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One should not go looking for more complex explanations when there is a simpler one.

Sparse: present only in small amounts; less than necessary or
normal; thinly covering an area; not thick or full.

disperso, esparcido, ralo.

There are several optimization problems were sparse
solutions are required (e.g., in machine learning, data
acquisition, image restoration, etc.)

Recently, sparsity has also been considered in PDE
constrained optimization problems.

In recent years, a huge amount of new literature emerged

on the subject.
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case of vectors: solutions easy to interpret

small support in case of functions: allows the localization
of the action of the control
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Large-scale optimization
Nonsmooth optimization
Application-specific knowledge
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Linear regression

A : matrix of individuals and features, i.e., g;; is the value of
attribute j of individual i.

u : is the decision vector with all the coefficients
y : is the dependent vector

Mode

Mat

Find the optimal coefficient vector u € R” such that

_ 1
i = arg min > [[Au - y|3.
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Example

Suppose we have a large database of clients with several n > 1
attributes (e.g., salary, age, years of education, number of
shirts, etc.), and a dependent variable y (e.g., income). By
minimizing the least squares cost

1w — 13,

we get a coefficient vector u = (uy, ..., u,) that best fits the
data. The vector acts also as predictor in case of new clients.
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Suppose we have a large database of clients with several n > 1
attributes (e.g., salary, age, years of education, number of
shirts, etc.), and a dependent variable y (e.g., income). By
minimizing the least squares cost

1w — 13,

we get a coefficient vector u = (uy, ..., u,) that best fits the
data. The vector acts also as predictor in case of new clients.

How to predict the income of a new individual?

Do we need to collect all n > 1 attribute information for the
new clients?
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a
How to obtain a sparse predictor vector?

The idea consists in solving a least squares problem with an
additional bound on an appropriate norm of the vector, i.e.,

%&*MM—Nz

subject to: ||ullo < M

where ||u||o counts the number of nonzero entries of w.

Problem of combinatorial nature
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We randomly generate an attribute matrix of size 1000 x 500
and a dependent variable y of length 1000. Solving (with
MATLAB LsQLIN function) the classical least squares problem
with get a full coefficient vector
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Lasso Mat

We randomly generate an attribute matrix of size 1000 x 500
and a dependent variable y of length 1000. Solving (with
MATLAB LsQLIN function) the classical least squares problem
with get a full coefficient vector

On the other hand, solving the Lasso problem, with a sparsity
constraint, we get a sparse predictor

Much less information has to be collected for a new individual in
order to predict its behaviour.
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Speech recognition
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Speech recognition Mt

Vector of features for a 10ms frame of speech and a label
representing the phonetic state.
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Speech recognition Mt

Vector of features for a 10ms frame of speech and a label
representing the phonetic state.

Voice activation filtered speech Mel coefficients

.3 —
0 1000 2000 3000 4000 5000 6000 7000 0 2 4 6 8 10 12 14 16 18

Goal

Maximize the conditional probability of the correct phonetic
state, given an observed features vector.
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Logistic regression

Simple logistic regression yields the probability of an event,
given a prediction vector u:

ply=1) = 1-T-X§x(;(52a)
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Speech recognition Mt

m

]
min j(u Z 27 Bllullx

lECe puiz

where:

C : set of labels

z; : feature vector for point j

u; : parameter subvector for class label i
m : number of training points

y; : class label associated with data point j
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Speech recognition Mat

m

mln] Z ——l—ﬁHqu

Yiec eXPU; 3

where:

C : set of labels

z; : feature vector for point j

u; : parameter subvector for class label i
m : number of training points

y; : class label associated with data point j

Problems are usually of very large scale
Subsampling is mandatory in this context

Important to combine efficient optimization with stochastic
approaches
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Matrix completion

In 2006 Netflix offered a US$1,000,000 prize for an algorithm
that substantially improves the accuracy of predictions about
how much someone is going to enjoy a movie based on their
movie preferences.

NETFLIK

Watch Instantly ‘ Browse DVDs ‘ Your Queue ‘ Movies You'll ®

Congratulations! Movies we think You will @

Add movies to your Queue, or Rate ones you've seen for even better suggestions.
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Goal: fill the zero elements of a sparse matrix, based on the
observed non-zero entries.
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Matrix completion

Goal: fill the zero elements of a sparse matrix, based on the

observed non-zero entries.
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Matrix completion Mt

There are only few factors that determine the movie
preferences of users.

