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1 Motivation

The FE sti�ness matrix Lh is a sparse matrix of size nh � nh, where nh is very
large. Typical value nh & 1:000:000:

For its solution one needs methods with a cost being (almost) linear in nh:

Direct methods (Gauss elimination, Cholesky decomposition) cost up to O(n3h)

operations, traditional iterative methods cost O(nhh
�1) to O(nhh

�2) opera-
tions.

The multigrid method applies to rather general discretisations of elliptic PDEs

and has linear cost.

Literature:

W.Hackbusch: Multi-Grid Methods and Applications. Springer 1985 and 2003

|: Iterative Solution of Large Sparse Systems of Equations, 2nd ed., Springer

2016



1.1 Linear Iterations

1.1.1 Notations

Linear system: Lu = f with L 2 Rn�n; u; f 2 Rn:
A general one-step method

uj 7! uj+1 := �(uj; f)

is called a linear iteration if � is linear in both arguments:

�(u; f) =Mu+Nf:

Consistency: The exact solution u� = L�1f should be a �xed point of � for all
f :

L�1f = u� = �(u�; f) =ML�1f +Nf

This implies L�1 =ML�1 +N , i.e.,

M +NL = I (consistency condition).

Then � becomes

�(u; f) = u�N (Lu� f) :



1.1.2 Convergence

The iteration error uj � u� (u� solution of Lu = f) satis�es

uj+1 � u� =M
�
uj � u�

�
and therefore

uj+1 � u� � kMk uj � u� :
kMk < 1 is su�cient for convergence uj ! u� (kMk: contraction number).

A necessary and su�cient condition for convergence is

�(M) < 1

where

�(M) := maxfj�j : � eigenvalue of Mg

is the spectral radius.

LEMMA: a) �(M) � kMk : b) M =MH ) �(M) = kMk :



1.1.3 Classical Examples of Iterations

Jacobi iteration: N = D�1 (D = diag(M)),

i.e. uj 7! uj+1 := uj �D�1(Luj � f):

procedure Jacobi(u; f); array u; uold; f ; integer i; j;

begin uold := u; for all i do u[i] := uold[i]�
�P

j

�
L[i; j]uold[j]

�
� f [i]

�
=L[i; i]

end;

Gauss-Seidel iteration:

procedure GS(u; f); array u; f ; integer i; j;

for i := 1 to n do u[i] := u[i]�
�P

j (L[i; j]u[j])� f [i]
�
=L[i; i];

) N = (Llower+D)
�1Lupper where L = Llower+D+Lupper (lower triangular

/ upper triangular part)

Assume L = LH: Then

Jacobi converges if 2D > L > 0;

Gauss-Seidel converges if L > 0:



1.1.4 Speed of Convergence

Discretisation of second order pde with step size h:

) condition number kMk jjM�1jj = O(h�2)

3D case: n � h�3.

Jacobi and Gauss-Seidel: contraction number is 1�O(h2)

SOR (successive overrelaxation): 1�O(h)



1.1.5 Cost of the iterative scheme

1 iteration step costs O(n) operations (sparse matrix!)

Assume that we want
uj � u� �= " starting from u0 := 0:

(1�O(h�))m = " requires m = O(h�� jlog "j) iterations

Cost of Jacobi or Gauss-Seidel:O(nh�2 jlog "j) = O(h�5 jlog "j) = O(n5=3 jlog "j)

Cost of SOR: O(nh�1 jlog "j) = O(h�4 jlog "j) = O(n4=3 jlog "j)

Optimal case would be a contraction number � < 1 independent of h. Then

the cost is O(n jlog "j): This is the case of the multigrid method.

We shall even obtain O(n) for " = discretisation error = h�:



The multigrid approach is based on two ingredients:

� smoothing property

� coarse-grid correction

1.2 Smoothing Property

1D Example: �u00 = f in [0,1] and u(0) = u(1) = 0

Discretisation: h�2 [�uh(x� h) + 2uh(x)� uh(x+ h)] = f(x)

This yields the system Lhuh = fh with uh = [uh(h); uh(2h); uh(3h); : : : ; uh(1� h)]T
and the sparse matrix

Lh = h
�2

26666664
2 �1
�1 2 �1

�1 2 �1
. . . . . . . . .
�1 2

37777775 2 R
nh�nh with nh =

1

h
� 1:



The eigenvalue problem
Lheh = �heh

is solved by the eigenvectors

e
�
h(x) = sin(��x) for x = h; 2h; 3h; : : : ; 1� h

and eigenvalues

�
�
h = 2 (1� cos�h�) for � = 1; : : : ; nh =

1

h
� 1

Jacobi iteration:

u
j
h 7�! u

j+1
h = u

j
h �D

�1
h

�
Lhu

j
h � fh

�
=Mhu

j
h +D

�1
h fh

with the iteration matrix Mh := I �D�1h Lh; where Dh = diag(Lh):

Damped Jacobi iteration:

u
j
h 7�! u

j+1
h = u

j
h �

1

2
D�1h

�
Lhu

j
h � fh

�
)

iteration matrix Mh := I � 1
2D
�1
h Lh.

