasedyck: A highly accurate full subtraction ap-
proach for dipole modelling in EEG source analysis using the finite element method. Neurolmage

46:1055-1065, 2009.

M. Holtershinken, P. Lange, F. Wallois, A. Buyx, S. Pursiainen, C. Engwer, C. Wolters: The
Localized Subtraction Approach For EEG and MEG Forward Modeling. Proceedings of the
workshop BIOSIGNAL 2022, Aug. 24- 26, 2022, Dresden, Germany

T. Erdbrigger, A. Westhoff, M. Holtershinken, J. Radecke, Y. Buschermohle, A. Buyx, F.
Wallois, S. Pursiainen, J. Gross, R. Lencer, C. Engwer, C. Wolters: CutFEM forward modeling
for EEG source analysis. 2022. https://arxiv.org/abs/2211.17093

E. Bejaoui, F. Ben Belgacem: Singularity extraction for elliptic equations with coefficients with
Jjumps and Dirac sources. Asymptotic Analysis, 2023 - DOI: 10.3233/ASY-221824



5 Lead Field Matrix
5.1 Definition

Let

Kpup, = fn
be the FE equation. h characterised the FEM, K, is the stiffness matrix,
uy, the coefficient vector of the FE solution for the right-hand side f;,.
In our application, we have very many right-hand sides f; = d; corresponding
to dipoles at z; (j € J).
The i-th sensor detects the value R;u;, € R (R;: restriction, ¢ € I).

R;up, = Rz-Kgldj gives rise to the so-called Lead Field Matrix

L = (R;K; d))

(i.j)elxJ

L;; describes the value of the i-th sensor caused by a dipole at z;.

Index sets: ¢ € I, 5 € J. Here, I is of moderate sizel, whereas J is very large
(all possible positions of the dipole).

TUp to 512 electrods for EEG,
see https://www.compumedics.com.au/en/products/neuvo-64-512-channel-eeg-hd-ltm-eeg/



5.2 Efficient Computation

Solving Khu%j) = d; for all j € J requires #J solves = too costly

Remedy: The restriction R;u;, € R is a linear functional and can be described
by a scalar product (r;, up) =

' ' —1 —T
Rzug) — <'r7,,u%7)> — <Tia Kh dj> — <Kh ’I“,L',dj>.
Therefore, solve the adjoint problem K,Ivi = r; for all : € I. Then

L;; = Riugj) = <’UZ', dj>
requires only #1 << #J solves.



5.3 Inverse Problem

In general, the inverse problem is ill-posed (there are right-hand sides (sources)
fr, # 0 so that the corresponding solution u;, of Kju;, = f;, leads to R;uj;, = 0).

A-priori information must be added:
B source location: dipole M;6(x — x;) at a single spot x; (j € J)

B only x; located on the folded surface of the brain inside the cortex

(cortex contained in the grey matter)

B direction of M; perpendicular to the surface.



The source model

Microscopic current flow (~5 X 105 n

cortex

synapse S \ \

parameters:

position X, NN
moment : M | : ~30 mm? = 5.5X5.5 mm?

Size of Macroscopic Neural Activity

Carsten Wolters, IBB, WWU Miinster



|Lw — m|| = min, w subject of |wllg =1,
with
L: lead field matrix,
m: vector of measurements.

|w||g = 1 corresponds to the sparse optimisation!

E.g., solution as follows: i = m/ ||m]||,,
; : j-th column of L. Set @j =4/ HﬁjH2, @j = E‘j‘ —I—EjL with 4-’ = <éj,m> m.

Optimal w is e;+ with j* = arg minj{HEjiH2}.



6 Literature

Concerning the inverse problem:

Chapter 6 of

Carsten H. Wolters: Influence of Tissue Conductivity Inhomogeneity and Anisotropy
on EEG/MEG base Source Localization in the Human Brain. Doctoral Thesis.
Leipzig University, 2003

F. Lucka, S. Pursiainen, M. Burger, C.H. Wolters: Hierarchical Bayesian In-
ference for the EEG Inverse Problem using Realistic FE Head Models: Depth
Localization and Source Separation for Focal Primary Currents. Neurolmage,
61(4), pp-1364-1382, (2012).

These and many more publications can be obtained from

https://www.medizin.uni-muenster.de/fileadmin/einrichtung/biomag/

Mitarbeiter/Wolters-Publications.pdf



7 Software

DUNEuro: A free and open-source C++ software toolbox for the numerical
computation of forward solutions in bioelectromagnetism:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252431

https://www.medizin.uni-muenster.de/duneuro/startseite.html

8 Next Parts

Size of the FE matrix K}: up to several millions.
Next Topics:
| Multigrid lteration

| Technique of Hierarchical Matrices



