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In our application we have solve equations Khuh = fh for many di�erent right-

hand sides fh.

The lead-�eld matrix L 2 RM�N is a fully populated matrix requiring a large

storage (e.g., NM & 108):

L =
�
RiK

�1
h dj

�
ij
:

The technique of hierarchical matrices allows the handling of huge matrices

arising from elliptic PDEs (like K�1
h ) or integral equations, even if they are fully

populated.

Literature:

W. Hackbusch: Hierarchical Matrices: Algorithms and Analysis. Springer 2015



1 Introduction

� Treatment of large-scale linear systems of equations is a common need in
modern computations

� The use of matrices leads in general to di�culties

Large-scale systems: size n = 106; 107 or larger, depending on the storage size.

Fully populated matrices have n2 entries; storage of O(n2) is usually not avail-

able.

Standard remedy: Restrict computations to sparse matrices (O(n) non-zero

entries) and use only matrix-vector multiplications (cost in computer time O(n)).

Goal of the hierarchical matrix technique: all matrix operations, in particular for

full matrices.



Typical �elds of application:

� Boundary Element Method (BEM):
Formulation of homogeneous elliptic boundary value problems by integral equa-

tion formulations

) System matrices are fully populated

� Finite Element Method (FEM):
Elliptic boundary value problems lead to sparse matrices A, but for instance A�1

is full. LU-factors are partially �lled.

Sometimes Schur complements

A11 �A12A
�1
22 A21

are needed, which are also full.

� Further Applications



The costs in standard matrix approaches are:

� storage, A � x; A+B: O(n2)

� A �B; A�1; LU decomposition: O(n3):

The technique of hierarchical matrices tries to perform all matrix operations with

a computational cost of

O(n log� n):

!! The results are only approximate (only A � x is exact).

Already existing discretisation error " = O(n��): The additional approximation
error should be � ":



Preview: How do H-matrices look like?

� Decompose the matrix into suitable subblocks.

� Approximate the matrix in each subblock by a rank-k-matrix�

block =
kX
i=1

aib
>
i

(for suitably small local rank k).

Illustration:

�k is upper bound. The true rank may be smaller.



Two Questions:

� How large is the representation error?
More precisely: How does the local rank k correspond to the error of the

matrix representation?

� How can the (approximate) matrix operations be performed such that

cost = O(n � log� n) ?



Side Remark: About Rk-Matrices

Let the Rk-matrix
Pk
i=1 aib

>
i be of size n�m:

REMARK: (a) The amount of storage is (n+m) k (ai and bi to be stored).

(b) The amount of work for the matrix-vector multiplication A � c (c 2 Rm) are

2k (m+ n)� k � n operations.

Sums of Rk-Matrices, Truncation to Rank k
In general, the sum of Rk-matrices is of rank 2k. Apply truncation to rank k by

means of the singular-value decomposition:

A = U �D � V >; (U; V unitary, D diagonal with d1 � ::: � d2k � 0):
Truncation to rank k:

A0 = U �D0 � V > with D0 := diagfd1; :::; dk; 0; :::g
is of rank k and has the smallest Frobenius norm kA�A0kF :

NOTATION: A�Rk B :=truncation of A+B to rank k

REMARK: The R1 -addition �R1 of two R1-matrices costs 9(n + m) + O(1)

operations.



1.1 Example for Demonstration

Let n = 2p; p = 0; 1; : : :

The construction of the H-matrix format is recursive:

For n = 1; A is a rank-1-matrix. Otherwise the format of an n � n matrix of

level p (n = 2p) is

A =

"
A11 A12
A21 A22

#
with

� Aij are blocks of the size n2 �
n
2 ;

� Aii (i = 1; 2) are H-matrices (of level p� 1),

� A12; A21 are rank-1-matrix (abbreviation: R1; k = 1).



2 Complexity of the H-Matrix Arithmetic

2.1 Storage

Dimension: n = 2p; p : hierarchy level:

The construction yields

Nstorage(p) = 2n+ 2Nstorage(p� 1) for p > 1:

Proof: The 2 o�-diagonal blocks contain 4 vectors of size n=2:

Together with the induction start

Nstorage(0) = 1 (case of n = 1 = 2
0);

this leads to

LEMMA: The storage requirement for an n� n H-matrix with n = 2p is

Nstorage(p) = (2p+ 1)n = n(1 + 2 log2 n):



2.2 Addition

A;B : n� n H-matrices. Result: C := A+B:

For all blocks b we have to perform Cjb := Ajb+Bjb (parallelisation possible!).