The observed non-zero entries of the matrix are uniformly
distributed (at least one observation per row and one
observation per column).

Mathematically, the problem can be stated in the following form:
min rank(X)
X
subject to: X;; = M;;, (i,j) € Q,

with €2 the set of locations corresponding to observed entries.
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There are only few factors that determine the movie
preferences of users.

The observed non-zero entries of the matrix are uniformly
distributed (at least one observation per row and one
observation per column).

Mathematically, the problem can be stated in the following form:
min rank(X)
X
subject to: X;; = M;;, (i,j) € Q,

with €2 the set of locations corresponding to observed entries.

Drawback: Any solution algorithm requires too much time to
compute an exact solution.
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Important Property. If a matrix has rank r, then it has exactly r
nonzero singular values.
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Matrix completion Mt

Important Property. If a matrix has rank r, then it has exactly r
nonzero singular values.

Instead of using the rank of X, one can consider the nuclear
norm minimization, i.e.,

min [|X]|
X
subject to: X;; = M;;, (i,j) € Q,

where || X||. = Y_7_, ok(X), where o4(X) is the k™ largest
singular value of X.

The relation between rank(X) and || X||.. for matrices is similar to
the relation between the /y-norm and the /;-norm for vectors.
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A theoretical result Mat

Let M be an ny x ny matrix of rank r and put n = max(nj, ny).
Suppose we observe m entries of M with locations sampled
uniformly at random. Then there are constants C and ¢ such
that if

m>Cn'/* r log n,

the minimizer to the matrix completion problem is unique and
equal to M with probability at least 1 — cn—3, that is to say, the
semidefinite program recovers all the entries of M with no error.

B

Exact Matrix Completion via Convex Optimization. Foundations of Computational
Mathematics. Volume 9, pp 717-772, 2009.
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Let M be an ny x ny matrix of rank r and put n = max(nj, ny).
Suppose we observe m entries of M with locations sampled
uniformly at random. Then there are constants C and ¢ such
that if

m>Cn'/* r log n,

the minimizer to the matrix completion problem is unique and
equal to M with probability at least 1 — cn—3, that is to say, the
semidefinite program recovers all the entries of M with no error.

B

Exact Matrix Completion via Convex Optimization. Foundations of Computational
Mathematics. Volume 9, pp 717-772, 2009.

Solution methods. Semidefinite programming algorithms.
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Optimal control
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Sparse optimal control

. A
min J(y,u) = (v, ) + 2 ully + Bllullz o)

subject to :
8y(8xt’ 0 _ vAy(x,t) = ry(x,1) (1 — y();,t)) — u(x)y(x, 1)

+ boundary conditions -+ initial conditions

v : diffusion parameter u« : mortality rate to be controlled
r : growth rate k : environmental capacity

© represents the fumigation strategy. )
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Localized fumigation
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An optimal control example Mat = I\]

L>-term only

A
mln 5 || Yy —ya ||L2(Q) +3 [l u ||L2(Q)

(P) S.t.
—Ay=u+f inQ
y=20 onT

‘\
\3&3\\‘\\\,\.\.\“ ‘},‘\\\\ \\,\
.wWWQ @mmh
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An optimal control example Mat =1\

With additional L!-term

mln— Il y—ya ||L2(Q) + [ u ||L2(Q) +B8 1l u oo

(P) S.t.
—Ay=u+f inQ
y=0 onTl’
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Medical imaging

20/90



Outline

Lasso

Speech recognition

Matrix completion

Optimal control

Medical imaging
Sparsity through the /; norm

Why does it work?

Optimality condition

Duality

Mode
Mt =M
M=

Steespest descent
Subgradient descent
Proximal methods
Coordinate descent
method

Projection methods

Semismooth Newton
method
Orthantwise Methods

20/90



Mode

Outline Mat

Why does it work?

20/90



Lasso revisited Mode
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Why does it work? °

1
;relﬁgz!l u—yl3

subject to: ||ul|; < .
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Lasso revisited Mode
Alternative formulations ?

As unconstrained problem:
in 2 A y[3 + 3lul (1)
min — — u
ueRm 2 Uiz :

With the least squares term as constraint:

min |ul|;
ucR”?

subject to: [|[Au —y|, <€
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Lasso revisited Mode
Alternative formulations ?

As unconstrained problem:
in 2 A y[3 + 3lul (1)
min — u—
ueRm 2 2 !

