Modern Numerical Methods with Medical Applications

Part II: Multigrid Iteration

Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Inselstr. 22-26, 04103 Leipzig, Germany wh@mis.mpg.de
http://www.mis.mpg.de/scicomp/hackbusch e.html

La Habana, June 2023

1 Motivation

The FE stiffness matrix L_{h} is a sparse matrix of size $n_{h} \times n_{h}$, where n_{h} is very large. Typical value $n_{h} \gtrsim 1.000 .000$.

For its solution one needs methods with a cost being (almost) linear in n_{h}.

Direct methods (Gauss elimination, Cholesky decomposition) cost up to $O\left(n_{h}^{3}\right)$ operations, traditional iterative methods cost $O\left(n_{h} h^{-1}\right)$ to $O\left(n_{h} h^{-2}\right)$ operations.

The multigrid method applies to rather general discretisations of elliptic PDEs and has linear cost.

Literature:
W.Hackbusch: Multi-Grid Methods and Applications. Springer 1985 and 2003
-: Iterative Solution of Large Sparse Systems of Equations, 2nd ed., Springer 2016

1.1 Linear Iterations

1.1.1 Notations

Linear system: $L u=f$ with $L \in \mathbb{R}^{n \times n}, u, f \in \mathbb{R}^{n}$.
A general one-step method

$$
u^{j} \mapsto u^{j+1}:=\Phi\left(u^{j}, f\right)
$$

is called a linear iteration if Φ is linear in both arguments:

$$
\Phi(u, f)=M u+N f
$$

Consistency: The exact solution $u^{*}=L^{-1} f$ should be a fixed point of Φ for all f :

$$
L^{-1} f=u^{*}=\Phi\left(u^{*}, f\right)=M L^{-1} f+N f
$$

This implies $L^{-1}=M L^{-1}+N$, i.e.,

$$
M+N L=I \quad \text { (consistency condition). }
$$

Then Φ becomes

$$
\Phi(u, f)=u-N(L u-f) .
$$

1.1.2 Convergence

The iteration error $u^{j}-u^{*}\left(u^{*}\right.$ solution of $\left.L u=f\right)$ satisfies

$$
u^{j+1}-u^{*}=M\left(u^{j}-u^{*}\right) \quad \text { and therefore } \quad\left\|u^{j+1}-u^{*}\right\| \leq\|M\|\left\|u^{j}-u^{*}\right\|
$$

$\|M\|<1$ is sufficient for convergence $u^{j} \rightarrow u^{*}(\|M\|$: contraction number).

A necessary and sufficient condition for convergence is

$$
\rho(M)<1
$$

where

$$
\rho(M):=\max \{|\lambda|: \lambda \text { eigenvalue of } M\}
$$

is the spectral radius.

LEMMA: a) $\rho(M) \leq\|M\|$. b) $M=M^{\mathrm{H}} \Rightarrow \rho(M)=\|M\|$.

1.1.3 Classical Examples of Iterations

Jacobi iteration: $N=D^{-1}(D=\operatorname{diag}(M))$,
i.e. $u^{j} \mapsto u^{j+1}:=u^{j}-D^{-1}\left(L u^{j}-f\right)$.
procedure Jacobi (u, f); array $u, u^{\text {old }}, f$; integer i, j;
begin $u^{\text {old }}:=u$; for all i do $u[i]:=u^{\text {old }}[i]-\left(\sum_{j}\left(L[i, j] u^{\text {old }}[j]\right)-f[i]\right) / L[i, i]$ end;

Gauss-Seidel iteration:
procedure $\mathrm{GS}(u, f)$; array u, f; integer i, j;
for $i:=1$ to n do $u[i]:=u[i]-\left(\sum_{j}(L[i, j] u[j])-f[i]\right) / L[i, i]$;
$\Rightarrow N=\left(L_{\text {lower }}+D\right)^{-1} L_{\text {upper }}$ where $L=L_{\text {lower }}+D+L_{\text {upper }}$ (lower triangular / upper triangular part)

Assume $L=L^{\mathrm{H}}$. Then
Jacobi converges if $2 D>L>0$;
Gauss-Seidel converges if $L>0$.

