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1 Motivation

The FE stiffness matrix Lj, is a sparse matrix of size ny, X ny, where ny, is very

large. Typical value n;, 2 1.000.000.
For its solution one needs methods with a cost being (almost) linear in ny,.

Direct methods (Gauss elimination, Cholesky decomposition) cost up to O(n%)
operations, traditional iterative methods cost O(n;h~1) to O(n,h~?) opera-

tions.

The multigrid method applies to rather general discretisations of elliptic PDEs

and has linear cost.

Literature:
W.Hackbusch: Multi-Grid Methods and Applications. Springer 1985 and 2003
—: lterative Solution of Large Sparse Systems of Equations, 2nd ed., Springer

2016



1.1 Linear lterations
1.1.1 Notations

Linear system: Lu = f with L € R™"*" «, f € R™.
A general one-step method

w — Wt = @, f)
is called a linear iteration if ® is linear in both arguments:
d(u, f) = Mu+ NFf.
Consistency: The exact solution u* = L1 should be a fixed point of ® for all
f:
Llf=u* =W, f)= ML 1f+ Nf
This implies L= = ML=1 4+ N, i.e.,
M+ NL=1 (consistency condition).
Then ® becomes

®(u, f) =u — N(Lu - f).



1.1.2 Convergence

The iteration error u/ — u* (u* solution of Lu = f) satisfies

W =M (uj — u*) and therefore

‘ujJrl —u®

< [|M]| |uf —u¥|.

|M]| < 1 is sufficient for convergence u/ — u* (||M||: contraction number).

A necessary and sufficient condition for convergence is

p(M) <1
where
p(M) := max{|A| : X eigenvalue of M}

is the spectral radius.

LEMMA: a) p(M) < [[M||. b) M = M" = p(M) = ||M]|.



1.1.3 Classical Examples of Iterations

Jacobi iteration: N = D~1 (D = diag(M)),
ie. uw — uwtl:=w — DY (L — f).

procedure Jacobi(u, f); array u,ud, f; integer i, j;

begin u°l := u; for all i do uli] := u®[i] — (3; (Lli, 5]u®[5]) — f[i]) /L, 1]
end;

Gauss-Seidel iteration:
procedure GS(u, f); array u, f; integer i, j;

for i := 1 to n do u[i] := u[i] — (Zj (L[z, jlulj]) — f[’L]> /L[i,1];

= N = (Ljpwer + D) Lupper where L = L0 + D+ Lupper (lower triangular
/ upper triangular part)

Assume L = LH. Then
Jacobi converges if 2D > L > 0;
Gauss-Seidel converges if L > 0.



1.1.4 Speed of Convergence

Discretisation of second order pde with step size h.

= condition number [|[M|||M~L|| = O(h™2)

3D case: n ~ h73.

Jacobi and Gauss-Seidel: contraction number is 1 — O(h?)

SOR (successive overrelaxation): 1 — O(h)



1.1.5 Cost of the iterative scheme

1 iteration step costs O(n) operations (sparse matrix!)

>~ ¢ starting from u9 := 0.

Assume that we want Huﬂ —u*
(1 — O(h"))™ = € requires m = O(h™" |log ¢|) iterations
Cost of Jacobi or Gauss-Seidel: O(nh ™2 |loge|) = O(h™2 |loge|) = O(n®/3 |loge])

Cost of SOR: O(nh~Llloge|) = O(h*|loge|) = O(n*/3|loge|)

Optimal case would be a contraction number { < 1 independent of h. Then
the cost is O(n |loge|). This is the case of the multigrid method.

We shall even obtain O(n) for € = discretisation error = h*.



The multigrid approach is based on two ingredients:

B smoothing property

B coarse-grid correction

1.2 Smoothing Property

1D Example: —u” = f in [0,1] and ©(0) = u(1) =0
Discretisation: h =2 [—up(z — h) + 2up(x) — up(z + )] = f(x)

This yields the system Lyuj, = f, with u, = [up(h), up(2R), up(3R), . . ., up(l — R)]T
and the sparse matrix

2 -1
~1 2 -1 .
L, =h—?2 ~1 2 -1 € R™"*"h  with nj, = -1

-1 2



The eigenvalue problem
Lpen = Anep
is solved by the eigenvectors

e’}f(:p) = sin(umx) forx = h,2h,3h,..., 1 —h
and eigenvalues

1
)\Z:2(1—coswh,u) for,uzl,...,nhzﬁ—l

Jacobi iteration:

.