In this case, Mh is symmetric) kMhk = �(Mh) := maxfjeigenvalues of Mhjg:



Eigenvalues of the iteration matrix: �� = 1� 4! sin2(��h=2); 1 � � � nh;

with ! =

(
1=2 for standard Jacobi
1=4 for damped Jacobi

Splitting of Vh := Rnh = Vlow � Vhigh

into

(
low-frequency part Vlow := spanfe

�
h : 1 � � � nh=2g;

high-frequency part Vhigh := spanfe
�
h : nh=2 < � � nhg

Conclusion for damped Jacobi:
Errors in Vhigh are reduced by a factor

1
2 per iteration.



Smoothing E�ect: After few steps of the damped Jacobi iteration the low-

frequency part is dominating ) The iteration error u
j
h � uh is smooth:

A smooth error with step size h can be well approximated by a grid function

with step size 2h !

Often used smoothing iteration: Gauss-Seidel iteration



1.3 Coarse-Grid Correction

Actual approximation for step size h: �uh

Its defect is

dh := Lh�uh � fh:

The solution of Lhvh = dh is the exact correction: uh = �uh � vh:

Coarse-grid equation:

L2hv2h = d2h with d2h(x) :=
1

4
dh(x� h) +

1

2
dh(x) +

1

4
dh(x+ h);

short: d2h = rdh (restriction r : Vh ! V2h)

Interpolation of v2h: pv2h (prolongation p : V2h ! Vh; Exercise: p = 2r
T)

Approximate correction: unewh = �uh � pv2h:



2 Two-Grid Iteration

u
j
` given iterate (`: level number corresponding to h = h`; h`�1 := 2h`)

smoothing step: � steps of a smoothing iteration (e.g. damped Jacobi):

�
u` := S�` (u

j
`; f`)

coarse-grid correction:

d` := L`
�
u` � f` defect

d`�1 := rd` restriction of the defect

v`�1 := L
�1
`�1d`�1 exact solution of the coarse-grid equation

u
j+1
` :=

�
u` � pv`�1 correction of

�
u`

The two-grid iteration is de�ned by uj` 7�! u
j+1
` :

) error reduction independent of h` :uj+1` � u`
 � � uj` � u` with � < 1 for all `

weak point: L�1`�1



Notation:

Here: grid sizes h and 2h:

We can continue: 4h; 8h, . . .

New notation: ` denotes the level.

For ` = 0 we have a coarsest grid size h0 and set

h` = 2
`h0:

For h` the index h in Lh; uh; fh is replaced by ` : L`u` = f`:

Example: 
 = (0; 1); h0 = 1=2) x = 1=2 is the only grid point) L0 is 1�1;
L` 2 Rn`�n` with n` = 21+` � 1:



Algorithmic notation of the two-grid method:

procedure TGM(`; u; f); integer `; array u; f ;
if ` = 0 then u := L�10 � f else
begin array v; d;
u := S�` (u; f); d := r � (L` � u� f) ; v := L�1`�1 � d; u := u� p � v
end;

3 Multi-Grid Iteration

procedure MGM(`; u; f); integer `; array u; f ;
if ` = 0 then u := L�10 � f else
begin array v; d;
u := S�` (u; f); d := r � (L` � u� f) ;
v := 0; for j = 1(1) do MGM(`� 1; v; d);
u := u� p � v
end;

V-cycle:  = 1; W-cycle:  = 2



Application to FE Equations

Simplest situation:
The �nite-element subspaces satisfy

H`�1 � H`

(nested FE spaces).

Then:

p : H`�1 ! H` identity,

r : transposed of p,

L`�1 = rL` p:

More di�cult:
Given a �nest FE space,
how to �nd coarser ones?

.



Applicability:

In principle, the multigrid iteration works for discretisations of elliptic PDEs.

The error reduction per iteration is independent of the grid size, but may depend

on other parameters, e.g., on the anisotropy. Standard example:

�"uxx � uyy = f for small " > 0:

Remedy: Coarsening only in y-direction:

In the general case, varying anisotropy directions etc., the construction of the

coarser grid is nontrivial.



3.1 Algebraic Multigrid Iteration

J.W. Ruge, K. St�uben: Algebraic multigrid (AMG). In: Multigrid Methods, Vol.