1.1.4 Speed of Convergence

Discretisation of second order pde with step size h.
\Rightarrow condition number $\|M\|\left\|M^{-1}\right\|=O\left(h^{-2}\right)$
3D case: $n \sim h^{-3}$.

Jacobi and Gauss-Seidel: contraction number is $1-O\left(h^{2}\right)$

SOR (successive overrelaxation): $1-O(h)$

1.1.5 Cost of the iterative scheme

1 iteration step costs $O(n)$ operations (sparse matrix!)
Assume that we want $\left\|u^{j}-u^{*}\right\| \cong \varepsilon$ starting from $u^{0}:=0$.
$\left(1-O\left(h^{\kappa}\right)\right)^{m}=\varepsilon$ requires $m=O\left(h^{-\kappa}|\log \varepsilon|\right)$ iterations

Cost of Jacobi or Gauss-Seidel: $O\left(n h^{-2}|\log \varepsilon|\right)=O\left(h^{-5}|\log \varepsilon|\right)=O\left(n^{5 / 3}|\log \varepsilon|\right)$

Cost of SOR: $O\left(n h^{-1}|\log \varepsilon|\right)=O\left(h^{-4}|\log \varepsilon|\right)=O\left(n^{4 / 3}|\log \varepsilon|\right)$

Optimal case would be a contraction number $\zeta<1$ independent of h. Then the cost is $O(n|\log \varepsilon|)$. This is the case of the multigrid method.

We shall even obtain $O(n)$ for $\varepsilon=$ discretisation error $=h^{\kappa}$.

The multigrid approach is based on two ingredients:

- smoothing property
- coarse-grid correction

1.2 Smoothing Property

1D Example: $-u^{\prime \prime}=f$ in $[0,1]$ and $u(0)=u(1)=0$
Discretisation: $h^{-2}\left[-u_{h}(x-h)+2 u_{h}(x)-u_{h}(x+h)\right]=f(x)$
This yields the system $L_{h} u_{h}=f_{h}$ with $u_{h}=\left[u_{h}(h), u_{h}(2 h), u_{h}(3 h), \ldots, u_{h}(1-h)\right]^{\top}$ and the sparse matrix

$$
L_{h}=h^{-2}\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & \ddots & \ddots & \ddots \\
& & & -1 & 2
\end{array}\right] \in \mathbb{R}^{n_{h} \times n_{h}} \quad \text { with } n_{h}=\frac{1}{h}-1
$$

The eigenvalue problem

$$
L_{h} e_{h}=\lambda_{h} e_{h}
$$

is solved by the eigenvectors

$$
e_{h}^{\mu}(x)=\sin (\mu \pi x) \quad \text { for } x=h, 2 h, 3 h, \ldots, 1-h
$$

and eigenvalues

$$
\lambda_{h}^{\mu}=2(1-\cos \pi h \mu) \quad \text { for } \mu=1, \ldots, n_{h}=\frac{1}{h}-1
$$

Jacobi iteration:

$$
u_{h}^{j} \longmapsto u_{h}^{j+1}=u_{h}^{j}-D_{h}^{-1}\left(L_{h} u_{h}^{j}-f_{h}\right)=M_{h} u_{h}^{j}+D_{h}^{-1} f_{h}
$$

with the iteration matrix $M_{h}:=I-D_{h}^{-1} L_{h}$, where $D_{h}=\operatorname{diag}\left(L_{h}\right)$.

Damped Jacobi iteration:

$$
u_{h}^{j} \longmapsto u_{h}^{j+1}=u_{h}^{j}-\frac{1}{2} D_{h}^{-1}\left(L_{h} u_{h}^{j}-f_{h}\right) \Rightarrow
$$

iteration matrix $M_{h}:=I-\frac{1}{2} D_{h}^{-1} L_{h}$.

In this case, M_{h} is symmetric $\Rightarrow\left\|M_{h}\right\|=\rho\left(M_{h}\right):=\max \left\{\mid\right.$ eigenvalues of $\left.M_{h} \mid\right\}$.