With the least squares term as constraint:

min ||u|;
ucR”
subject to: ||Au — y||, < €

We focus on unconstrained optimization problems like (1)
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Optimality condition
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Abstract result Mat

Let J be a convex function and consider the optimization
problem

min J(u)
u
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Let J be a convex function and consider the optimization
problem
min J(u)
Defining the subdifferential by
oJ(u) :=={p eR™: T (v —u) <J(v) — J(u)}

we obtain the following general result.

For any convex function J : R* — R, if a pointu € R" is a global
minimum of J if and only if 0 € 0J(u) holds.
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Let J be a convex function and consider the optimization
problem
min J(u)
Defining the subdifferential by
oJ(u) :=={p eR™: T (v —u) <J(v) — J(u)}

we obtain the following general result.

For any convex function J : R* — R, if a pointu € R" is a global
minimum of J if and only if 0 € 0J(u) holds.

If g is differentiable, then 0J(u) = {VJ(u)}.

22/90



Optimization problem

More structure

Mode
Mat

We focus on the unconstrained optimization problem:
min J(u) = f(u) + Bllull (P)

where f is convex and differentiable.

Letj, : R" — R be differentiable and j, : R" — R convex and
continuous. Ifu € R" is an optimal solution to

min j; () + j2(u),
then it satisfies the following optimality condition:

@ —a) +jr(v) —ja(a@) >0, forallv e R".

23/90
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Proof Mat

Jj1 convex and differentiable, j, convex continuous
Ji(@) + ja (i) < j1(w) + ja(w), Yw
Takingw =u+1t(v—u),0 <t <1,
0 <ji(@+1(v—u) —ji(@) +ja(a+1(v —u)) —ja(a)
<ji(a+t(v—u)) —ji(@) +1j2(v) + (1 = 1) ja (&) — ja (&)
Dividing by ¢ and taking the limit:

0 < jl(ﬁ+t(v _tﬁ)) _jl(ﬁ) +j2(V) —jz(b_t)

= 0 <ji(@)(v — &) +j2(v) — ja(@).

24/90



Optimality condition

min J(u) = f(u) + B]|ul/;

ucR?

Mode

Mat

The optimality condition is given by:
V@) (v —u) + B||v| — Bllul|; >0, forallv e R,
which can be reformulated as
—Vf(a) € 98| ull

or, equivalently,

Vif(u) +8=0 if; >0

V,f(ft)—ﬁzo ifu; <0

0€[Vif(u)—B,Vif(u)+ 5] ifu; =0

25/90
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Consider the one dimensional problem

1 )
min = (y — )" + Blul.

Since the subgradient of the absolute value function is

1 ifu>0
Oul=<1-1,1 ifu=0
—1 if u <0,

the solution of the problem is given by

- {o fly| <
= s .
(1 |y|> y otherwise.

The last operator is called soft-thresholding.

26/90
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Fenchel duality Mode
Abstract setting °

Our problem may be written in the general form:

inf F(u) +G(Au),

where F: V=R" >R, G:Y=R"—>Rand A € L(V,Y).
Defining the conjugate of a function 4 : V — R by

() = sup{(v*,v) — ()}

which is convex function. The dual problem is then given by:

q*eRn

where A* is the adjoint operator of A.
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Fenchel duality Mode

. . Mat
Optimality system

Letu and g be the optimal solutions to the primal and dual
problem, respectively. Then there is no duality gap, i.e.,

F(u) + G(Au) = —=F*(=A"q") + G*(q")
and both solutions satisfy the following extremality conditions:

—AN"g € OF(u)
—q € 0G(Au).

The extremality conditions are necessary and sufficient.

28/90
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Duality for Lasso Mat
Considering the Lasso problem
1 2
min = f|Au — yz + Bllul:
the Fenchel dual problem is given by

—Z|Au —
min -3 w13~ (g,
subject to:
AT(Au—y)+4=0

|(7i‘ < /3) Vi

29/90
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Duality for Lasso Mat

Considering the Lasso problem
min = [l4u — 3 + Bllu]
uckr 2

the Fenchel dual problem is given by

min —*HAM =3 = (g.0)
subject to:
AT(Au—y)+4q=0
lqi| < B, Vi
and the optimality system by
AT(Au—y)+4" =0
g1 < B Vi=1,...,n
q; u; = fu;| Vi=1,...,n.

29/90
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Duality for Lasso Mat

By defining the auxiliary dual multiplier
q:=y—Au
the dual problem can be rewritten as

: 2
g@ﬂq—ﬂb

subject to: [AT¢| < B.