5 of Frontiers in Applied Mathematics (ed. S. McCormick), SIAM Philadelphia,

pp. 73-130, 1986

Coarsening: Let !` be the FE grid points (nodal points) at level ` corresponding

to the FE space H`: De�ne a suitable splitting

!` = !F _[!C
into sets of �ne-grid nodes (!F ) and coarse-grid nodes (!C).

!`�1 := !C de�nes the nodal values of the FE space H`�1:

Prolongation: p : H`�1 ! H` interpolation at the nodes !`:

Restriction: r transposed of p:

Coarse-grid matrix: L`�1 = rL`p:

Smoothing iteration: Gauss-Seidel iteration

.



Literature for AMG:

G. Haase, U. Langer, S. Reitzinger, J. Sch�oberl: A General Approach to Algebraic

Multigrid Methods, March 2001 in

https://www.researchgate.net/publication/

2370058 A General Approach to Algebraic Multigrid Methods

and

C.H. Wolters, M. Kuhn, A. Anwander, S. Reitzinger: A parallel algebraic multi-

grid solver for �nite element method based source localization in the human

brain. Computing and Visualization in Science 5(3), pp.165{177 (2002).



4 Nested Iteration

PDE Lu = f: Discretizations at all levels 0 � k � ` by Lkuk = fk:

Trivial statements:

1) The iterate u
j+1
` of an iteration u

j
` 7! u

j+1
` is the better, the better the

starting iterate u
j
` is.

2) Solving L`�1u`�1 = f`�1 (approximately) is cheaper than solving L`u` = f`
(lower dimension!).

3) pu`�1 approximates u`

Idea: Use pu`�1 as starting iterate for u
j
` 7! u

j+1
` :

Nested iteration:

~u0 := L
�1
0 f0;

for k := 1 (1) ` do

begin ~uk := p~uk�1; for j := 1 (1) i do MGM(k; ~uk; fk) end;



Analysis of the nested iteration:

Assumptions: 1) multigrid convergence:uj+1k � uk
 � �k ujk � uk ; uk := L

�1
k fk;

� := max f�k : 1 � k � `g < 1:

2) interlevel convergence:puk�1 � uk � C1h�k (1 � k � `) ;

3) C2 := C20 � C21 with kpk � C20; hk�1=hk � C21:

Theorem: Under the assumption from above and C2�
i < 1;

the nested iteration yields ~uk with

k~uk � ukk �
�i

1� C2�i
C1h

�
k (1 � k � `) :

Proof: Exercise



Cost of the Multi-Grid Iteration:

Assume

n`�1
n`
� CH ; # := CH < 1

operation cost
S`(u`; f`) � CSn`
r (L`u` � f`) � CDn`
u` � pu`�1 � CCn`
L�10 f0 � C0

(standard value: CH = 2�d for problems in Rd).
Then: MGM(`; �; �) requires C`n` operations, where

C` <
�CS + CD + CC

1� #
+ #`�1

C0
n1
:

Proof: Exercise

Cost of the nested iteration:

Using C` . �CS+CD+CC
1�# ; the cost of the nested iteration with parameter i is

bounded by X`

k=1
iCknk � i

X`

k=1
C`�kH C`n` <

i

1� CH
C`n`:



5 Convergence Analysis of the Two-Grid Iteration

Any linear iteration solving L`u` := f` is of the form

u
j+1
` = �(u

j
`; f`) =M`u

j
` +N`f` with M` +N`L` = I:

M` is called the iteration matrix.

Let S` be the iteration matrix of the smoothing iteration.

Exercise: The iteration matrix of the two-grid iteration with � smoothing itera-

tion steps is

M`(�) :=
h
I � pL�1`�1rL`

i
S�` :

Hint: LetM 0` andM
00
` be the respective iteration matrices of two linear iterations

u
j
` 7! u

j+1
` = �0(uj`; f`) and v

j
` 7! v

j+1
` = �00(vj` ; f`):

Then the product of both iterations is � = �00 � �0 with

w
j
` 7! w

j+1
` := �00(�0(wj` ; f`); f`) and iteration matrix M` :=M

0
`M
00
` :



Simpli�ed Convergence Analysis

M`(�) =
h
I � pL�1`�1rL`

i
S�` =

h
L�1` � pL

�1
`�1r

i
[L`S

�
` ] :

Smoothing property:

kL`S�` k � �(�)h
�2
` for all � � 1 and ` � 1 with �(�)! 0 as � !1:

Approximation property:
L�1` � pL�1`�1r � CAh2` :

Combination of both inequalities yields

kM`(�)k � CA �(�)

and for su�ciently large � we have

kM`(�)k � � < 1 implying
uj+1` � u`

 � � uj` � u` :



5.0.1 Smoothing Property

Example: L` symmetric with diagonal D` = 4h�2` I (5-point discretisation) and

kL`k � 8h�2`

Damped Jacobi iteration u
j
` 7! u

j+1
` = u

j
` �

1
2D
�1
`

�
L`u

j
` � f`

�
:

Iteration matrix: S` = I � !L` with ! = 1
2

�
4h�2`

��1
= 1
8h
2
` :

Euclidean norm:
L`S�`  = kL` (I � !L`)�k ;

eigenvalues of L` between 0 and 8h
�2
` = 1=!; )

kL`S�` k � max
�
� (1� !�)� : 0 � � � 1

!