1 . 4 . . 4
u*ZL b ufr = u% — D, (Lhu‘z — fh) = Mhu‘zb + Dy " fn
with the iteration matrix M, := I — Di:th, where D;, = diag(Ly,).
Damped Jacobi iteration:

j 41 _ gl j

- - - — 1-1
iteration matrix My, (=1 —35D, "Ly,

In this case, Mj;, is symmetric = | M},|| = p(M},) := max{|eigenvalues of Mj}|}.



Eigenvalues of the iteration matrix: A\, = 1 — 4wsin?(urh/2), 1 < u < ny,

with w — 1/2 for standard Jacobi
| 1/4 for damped Jacobi

Splitting of Vj, := R" = Vo, @ Viyigh
- { low-frequency part V,,, := span{e/é 1 < p < ny/2},
into _

high-frequency part Wgp, 1= span{e} : np/2 < p < np}

Conclusion for damped Jacobi:
Errors in V};5), are reduced by a factor % per iteration.

Ay A
1
Au124)
A2 damped Jacobi iteration
i
w =N‘m
0 t i } { % T f 5
h[ /2 1 '/7/ 1 ,Uh/
Jacobi iteration
=




Smoothing Effect: After few steps of the damped Jacobi iteration the low-

frequency part is dominating = The iteration error u% — uy, Is smooth:

A smooth error with step size h can be well approximated by a grid function
with step size 2h !

Often used smoothing iteration: Gauss-Seidel iteration



1.3 Coarse-Grid Correction

Actual approximation for step size h: up,

Its defect is
dp, := Lptp — fp-

The solution of Ljvy, = dy, is the exact correction: u;, = uy, — vy,.

Coarse-grid equation:

, 1 1 1
L2hv2h — d2h with d2h(33) = Zdh(CE - h) + idh(x) + Zdh(aj + h),

e
b —w—W
short: doj, = rdy, (restrictionr : V), — Vo) &
Interpolation of vyp,: puop, (prolongation p : Vo, — V3, Exercise: p = 2rT)

Approximate correction: u;" = @y — pvgp,.



2 Two-Grid Iteration

u% given iterate (¢: level number corresponding to h = hy, hy_1 := 2hy)

smoothing step: v steps of a smoothing iteration (e.g. damped Jacobi):

ug := Sy (uy, fo)

coarse-grid correction:

dyp == Lgag — fr defect

dp_q = rdy restriction of the defect

Vp_1 1= Lz_lldg_l exact solution of the coarse-grid equation
u‘frl = Up — pUy_1q correction of wuy

The two-grid iteration is defined by u} — ul ™.

= error reduction independent of Ay :
Hu‘frl — ugH <p Hu‘é — uEH with p < 1 for all £

weak point: Lg__l1



Notation:
Here: grid sizes h and 2h.
We can continue: 4h, 8h, ...

New notation: ¢ denotes the level.
For £ = 0 we have a coarsest grid size hg and set

hy = 2%hy.
For hy the index h in Ly, uyp, f;, is replaced by ¢ : Lyuy = fy.

Example: Q = (0,1), hg =1/2 = x = 1/2 is the only grid point = Lgis 1 x 1,
Ly € RMX with ny = 2116 — 1,



Algorithmic notation of the two-grid method:

procedure T'GM (4, u, f); integer ¢; array u, f;
ifE:Othenu::Lal*felse

begin array v, d;

u:i=38)(u, f); d:=rx(Lpxu—f); wv ::Lg__ll*d; U=U—P*v
end;

3 Multi-Grid lteration

procedure M GM (¢, u, f); integer ¢; array u, f;
if £ =0 then u:= Ly f else
begin array v, d;

u::SZ(u,f); d::T*(Lg*’UJ—f); | o
v:=0; for ] — 1(1)"}/ do MGM(K — 1,U,d); =2 0 ;lﬁ \
U:=U—pP*V L o 2
end; bet F L/

L/ -
V-cycle: v =1, W-cycle: v = 2 Al




Application to FE Equations

Simplest situation:
The finite-element subspaces satisfy

He—1 CHy

(nested FE spaces).

Then:

p: Hy_1 — Hy identity,
r : transposed of p,
Ly 1 =rLyp.

More difficult:
Given a finest FE space,
how to find coarser ones?

1

j"z
7, T
Ty T




Applicability:
In principle, the multigrid iteration works for discretisations of elliptic PDEs.

The error reduction per iteration is independent of the grid size, but may depend
on other parameters, e.g., on the anisotropy. Standard example:

—EUxy — 'U/yy = f for Sma” g > 0.

Remedy: Coarsening only in y-direction:

In the general case, varying anisotropy directions etc., the construction of the

coarser grid is nontrivial.



