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In our application we have solve equations Kju;, = fj, for many different right-
hand sides f;,.

The lead-field matrix L € RM*N s 3 fully populated matrix requiring a large
storage (e.g., NM > 108):

L= (R,L-K,;ldj)m

The technique of hierarchical matrices allows the handling of huge matrices
arising from elliptic PDEs (like K}jl) or integral equations, even if they are fully
populated.

Literature:

W. Hackbusch: Hierarchical Matrices: Algorithms and Analysis. Springer 2015



1 Introduction

e Treatment of large-scale linear systems of equations is a common need in

modern computations

e The use of matrices leads in general to difficulties

Large-scale systems: size n = 100,107 or larger, depending on the storage size.

2

Fully populated matrices have n? entries; storage of O(n?) is usually not avail-

able.

Standard remedy: Restrict computations to sparse matrices (O(n) non-zero
entries) and use only matrix-vector multiplications (cost in computer time O(n)).

Goal of the hierarchical matrix technique: all matrix operations, in particular for

full matrices.



Typical fields of application:

B Boundary Element Method (BEM):
Formulation of homogeneous elliptic boundary value problems by integral equa-
tion formulations

= System matrices are fully populated

B Finite Element Method (FEM):

Elliptic boundary value problems lead to sparse matrices A, but for instance A1
is full. LU-factors are partially filled.
Sometimes Schur complements

A1 — Agd A2_21 A

are needed, which are also full.

B Further Applications



The costs in standard matrix approaches are:

e storage, Axxz, A+ B: O(n?)

e AxB, A=l LU decomposition: O(n3).

The technique of hierarchical matrices tries to perform all matrix operations with

a computational cost of

O(nlog™n).

Il The results are only approximate (only A * x is exact).

Already existing discretisation error ¢ = O(n~%). The additional approximation
error should be < e.



Preview: How do #-matrices look like?
e Decompose the matrix into suitable subblocks.

e Approximate the matrix in each subblock by a rank-k-matrix*

k
block = Y azb;
1=1

(for suitably small local rank k).

| :HQ

Illustration:

*k is upper bound. The true rank may be smaller.



Two Questions:

e How large is the representation error?
More precisely: How does the local rank k correspond to the error of the

matrix representation?

e How can the (approximate) matrix operations be performed such that

cost = O(n x log*n) ?



Side Remark: About rr-Matrices

Let the Rk-matrix Zz 1 a;b; T be of size n x m.
REMARK: (a) The amount of storage is (n +m) k (a; and b; to be stored).
(b) The amount of work for the matrix-vector multiplication A x ¢ (¢ € R"") are

2k (m 4+ n) — k — n operations.

Sums of Rk-Matrices, Truncation to Rank k
In general, the sum of Rk-matrices is of rank 2k. Apply truncation to rank k by
means of the singular-value decomposition:

A=UxDxV', (U,V unitary, D diagonal with d; > ... > dy;. > 0).

Truncation to rank k:

A'=UxD'«V' with D' :=diag{dy, ..., d;, 0, ...}

is of rank k and has the smallest Frobenius norm ||A — A'|| .
NOTATION: A &R B :=truncation of A + B to rank k

REMARK: The RI-addition @ gy of two R1l-matrices costs 9(n + m) + O(1)
operations.



1.1 Example for Demonstration

Let n =2P, p=0,1,... e

)
The construction of the H-matrix format " is recursive:

For n = 1, A is a rank-1-matrix. Otherwise the format of an n X n matrix of

level p (n = 2P) is

A1l A
A—
[A21 A2

with

e A;j are blocks of the size 7 x 3,
o A;; (¢ =1,2) are H-matrices (of level p — 1),

e Ajo, Ay are rank-1-matrix (abbreviation: R1, k = 1).



2 Complexity of the H-Matrix Arithmetic

2.1 Storage

Dimension: n = 2P, p : hierarchy level:

The construction yields

Nstora,ge(p) =2n + 2Nstorage(p — 1) for p > 1.

Proof: The 2 off-diagonal blocks contain 4 vectors of size n/2.

Together with the induction start

this leads to

LEMMA: The storage requirement for an n X n ‘H-matrix with n = 2P is

Nstorage(p) = (2p + 1)n = n(1 + 2logy n).



