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Starting concept

Priciple of parsimony-Ockham’s razor
”Entities should not be multiplied unnecessarily”
One should not go looking for more complex explanations when there is a simpler one.

From the dictionary
Sparse: present only in small amounts; less than necessary or
normal; thinly covering an area; not thick or full.
En castellano: disperso, esparcido, ralo.

▶ There are several optimization problems were sparse
solutions are required (e.g., in machine learning, data
acquisition, image restoration, etc.)

▶ Recently, sparsity has also been considered in PDE
constrained optimization problems.

▶ In recent years, a huge amount of new literature emerged
on the subject.
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Motivation

What does sparse optimization mean?
▶ many of the values of the decision variables are zero in

case of vectors: solutions easy to interpret
▶ small support in case of functions: allows the localization

of the action of the control

Tools for dealing with such problems
▶ Large-scale optimization
▶ Nonsmooth optimization
▶ Application-specific knowledge

3 / 90



Motivation

What does sparse optimization mean?
▶ many of the values of the decision variables are zero in

case of vectors: solutions easy to interpret
▶ small support in case of functions: allows the localization

of the action of the control

Tools for dealing with such problems
▶ Large-scale optimization
▶ Nonsmooth optimization
▶ Application-specific knowledge

3 / 90



Outline

Application examples
Lasso
Speech recognition
Matrix completion
Optimal control
Medical imaging

Sparsity through the l1 norm
Why does it work?
Optimality condition
Duality

First order methods

Steespest descent
Subgradient descent
Proximal methods
Coordinate descent
method
Projection methods

Second order methods
Semismooth Newton
method
Orthantwise Methods

Conclusions

4 / 90



Linear regression

Classical linear regression model
A : matrix of individuals and features, i.e., ai,j is the value of
attribute j of individual i.

u : is the decision vector with all the coefficients

y : is the dependent vector

Goal
Find the optimal coefficient vector ū ∈ Rn such that

ū = arg min
u∈Rn

1
2
∥Au− y∥2

2.
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Linear regression
Example

Suppose we have a large database of clients with several n≫ 1
attributes (e.g., salary, age, years of education, number of
shirts, etc.), and a dependent variable y (e.g., income). By
minimizing the least squares cost

∥Au− y∥2
2,

we get a coefficient vector ū = (ū1, . . . , ūn) that best fits the
data. The vector acts also as predictor in case of new clients.

▶ How to predict the income of a new individual?
▶ Do we need to collect all n≫ 1 attribute information for the

new clients?
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Lasso
How to obtain a sparse predictor vector?

The idea consists in solving a least squares problem with an
additional bound on an appropriate norm of the vector, i.e.,

min
u∈Rn

1
2
∥Au− y∥2

2

subject to: ∥u∥0 ≤ M

where ∥u∥0 counts the number of nonzero entries of u.

Problem of combinatorial nature
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Lasso

We randomly generate an attribute matrix of size 1000× 500
and a dependent variable y of length 1000. Solving (with
MATLAB LSQLIN function) the classical least squares problem
with get a full coefficient vector

On the other hand, solving the Lasso problem, with a sparsity
constraint, we get a sparse predictor

Much less information has to be collected for a new individual in
order to predict its behaviour.
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Speech recognition

Training point
Vector of features for a 10ms frame of speech and a label
representing the phonetic state.

Goal
Maximize the conditional probability of the correct phonetic
state, given an observed features vector.
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Speech recognition
Logistic regression

▶ Simple logistic regression yields the probability of an event,
given a prediction vector u:

p(y = 1) =
exp (uTa)

1 + exp (uTa)

▶ Speech recognition is based on multinomial logistic
regression

p(yj = k) =
exp uT

k aj∑K
i=1 exp uT

i aj
.

9 / 90



Speech recognition
Logistic regression

▶ Simple logistic regression yields the probability of an event,
given a prediction vector u:

p(y = 1) =
exp (uTa)

1 + exp (uTa)

▶ Speech recognition is based on multinomial logistic
regression

p(yj = k) =
exp uT

k aj∑K
i=1 exp uT

i aj
.

9 / 90



Speech recognition
Logistic regression

▶ Simple logistic regression yields the probability of an event,
given a prediction vector u:

p(y = 1) =
exp (uTa)

1 + exp (uTa)

▶ Speech recognition is based on multinomial logistic
regression

p(yj = k) =
exp uT

k aj∑K
i=1 exp uT

i aj
.

9 / 90



Speech recognition

Optimization problem

min
u

j(u) = − 1
m

m∑
j=1

log
exp uT

yj
zj∑

i∈C exp uT
i zj

+ β∥u∥1

where:

C : set of labels
zj : feature vector for point j
ui : parameter subvector for class label i
m : number of training points
yj : class label associated with data point j

▶ Problems are usually of very large scale
▶ Subsampling is mandatory in this context
▶ Important to combine efficient optimization with stochastic

approaches
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Matrix completion

The Netflix Prize:
In 2006 Netflix offered a US$1,000,000 prize for an algorithm
that substantially improves the accuracy of predictions about
how much someone is going to enjoy a movie based on their
movie preferences.
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Matrix completion

Goal: fill the zero elements of a sparse matrix, based on the
observed non-zero entries.
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Matrix completion

Hypothesis
▶ There are only few factors that determine the movie

preferences of users.
▶ The observed non-zero entries of the matrix are uniformly

distributed (at least one observation per row and one
observation per column).