Eigenvalues of the iteration matrix: $\lambda_{\mu}=1-4 \omega \sin ^{2}(\mu \pi h / 2), 1 \leq \mu \leq n_{h}$, with $\omega= \begin{cases}1 / 2 & \text { for standard Jacobi } \\ 1 / 4 & \text { for damped Jacobi }\end{cases}$

Splitting of $V_{h}:=\mathbb{R}^{n_{h}}=V_{\text {low }} \oplus V_{\text {high }}$ into $\left\{\begin{array}{l}\text { low-frequency part } V_{\text {low }}:=\operatorname{span}\left\{e_{h}^{\mu}: 1 \leq \mu \leq n_{h} / 2\right\}, \\ \text { high-frequency part } V_{\text {high }}:=\operatorname{span}\left\{e_{h}^{\mu}: n_{h} / 2<\mu \leq n_{h}\right\}\end{array}\right.$

Conclusion for damped Jacobi:
Errors in $V_{\text {high }}$ are reduced by a factor $\frac{1}{2}$ per iteration.

Smoothing Effect: After few steps of the damped Jacobi iteration the lowfrequency part is dominating \Rightarrow The iteration error $u_{h}^{j}-u_{h}$ is smooth:

A smooth error with step size h can be well approximated by a grid function with step size $2 h$!

Often used smoothing iteration: Gauss-Seidel iteration

1.3 Coarse-Grid Correction

Actual approximation for step size $h: \quad \bar{u}_{h}$

Its defect is

$$
d_{h}:=L_{h} \bar{u}_{h}-f_{h} .
$$

The solution of $L_{h} v_{h}=d_{h}$ is the exact correction: $u_{h}=\bar{u}_{h}-v_{h}$.

Coarse-grid equation:

$$
L_{2 h} v_{2 h}=d_{2 h} \quad \text { with } \quad d_{2 h}(x):=\frac{1}{4} d_{h}(x-h)+\frac{1}{2} d_{h}(x)+\frac{1}{4} d_{h}(x+h)
$$

short: $d_{2 h}=r d_{h}\left(\right.$ restriction $\left.r: V_{h} \rightarrow V_{2 h}\right)$

Interpolation of $v_{2 h}: \quad p v_{2 h}$ (prolongation $p: V_{2 h} \rightarrow V_{h}$, Exercise: $p=2 r^{\top}$)

Approximate correction: $u_{h}^{\text {new }}=\bar{u}_{h}-p v_{2 h}$.

2 Two-Grid Iteration

u_{ℓ}^{j} given iterate $\quad\left(\ell:\right.$ level number corresponding to $h=h_{\ell}, h_{\ell-1}:=2 h_{\ell}$)
smoothing step: ν steps of a smoothing iteration (e.g. damped Jacobi):

$$
\bar{u}_{\ell}:=\mathcal{S}_{\ell}^{\nu}\left(u_{\ell}^{j}, f_{\ell}\right)
$$

coarse-grid correction:

$$
\begin{array}{ll}
d_{\ell}:=L_{\ell} \bar{u}_{\ell}-f_{\ell} & \\
d_{\ell-1}:=r d_{\ell} & \\
\text { restriction of the } \\
v_{\ell-1}:=L_{\ell-1}^{-1} d_{\ell-1} & \\
\text { exact solution of } \\
u_{\ell}^{j+1}:=\bar{u}_{\ell}-p v_{\ell-1} & \\
\text { correction of } \bar{u}_{\ell}
\end{array}
$$

The two-grid iteration is defined by $u_{\ell}^{j} \longmapsto u_{\ell}^{j+1}$.
\Rightarrow error reduction independent of h_{ℓ} :

$$
\left\|u_{\ell}^{j+1}-u_{\ell}\right\| \leq \rho\left\|u_{\ell}^{j}-u_{\ell}\right\| \quad \text { with } \rho<1 \text { for all } \ell
$$

weak point: $L_{\ell-1}^{-1}$

Notation:

Here: grid sizes h and $2 h$.