2.2 Addition

A, B : n X n H-matrices. Result: C' := A+ B.

For all blocks b we have to perform C|, := Ay, 4+ Bl (parallelisation possible!).

LEMMA: The R1l-addition of two n X n H-matrices or an H-matrix and an
R1-matrix requires

18n logr, n 4+ O(n) operations.

Proof: Exercise



2.3 Matrix-Vector Multiplication

A n X n H-matrix, z : n-vector, (A,x) — A * x.

A11 ab' 1 Y1 :
A= , T = =y = Ax = obtain b
[ cd' Aoo ] [ L2 Y Y2 Y

y1 = Az + aa,
yo = Axo+ fBc

with o := (b, xp), B := (d, z1) .

LEMMA: The matrix-vector multiplication of an n X n 'H-matrix by a vector
requires

4n logr n — n + 2 operations.

Proof: Exercise



2.4 Matrix-Matrix Multiplication

Three types of products are to be distinguished:

1) RxR (R1-matrix times R1-matrix)
2) R« H (H-matrix times R1-matrix) or H x R
3) H+ H (H-matrix times H-matrix)

Type 1: (abT) (ch) = (a*xa)d', witha=b'ec.

LEMMA: Npi.r1(p) = 3n — 1 operations.

Type 2: H % (abT) — (H % a)b! requires only a matrix-vector multiplication.

LEMMA: Ny.ri1(p) = 4nlogon — n + 2 operations. Same for R x H.



Type 3: H = H is computed recursively by

' H R H R
H+H = 'R H]*[R H]
| HxH+Rx*R H*R+R*H]

_R*H+H*R HxH+RxR

This leads to the recursion

Ny«a(p) = 2Ng.g(p—1) +2Np.p(p — 1) +2Ng.pr(p — 1)
+2Np.g(p —1) +2Ngyr(p — 1) +2Npyr(p — 1)

with the starting value Ng,y(0) = 1.

LEMMA: The multiplication of two H-matrices requires

13n Iog% n + 65nlogo n — 51n 4 52 operations.

Exercise: Prove the Lemma.



2.5 Matrix Inversion

Approximation of the inverse A~ by an H-matrix Invpi(A).
Recursion with respect to p (n =2P): For p =0, Invpi(A) := A~1L.

Having defined Invpy on level p — 1, the (exact) inverse of A is

—1 _ —_ _ — _ _
A1 Az —S 1Ay AL Gt

with the Schur complement S = Ayy — A21A1_11A12.

Recursion for the cost N, (p):

Ninv(p) — 2Ni’nfu(p — 1) + 4NH*R1(p - 1)
+2Ng1r1(p — 1) + 2NR1sg1(p — 1)

LEMMA: The approximate inversion of an H-matrix requires

13n Iog% n + 47nlogrn — 109n + 110 operations.

Exercise: Prove the Lemma.



2.6 LU-Decomposition

A is to be represented by
A= LU,

where L is a lower triangular matrix and U a upper triangular matrix of the
‘H-format.

LEMMA: The approximate LU-decomposition costs

11
Nry(p) = " Iog% n + 25nlogo, n — 28n + 28

operations.



2.7 Concluding Remarks to the Introductory Case

At least, the rank 1 is to be replaced by a larger rank k.

P
P
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Moreover, in general, the simple format % is to be replaced
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3 General Construction of Hierarchical Matrices

Partition of the Matrix

How to partition the matrix in subblocks?

The structure of the matrix is described by index sets:

I : index set of matrix rows,
J : index set of matrix columns,
M ¢ RIxJ

A block of the matrix is described by subsets: 7 C I, 0 C J defined the block

b=T1Xo.
Remark: There is no need for an ordering of the index sets.

The subsets 7 C I are organised by a cluster tree T'(I) [same for J]:

I is the root. The sons of a node 7 are disjoint subsets 71, 72, ... with UT; = 7.



Example of a binary cluster tree T'(1) :

I = {1,2,3,4,5,6,7,8}
VN
I; = {1,2,3,4} I, = {5,6,7,8}
/ | | \
I1h ={1,2} I1p = {3,4} I13=1{56} I14={7,8}
N\
I111 = {1} I112 = {2}

The cluster tree T'(I) contains blocks 7 € T'(I) of different sizes (here sizes
1,2,4,8).