Mathematically, the problem can be stated in the following form:

min
X

rank(X)

subject to: Xi,j = Mi,j, (i, j) ∈ Ω,

with Ω the set of locations corresponding to observed entries.

Drawback: Any solution algorithm requires too much time to
compute an exact solution.
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Matrix completion

Important Property. If a matrix has rank r, then it has exactly r
nonzero singular values.

Alternative idea
Instead of using the rank of X, one can consider the nuclear
norm minimization, i.e.,

min
X
∥X∥∗

subject to: Xi,j = Mi,j, (i, j) ∈ Ω,

where ∥X∥∗ =
∑n

k=1 σk(X), where σk(X) is the kth largest
singular value of X.

Observation
The relation between rank(X) and ∥X∥∗ for matrices is similar to
the relation between the l0-norm and the l1-norm for vectors.
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A theoretical result

Theorem
Let M be an n1 × n2 matrix of rank r and put n = max(n1, n2).
Suppose we observe m entries of M with locations sampled
uniformly at random. Then there are constants C and c such
that if

m ≥ Cn5/4 r log n,

the minimizer to the matrix completion problem is unique and
equal to M with probability at least 1− cn−3, that is to say, the
semidefinite program recovers all the entries of M with no error.

Emmanuel J. Candès, Benjamin Recht
Exact Matrix Completion via Convex Optimization. Foundations of Computational
Mathematics. Volume 9, pp 717-772, 2009.

Solution methods. Semidefinite programming algorithms.
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Sparse optimal control

Controlling population dynamics

min J(y, u) = φ(y, u) +
λ

2
∥u∥2

V + β∥u∥L1(Ω)

subject to :
∂y(x, t)

∂t
− ν∆y(x, t) = ry(x, t)

(
1− y(x, t)

κ

)
− u(x)y(x, t)

+ boundary conditions + initial conditions

ν : diffusion parameter u : mortality rate to be controlled
r : growth rate κ : environmental capacity

φ represents the fumigation strategy.
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Localized fumigation
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An optimal control example

L2-term only

(P)


min

y,u

1
2
∥ y − yd ∥2

L2(Ω) +
λ

2
∥ u ∥2

L2(Ω)

s.t.
−∆y = u + f in Ω

y = 0 on Γ
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An optimal control example

With additional L1-term

(P)


min

y,u

1
2
∥ y − yd ∥2

L2(Ω) +
λ

2
∥ u ∥2

L2(Ω) +β ∥ u ∥L1(Ω)

s.t.
−∆y = u + f in Ω

y = 0 on Γ

19 / 90



Outline

Application examples
Lasso
Speech recognition
Matrix completion
Optimal control
Medical imaging

Sparsity through the l1 norm
Why does it work?
Optimality condition
Duality

First order methods

Steespest descent
Subgradient descent
Proximal methods
Coordinate descent
method
Projection methods

Second order methods
Semismooth Newton
method
Orthantwise Methods

Conclusions

20 / 90



Outline

Application examples
Lasso
Speech recognition
Matrix completion
Optimal control
Medical imaging

Sparsity through the l1 norm
Why does it work?
Optimality condition
Duality

First order methods

Steespest descent
Subgradient descent
Proximal methods
Coordinate descent
method
Projection methods

Second order methods
Semismooth Newton
method
Orthantwise Methods

Conclusions

20 / 90



Outline

Application examples
Lasso
Speech recognition
Matrix completion
Optimal control
Medical imaging

Sparsity through the l1 norm
Why does it work?
Optimality condition
Duality

First order methods

Steespest descent
Subgradient descent
Proximal methods
Coordinate descent
method
Projection methods

Second order methods
Semismooth Newton
method
Orthantwise Methods

Conclusions

20 / 90



Lasso revisited
Why does it work?

min
u∈Rn

1
2
∥Au− y∥2

2

subject to: ∥u∥1 ≤ ϵ.
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Lasso revisited
Alternative formulations

▶ As unconstrained problem:

min
u∈Rn

1
2
∥Au− y∥2

2 + β∥u∥1 (1)

▶ With the least squares term as constraint:

min
u∈Rn
∥u∥1

subject to: ∥Au− y∥2 ≤ ϵ

We focus on unconstrained optimization problems like (1)
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Abstract result

Let J be a convex function and consider the optimization
problem

min
u

J(u)

Defining the subdifferential by

∂J(u) := {ϕ ∈ Rm : ϕT(v− u) ≤ J(v)− J(u)}

we obtain the following general result.

Theorem
For any convex function J : Rn → R, if a point ū ∈ Rn is a global
minimum of J if and only if 0 ∈ ∂J(ū) holds.

If g is differentiable, then ∂J(u) = {∇J(u)}.
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Optimization problem
More structure

We focus on the unconstrained optimization problem:

min
u∈Rn

J(u) = f (u) + β∥u∥1 (P)

where f is convex and differentiable.