We can continue: $4 h, 8 h, \ldots$

New notation: ℓ denotes the level.
For $\ell=0$ we have a coarsest grid size h_{0} and set

$$
h_{\ell}=2^{\ell} h_{0}
$$

For h_{ℓ} the index h in L_{h}, u_{h}, f_{h} is replaced by $\ell: L_{\ell} u_{\ell}=f_{\ell}$.

Example: $\Omega=(0,1), h_{0}=1 / 2 \Rightarrow x=1 / 2$ is the only grid point $\Rightarrow L_{0}$ is 1×1, $L_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell}}$ with $n_{\ell}=2^{1+\ell}-1$.

Algorithmic notation of the two-grid method:
procedure $T G M(\ell, u, f)$; integer ℓ; array u, f;
if $\ell=0$ then $u:=L_{0}^{-1} * f$ else
begin array v, d;
$u:=\mathcal{S}_{\ell}^{\nu}(u, f) ; \quad d:=r *\left(L_{\ell} * u-f\right) ; \quad v:=L_{\ell-1}^{-1} * d ; \quad u:=u-p * v$ end;

3 Multi-Grid Iteration

procedure $M G M(\ell, u, f)$; integer ℓ; array u, f;
if $\ell=0$ then $u:=L_{0}^{-1} * f$ else
begin array v, d;
$u:=\mathcal{S}_{\ell}^{\nu}(u, f) ; \quad d:=r *\left(L_{\ell} * u-f\right)$;
$v:=0 ; \quad$ for $j=1(1) \gamma$ do $M G M(\ell-1, v, d)$;
$u:=u-p * v$
end;
V-cycle: $\gamma=1$, W-cycle: $\gamma=2$

Application to FE Equations

Simplest situation:
The finite-element subspaces satisfy

$$
\mathcal{H}_{\ell-1} \subset \mathcal{H}_{\ell}
$$

(nested FE spaces).

Then:
$p: \mathcal{H}_{\ell-1} \rightarrow \mathcal{H}_{\ell}$ identity,
r : transposed of p,

$L_{\ell-1}=r L_{\ell} p$.

More difficult:

Given a finest FE space, how to find coarser ones?

Applicability:

In principle, the multigrid iteration works for discretisations of elliptic PDEs.

The error reduction per iteration is independent of the grid size, but may depend on other parameters, e.g., on the anisotropy. Standard example:

$$
-\varepsilon u_{x x}-u_{y y}=f \quad \text { for small } \varepsilon>0
$$

Remedy: Coarsening only in y-direction:

In the general case, varying anisotropy directions etc., the construction of the coarser grid is nontrivial.

3.1 Algebraic Multigrid Iteration

J.W. Ruge, K. Stüben: Algebraic multigrid (AMG). In: Multigrid Methods, Vol. 5 of Frontiers in Applied Mathematics (ed. S. McCormick), SIAM Philadelphia, pp. 73-130, 1986

Coarsening: Let ω_{ℓ} be the FE grid points (nodal points) at level ℓ corresponding to the FE space H_{ℓ}. Define a suitable splitting

$$
\omega_{\ell}=\omega_{F} \dot{\cup} \omega_{C}
$$

into sets of fine-grid nodes $\left(\omega_{F}\right)$ and coarse-grid nodes $\left(\omega_{C}\right)$. $\omega_{\ell-1}:=\omega_{C}$ defines the nodal values of the FE space $H_{\ell-1}$.

Prolongation: $p: H_{\ell-1} \rightarrow H_{\ell}$ interpolation at the nodes ω_{ℓ}.
Restriction: r transposed of p.
Coarse-grid matrix: $L_{\ell-1}=r L_{\ell} p$.
Smoothing iteration: Gauss-Seidel iteration

Literature for AMG:
G. Haase, U. Langer, S. Reitzinger, J. Schöberl: A General Approach to Algebraic Multigrid Methods, March 2001 in
https://www.researchgate.net/publication/
2370058_A_General_Approach_to_Algebraic_Multigrid_Methods
and
C.H. Wolters, M. Kuhn, A. Anwander, S. Reitzinger: A parallel algebraic multigrid solver for finite element method based source localization in the human brain. Computing and Visualization in Science 5(3), pp.165-177 (2002).