LEMMA: The R1-addition of two n � n H-matrices or an H-matrix and an
R1-matrix requires

18n log2 n+O(n) operations.

Proof: Exercise



2.3 Matrix-Vector Multiplication

A : n� n H-matrix, x : n-vector, (A; x) 7�! A � x.

A =

"
A11 abT

cdT A22

#
; x =

"
x1
x2

#
) y := Ax =

"
y1
y2

#
obtain by

y1 = A11x1 + �a;

y2 = A22x2 + �c

with � := hb; x2i ; � := hd; x1i :

LEMMA: The matrix-vector multiplication of an n � n H-matrix by a vector
requires

4n log2 n� n+ 2 operations.

Proof: Exercise



2.4 Matrix-Matrix Multiplication

Three types of products are to be distinguished:

. 1) R �R (R1-matrix times R1-matrix)

. 2) R �H (H-matrix times R1-matrix) or H �R

. 3) H �H (H-matrix times H-matrix)

Type 1:
�
ab>

� �
cd>

�
= (� � a) d>, with � = b>c:

LEMMA: NR1�R1(p) = 3n� 1 operations.

Type 2: H �
�
ab>

�
= (H � a) b> requires only a matrix-vector multiplication.

LEMMA: NH�R1(p) = 4n log2 n� n+ 2 operations: Same for R �H.



Type 3: H �H is computed recursively by

H �H =

"
H R
R H

#
�
"
H R
R H

#

=

"
H �H +R �R H �R+R �H
R �H +H �R H �H +R �R

#
:

This leads to the recursion

NH�H(p) = 2NH�H(p� 1) + 2NR�R(p� 1) + 2NH�R(p� 1)
+2NR�H(p� 1) + 2NH+R(p� 1) + 2NR+R(p� 1)

with the starting value NH�H(0) = 1:

LEMMA: The multiplication of two H-matrices requires

13n log22 n+ 65n log2 n� 51n+ 52 operations.

Exercise: Prove the Lemma.



2.5 Matrix Inversion

Approximation of the inverse A�1 by an H-matrix InvR1(A):

Recursion with respect to p (n = 2p): For p = 0; InvR1(A) := A�1:

Having de�ned InvR1 on level p� 1; the (exact) inverse of A is"
A11 A12
A21 A22

#�1
=

"
A�111 +A�111 A12S

�1A21A
�1
11 �A�111 A12S�1

�S�1A21A�111 S�1

#

with the Schur complement S = A22 �A21A
�1
11 A12:

Recursion for the cost Ninv(p):

Ninv(p) = 2Ninv(p� 1) + 4NH�R1(p� 1)
+2NH+R1(p� 1) + 2NR1�R1(p� 1):

LEMMA: The approximate inversion of an H-matrix requires

13n log22 n+ 47n log2 n� 109n+ 110 operations.

Exercise: Prove the Lemma.



2.6 LU-Decomposition

A is to be represented by

A � LU;

where L is a lower triangular matrix and U a upper triangular matrix of the

H-format.

LEMMA: The approximate LU-decomposition costs

NLU(p) =
11

2
n log22 n+ 25n log2 n� 28n+ 28

operations.



2.7 Concluding Remarks to the Introductory Case

At least, the rank 1 is to be replaced by a larger rank k:

Moreover, in general, the simple format is to be replaced

by a more re�ned format like



3 General Construction of Hierarchical Matrices

Partition of the Matrix

How to partition the matrix in subblocks?

The structure of the matrix is described by index sets:

I : index set of matrix rows,

J : index set of matrix columns,

M 2 RI�J :

A block of the matrix is described by subsets: � � I; � � J de�ned the block

b = � � �:

Remark: There is no need for an ordering of the index sets.

The subsets � � I are organised by a cluster tree T (I) [same for J ]:

I is the root. The sons of a node � are disjoint subsets �1; �2; : : : with [� i = �:



Example of a binary cluster tree T (I) :

I = f1; 2; 3; 4; 5; 6; 7; 8g
.&

I1 = f1; 2; 3; 4g I2 = f5; 6; 7; 8g
. # # &

I11 = f1; 2g I12 = f3; 4g I13 = f5; 6g I14 = f7; 8g
.&

I111 = f1g I112 = f2g

The cluster tree T (I) contains blocks � 2 T (I) of di�erent sizes (here sizes

1,2,4,8).