Strategy for the decomposition:

For discretisation of PDEs or integral equations each index 7 € I corresponds
to a grid point or a FE nodal point x; € €. It makes sense that each subset
T € T(I) contains neighboured grid points.

Possible stopping criterion: no decomposition for sufficient small blocks.



Example of grid points in a square (no matrix!):

W,

REMARK: For usual discretisations, an index ¢ € [ is associated to an nodal
point z; € R? or the support supp(¢;) C R? of a basis function ¢;.

The practical performance uses bounding boxes:

s o : s . s o
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Block-Cluster Tree

T'(I): tree of the vector blocks.

T(I x J): tree containing the matrix blocks.
Each block b € T'(I x J) will be of the form

b=71xo with7teT(Il)and o e T(J).

Construction: 1) [ x J is the root of T'(I x J) (notethat I € T'(I), J € T(J))
2 Letb=7x0 €T x J).

2a) Either this block should not decomposed further,
in particular if 7 is a leaf of T'(I) or o is a leaf of T'(J). Otherwise:

2b) Let {7;} be the sons of 7 € T'(I) and {aj} the sons of o € T'(J). Then the
sons of b are given by

bZ‘jZTZ'XO'j.

Example: If T'(I) and T'(J) are binary trees, each block of T'(I x J) is decomposed
into 4 subblocks.



Admissibility
Critical question: Should b € T'(I x J) be decomposed or not?
Pro: small blocks yield a better approximation

Contra: A finer block decomposition leads to more blocks =
larger storage cost and more computational cost.

For applications from elliptic PDEs and integral equations the optimal choice is
defined by an admissibility condition defined next.

If b is admissible it is not decomposed, otherwise it is decomposed.



Support of 7 € T'(I):

In the case of FE discretisation, each 7 € I corresponds to a basis function ¢,.
Set

Qr =, supp{¢;} C R,
In the case of a difference scheme with grid points x;, set
Qr ={z;:ie7}C R
Define:
diam(7) := diam(€2;), dist(7, o) := dist(Qr, Q5).
Simplification: Replace the set €2, by its bounding box:

W,

5

W




Admissibility condition: A block 7 x o € T'(I x J) is called admissible if

min {diam(€2;), diam(Qs)} < ndist(Q2r, Q)

for some fixed n > 0.

Example: x; = th are grid points in [0,1]:

0
1
2
3
4
5
6

N~ o 00 b W N B O
o o b W N B O

— 7 7 —> —

green blocks: admissible, red: non-admissible



4 Application to Boundary Element Methods (BEM)

1
Example: (Au) (z) := /O log | — y| u(y)dy for x € [0, 1].

Discretisation: collocation with piecewise constant elements in

[wi_l,xi], xi:’ih, ?::1,...,71, h:]./n,
Midpoints z; 1/, = (¢ — 1/2)h are the collocation points:
Lj

A= (a;j)ij=1,.n  Witha;; = log
Ti_q

Ti—1/2 y‘ dy.

Replace the kernel function k(x,y) = log |z — y| in a certain range of x,y by an
approximation i(x,y) of separable form

fa.y) = 3,0, Xul@)Yalw).



%(x7@0 ::EE:“EJ;Xl(x)}Q(y)'
Possible choice: Taylor's formula applied with respect to y:
J = {0,1,...,k—1},

X.,(x) = derivatives of x(z,-) evaluated at y = y*,

Yi(y) = (y—y7)/eh.
The kernel k(x,y) = log |x — y| leads to the error estimate

ly — y*|*/k

—y*| — |y —y*)¥

If x is replaced by &, the integral a;; = fai‘?_l m(wi_l/z,y)dy becomes

k(z,y) — Rz, y)| < (i for |z —y*| >|y—y"l

Lj

i = ) Xu(z;_1/7) Yi(y)dy. (*)

vedJ Ti-1
Let b be a block and restrict 4,5 in (%) to b. Then (x) describes a block matrix
Alp. Each term of the sum in (%) is an RI-matrix ab' with

a; = Xu(x;_1/2), bj = /

ZBj_l

Ly

Y. (y)dy.

Since #J = k, the block A|, is of Rk-type.