4 Nested Iteration

PDE $L u=f$. Discretizations at all levels $0 \leq k \leq \ell$ by $L_{k} u_{k}=f_{k}$.

Trivial statements:

1) The iterate u_{ℓ}^{j+1} of an iteration $u_{\ell}^{j} \mapsto u_{\ell}^{j+1}$ is the better, the better the starting iterate u_{ℓ}^{j} is.
2) Solving $L_{\ell-1} u_{\ell-1}=f_{\ell-1}$ (approximately) is cheaper than solving $L_{\ell} u_{\ell}=f_{\ell}$ (lower dimension!).
3) $p u_{\ell-1}$ approximates u_{ℓ}

Idea: Use $p u_{\ell-1}$ as starting iterate for $u_{\ell}^{j} \mapsto u_{\ell}^{j+1}$.

Nested iteration:

$\tilde{u}_{0}:=L_{0}^{-1} f_{0} ;$
for $k:=1$ (1) ℓ do
begin $\tilde{u}_{k}:=p \tilde{u}_{k-1}$; for $j:=1(1) i$ do $\operatorname{MGM}\left(k, \tilde{u}_{k}, f_{k}\right)$ end;

Analysis of the nested iteration:

Assumptions: 1) multigrid convergence:

$$
\begin{aligned}
&\left\|u_{k}^{j+1}-u_{k}\right\| \leq \zeta_{k}\left\|u_{k}^{j}-u_{k}\right\|, \quad u_{k} \\
& \zeta:=L_{k}^{-1} f_{k} \\
& \zeta \max \left\{\zeta_{k}: 1 \leq k \leq \ell\right\}<1
\end{aligned}
$$

2) interlevel convergence:

$$
\left\|p u_{k-1}-u_{k}\right\| \leq C_{1} h_{k}^{\kappa} \quad(1 \leq k \leq \ell)
$$

3) $\quad C_{2}:=C_{20} \cdot C_{21} \quad$ with $\quad\|p\| \leq C_{20}, \quad h_{k-1} / h_{k} \leq C_{21}$.

Theorem: Under the assumption from above and $C_{2} \zeta^{i}<1$, the nested iteration yields \tilde{u}_{k} with

$$
\left\|\tilde{u}_{k}-u_{k}\right\| \leq \frac{\zeta^{i}}{1-C_{2} \zeta^{i}} C_{1} h_{k}^{\kappa} \quad(1 \leq k \leq \ell)
$$

Proof: Exercise

Cost of the Multi-Grid Iteration:

Assume
$\frac{n_{\ell-1}}{n_{\ell}} \leq C_{H}, \quad \vartheta:=\gamma C_{H}<1$
(standard value: $C_{H}=2^{-d}$ for problems in \mathbb{R}^{d}).

$$
\begin{array}{ll}
\text { operation } & \text { cost } \\
\mathcal{S}_{\ell}\left(u_{\ell}, f_{\ell}\right) & \leq C_{S} n_{\ell} \\
r\left(L_{\ell} u_{\ell}-f_{\ell}\right) & \leq C_{D} n_{\ell} \\
u_{\ell}-p u_{\ell-1} & \leq C_{C} n_{\ell} \\
L_{0}^{-1} f_{0} & \leq C_{0}
\end{array}
$$

Then: $\operatorname{MGM}(\ell, \cdot, \cdot)$ requires $C_{\ell} n_{\ell}$ operations, where

$$
C_{\ell}<\frac{\nu C_{S}+C_{D}+C_{C}}{1-\vartheta}+\vartheta^{\ell-1} \frac{C_{0}}{n_{1}}
$$

Proof: Exercise

Cost of the nested iteration:

Using $C_{\ell} \lesssim \frac{\nu C_{S}+C_{D}+C_{C}}{1-\vartheta}$, the cost of the nested iteration with parameter i is bounded by

$$
\sum_{k=1}^{\ell} i C_{k} n_{k} \leq i \sum_{k=1}^{\ell} C_{H}^{\ell-k} C_{\ell} n_{\ell}<\frac{i}{1-C_{H}} C_{\ell} n_{\ell}
$$