Strategy for the decomposition:

For discretisation of PDEs or integral equations each index i 2 I corresponds

to a grid point or a FE nodal point xi 2 
: It makes sense that each subset

� 2 T (I) contains neighboured grid points.

Possible stopping criterion: no decomposition for su�cient small blocks.



Example of grid points in a square (no matrix!):

Ω

τΩ

σ

REMARK: For usual discretisations, an index i 2 I is associated to an nodal

point xi 2 Rd or the support supp(�i) � Rd of a basis function �i:
The practical performance uses bounding boxes:



Block-Cluster Tree

T (I): tree of the vector blocks.

T (I � J): tree containing the matrix blocks.

Each block b 2 T (I � J) will be of the form

b = � � � with � 2 T (I) and � 2 T (J):

τ

σ
b

Construction: 1) I�J is the root of T (I�J) (note that I 2 T (I), J 2 T (J))

2) Let b = � � � 2 T (I � J).

2a) Either this block should not decomposed further,

in particular if � is a leaf of T (I) or � is a leaf of T (J): Otherwise:

2b) Let f� ig be the sons of � 2 T (I) and
n
�j
o
the sons of � 2 T (J): Then the

sons of b are given by

bij = � i � �j:

Example: If T (I) and T (J) are binary trees, each block of T (I�J) is decomposed
into 4 subblocks.



Admissibility

Critical question: Should b 2 T (I � J) be decomposed or not?

Pro: small blocks yield a better approximation

Contra: A �ner block decomposition leads to more blocks )
larger storage cost and more computational cost.

For applications from elliptic PDEs and integral equations the optimal choice is

de�ned by an admissibility condition de�ned next.

If b is admissible it is not decomposed, otherwise it is decomposed.



Support of � 2 T (I):

In the case of FE discretisation, each i 2 I corresponds to a basis function �i:
Set


� =
[
i2� suppf�ig � R

d:

In the case of a di�erence scheme with grid points xi; set


� = fxi : i 2 �g � Rd:

De�ne:

diam(�) := diam(
�); dist(�; �) := dist(
� ;
�):

Simpli�cation: Replace the set 
� by its bounding box:

Ω

Ω

τ

σ



Admissibility condition: A block � � � 2 T (I � J) is called admissible if

min fdiam(
�); diam(
�)g � � dist(
� ;
�)

for some �xed � > 0:

Example: xi = ih are grid points in [0,1]:

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

7!

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

7!

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

7! 7!
green blocks: admissible, red: non-admissible



4 Application to Boundary Element Methods (BEM)

Example: (Au) (x) :=
Z 1
0
log jx� yju(y)dy for x 2 [0; 1]:

Discretisation: collocation with piecewise constant elements in

[xi�1; xi]; xi = ih; i = 1; : : : ; n; h = 1=n;

Midpoints xi�1=2 = (i� 1=2)h are the collocation points:

A = (aij)i;j=1;:::;n with aij =
Z xj
xj�1

log
���xi�1=2 � y

��� dy:
Replace the kernel function �(x; y) = log jx� yj in a certain range of x; y by an
approximation ~�(x; y) of separable form

~�(x; y) =
X

�2J X�(x)Y�(y):



~�(x; y) =
X

�2J X�(x)Y�(y):

Possible choice: Taylor's formula applied with respect to y:

J = f0; 1; : : : ; k � 1g;
X�(x) = derivatives of �(x; �) evaluated at y = y�;

Y�(y) = (y � y�)�=�!:

The kernel �(x; y) = log jx� yj leads to the error estimate

j�(x; y)� ~�(x; y)j � jy � y�jk=k
(jx� y�j � jy � y�j)k

for jx� y�j � jy � y�j:

If � is replaced by ~�; the integral aij =
R xj
xj�1 �(xi�1=2; y)dy becomes

~aij =
X
�2J

X�(xi�1=2)
Z xj
xj�1

Y�(y)dy: (�)

Let b be a block and restrict i; j in (�) to b: Then (�) describes a block matrix
~Ajb: Each term of the sum in (�) is an R1 -matrix ab> with

ai = X�(xi�1=2); bj =
Z xj
xj�1

Y�(y)dy:

Since #J = k, the block ~Ajb is of Rk-type.



Furthermore, one can check that

j�(x; y)� ~�(x; y)j � 1

k

�
1

2

�k
; kA� ~Ak1 � 2�k=k:

Discretisation error h{; where the step size h is related to n = #I by h � 1
n:

Hence k should be chosen such that

2�k �
�
1

n

�{
:

Hence,

k = O(logn)

is the required rank.