�
=

�:=!�

1

!
max f� (1� �)� : 0 � � � 1g

= 8h�2` �0(�):

Exercise: �0(�) := max f� (1� �)� : 0 � � � 1g satis�es

�0(�) =
1

e�
+O(��2); �0(�) �

3=8

� + 1=2
for � � 1:



5.0.2 Approximation Property

PDE: Lu = f; nested FEM ! L`u` = f` and L`�1u`�1 = f`�1 with f` := R`f
and

u` 2 U` �nite-element coe�cients, P`u` 2 L2(
) corresponding �nite-element
function, P` : U` ! L2(
);

Similarly: u`�1 and P`�1u`�1 2 L2(
): Then

P`�1 = P` p : U`�1 ! L2(
):

The adjoint mappings are R` = P �` ; r = p�: In particular, f` := R`f and

f`�1 := R`�1f; R`�1 = rR`

Under suitable conditions (smooth coe�cients, 
 convex): If f 2 L2(
); then
u 2 H2(
) and�L�1 � P`L�1` R`

�
f

L2
=
L�1f � P`L�1` f`


L2
= ku� P`u`kL2 � Ch

2
` kfkL2 :



Repeated:
�L�1 � P`L�1` R`

�
f

L2
� Ch2` kfkL2 :

Similarly,
�L�1 � P`�1L�1`�1R`�1� fL2 � Ch2`�1 kfkL2.

Triangle inequality:�P`L�1` R` � P`�1L�1`�1R`�1
�
f

L2
� C

�
h2`�1 + h

2
`

�
kfkL2 :

h`�1 � ch` )
P`L�1` R` � P`�1L�1`�1R`�1


L2 �L2 � C

�
c2 + 1

�
h2` )

P`L
�1
` R`�P`�1L�1`�1R`�1 = P`L

�1
` R`�P` pL�1`�1rR` = P`

�
L�1` � pL

�1
`�1r

�
R`:

kP`u`kL2 � CP ku`k )L�1` � pL�1`�1r � C�2P
P` �L�1` � pL�1`�1r�R`L2 �L2

� C�2P C
�
c2 + 1

�
h2` = CAh

2
` with CA := C

�2
P C

�
c2 + 1

�
:

) Approximation Property



6 Adjoint and Symmetric Iterations

Any linear iteration solving Lu := f is of the form uj+1 = �(uj; f; L) with

�(u; f; L) :=Mu+Nf = u�N(Lu� f) since M +NL = I:

Here, N depends on L: Notation: N = N [L].

DEFINITION: (a) Given a linear iteration �(�; �; L), the corresponding adjoint
iteration is de�ned by

��(u; f; L) := u�
�
N [LH]

�H
(Lu� f):

(b) A linear iteration � is symmetric, if � = �� (i.e., N [L] = N [LH]H):

EXERCISE: (a) The adjoint iteration of the Gauss-Seidel iteration is the back-
ward Gauss-Seidel iteration.
(b) The product �� � � is a symmetric iteration.
(c) If 	 is a symmetric iteration, then �� �	 � � is symmetric.
(d) � symmetric and L symmetric matrix =) also N is symmetric.
(e) � symmetric and L positive de�nite =) L1=2ML�1=2 is symmetric [essen-
tial for application of conjugate gradient methods!]
(f) Assume p = rH and L`�1 = rL`p: Prove: The coarse-grid iteration is a
symmetric iteration.



6.1 Symmetric Multigrid Iteration

The smoothing iteration S` is now denoted as pre-smoothing S`;pre; while

S`;post := S�`;pre
is used as post-smoothing (e.g., forward and backward Gauss-Seidel iteration).

procedure MGM(`; u; f); integer `; array u; f ;

if ` = 0 then u := L�10 � f else
begin array v; d;

u := S�`;pre(u; f); d := r � (L` � u� f) ;
v := 0; for j = 1(1) do MGM(`� 1; v; d);
u := u� p � v;
u := S�`;post(u; f)
end;

Prove: This MGM is a symmetric iteration (suited for cg methods).

Without symmetry: combination with generalised cg methods possible.