5 Convergence Analysis of the Two-Grid Iteration

Any linear iteration solving $L_{\ell} u_{\ell}:=f_{\ell}$ is of the form

$$
u_{\ell}^{j+1}=\Phi\left(u_{\ell}^{j}, f_{\ell}\right)=M_{\ell} u_{\ell}^{j}+N_{\ell} f_{\ell} \quad \text { with } M_{\ell}+N_{\ell} L_{\ell}=I .
$$

M_{ℓ} is called the iteration matrix.
Let S_{ℓ} be the iteration matrix of the smoothing iteration.
Exercise: The iteration matrix of the two-grid iteration with ν smoothing iteration steps is

$$
M_{\ell}(\nu):=\left[I-p L_{\ell-1}^{-1} r L_{\ell}\right] S_{\ell}^{\nu}
$$

Hint: Let M_{ℓ}^{\prime} and $M_{\ell}^{\prime \prime}$ be the respective iteration matrices of two linear iterations

$$
u_{\ell}^{j} \mapsto u_{\ell}^{j+1}=\Phi^{\prime}\left(u_{\ell}^{j}, f_{\ell}\right) \quad \text { and } \quad v_{\ell}^{j} \mapsto v_{\ell}^{j+1}=\Phi^{\prime \prime}\left(v_{\ell}^{j}, f_{\ell}\right) .
$$

Then the product of both iterations is $\Phi=\Phi^{\prime \prime} \circ \Phi^{\prime}$ with

$$
w_{\ell}^{j} \mapsto w_{\ell}^{j+1}:=\Phi^{\prime \prime}\left(\Phi^{\prime}\left(w_{\ell}^{j}, f_{\ell}\right), f_{\ell}\right) \quad \text { and iteration matrix } \quad M_{\ell}:=M_{\ell}^{\prime} M_{\ell}^{\prime \prime}
$$

Simplified Convergence Analysis

$$
M_{\ell}(\nu)=\left[I-p L_{\ell-1}^{-1} r L_{\ell}\right] S_{\ell}^{\nu}=\left[L_{\ell}^{-1}-p L_{\ell-1}^{-1} r\right]\left[L_{\ell} S_{\ell}^{\nu}\right] .
$$

Smoothing property:

$$
\left\|L_{\ell} S_{\ell}^{\nu}\right\| \leq \eta(\nu) h_{\ell}^{-2} \quad \text { for all } \nu \geq 1 \text { and } \ell \geq 1 \text { with } \eta(\nu) \rightarrow 0 \text { as } \nu \rightarrow \infty
$$

Approximation property: $\left\|L_{\ell}^{-1}-p L_{\ell-1}^{-1} r\right\| \leq C_{A} h_{\ell}^{2}$.
Combination of both inequalities yields

$$
\left\|M_{\ell}(\nu)\right\| \leq C_{A} \eta(\nu)
$$

and for sufficiently large ν we have

$$
\left\|M_{\ell}(\nu)\right\| \leq \zeta<1 \quad \text { implying } \quad\left\|u_{\ell}^{j+1}-u_{\ell}\right\| \leq \zeta\left\|u_{\ell}^{j}-u_{\ell}\right\|
$$

5.0.1 Smoothing Property

Example: L_{ℓ} symmetric with diagonal $D_{\ell}=4 h_{\ell}^{-2} I$ (5-point discretisation) and $\left\|L_{\ell}\right\| \leq 8 h_{\ell}^{-2}$

Damped Jacobi iteration $u_{\ell}^{j} \mapsto u_{\ell}^{j+1}=u_{\ell}^{j}-\frac{1}{2} D_{\ell}^{-1}\left(L_{\ell} u_{\ell}^{j}-f_{\ell}\right)$.
Iteration matrix: $S_{\ell}=I-\omega L_{\ell}$ with $\omega=\frac{1}{2}\left(4 h_{\ell}^{-2}\right)^{-1}=\frac{1}{8} h_{\ell}^{2}$.
Euclidean norm: $\left\|L_{\ell} S_{\ell}^{\nu}\right\|=\left\|L_{\ell}\left(I-\omega L_{\ell}\right)^{\nu}\right\|$, eigenvalues of L_{ℓ} between 0 and $8 h_{\ell}^{-2}=1 / \omega, \Rightarrow$