NOTE: a) The construction of the cluster and block-cluster tree is automatic

(black box) and fast. Even re�nements with form-regular elements are allowed.

b) Similarly, the construction of the approximation ~A is black box like (usually

by interpolation instead of Taylor expansion).



5 Application to FEM

REMARK a) A FEM system matrix is an H-matrix (without any approximation
error).

Proof: Non-trivial blocks = 0.

REMARK b) For a uniformly elliptic di�erential operator with L1-coe�cients
in a Lipschitz domain, the inverse of the FEM-matrix can be exponentially well

approximated by an hierarchical matrix.

Literature:

Bebendorf-Hackbusch, Numer. Math. 95 (2003) 1-28

Faustmann-Melenk-Praetorius, Numer. Math. 131 (2015) 615-642.



Analytical Background

Boundary value problem:

div(�(x) gradu) = f(x); x 2 
 � Rd; with
� 2 L1(
); eigenvalues 2 [c0; c00]; c0 > 0:

X; Y � 
 admissible subsets, i.e., minfdiam(X); diam(Y )g � � dist(X;Y ):

Then the Green function G(x; y) admits an expansion

G(x; y) =
1X
�=1

g0�(x)g
00
�(y) for x 2 X; y 2 Y;

which is exponentially convergent.



6 H-LU iteration

Linear system of equations:

Ax = b:

Determine the LU decomposition of A by using hierarchical factors LH and UH:

Since LHUH is very close to A, it is a very good `preconditioner'; i.e., the

iteration

xm+1 = xm � (LHUH)�1 (Axm � b)

is a very fast iteration.

One can prove:

If the inverse matrix can be approximated by hierarchical matrices, then also the

LU factors do so.



H-LU iteration for sparse matrices

The partition of the matrix can be modi�ed so that it corresponds to the nested

dissection technique of A. George (1973).

Then sparsity of A is partially inherited by LH and UH!

Example of a factor L:
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Special Cluster Tree (nested dissection)

To get L, U with many zero blocks, the binary block decomposition is re-

placed by a ternary one. The FE grid is separated by an internal boundary 
:

γ

1i 2i

sΙ

Ι Ι1 2

The index set splits into the corresponding subsets I1; I2 and Is (nodal points

on 
). In the next step I1; I2 can be split again in the subsets I11; I12; I1s

and I21; I22; I2s: The zero structure is shown in

0

0 0
0

0
0

. However, this

approach is not yet optimal.



Improved cluster tree (illustration for the 2D-case):

I 1 I 2

I 11 I 12 I 1s I 21 I 22 I 2s I s

I s

I

While I1; I2 are split, the cluster Is is repeated identically at the next level and

split in the next but one level. This treatment guarantees that the diameters of

the clusters are similar in each level.



Geometry-free Approach:

So far, the admissibility condition used the Euclidean diameter and distance of

clusters.

Problem: The geometric description of xi or �i may be not available.

In the case of a FEM there is a simple remedy:

The matrix graph G(A) for a matrix A 2 RI�I consists of the nodes I and the
egdes

G(A) =
n
(i; j) 2 I � I : aij 6= 0

o
:

FE Case: only neighboured nodes connected )
the Euclidean distance can be replaced by the graph distance.

. dist(i; j) = 4

This algebraic approach is perfect for blackbox applications.



EXAMPLE (inverse Problem, Wolters-Grasedyck-Hackbusch, 2004):

Given: electric/magnetic �eld (EEG,MEG) at � 400 sensor positions on the

head surface.

What is the current distribution in the brain ? Where are the sources ?

PDE: �div �(x)ru(x) = f(x); x 2 
 � R3, @nu = 0 on @
:
The boundary value problem has to be solved for � 400 right-hand sides

Triangulation with

N = 147287 tetraeder conductivity �



- Galerkin discretisation  Ax = b

- The system has to be solved for � 400 right-hand sides b
- Stopping criterion: kAx� bk= kbk � 10�8

- Machine: SUNFire, 900 MHz, single processor

Pardisoy LUH; " = 10�6 PEBBLESz

Setup 237 468 13
Solve 2.4 1.0 10
Total 1197 868 4013

yPardiso (Schenk & Co)
zPEBBLES (Langer/Haase)



7 H2-Matrices

Two hierarchies are involved:

1. Hierarchy given by the cluster tree T .

2. The involved rank-k-matrices do not use arbitrary row and column vectors,
but vectors from special subspaces V� (� 2 T ) ; i.e., the matrix blocks belong
to tensor spaces V� 
 V�

3. The basis of V� is connected with the bases of V� 0 for �
0 2 S(�): This leads

to hierarchically de�ned bases: V� j� 0 � V� 0:

Since, in the end, the bases need not be stored directly, the log-factor disappears:

storage(A); cost(A � x); cost(A+B); cost(A �B) = O(n)

and smaller constants.