3.1 Algebraic Multigrid lteration

J.W. Ruge, K. Stiiben: Algebraic multigrid (AMG). In: Multigrid Methods, Vol.
5 of Frontiers in Applied Mathematics (ed. S. McCormick), SIAM Philadelphia,
pp- 73-130, 1986

Coarsening: Let wy be the FE grid points (nodal points) at level £ corresponding
to the FE space Hj. Define a suitable splitting

wy = wpUwe

into sets of fine-grid nodes (wg) and coarse-grid nodes (w().
wy_1 = w¢ defines the nodal values of the FE space H,_1.

Prolongation: p: Hy_{ — Hj, interpolation at the nodes wy.

« e T - 10 “coarse nd”
Restriction: r transposed of p. fine grid C g

Coarse-grid matrix: Ly_1 = rLyp.

Smoothing iteration: Gauss-Seidel iteration
a COarse, %I‘ld node

ﬁne grid node




Literature for AMG:

G. Haase, U. Langer, S. Reitzinger, J. Schoberl: A General Approach to Algebraic
Multigrid Methods, March 2001 in
https://www.researchgate.net/publication/

2370058 _A General Approach to Algebraic Multigrid Methods

and
C.H. Wolters, M. Kuhn, A. Anwander, S. Reitzinger: A parallel algebraic multi-

grid solver for finite element method based source localization in the human
brain. Computing and Visualization in Science 5(3), pp.165-177 (2002).



4 Nested lteration

PDE Lu = f. Discretizations at all levels 0 < k < /¢ by Lpuj = f}.

Trivial statements:
. j+1 Y 41 .
1) The iterate u; = of an iteration u; — wuy; = is the better, the better the
L i
starting iterate u Is.
2) Solving Ly_qup_1 = fy_1 (approximately) is cheaper than solving Lyu, = f;
(lower dimension!).
3) puy_q approximates uy

Idea: Use puy_q as starting iterate for v’ — ufq.

Nested iteration:

tip = Ly fo
for k:=1 (1) ¢ do
begin @}, := piiy_q; for j : =1 (1) : do MGM (k, ., f1.) end;



Analysis of the nested iteration:

Assumptions: 1) multigrid convergence:

+1 ' _ —1
H’LL‘;7~€ - UkH < Ck HU‘;Z; —ug|,  ugp = Ly

C:=max{(;:1<k</l} <1

2) interlevel convergence:

lpug_1 — ugl| < C1hf (1<Ek<Y),

3) Ch:=0Cp-Co with ||pl| < Co, hg_1/h < Co.

Theorem: Under the assumption from above and Cy(* < 1,
the nested iteration yields ;. with

)
¢ iclh’g’ (1<Ek<YP).
1 — C5(¢

g — ugl| <

Proof: Exercise



Cost of the Multi-Grid lteration:

Assume _
operation cost
ng—1 Se(ug, fe) < Cgny
. SCm vi=7Cg <l r(Leug — fr) < Cpny
e ug - PUe—1 < Ccny
Ly < (C
(standard value: Cf = 2—4 for problems in Rd). 0 " Jo = >0

Then: MGM(¥, -, -) requires Cyny operations, where

vCs+Cp+Cc | ge-1C0

Cy <
¢ 1—1 n1

Proof: Exercise

Cost of the nested iteration:

Using Cy < V05ﬁ€g+cc, the cost of the nested iteration with parameter 7 is
bounded by
)

14 : L /—k
Zk:l 1Crny, < ZZk:l Cr "Cpny < @CETLK.



5 Convergence Analysis of the Two-Grid Iteration

Any linear iteration solving Lyuy := f is of the form

E — Cb(ue,fg) = Mgué—l—Ngfg with Mg—I—Nng:I.

My is called the iteration matrix.
Let Sy be the iteration matrix of the smoothing iteration.

Exercise: The iteration matrix of the two-grid iteration with v smoothing itera-
tion steps is

My(v) := I = pLy L) SY.

Hint: Let M), and Mé’ be the respective iteration matrices of two linear iterations

u% Ho W = ¢ (ue,fg) and vz b fvg = CD/’(vg,f)
Then the product of both iterations is ® = & o ®’ with

wz — wfl (¢’ (wg,fg) f¢) and iteration matrix M, := M;M,'.



Simplified Convergence Analysis

My(v) = [T —pL; YyrLy| Sf = |L;' = pLyr] [LeSY].

Smoothing property:

| LySY | < 77(V)h€_2 forall v > 1 and ¢ > 1 with n(v) — 0 as v — .