$$
\begin{aligned}
\left\|L_{\ell} S_{\ell}^{\nu}\right\| & \leq \max \left\{\lambda(1-\omega \lambda)^{\nu}: 0 \leq \lambda \leq \frac{1}{\omega}\right\}_{\mu:=\omega \lambda}^{=} \frac{1}{\omega} \max \left\{\mu(1-\mu)^{\nu}: 0 \leq \mu \leq 1\right\} \\
& =8 h_{\ell}^{-2} \eta_{0}(\nu)
\end{aligned}
$$

Exercise: $\quad \eta_{0}(\nu):=\max \left\{\mu(1-\mu)^{\nu}: 0 \leq \mu \leq 1\right\} \quad$ satisfies

$$
\eta_{0}(\nu)=\frac{1}{\mathrm{e} \nu}+O\left(\nu^{-2}\right), \quad \eta_{0}(\nu) \leq \frac{3 / 8}{\nu+1 / 2} \text { for } \nu \geq 1
$$

5.0.2 Approximation Property

PDE: $L u=f$, nested FEM $\rightarrow L_{\ell} u_{\ell}=f_{\ell}$ and $L_{\ell-1} u_{\ell-1}=f_{\ell-1}$ with $f_{\ell}:=R_{\ell} f$ and
$u_{\ell} \in U_{\ell}$ finite-element coefficients, $P_{\ell} u_{\ell} \in L^{2}(\Omega)$ corresponding finite-element function, $P_{\ell}: U_{\ell} \rightarrow L^{2}(\Omega)$,
Similarly: $u_{\ell-1}$ and $P_{\ell-1} u_{\ell-1} \in L^{2}(\Omega)$. Then

$$
P_{\ell-1}=P_{\ell} p: U_{\ell-1} \rightarrow L^{2}(\Omega)
$$

The adjoint mappings are $R_{\ell}=P_{\ell}^{*}, r=p^{*}$. In particular, $f_{\ell}:=R_{\ell} f$ and $f_{\ell-1}:=R_{\ell-1} f, R_{\ell-1}=r R_{\ell}$

Under suitable conditions (smooth coefficients, Ω convex): If $f \in L^{2}(\Omega)$, then $u \in H^{2}(\Omega)$ and

$$
\left\|\left(L^{-1}-P_{\ell} L_{\ell}^{-1} R_{\ell}\right) f\right\|_{L^{2}}=\left\|L^{-1} f-P_{\ell} L_{\ell}^{-1} f_{\ell}\right\|_{L^{2}}=\left\|u-P_{\ell} u_{\ell}\right\|_{L^{2}} \leq C h_{\ell}^{2}\|f\|_{L^{2}}
$$

Repeated: $\left\|\left(L^{-1}-P_{\ell} L_{\ell}^{-1} R_{\ell}\right) f\right\|_{L^{2}} \leq C h_{\ell}^{2}\|f\|_{L^{2}}$.
Similarly, $\left\|\left(L^{-1}-P_{\ell-1} L_{\ell-1}^{-1} R_{\ell-1}\right) f\right\|_{L^{2}} \leq C h_{\ell-1}^{2}\|f\|_{L^{2}}$.

Triangle inequality:

$$
\begin{gathered}
\left\|\left(P_{\ell} L_{\ell}^{-1} R_{\ell}-P_{\ell-1} L_{\ell-1}^{-1} R_{\ell-1}\right) f\right\|_{L^{2}} \leq C\left(h_{\ell-1}^{2}+h_{\ell}^{2}\right)\|f\|_{L^{2}} . \\
h_{\ell-1} \leq c h_{\ell} \Rightarrow\left\|P_{\ell} L_{\ell}^{-1} R_{\ell}-P_{\ell-1} L_{\ell-1}^{-1} R_{\ell-1}\right\|_{L^{2} \leftarrow L^{2}} \leq C\left(c^{2}+1\right) h_{\ell}^{2} \Rightarrow \\
P_{\ell} L_{\ell}^{-1} R_{\ell}-P_{\ell-1} L_{\ell-1}^{-1} R_{\ell-1}=P_{\ell} L_{\ell}^{-1} R_{\ell}-P_{\ell} p L_{\ell-1}^{-1} r R_{\ell}=P_{\ell}\left(L_{\ell}^{-1}-p L_{\ell-1}^{-1} r\right) R_{\ell} .
\end{gathered}
$$