S. B�orm: E�cient Numerical Methods for Non-local Operators. EMS, Z�urich
(2013)



8 Matrix Equations

Lyapunov: AX +XA> = C

Sylvester AX �XB = C

Riccati: AX +XA> �XFX = C

Given: A;B;C; F ; desired matrix-valued solution: X:

Applications: optimal control problems for elliptic / parabolic PDEs.

� Low rank C;F ) low rank X

� H-matrix C, low rank F ) H-matrix X

Computation via H-arithmetic, possibly combined with multi-grid methods.



Matrix-Riccati Equation

A>X +XA�XFX +G = O (A < O):

Lemma 8.1 The solution X satis�es

X = �(M>M)�1M>N;

where h
M N

i
:= sign

 "
A> G
F �A

#!
�
"
I O
O I

#
:

S = T diagf�1; : : :gT�1 ) sign(S) := T diagfsign(�1); : : :gT�1:

Lemma 8.2 Assume that <e� 6= 0 for all eigenvalues � 2 �(S):

Start: S(0) := S: Then the iteration

S(i+1) :=
1

2

�
S(i) +

�
S(i)

��1�
converges quadratically to sign(S):



Example of a matrix-Riccati equation by L. Grasedyck

Choice of A by A = �h (1D-Laplacian).

The following table shows the relative error



 ~X �X





2
= kXk2 :

n = 101 256 1024 65 536
k = 1 8.810-3 1.510-1 1.310-1 -
k = 2 2.410-4 2.610-4 4.210-4 6.710-4
k = 4 7.710-8 9.110-8 1.110-7 6.210-7
k = 6 1.910-10 3.710-10 2.410-10 1.710-9

Number of iterations 12 14 17 26
time� [sec] 2.2 8.5 67 18263
*) k=2, Sun Quasar 450 MHz

In the last case, the (full) matrix X has 4; 294; 967; 296 entries.

L. Grasedyck, W. Hackbusch, B. Khoromskij: Solution of large scale algebraic

matrix Riccati equations by the use of hierarchical matrices. Computing 70,

121-165 (2003)



9 Matrix-Valued Functions f(A)

EXAMPLE: Matrix-exponential function e�tA.

Cauchy-Dunford representation: e�tA = 1
2�i

R
� e
�zt (zI �A)�1 dt

using a parabola � :
Ω

CS
CP

After parametrisation and quadrature:

TN(t) :=
NX

`=�N

`e

�z`t (z`I �A)�1 ; z` 2 �:

Error estimate for t � t0 > 0 :


TN(t)� e�tA



 . e�cN2=3:

) N � logn ) Total cost: O(n log� n):

I.P. Gavrilyuk, W. Hackbusch, B. Khoromskij: H-matrix approximation for the
operator exponential with applications. Numer. Math. 92, 83-111 (2002).



10 Higher dimensional analogue: Tensor systems

The analogue of rank-k-matrices are sums of k tensor products.

Tensor space:

V := V1 
 V2 
 : : :
 Vd:

Example: Vi = RIi for index sets Ii: Then the entries of v 2 V are

vi1;i2;:::;id with ij 2 Ij:

V is isomorphic to RI with the product index set I := I1 � I2 � : : :� Id:

DEFINITION: A rank-k-tensor is of the form

kX
�=1

v
(�)
1 
 v

(�)
2 
 : : :
 v

(�)
d with v

(�)
j 2 Vj:



DEFINITION: A rank-k-tensor is of the form

kX
�=1

v
(�)
1 
 v

(�)
2 
 : : :
 v

(�)
d with v

(�)
j 2 Vj: (*)

QUESTION: Given v 2 V, are there best rank-k-approximations (*) ?
How can they be computed?

REMARK: Tools like the singular-value decomposition do not exist for d � 3:

Non-existence of best-approximations and numerical instability possible.

A trust-region Newton method is described by Espig (Diss. 2008).