Theorem
Let j1 : Rn → R be differentiable and j2 : Rn → R convex and
continuous. If ū ∈ Rn is an optimal solution to

min
u∈U

j1(u) + j2(u),

then it satisfies the following optimality condition:

j′1(ū)(v− ū) + j2(v)− j2(ū) ≥ 0, for all v ∈ Rn.

23 / 90



Proof

j1 convex and differentiable, j2 convex continuous

j1(ū) + j2(ū) ≤ j1(w) + j2(w),∀w

Taking w = ū + t(v− ū), 0 < t ≤ 1,

0 ≤ j1(ū + t(v− ū))− j1(ū) + j2(ū + t(v− ū))− j2(ū)

≤ j1(ū + t(v− ū))− j1(ū) + t j2(v) + (1− t) j2(ū)− j2(ū)

Dividing by t and taking the limit:

0 ≤ j1(ū + t(v− ū))− j1(ū)
t

+ j2(v)− j2(ū)

=⇒ 0 ≤ j′1(ū)(v− ū) + j2(v)− j2(ū).
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Optimality condition

Problem

min
u∈Rn

J(u) = f (u) + β∥u∥1 (P)

The optimality condition is given by:

∇f (ū)T(v− ū) + β∥v∥1 − β∥ū∥1 ≥ 0, for all v ∈ Rn,

which can be reformulated as

−∇f (ū) ∈ ∂β∥ū∥1

or, equivalently,

∇i f (ū) + β = 0 if ūi > 0

∇i f (ū)− β = 0 if ūi < 0

0 ∈ [∇i f (ū)− β,∇i f (ū) + β] if ūi = 0

25 / 90



Example

Consider the one dimensional problem

min
u∈R

1
2
(y− u)2 + β|u|.

Since the subgradient of the absolute value function is

∂|u| =


1 if u > 0
[−1, 1] if u = 0
−1 if u < 0,

the solution of the problem is given by

ū =

{
0 if |y| ≤ β(

1− β
|y|

)
y otherwise.

The last operator is called soft-thresholding.
26 / 90
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Fenchel duality
Abstract setting

Our problem may be written in the general form:

inf
u∈V
F(u) + G(Λu),

where F : V = Rn → R, G : Y = Rn → R and Λ ∈ L(V,Y).
Defining the conjugate of a function h : V → R by

h∗(v∗) = sup
v∈V
{⟨v∗, v⟩ − h(v)},

which is convex function. The dual problem is then given by:

sup
q∗∈Rn

−F∗(−Λ∗q∗)− G∗(q∗),

where Λ∗ is the adjoint operator of Λ.

27 / 90



Fenchel duality
Optimality system

Theorem
Let ū and q̄ be the optimal solutions to the primal and dual
problem, respectively. Then there is no duality gap, i.e.,

F(ū) + G(Λū) = −F∗(−Λ∗q∗) + G∗(q∗)

and both solutions satisfy the following extremality conditions:

−Λ∗q̄ ∈ ∂F(ū)
−q̄ ∈ ∂G(Λū).

The extremality conditions are necessary and sufficient.

28 / 90



Duality for Lasso

Considering the Lasso problem

min
u∈Rn

1
2
∥Au− y∥2

2 + β∥u∥1

the Fenchel dual problem is given by

min
q∈Rn
−1

2
∥Au− y∥2

2 − (q, u)

subject to:

AT(Au− y) + q = 0

|qi| ≤ β, ∀i

and the optimality system by

AT(Au− y) + q∗ = 0

|q∗i | ≤ β ∀i = 1, . . . , n

q∗i ūi = β|ūi| ∀i = 1, . . . , n.
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|qi| ≤ β, ∀i

and the optimality system by

AT(Au− y) + q∗ = 0

|q∗i | ≤ β ∀i = 1, . . . , n

q∗i ūi = β|ūi| ∀i = 1, . . . , n.
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Duality for Lasso

By defining the auxiliary dual multiplier

q̄ := y− Au

the dual problem can be rewritten as

min
q∈Rm

∥q− y∥2
2

subject to: |ATq| ≤ β.

▶ The number of active faces of the constraint set
corresponds to the number of nonzero entries of u.
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Optimality system

The optimality system for our case is given by

Aū− y + q̄ = 0

|(AT q̄)i| ≤ β ∀i = 1, . . . , n

(AT q̄)i ūi = β|ūi| ∀i = 1, . . . , n.

where q̄ is the dual solution.

Dual information
The dual problem and the resulting optimality system provide
important information, which may be of use for the design of
solution algorithms.
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Steespest descent

Let us consider the following minimization problem:

min
u∈Rn

f (u),

with f continuously differentiable.

The main idea of descent methods consists in finding, at a
given iterate uk, a descent direction gk, i.e,

f (uk + αkgk) < f (uk) with αk > 0.