Furthermore, one can check that

i} 1 /1\F . _
wla,y) — &l < (5) 5 1A= Alleo <275k,

Discretisation error h**, where the step size h is related to n = #1 by h ~ %

Hence k should be chosen such that
1 y 4
2=k (-) .
n

k = O(logn)

Hence,

is the required rank.

NOTE: a) The construction of the cluster and block-cluster tree is automatic
(black box) and fast. Even refinements with form-regular elements are allowed.
b) Similarly, the construction of the approximation A is black box like (usually
by interpolation instead of Taylor expansion).



5 Application to FEM

REMARK a) A FEM system matrix is an H-matrix (without any approximation
error).
Proof: Non-trivial blocks = 0.

REMARK b) For a uniformly elliptic differential operator with L°°-coefficients
in a Lipschitz domain, the inverse of the FEM-matrix can be exponentially well
approximated by an hierarchical matrix.

Literature:
Bebendorf-Hackbusch, Numer. Math. 95 (2003) 1-28
Faustmann-Melenk-Praetorius, Numer. Math. 131 (2015) 615-642.



Analytical Background

Boundary value problem:

div(o(z)gradu) = f(z), =€ Q C R? with
o € L*®(Q), eigenvalues € [¢, "], ¢ > 0.

X,Y C Q admissible subsets, i.e., min{diam(X),diam(Y)} < n dist(X,Y).

Then the Green function G(z,y) admits an expansion

©,@)
G(z,y) = > g (z)gy(y) forze X,yev,
r=1

which is exponentially convergent.



6 H-LU iteration

Linear system of equations:
Ax = b.

Determine the LU decomposition of A by using hierarchical factors L3, and Uy.

Since LUy is very close to A, it is a very good ‘preconditioner’; i.e., the
iteration

2T = 2™ — (L Us) " (Az™ — b)
is a very fast iteration.
One can prove:

If the inverse matrix can be approximated by hierarchical matrices, then also the
LU factors do so.



‘H-LU iteration for sparse matrices

The partition of the matrix can be modified so that it corresponds to the nested
dissection technique of A. George (1973).
Then sparsity of A is partially inherited by L4, and Uy!

Example of a factor L:



Special Cluster Tree (nested dissection)

To get L, U with many zero blocks, the binary block decomposition is re-
placed by a ternary one. The FE grid is separated by an internal boundary ~:

The index set splits into the corresponding subsets I1, I and Is (nodal points
on 7). In the next step Ii, I> can be split again in the subsets Ii1, I12, I15

0
o O
0 o

and I»1, oo, Ios. The zero structure is shown in [ ] . However, this

approach is not yet optimal.



Improved cluster tree (illustration for the 2D-case):

While 17, I» are split, the cluster I is repeated identically at the next level and
split in the next but one level. This treatment guarantees that the diameters of
the clusters are similar in each level.



Geometry-free Approach:

So far, the admissibility condition used the Euclidean diameter and distance of

clusters.
Problem: The geometric description of z; or ¢, may be not available.
In the case of a FEM there is a simple remedy:

The matrix graph G(A) for a matrix A € R!*! consists of the nodes I and the

egdes o
G(A) = {(’L,j) el x1I: @ j + 0} : ul , ;l}u* )
FE Case: only neighboured nodes connected = | ey “\1
- | \ ]
the Euclidean distance can be replaced by the graph distance. e oL Y
dist(i,j) = 4

This algebraic approach is perfect for blackbox applications.



EXAMPLE (inverse Problem, Wolters-Grasedyck-Hackbusch, 2004):
Given: electric/magnetic field (EEG,MEG) at ~ 400 sensor positions on the

head surface.
What is the current distribution in the brain ? Where are the sources 7

PDE: —divo(z)Vu(z) = f(z), =€ QCR3, dpu =0 on 09.
The boundary value problem has to be solved for =~ 400 right-hand sides

Triangulation with
N = 147287 tetraeder conductivity o



- Galerkin discretisation ~~ Az = b

- The system has to be solved for =~ 400 right-hand sides b
- Stopping criterion: ||Az — b||/||b|| < 1078

- Machine: SUNFire, 900 MHz, single processor

Pardiso! LUy, € =107° PEBBLES?
Setup 237 468 13
Solve 2.4 1.0 10
Total 1197 3868 4013

fPardiso (Schenk & Co)
'PEBBLES (Langer/Haase)



7 H?-Matrices

Two hierarchies are involved:
1. Hierarchy given by the cluster tree T

2. The involved rank-k-matrices do not use arbitrary row and column vectors,
but vectors from special subspaces V- (7 € T'), i.e., the matrix blocks belong
to tensor spaces V- ® Vi

3. The basis of V; is connected with the bases of V., for 7/ € S(7). This leads
to hierarchically defined bases: V|, C V.