Approximation property: HLé_l — pLe__ler < CAh%.

Combination of both inequalities yields

[Me()Il < Can(v)

and for sufficiently large v we have

M) <¢ <1 implying  [|u) T — | < ¢ Juf — -



5.0.1 Smoothing Property

Example: L, symmetric with diagonal D, = 4h£_2[ (5-point discretisation) and
—2
HLEH < 8hg

Damped Jacobi iteration u) — u%+1 =u) — 3D, (Lgu% — fg) .

—1
lteration matrix: Sy = I — wLy with w = % <4h£_2) = lhg.

Euclidean norm: HLgSZH = ||[Ly (I —wLy)”|,
eigenvalues of Ly between 0 and 8h€_2 =1/w, =

1 1
L)S7|l < maxiA(1—wA):0< A<~} = —max{u(l—-—p):0<u<l1
12

- W) p=wA w
= 8h, “no(v).

Exercise: ng(v) ;= max{u (1 —p)”:0<pu <1} satisfies

1 _2 3/8
— = +0(v?), <% forv>1.
no(v) 1 (™) no(v) < 12 or v >



5.0.2 Approximation Property

PDE: Lu = f, nested FEM — Ljyuy = fpand Ly_quy_1 = fy_1 with fy:= Ryf
and

uy € Uy finite-element coefficients, Pyu; € L?(Q) corresponding finite-element
function, Py : Uy — L?(Q),
Similarly: uy_1 and Py_quy_1 € L?(Q). Then

Py =Pyp: Upy — L*(Q).
The adjoint mappings are Ry = P,, r = p*. In particular, f, := R,f and
fe—1:=Ryg_1f, Rp—1 =Ry
Under suitable conditions (smooth coefficients, Q convex): If f € L?(Q), then

u € H?(Q) and

|(£7t = Py Ry) £, = |L72F = oLy o] = lw — Pougll 2 < CRE £l 2.



Repeated: H(L‘l — PgLZle) fHL2 < C’h% 1 fll72-

Similarly, |[(L1 = Pi_1 L,y Ry_1) f|| ., < CBZ_4 |1 fll 2.

Triangle inequality:
|(PeLy Ry — Py L Ry y) f]|,, < € (B + 13) 1 £ 2
he_y <chy = ||PL;'Ry—PiqLRey|,,  ,<C(+1)h =

- —1 ~1 —1 —1 —1
PpLy " Ry— Py 1L Ry = PpLy "Ry—PypLy yrRy = Py (L' — pLyr) Ry

| Powgll ;2 > Cp ||lugl] =

|t = oLy < CRP|Pe(Lgt = pLyr) Bl )
< CRPC (P +1)hi=Cphy  with Cp:=Cp?C (®+1).

= Approximation Property



6 Adjoint and Symmetric Iterations

Any linear iteration solving Lu := f is of the form u/T1 = ®(u?, f, L) with
O(u, f, L) :=Mu+ Nf =u— N(Lu— f) since M + NL = 1.
Here, N depends on L. Notation: N = NJ[L].

DEFINITION: (a) Given a linear iteration ®(-,-, L), the corresponding adjoint
iteration is defined by

*(u, £, L) = u— (N[LH))" (Lu — £).
(b) A linear iteration ® is symmetric, if & = &* (i.e., N[L] = N[LH]M).

EXERCISE: (a) The adjoint iteration of the Gauss-Seidel iteration is the back-
ward Gauss-Seidel iteration.

(b) The product ¢* o ® is a symmetric iteration.

(c) If W is a symmetric iteration, then * o W o ® is symmetric.

(d) ® symmetric and L symmetric matrix =—> also N is symmetric.

(e) ® symmetric and L positive definite = L1/2M L~1/2 is symmetric [essen-
tial for application of conjugate gradient methods!]

(f) Assume p = M and L, ; = rLyp. Prove: The coarse-grid iteration is a
symmetric iteration.



6.1 Symmetric Multigrid Iteration

The smoothing iteration Sy is now denoted as pre-smoothing Sy e, while

. Q%
St,post *= S{,pre

is used as post-smoothing (e.g., forward and backward Gauss-Seidel iteration).

procedure M GM (¢, u, f); integer ¢; array u, f;
ifE:Othenu::Lal*felse

begin array v, d;

u :zSZpre(u,f); d:=rx(Lyxu— f);
v:=0; forj=1(1)y do MGM (¥ — 1,v,d);
U= U— P *V;

u = SZpost(u, f)

end;

Prove: This MGM is a symmetric iteration (suited for cg methods).

Without symmetry: combination with generalised cg methods possible.