32 / 90



Steepest descent

The most natural choice would be to pick as direction the one
that leads to the maximum descent of the objective function
(locally), i.e, the one that solves the problem

min
||g||=1

∇f (u)⊤g minimization of the linear model of f

Theorem
Let f : Rn → R be continuously differentiable and u ∈ Rn such
that ∇f (u) ̸= 0. Then the optimization problem has a unique
solution given by

g = − ∇f (u)
∥∇f (u)∥

Consequently, any direction of the form

gk = −αk∇f (uk), αk > 0 (2)

corresponds to a ”steepest descent” direction.
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Line search

Once the descent direction is determined, is important to know
how far to move in such direction, i.e, which parameter αk > 0
should be used. The ideal choice would be

αk = argmin
α>0

f (uk + αgk)

This is, however, not possible in practice!

In general the following feasibility condition is required to get
convergence:

f (uk + αkgk)− f (uk) −−−→
k→∞

0 =⇒ ∇f (uk)
⊤gk

||gk||
−−−→
k→∞

0
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Armijo’s line search rule

A popular line search strategy is the Armijo rule, which consists
in the following: given a descent direction gk of f at uk, choose
αk ∈ {1, 1

2 ,
1
4 · · · } such that

f (uk + αkgk)− f (xk) ≤ γαk∇f (uk)
⊤gk,

where γ ∈ (0, 1) is a given constant.
▶ There exists an interval of feasible steps.
▶ Armijo’s rule satisfies the feasibility condition.

Sketch
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Subgradient descent

Given the optimization problem

min
u

J(u),

with J convex, the main idea of subgradient methods consists in
choosing an element of the subgradient to construct a direction
in which to advance in order to improve the cost function value.

The iterations for the sparse optimization are given by

uk+1 = uk − αk (∇f (uk) + βs)︸ ︷︷ ︸
=:gk

, with s ∈ ∂∥uk∥1

Historical note
Subgradient methods were developed in the 60’s and 70’s.

N. Z. Shor.
Minimization Methods for Non-differentiable Functions. Springer Verlag, 1985.
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Subgradient descent

Line search rules
▶ Constant step size: αk = α, constant independent of k.
▶ Constant step length: αk =

α
∥gk∥2

▶ Square summable but not summable:

∞∑
k=1

α2
k <∞

∞∑
k=1

αk =∞.

A prototypical example is αk =
α
k .

▶ Nonsummable diminishing:

lim
k→∞

αk = 0
∞∑

k=1

αk =∞.

A prototypical example is αk =
α√

k
.

37 / 90



Subgradient descent
Computational results

Numerical results for

min
u

[
max

i=1,...,m
(aT

i u + bi)

]
,

with different line search rules.
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Subgradient descent

Properties
▶ Unlike the steepest descent method, there is no

guaranteed descent at each iteration.
▶ The iterates converge globally with

J(uk)− J(ū) = O(
1√
k
)

▶ Usually convergence is very slow
▶ The problem structure is not exploited
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Iterative Shrinkage-Thresholding Algorithm (ISTA)

min
u∈Rn

J(u) = f (u) + β∥u∥1 (P)

An important operator is the so called proximal operator
defined for a convex function J : Rn → R

ProxJ(v) = argmin
u

{
J(u) +

1
2
∥u− v∥2

2

}
Basic idea
Solve at each iteration the linearized problem

min
u

f (uk) +∇f (uk)
T(u− uk) + β∥u∥1 +

L
2
∥u− uk∥2

2,

or, equivalently,

min
u

1
2
∥u− (uk −

1
L
∇f (uk))∥2

2 +
β

L
∥u∥1 (MinProx)

where L > 0 is an upper bound for ∇f (usually unknown).
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Proximal methods
Iterative Shrinkage-Thresholding Algorithm (ISTA)

Line search for L
Increase the value of L until

f (uL) ≤ f (uk) +∇f (uk)
T(uL − uk) +

L
2
∥uL − uk∥2

2

where uL is the solution of (MinProx).

Some properties
▶ The method converges globally with a rate of O(1

k ).
▶ There are accelerated versions of the proximal algorithm

with convergence rate O( 1
k2 ).

▶ Accelerated version do not necessarily lead to descent
directions.

41 / 90



Proximal methods
Proximal operator

The efficiency of proximal methods depends on the fast
computation of the proximal operator

Proxβ∥·∥1(w) = argmin
u

{
1
2
∥w− u∥2

2 + β∥u∥1

}
,

since the iteration is given by

uk+1 = Proxβ
L ∥·∥1

(uk −
1
L
∇f (uk)).

Thanks to the optimality conditions, the proximal operator can
be computed through[

Proxβ∥·∥1(w)
]

j =

(
1− β

|wj|

)
+

wj,

where (x)+ := max(0, x).
Componentwise, the proximal operator is the soft-thresholding
operator.
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Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA)

The fast version of the Iterative Shrinkage-Thresholding
Algorithm consists in choosing, instead of the previous iterate
uk, a clever linear combination of the previous two iterates.

1: Initialize u0, t0 = 1 and u1 = Proxβ
L ∥·∥1

(u0 − 1
L∇f (u0)).

2: while stoping criteria is false do

3: Compute tk =
1+

√
1+4t2k−1

2 .

4: Compute yk = uk−1 −
(

1−tk−1
tk

)
(uk − uk−1)

5: Update uk+1 = Proxβ
L ∥·∥1

(yk − 1
L∇f (yk)).