Since, in the end, the bases need not be stored directly, the log-factor disappears:

storage(A), cost(A x x), cost(A + B), cost(A* B) = O(n)

and smaller constants.

S. Borm: Efficient Numerical Methods for Non-local Operators. EMS, Zurich
(2013)



8 Matrix Equations

Lyapunov: AX+ XA = C
Sylvester AX —XB = C
Riccatii: ~AX +XA' — XFX C

Given: A, B,C, F'; desired matrix-valued solution: X.

Applications: optimal control problems for elliptic / parabolic PDEs.

e Low rank C, F' = low rank X

e H-matrix C, low rank F' = H-matrix X

Computation via H-arithmetic, possibly combined with multi-grid methods.



Matrix-Riccati Equation

A'X+XA-XFX+G=0 (A<O).

Lemma 8.1 The solution X satisfies

X=—(M"M)"IM"N,

v Sal)-lo?)

S = T'diag{\1,...}T7~1 = sign(S) := T diag{sign()\1),...}71.

where

[M N]::sign<

Lemma 8.2 Assume that Re\ # 0 for all eigenvalues \ € o(S).

Start: S(O) -— S. Then the iteration
(H‘l) S— 1 (7/) ('L) 1
S =5 (S -+ (S ) )

converges quadratically to sign(S).



Example of a matrix-Riccati equation by L. Grasedyck

Choice of Aby A=Ay,

(1D-Laplacian).

The following table shows the relative error HX — XH2/ 11X |5 -

n = 101 | 256 1024 65536
k=1 8.810-3 | 1.519-1 | 1.31p-1 |-
k = 2.410-4 | 2.610-4 | 4.210-4 | 6.710-4
k = 7.710-8 | 9.110-8 | 1.119-7 | 6.210-7
k=26 1.910-10 | 3.710-10 | 2.440-10 | 1.719-9
Number of iterations | 12 14 17 26
time* [sec] 2.2 8.5 67 18263

*) k=2, Sun Quasar 450 MHz

In the last case, the (full) matrix X has 4,294 967,296 entries.

L. Grasedyck, W. Hackbusch, B. Khoromskij: Solution of large scale algebraic

matrix Riccati equations by the use of hierarchical matrices.
121-165 (2003)

Computing 70,



9 Matrix-Valued Functions f(A)

EXAMPLE: Matrix-exponential function e 4.

Cauchy-Dunford representation: e t4 = ﬁ Jre #t (2 — A)"Ldt

using a parabola I :

After parametrisation and quadrature:

N
Tn() = > ype 0 (2] — AL, zp€T.
{=—N
Error estimate for t > tg > 0 :
2/3
HTN(t) — e_tAH < e N .

= N ~ logn = Total cost: O(nlog™n).

|.P. Gavrilyuk, W. Hackbusch, B. Khoromskij: 'H-matrix approximation for the
operator exponential with applications. Numer. Math. 92, 83-111 (2002).



10 Higher dimensional analogue: Tensor systems

The analogue of rank-k-matrices are sums of k£ tensor products.

Tensor space:

V=V1oaWwhe...0 V.

Example: V; = RYi for index sets I;. Then the entries of v € V are
Viq o, ig with Z] < Ij.

V is isomorphic to RY with the product index set T := 17 X Ip X ... X I .
d

DEFINITION: A rank-k-tensor is of the form

k
ngﬂ)(@vgﬂ)@...@vgﬁ) Withv§“)6‘/j.
p=1



DEFINITION: A rank-k-tensor is of the form
k
ngﬂ)(@vgﬂ)@...@véﬂ) Withv§“)€\/j. (*)
p=1
QUESTION: Given v € V, are there best rank-k-approximations (*) 7

How can they be computed?

REMARK: Tools like the singular-value decomposition do not exist for d > 3.
Non-existence of best-approximations and numerical instability possible.