$$
\left\|P_{\ell} u_{\ell}\right\|_{L^{2}} \geq C_{P}\left\|u_{\ell}\right\| \quad \Rightarrow
$$

$$
\left\|L_{\ell}^{-1}-p L_{\ell-1}^{-1} r\right\| \leq C_{P}^{-2}\left\|P_{\ell}\left(L_{\ell}^{-1}-p L_{\ell-1}^{-1} r\right) R_{\ell}\right\|_{L^{2} \longleftarrow L^{2}}
$$

$$
\leq C_{P}^{-2} C\left(c^{2}+1\right) h_{\ell}^{2}=C_{A} h_{\ell}^{2} \quad \text { with } C_{A}:=C_{P}^{-2} C\left(c^{2}+1\right) .
$$

\Rightarrow Approximation Property

6 Adjoint and Symmetric Iterations

Any linear iteration solving $L u:=f$ is of the form $u^{j+1}=\Phi\left(u^{j}, f, L\right)$ with

$$
\Phi(u, f, L):=M u+N f=u-N(L u-f) \quad \text { since } M+N L=I
$$

Here, N depends on L. Notation: $N=N[L]$.
DEFINITION: (a) Given a linear iteration $\Phi(\cdot, \cdot, L)$, the corresponding adjoint iteration is defined by

$$
\Phi^{*}(u, f, L):=u-\left(N\left[L^{\mathrm{H}}\right]\right)^{\mathrm{H}}(L u-f) .
$$

(b) A linear iteration Φ is symmetric, if $\Phi=\Phi^{*}$ (i.e., $N[L]=N\left[L^{\mathrm{H}}\right]^{\mathrm{H}}$).

EXERCISE: (a) The adjoint iteration of the Gauss-Seidel iteration is the backward Gauss-Seidel iteration.
(b) The product $\Phi^{*} \circ \Phi$ is a symmetric iteration.
(c) If Ψ is a symmetric iteration, then $\Phi^{*} \circ \Psi \circ \Phi$ is symmetric.
(d) Φ symmetric and L symmetric matrix \Longrightarrow also N is symmetric.
(e) Φ symmetric and L positive definite $\Longrightarrow L^{1 / 2} M L^{-1 / 2}$ is symmetric [essential for application of conjugate gradient methods!]
(f) Assume $p=r^{\mathrm{H}}$ and $L_{\ell-1}=r L_{\ell} p$. Prove: The coarse-grid iteration is a symmetric iteration.

6.1 Symmetric Multigrid Iteration

The smoothing iteration \mathcal{S}_{ℓ} is now denoted as pre-smoothing $\mathcal{S}_{\ell, \text { pre }}$, while

$$
\mathcal{S}_{\ell, \text { post }}:=\mathcal{S}_{\ell, \text { pre }}^{*}
$$

is used as post-smoothing (e.g., forward and backward Gauss-Seidel iteration).
procedure $M G M(\ell, u, f)$; integer ℓ; array u, f;
if $\ell=0$ then $u:=L_{0}^{-1} * f$ else
begin array v, d;
$u:=\mathcal{S}_{\ell, \text { pre }}^{\nu}(u, f) ; \quad d:=r *\left(L_{\ell} * u-f\right)$;
$v:=0 ; \quad$ for $j=1(1) \gamma$ do $M G M(\ell-1, v, d)$;
$u:=u-p * v$;
$u:=\mathcal{S}_{\ell, \text { post }}^{\nu}(u, f)$
end;

Prove: This $M G M$ is a symmetric iteration (suited for cg methods).

Without symmetry: combination with generalised cg methods possible.