6: k← k + 1.
7: end while
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Proximal methods
A Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

Properties
▶ The method arised from the complexity analysis of ISTA.
▶ While ISTA has convergence of order O(k−1), FISTA has

convergence rate of order O(k−2).

A. Beck, M- Teboulle.
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
SIAM J. Imaging Sciences, Vol. 2, pp. 183-202, 2009.
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Coordinate descent method
Lasso

By selecting a coordinate j, this method is based on the
sequential coordinate-wise solution of

min
uj
∇j f (uk)(uj − uk

j ) +
1
2
∇2

jj f (uk)(uj − uk
j )

2 + β|uj|

where ∇j f (u) = AT
j (Au− y) and ∇2

jj f (u) = AT
j Aj.

Figure: Coordinate descend iterations
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Coordinate descent method
Lasso

By means of the proximal operator with L = ∇2
jj f (uk), the

solution can be expressed in close form as

u∗j = Proxβ
L |·|

(
uk

j −
∇j f (uk

j )

∇2
jj f (uk)

)
,

i.e., u∗j is obtained by solving the unregularized problem with
respect to coordinate j and soft-thresholding it.
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Coordinate descent method
Smooth losses

If f is not a least squares term, the solution has not a direct
closed form. However, we can still compute the solution to the
quadratic model

u∗j = argmin
uj
∇j f (uk)(uj − uk

j ) +
1
2
∇2

jj f (uk)(uj − uk
j )

2 + β|uj|

and combine it with an Armijo line search: Choose α ∈ (0, 1)
such that

J(uk + αdej)− J(uk) ≤ σα(∇j f (uk)d + |uk
j + d| − |uk

j |)

where σ > 0 and d = u∗j − uk
j .
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Coordinate descent method
Basic algorithm

1: Initialize u0,
2: while stoping criteria is false do
3: CHOSE j ∈ {1, 2, . . . , n}

4: COMPUTE u∗j = Proxβ
L |·|

(
uk

j −
∇j f (uk

j )

∇2
jj f (uk)

)
,

5: UPDATE uk+1 = uk + (u∗j − uk
j )ej, for some αk ∈ (0, 1)

6: k← k + 1.
7: end while
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Coordinate descent method
Choosing coordinates

In this framework, there is a lot of freedom in choosing the
index j.
▶ Cyclic fashion coordinates: i0 = 1,

ik + 1 = (ik mod n) + 1, k = 0, 1, 2, . . .

Every T ≥ n iterations each component must be modified
at least once: ∪T

j=0ik − j = 1, 2, . . . , n
▶ Randomized coordinates : not necessarily with equal

probability. For example, ik is choosen with uniform
probability in the set {1, 2, . . . , n}, independent of the
choices of previous iterations.
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Convergence result for randomized CDM for Lasso
Assumptions and notations

▶ f is strongly convex and Lipschitz continuously
differentiable

f (αu+(1−α)v) ≤ αf (u)+(1−α)f (v)−1
2
σα(1−α) ∥u− v∥2

2 , ∀ u, v

if f is twice continuously differentiable, f is strongly convex
iff ∇2f (u) is positive definite for all u

▶ (Componentwise Lipschitz constants) ∀i, ∃Li such that

|∇if (u + tei)−∇if (u)| ≤ Li|t|, ∀u,∀t ∈ R

Lmax = max
i

Li
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CDM for Lasso

min
uj
∇j f (uk)(uj − uk

j ) +
1

2αk
(uj − uk

j )
2 + β|uj|

1: Initialize u0,
2: while stoping criteria is false do
3: CHOSE ik ∈ {1, 2, . . . , n}
4: COMPUTE u∗ik = argminu(u−uk

ik)∇if (uk)+ 1
2αk

(uik−u∗)2 +
β|uik |, for some αk ∈ (0, 1)

5: UPDATE uk+1 = uk + (u∗ik − uk
ik)eik ,

6: k← k + 1.
7: end while
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Convergence result for randomized CDM for Lasso

Theorem
With the last assumptions at hand, let us suppose that the
coordinate index ik in CDM-Algorithm are chosen
independently for each k with uniform probability from the set
{1, 2, . . . , n}, and that αk = 1/Lmax. Then for all k ≥ 0, we have

E
(
J(uk)

)
− J(u∗) ≤

(
1− σ

nLmax

)k

(J(u0)− J(u∗))
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Projection methods
Nonlinear programming

Let us consider the optimization problem

min
u∈Ω

J(u),

with Ω := {v ∈ Rn : ai ≤ vi ≤ bi} and f continuously
differentiable. The optimality condition is then given by

∇J(ū)T(v− ū) ≥ 0, ∀v ∈ Ω

or, equivalently, as

ū = P(ū− λ∇J(ū)), ∀λ > 0

where P(u)i = min(max(ui, ai), bi).
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Projected gradient
Nonlinear programming

The idea of the projected gradient method consists in using the
optimality condition iteratively:

uk+1 = P(uk − αk∇J(uk)),

where αk > 0 is a line search parameter. Sketch
The line-search parameter is chosen according to the projected
Armijo rule: choose the largest αk ∈

{
1, 1

2 ,
1
4 , . . .