A trust-region Newton method is described by Espig (Diss. 2008).



Example from the electronic Schrodinger equation

Hartree-Fock equation F, 1,(y) = €, ¢(y) involves the Hartree potential

N/2
Vg(x)=2>
b=1

/wz(y)m(y) gy = [ PY) 4 (1)

x —y| x —y|

where p(y) = 2 Zé\fz/lz Yu(y)¥;(y) is the electron density.

' ' _AU)
Standard approach uses Gaussians g,(f)(yj) = (y; — A](g))ek e~ kW= A5")? o
represent the orbital (wavefunction) by
Sy 1 2 3
(y) = Y gp () g (12) g (u3). (2)
k=1

Here, K, = tensor rank. We start with a representation (2) produced by the
MOLPRO program package using the MATROP program for matrix operations.

Eq. (2) yields p(y) = ¥ (y)¥p(y) with K := K, (K, +1)/2 terms.



Optimising the tensor representation reduces the tensor rank to a much smaller

rank x while almost keeping the same order of accuracy:

p(y) = > Qgﬁl)(yl) 922)(,02) 023)(3/3), k< K.
k=1

The computational work for evaluating the Hartree potential (1) depends essen-

tially on the tensor rank.

EXAMPLE CHs: The MOLPRO program yields K = 1540, which can be re-
duced by our approach to kK = 45. The computing time for evaluating Vi for

the tensor representation with k = 45 is 8 hours, while the estimated time for
K = 1540 is 190 hours.

molecule | initial rank Kof p(y) | final rank K | relative error | error in energy (hartree)
CHy4 1540 45 9.0x10°° 6.0x10>
CoH» 2346 50 1.3x10~% 5.0x10~%
CoHg 4656 55 8.8x107° 4.0x10~%

see Rao Chinnamsetty - Espig - Khoromskij - Hackbusch - Flad: J. Chem. Physics 127 (2007)
and Rao Chinnamsetty, Diss. 2008.



Kronecker- Tensor Products

Vi, = R>j vector spaces of matrices. Then

Vi=11@V®...0 V; 2R/
with IT:=I1 XIhXx...xI; and J:=J;y X JoX...X Jy.

| A;1B ApB
Notation ford=2: A B = | A»1B

REMARK: a) For d = 2 the approximation of a matrix M by a Kronecker-
rank-k expression Zﬁ:l AlW) @ BH) s equivalent to a certain standard rank-k

approximation of a related matrix M.

b) For d > 3 the search for rank-k approximations is more involved.

If the matrix is the discretisation of a continuous operator with a kernel function
»#(x,y), X,y € R% analytical methods may help (see next example).



Separable PDE in [0,1]¢, d large

Let Q = (0,1)¢ Cc RY.
Equidistant grid: ;, = (h,2h,...,nh) with

(n+1)h=1 (here n = 1024).

Separable PDE: L = Z,‘/l:l ay(mv)aa—;, e.g., L = A.

Discretisation of —L by usual difference formula:

d
A=—-Lp=-)> a,,(xv)DifymV (Dzy%: 2nd difference)
v=1

= AIRIQR..QI+1TQRAIR.. T+ ...+IRIR...Q0 Ay
Goal: Approximation of L;l.

Numerical result (Grasedyck 2004):
For d = 2048, accuracy 107> to 10~%: 5 min computer time

Related dimension:

N = 10242948 — 1 24 x 100109



Underlying method

1/x can be approximated by exponential sums lejzl wy exp(apx):

_ 1 k _ck
min  max |— — wyexp(ayz)) < O(e™ "), ¢>0,
. 1 k _okl/2
min  max |- — wyexplayz)] < O(e™° , c¢>0.

Let [xq,x1] or [xg, o0) contain the spectrum of Lj,. Then

~1 k
Ly"~) Wy exp(ayLy,).
The special tensor structure

d
Lpy=> I®..01®L,0I®...0I
p=1
implies exp(aw L) = Q%_; exp(aw Ly, ,,).
Approximation of exp(av Ly, ,,) by H-matrices (see above). Finally:

d
_ k
th ~ Zy:l Wy (glepo(ath,M) (rank-k-tensor).
/J/:
e For scientific purpose the software library HLib is freely available (ask for a
licence form)