The number of active faces of the constraint set
corresponds to the number of nonzero entries of u.
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The optimality system for our case is given by

Ali—y+g=0
(A T*)'!<B Vi=1,....n
(ATq); u; = Blu] Vi=1,...,n.

where g is the dual solution.

The dual problem and the resulting optimality system provide
important information, which may be of use for the design of
solution algorithms.
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Steespest descent Mat

Let us consider the following minimization problem:

min f(u),

with f continuously differentiable.

The main idea of descent methods consists in finding, at a
given iterate u;, a descent direction g, i.e,

flug + oxgr) < f(ux) with oy > 0.
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Steepest descent Mat

The most natural choice would be to pick as direction the one
that leads to the maximum descent of the objective function
(locally), i.e, the one that solves the problem

“Hhinl Vf(u)"g minimization of the linear model of f
g =

Letf : R* — R be continuously differentiable and u € R" such
that Vf(u) # 0. Then the optimization problem has a unique
solution given by

_ V()
IVf ()
Consequently, any direction of the form
gk = —aka(uk), Oy > 0 (2)

corresponds to a "steepest descent” direction.
33/90
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Line search .

Once the descent direction is determined, is important to know
how far to move in such direction, i.e, which parameter oy > 0
should be used. The ideal choice would be

o = arg min f (ux + agy)
a>0
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Line search .

Once the descent direction is determined, is important to know
how far to move in such direction, i.e, which parameter oy > 0
should be used. The ideal choice would be

o = arg min f (ux + agy)
a>0

This is, however, not possible in practice!
In general the following feasibility condition is required to get
convergence:

-
fue + cucgr) — f (uk) 0 — Vi (uk) " gk

k—00 Hng k—00

34/90
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Armijo’s line search rule Mat

A popular line search strategy is the Armijo rule, which consists
in the following: given a descent direction g, of f at u;, choose
ox € {1,3,% -} such that

Fuk + cugi) — f (o) < vy Vif (i) " g,

where v € (0, 1) is a given constant.
There exists an interval of feasible steps.
Armijo’s rule satisfies the feasibility condition.
Sketch
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Subgradient descent Mat
Given the optimization problem

min J(u),
u

with J convex, the main idea of subgradient methods consists in
choosing an element of the subgradient to construct a direction
in which to advance in order to improve the cost function value.
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Given the optimization problem

min J(u),
u

with J convex, the main idea of subgradient methods consists in
choosing an element of the subgradient to construct a direction
in which to advance in order to improve the cost function value.

U1 = up — on (Vf(ux) + Bs), with s € O|ur|s
—_—

=:gk
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Subgradient descent Mat
Given the optimization problem

min J(u),
u

with J convex, the main idea of subgradient methods consists in
choosing an element of the subgradient to construct a direction
in which to advance in order to improve the cost function value.

U1 = up — on (Vf(ux) + Bs), with s € O|ur|s
—_—

=8k

Subgradient methods were developed in the 60’s and 70’s.

B

Minimization Methods for Non-differentiable Functions. Springer Verlag, 1985.
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Subgradient descent

Constant step size: oy = «, constant independent of k.

Constant step length: oy =

Square summable but not summable:

iak < 00 Zak—
k=1 k=1

A prototypical example is oy =
Nonsummable diminishing:

[o.¢]
lim o =0 E ap = 00
k—o00

A prototypical example is o = %

_a
llgx

B

%"

k=1

Mode
Mat
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Subgradient descent Mode

. Mat
Computational results

Numerical results for
min [ max (al u + b,-)] ,
u i=1,....m

with different line search rules.

3
0 50 100 150 200 250 0 500 1000 1500 2000 2500 3000 3500
k
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Subgradient descent

Unlike the steepest descent method, there is no
guaranteed descent at each iteration.

The iterates converge globally with

) — I(@) = 0<¢1,;>

Usually convergence is very slow
The problem structure is not exploited

39/90
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lterative Shrinkage-Thresholding Algorithm (ISTA)
min J(u) = f(u) + Blull (P)

ucR?

An important operator is the so called proximal operator
defined for a convex function J : R” — R

1
Prox;(v) = arg min {J(u) + EHM - v||%}
Solve at each iteration the linearized problem
q T L 2
min f(ue) + Vi ()" (u = ) + Blluells + Sl — well3,
or, equivalently,

.1 1 .
min 2~ (s — TV + 2l (MinProx)

where L > 0 is an upper bound for Vf (usually unknown).