Example from the electronic Schr�odinger equation

Hartree-Fock equation F  b(y) = �b b(y) involves the Hartree potential

VH(x) = 2
N=2X
b=1

Z  �b(y) b(y)

jx� yj
dy =

Z
�(y)

jx� yj
dy; (1)

where �(y) = 2
PN=2
b=1  b(y) 

�
b(y) is the electron density.

Standard approach uses Gaussians g
(j)
k (yj) = (yj � A

(j)
k )`k e��k(yj�A

(j)
k )2 to

represent the orbital (wavefunction) by

 b(y) �
K X
k=1

g
(1)
k (y1) g

(2)
k (y2) g

(3)
k (y3): (2)

Here, K = tensor rank. We start with a representation (2) produced by the

MOLPRO program package using the MATROP program for matrix operations.

Eq. (2) yields �(y) =  �b(y) b(y) with K := K (K + 1)=2 terms.



Optimising the tensor representation reduces the tensor rank to a much smaller

rank � while almost keeping the same order of accuracy:

�(y) �
�X
k=1

%
(1)
k (y1) %

(2)
k (y2) %

(3)
k (y3); �� K:

The computational work for evaluating the Hartree potential (1) depends essen-

tially on the tensor rank.

EXAMPLE CH4: The MOLPRO program yields K = 1540; which can be re-

duced by our approach to � = 45: The computing time for evaluating VH for

the tensor representation with � = 45 is 8 hours, while the estimated time for

K = 1540 is 190 hours.

molecule initial rank Kof �(y) �nal rank � relative error error in energy (hartree)

CH4 1540 45 9.0�10�6 6.0�10�5
C2H2 2346 50 1.3�10�4 5.0�10�4
C2H6 4656 55 8.8�10�5 4.0�10�4

see Rao Chinnamsetty - Espig - Khoromskij - Hackbusch - Flad: J. Chem. Physics 127 (2007)

and Rao Chinnamsetty, Diss. 2008.



Kronecker-Tensor Products

Vj = RIj�Jj vector spaces of matrices. Then

V := V1 
 V2 
 : : :
 Vd
�= RI�J

with I := I1 � I2 � : : :� Id and J := J1 � J2 � : : :� Jd:

Notation for d = 2 : A
B =

264 A11B A12B : : :
A21B

. . .
...

375
REMARK: a) For d = 2 the approximation of a matrix M by a Kronecker-

rank-k expression
Pk
�=1A

(�) 
 B(�) is equivalent to a certain standard rank-k

approximation of a related matrix ~M:

b) For d � 3 the search for rank-k approximations is more involved.
If the matrix is the discretisation of a continuous operator with a kernel function

{(x;y); x;y 2 Rd; analytical methods may help (see next example).



Separable PDE in [0; 1]d, d large

Let 
 = (0; 1)d � Rd.
Equidistant grid: 
h = (h; 2h; : : : ; nh) with

(n+ 1)h = 1 (here n = 1024):

Separable PDE: L =
Pd
�=1 a�(xv)

@2

@x2v
, e.g., L = �:

Discretisation of �L by usual di�erence formula:

A = �Lh = �
dX

�=1

a�(xv)D
h
x�x� (Dh

x�x� : 2nd di�erence)

= A1 
 I 
 : : :
 I + I 
A2 
 : : :
 I + : : :+ I 
 I 
 : : :
Ad

Goal: Approximation of L�1h .

Numerical result (Grasedyck 2004):

For d = 2048, accuracy 10�5 to 10�6: 5 min computer time

Related dimension:

N = 10242048 = 1:24� 106165:



Underlying method

1=x can be approximated by exponential sums
Pk
�=1 !� exp(��x):

min
!�;��

max
x2[x0;x1]

����1x �Xk

�=1
!� exp(��x)

���� � O(e�ck); c > 0;

min
!�;��

max
x2[x0;1)

����1x �Xk

�=1
!� exp(��x)

���� � O(e�ck
1=2
); c > 0:

Let [x0; x1] or [x0;1) contain the spectrum of Lh: Then

L�1h �
Xk

�=1
!� exp(��Lh):

The special tensor structure

Lh =
dX

�=1

I 
 : : :
 I 
 Lh;� 
 I 
 : : :
 I

implies exp(��Lh) =
Nd
�=1 exp(��Lh;�):

Approximation of exp(��Lh;�) by H-matrices (see above). Finally:

L�1h �
Xk

�=1
!�

dO
�=1

expH(��Lh;�) (rank-k-tensor):

� For scienti�c purpose the software library HLib is freely available (ask for a
licence form)