}
for which

J(P(uk − αk∇J(uk)))− J(uk) ≤ −
σ

αk
∥P(uk − αk∇J(uk))− uk∥2,

where σ ∈ (0, 1) is a given constant.
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Accelerated projection methods

The application of projection methods considering other type of
directions dk = −H−1

k ∇J(uk) is by no means standard. For
Newton directions

dk = −(∇2J(uk))
−1∇J(uk),

for instance, the application of the projected method may not
lead to descent in the objective function. To solve this problem,
the reduced Hessian

(∇2
RJ(u))ij =

{
δij if i ∈ A(u) or j ∈ A(u)
(∇2J(u))ij otherwise

where A(u) denotes the set of active indexes, may be used
instead of the full second order matrix.
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Reformulation of Lasso

By using the decomposition

u = u+ − u−

with u+ = max(0, u) and u− = |min(0, u)| we obtain the
equivalent Lasso optimization problem:

min
u+≥0,u−≥0

J(u+, u−) =
1
2
∥A(u+ − u−)− y∥2

2 + β1tu+ + β1tu−
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Projection methods
Nonlinear programming

The gradient of the function is given by(
∇u+J(u+, u−)
∇u−J(u+, u−)

)
=

(
ATA(u+ − u−)− ATy + β1
−ATA(u+ − u−) + ATy + β1

)
and the projected iteration is given by(

u+k+1
u−k+1

)
= P

(
u+k − α∇u+J(u+, u−)
u+k − α∇u−J(u+, u−)

)
where P(y) := max(0, y).
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Summary of projection methods
Nonlinear programming

Properties
▶ Several developed nonlinear programming toolboxes can

be used.
▶ For directions different from the projected descent, some

effort has to be inverted in the construction of the Hessian
approximation.

Drawbacks
▶ The number of optimization variables doubles, causing

memory problems, as well as slowing convergence of all
available toolboxes.

▶ The specific structure of the problem is not taken into
account.
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Reformulation of optimality system

0 = ∇i f (ū) + β for i ∈ P̄,
0 = ∇i f (ū)− β for i ∈ N̄ ,

0 ∈ [∇i f (ū)− β,∇i f (ū) + β] for i ∈ Ā,

where the index sets P̄, N̄ and Ā are defined as

P̄ = {i : ūi > 0}, N̄ = {i : ūi < 0}, and Ā = {i : ūi = 0}.

The system can be equivalently written as F(u) = 0, with

Fi(u) = max {min{τ(∇i f (u) + β), ui}, τ(∇i f (u)− β)} ,

where τ is any positive constant.

How to solve the system efficiently?
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Semismooth Newton method

Definition (Newton differentiability)
If there exists a neighborhood N(ū) ⊂ S and a family of
mappings G : N(ū)→ L(X,Y) such that

lim
∥h∥X→0

∥F(ū + h)−F(ū)− G(ū + h)(h)∥Y

∥h∥X
= 0,

then F is called Newton differentiable at ū.

Semi-smooth Newton step
If F is Newton differentiable, a Newton type update can be
obtained as

G(uk)d = −F(uk), uk+1 = uk + d,

where G stands for the generalized Jacobian of F.
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Consider the absolute value function

f (x) = |x|

The function is not differentiable at 0. However, by using the
generalized derivative

g(x) =
{
−1 if x < 0,
1 if x ≥ 0.

we obtain for the case x = 0 :

1. if h > 0 :
∣∣|x + h| − |x| − |h|

∣∣ = 0,
2. if h < 0 :

∣∣|x + h| − |x|+ |h|
∣∣ = | − x− h− x + h| = 0.

Consequently,

lim
h→0

1
|h|
|f (x + h)− f (x)− g(x + h)h| = 0

and | · | is Newton differentiable.
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Superlinear convergence

Theorem
Let x̄ be a solution to F(x̄) = 0, with F Newton differentiable in
an open neighbourhood V containing x̄. If

∥G(x)−1∥L(Z,X) ≤ C,

for some constant C > 0 and all x ∈ V, then the Newton iteration

xk+1 = xk − G(xk)
−1F(xk)

converges superlinearly to x̄ provided that ∥x0 − x̄∥X is
sufficiently small.
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Differentiability of the max function

The mapping y 7→ max(0, y) from Rn → Rn with

g(y) =

{
1 if y ≥ 0
0 if y < 0

as generalized derivative, is Newton differentiable.