40/90



Proximal methods Mode
Iterative Shrinkage-Thresholding Algorithm (ISTA) .

Increase the value of L until
L
flur) < flue) + Vi (u)" (ur — we) + EHML — wilf3

where u; is the solution of (MinProx).

The method converges globally with a rate of 0(%).

There are accelerated versions of the proximal algorithm
with convergence rate O(5).

Accelerated version do not necessarily lead to descent
directions.
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Proximal methods Mode
Proximal operator .
The efficiency of proximal methods depends on the fast

computation of the proximal operator

. 1
Proxgy, () = argmin { b~ ul3 + 8l }.
since the iteration is given by
1
U1 = me%w, (uk — —Vf(w)).

L

Thanks to the optimality conditions, the proximal operator can
be computed through

)

Proxg . w)|.=(1——] wj

[Proxg.j, (w)], ( i),

where (x)4 := max(0, x).

Componentwise, the proximal operator is the soft-thresholding

operator.
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Fast Iterative Shrinkage-Thresholding Algorithm Mode
(FISTA)

The fast version of the Iterative Shrinkage-Thresholding
Algorithm consists in choosing, instead of the previous iterate
u, a clever linear combination of the previous two iterates.

1: Initialize uo, 1o = 1 and uy = Proxs, (uo — 1 Vf(uo))-
L
2: while stoping criteria is false do

144/1+42
Compute 7 = @

3 2

4: Compute yp = ux—1 — (%}f“) (uk — w—1)
5. Update uyy; = me%ll-Hl Ok — %Vf()’k))-

6 k< k+ 1.

7: end while
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Proximal methods Mode
A Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) °

The method arised from the complexity analysis of ISTA.

While ISTA has convergence of order O(k~!), FISTA has
convergence rate of order O(k2).

A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
SIAM J. Imaging Sciences, Vol. 2, pp. 183-202, 2009.

10° 1
= = =ISTA

W

log(relative distance to optimum)

10° -3[—saG
Fista
©-lsta
5 -4
10 3 2 -1 0 1 2 3 4
0 2000 4000 6000 8000 10000 log(CPU time) in seconds
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Mode

Outline Mat

Coordinate descent
method
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Coordinate descent method Mode
la
Lasso

By selecting a coordinate j, this method is based on the
sequential coordinate-wise solution of

2 Vi
where V; f(u) = Al (Au — y) and V7 f (u) = AT A;.

min Vi f () (uy — uf) + 1V'Z'f(uk)(“j — 1) + Bl

5:2-6xy+5 4200258 = 0

Coordinate descend iterations
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Coordinate descent method Mode
Lasso 2

By means of the proximal operator with L = V3 f(u*), the
solution can be expressed in close form as

Vi f ()
u: = Proxgs, (ul?—u ,
s LA T

i.e., u; is obtained by solving the unregularized problem with
respect to coordinate j and soft-thresholding it.
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Coordinate descent method Mode

Mat
Smooth losses

If f is not a least squares term, the solution has not a direct
closed form. However, we can still compute the solution to the
quadratic model

u;:argHL}Dij(uk)( )‘f‘zvjzjf( )(“j_“f)2+5|uf|

and combine it with an Armijo line search: Choose a € (0, 1)
such that
J(u* + adej) — J(u") < oa(V; f(uF)d + |qu +d| — ]u )
k

whereo—>0andd:ujf—ui.
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Coordinate descent method Mode
Basic algorithm @

1: Initialize uy,
2: while stoping criteria is false do
3: CHOSEj € {1,2,...,n}
¥ Vi f(u)
4. COMPUTE u; = me%‘_| (uj" — W) ,
5. UPDATE u**! = uf + (uf — uj)e;, for some oy € (0,1)
6: k<+ k+1.
7: end while
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Coordinate descent method Mode

. . Mat
Choosing coordinates

In this framework, there is a lot of freedom in choosing the
index j.
Cyclic fashion coordinates: iy = 1,

ix+1=(x modn)+1, k=0,1,2,...