Green light for solving the system

Fi(u) = max {min{τ(∇i f (u) + β), ui}, τ(∇i f (u)− β)} = 0,∀i

with a generalized Newton method.
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By defining the following index sets:

N k :=
{

i : uk
i ≤ τ

(
∇i f (uk)− β

)}
,

Ak :=
{

i : τ
(
∇i f (uk)− β

)
≤ uk

i ≤ τ
(
∇i f (uk) + β

)}
,

Pk :=
{

i : uk
i ≥ τ

(
∇if (uk) + β

)}
,

the Newton updates can also be written in the following form:

eT
i d = −uk

i , i ∈ Ak \
(
N k ∪ Pk)

∇2
i: f (uk)d = −

(
∇i f (uk) + β

)
, i ∈ Pk \ Ak

∇2
i: f (uk)d = −

(
∇i f (uk)− β

)
, i ∈ N k \ Ak(

δi∇2
i: f (uk) + (1− δi)eT

i
)

d = −τ
(
∇i f (uk)− β

)
, i ∈ N k ∩ Ak(

δi∇2
i: f (uk) + (1− δi)eT

i
)

d = −τ
(
∇i f (uk) + β

)
, i ∈ Pk ∩ Ak

and set uk+1 = uk + d, where ∇2
i: f (x) stands for the i–th row of

the Hessian and ei is the canonical vector of Rm

64 / 90



Properties

For different choices of τ and δ known efficient methods are
obtained:
▶ For δi = 0 and τ = αk (the steplength), a second order

version of the ISTA algorithm is obtained.

▶ For τ sufficiently small such that

sign
(
uk

i − τ
(
∇if (uk) + sign(uk

i )β
))

= sign(uk
i ), ∀i : uk

i ̸= 0.

and

δi = 0, for all i ∈
(
N k ∩ Ak) ∪ (Pk ∩ Ak)

the orthantwise NW-CG method is obtained.
▶ For the choice τi = δi =

1
γ+1 , the enriched second order

method is obtained.
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The effect of ℓ1–norm penalization

min
u

1
2
∥Au− y∥2

2 + β ∥u∥1
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Orthantwise directions
The revival of subgradients

The choice of the minimum norm subgradient element gives
rise to the so-called orthantwise directions.

j(u), f (u) (regular part), ℓ1-norm
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Orthantwise directions
Example

If f ′(u) > 0 and sign(u) = 1 then move along the negative
direction.
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Orthantwise directions
Example

If u = 0 and f ′(u) < 0, then

▶ if f ′(u) + 1 < 0, move along the positive direction,
▶ if f ′(u) + 1 ≥ 0, stay at 0.
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Orthantwise directions
Definition

zi =



1 si ui > 0
−1 if ui < 0
1 if ui = 0 y ∇if (u) < −β
−1 if ui = 0 y ∇if (u) > β

0 otherwise

Defined orthant

Ωk := {d : sign(di) = sign(zi)}
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Orthant-wise methods

Phases
▶ Identification of the orthant where the optimization step

takes place.

▶ Computation of a descent direction in the identified orthant
using second order information.

▶ Projected line–search to guarantee that the iteration stays
in the same orthant.

▶ Orthantwise directions correspond to minimum norm
subgradient elements.

Is this fast?
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OWL-QN (Andrew-Gao (2007))
Orthantwise limited memory quasi-Newton method

▶ Directions

vk = ∇̃iJ(uk) =


∇if (uk) + βsign(uk

i ) if uk
i ̸= 0

∇if (uk) + β if uk
i = 0 and ∇if (uk) < −β

∇if (uk)− β if uk
i = 0 and ∇if (uk) > β

0 otherwise

▶ Multiplying by limited memory inverse Hessian (or solving
the BFGS full system) approximation of the regular part

dk = B−1
k vk

▶ Projection: preserve components if signs coincide;
otherwise set to 0.

pk = P(dk, vk),

where Pi(x, y) =

{
xi if sign(xi) = sign(yi)

0 otherwise.
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Iteration

Resulting iteration

uk+1 ← PO(uk + αkpk)

where:

PO(ui) =

{
ui if sign(ui) = sign(zi)

0 otherwise.

and αk is chosen according to the line search rule:

J(PO(uk + αpk)) ≤ J(uk)− σ(vk)T [PO(uk + αpk)− uk]
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NW–CG (Byrd et al. (2012))
Orthantwise Newton-CG algorithm

Steepest descent type direction:

∇̃iJ(uk) =


∇if (uk) + βsign(uk

i ) if uk
i ̸= 0

∇if (uk) + β if uk
i = 0 and ∇if (uk) < −β

∇if (uk)− β if uk
i = 0 and ∇if (uk) > β

0 otherwise

or, equivalently, ∇̃iJ(u) = ∇if (u) + βzi, for all meaningful
components with

zi =



1 si ui > 0
−1 if ui < 0
1 if ui = 0 y ∇if (u) < −β
−1 if ui = 0 y ∇if (u) > β

0 otherwise

Defined orthant: Ωk := {d : sign(di) = sign(zi)}
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Subspace minimization

Define the strong active set as Ak := {i : zk
i = 0}

Subspace minimization

min
d∈Rn

J(uk) + ∇̃J(uk)Td +
1
2

dTBkd

sujeto a: di = 0, for i ∈ Ak.

CG solution of the linear system[
YT

k BkYk
]

dY = −YT
k ∇̃J(uk),

where Yk is a basis spanning the set of free variables. The
increment is given by dk = YkdY .

Set uk+1 = uk + αkdk, where αk is chosen according to

J(PO(uk + αdk)) ≤ J(uk)− σ∇̃J(uk)T [PO(uk + αdk)− uk]
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Enriched Hessian information
joint work: J.C. De los Reyes, E. Loayza and P. Merino

Idea: Incorporate more information on the second order matrix.

uk+1 → PO
[
uk − αk (Bk + ? )−1∇J̃(uk)

]

How to do that?

In a distributional sense the second derivative of the ℓ1-term is
given by Dirac’s delta function:

δ(u) =
{

+∞ if u = 0
0 otherwise.

Can we use this?
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Huber regularization

hγ(ui) =

{
γ

u2
i

2 if |ui| ≤ 1
γ ,

|ui| − 1
2γ if |ui| > 1

γ .
∇hγ(ui) =

γui

max{1, γ|ui|}

Properties
The Huber function is continuously differentiable and has a
second generalized derivative.
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Weak second order information

[
∇2hγ(u)

]
ii =

γ

max{1, γ|ui|}
− γ2 χ ui sign(ui)

max{1, γ|ui|}2 ,

where χ is the indicator function of the set {i : |ui| > 1/γ}.

From this we have

(
∇2hγ(u)

)
ii =

{
γ si γ|ui| ≤ 1
0 otherwise
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Proposed algorithm

Enriched orthant-wise method

uk+1 → PO
[
uk − αk

[(
Bk +∇2hγ(uk)

)−1∇J̃(uk)
]]

∇iJ̃(u) =


∇if (u) + βsign(ui) if ui ̸= 0
∇if (u) + β if ui = 0 and ∇if (ui) < −β
∇if (u)− β if ui = 0 and ∇if (ui) > β
0 otherwise

Line–search step: find the largest αk ∈ [0, 1] such that

J
(
PO[uk + αkdk]

)
≤ J(uk) + σ∇J̃(uk)T (PO[uk + αkdk]− uk)
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Properties of the enriched algorithm

▶ Orthantwise directions (with projection) are indeed descent
directions.

▶ Defining the active set by

Sk = {i : zk
i = 0},

if uk is close to ū and strict complementarity holds, then

Sk ⊂ Sk+1 ⊂ A(ū)

Neighborhood is larger in our algorithm.

Practical consequence: Faster identification of active set.
▶ Once you get close to zero, you may want to stay there.
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Behaviour for PDE-constrained optimization
Comparison of methods
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Random quadratic problems

min
u∈Rn

1
2

uTQu + β∥u∥ℓ1

▶ Q is generated by the MATLAB function sprandsym,
ensuring the positive definiteness

▶ Matrices with 25% of zero entries
▶ β was generated randomly in the interval [2.5; n/3]
▶ Fail criteria: if convergence is not reached within first 5000

iterations
▶ We solve 1000 experiments
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Performance

Condition number of Q
Algorithms

Enriched NW-CG OWL
Number of failures

Moderate 0 0 0
High 0 260 2
Total 0 260 2

Table: Failures out of a set of 1000 random generated problems.

Algorithm Mean Variance
Enriched 4.2970 0.4252
NW–CG 69.3149 9.6458e+04

OWL 3.7154 0.7394

Table: Global performance of the algorithms
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Are there drawbacks?

Main issue: Needs to solve the linear system(
Bk +∇2hγ(uk)

)
dk = −∇̃J(uk)

which can be prohibitive for large–scale optimization problems:
▶ computational power: solve a linear system every step is

expensive
▶ storage: System matrix may need tons of RAM, possibly

can not be stored at all
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Reduced Oesom

Alternative: incorporate the projection in the building of the
second order matrix.
Reorder the iterates

dk = (dk
Sk , dk

I\Sk)
T

Assemble the reduced second order matrix

(Bk
R)ij = (Bk)ij + (∇2hγ(uk))ij, i ∈ Sk, ∀j

the following system may be solved:(
I 0
Bk

R

)(
dk
Sk

dk
I\Sk

)
=

(
−xk

Sk

−∇̃φ(xk)I\Sk

)
.

Now, second order information is only used for the update of xk
i ,

i ∈ I\Sk
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Reduced Oesom

▶ Sk tends to be large (sparse solution), therefore the former
system can be solved by decoupling.

▶ Bk
R my be a dense matrix

▶ Reduced Oesome algorithm can be casted as a
Semi-smooth Newton Method by setting τ = 1/(γ+1) and γ
large, such that

sign
(
xk

i − τ
(
∇if (xk) + sign(xk

i )β
))

= sign(xk
i ) for all i : xk

i ̸= 0.
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Conclusions and perspectives

▶ Sparse optimization problems are present in a wide variety
of application areas, from machine learning to image
processing.

▶ The optimal solutions may be characterized by optimality
conditions involving primal and dual variables.

▶ There is a large class of first order methods that efficiently
computes each iteration, although many iterations are
needed.

▶ The inclusion of second-order information (strong and
"weak") improves the algorithms performance.

▶ Semismooth Newton methods provide an alternative for
the numerical solution of the optimality condition.
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Perspectives

▶ Alternative line-search rules
▶ Adaptive choice of different parameters
▶ Relation to semismooth Newton methods-investigation of

further SSN based algorithms
▶ Development of algorithms for problems involving the

lp-norm, with 1 < p < 2.
▶ Development of efficient methods for sparse optimal

control problems.
▶ Several application examples
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