Every T > n iterations each component must be modified
at least once: Ul_jix —j = 1,2,...,n

Randomized coordinates : not necessarily with equal
probability. For example, i, is choosen with uniform
probability in the set {1,2,...,n}, independent of the
choices of previous iterations.
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Convergence result for randomized CDM for Lassrmotde
a

Assumptions and notations

f is strongly convex and Lipschitz continuously
differentiable

Flowt(1-0)v) < af (w)+(1—a)f (1) ~go0(1-a) fu—v[3, Vuv

if f is twice continuously differentiable, f is strongly convex
iff V2f(u) is positive definite for all u

(Componentwise Lipschitz constants) Vi, 3L; such that
Vif (u+tei) = Vif u)| < Lilt|,  Vu,Vt € R

Linax = max L;
i
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Mode

CDM for Lasso Mat

) 1
min Vi f () (u; — uj‘) + Yo (uj — ujl-‘)2 + Buj|
u; k

1: Initialize uy,

2: while stoping criteria is false do

3: CHOSE i €{1,2,...,n}

4:  COMPUTE u;, = argmin, (u— ui-‘k)VLf(uk) + ﬁk(u,-k —u*)? 4
Bui,|, for some oy € (0,1)

5:  UPDATE u*! = u + (up — ui)e,-k,

6: k<« k+ 1.

7: end while
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Mode
Convergence result for randomized CDM for Lass(™

With the last assumptions at hand, let us suppose that the
coordinate index i, in CDM-Algorithm are chosen
independently for each k with uniform probability from the set
{1,2,...,n}, and that ay = 1/Ly.. Then for allk > 0, we have

p k
BO6) 60 < (1= 2 ) (6) - 1)

nL,0x
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Mode

Outline Mat

Projection methods
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Projection methods e
Nonlinear programming at

Let us consider the optimization problem

in J
min J(u),

with Q := {v € R" : ¢; < v; < b;} and f continuously
differentiable. The optimality condition is then given by

VI@)T(v—u)>0, YWweQ
or, equivalently, as
u="Pu—A\VJ(u), VA>0

where P(u); = min(max(u;, a;), b;).
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Projected gradient e
Nonlinear programming at

The idea of the projected gradient method consists in using the
optimality condition iteratively:

uir1 = Plug — VI (uy)),

where oy > 0 is a line search parameter. Sketch
The line-search parameter is chosen according to the projected
Armijo rule: choose the largest oy € {1, 1,1, ...} for which
g
J(P(ur — VI (u))) — (i) < —;k\IP(uk — VI () — e,

where o € (0, 1) is a given constant.
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Mode

Accelerated projection methods Mat

The application of projection methods considering other type of
directions d; = —H,:IVJ(uk) is by no means standard. For
Newton directions

dy = —(V2J () ™' VI (),

for instance, the application of the projected method may not
lead to descent in the objective function. To solve this problem,
the reduced Hessian

dij ifi e A(u) orje A(u)

(VI (u)j = {(vZJ(u))ij otherwise

where A(u) denotes the set of active indexes, may be used
instead of the full second order matrix.

55/90



Mode

Reformulation of Lasso Mat

By using the decomposition

u=u" —u"

with ut = max(0,u) and u~ = | min(0, «)| we obtain the
equivalent Lasso optimization problem:

1
: N = l2 it -
u+2n([)l,lurlzo J(Wu"u )—2||A(u u )=yl + Bl'u" + fl'u
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Projection methods e
Nonlinear programming at

The gradient of the function is given by

VerJwtu™)\ [ ATA(ut —u™) — ATy + 81
Ve Jwtu™))  \-ATA(uw"™ —u™) + ATy + B1

and the projected iteration is given by

<u,’f+1) _p (u,:r — on,ﬁJ(qu,u))

Uy w —aV,-Jutu)

where P(y) := max(0,y).
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Summary of projection methods vose
Nonlinear programming at

Several developed nonlinear programming toolboxes can
be used.

For directions different from the projected descent, some
effort has to be inverted in the construction of the Hessian
approximation.

The number of optimization variables doubles, causing
memory problems, as well as slowing convergence of all
available toolboxes.

The specific structure of the problem is not taken into
account.
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Outline

Lasso

Speech recognition
Matrix completion
Optimal control
Medical imaging

Why does it work?
Optimality condition
Duality

Mode
Mt =M
M=

Steespest descent

Subgradient descent

Proximal methods

Coordinate descent

method

Projection methods
Second order methods

Semismooth Newton

method

Orthantwise Methods
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Mode

Outline Mat

Semismooth Newton
method
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Mode

Reformulation of optimality system Mat

0= Vi f(a)+ 8 forie P,
0= Vif(a) — B forie NV,
0€ [Vif(a)—B,Vif(w)+p] forie A,

where the index sets P, N and A are defined as

P={i:u; >0}, N={i:u <0}, and A= {i:u =0}
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Mode

Reformulation of optimality system Mat

0= Vi f(a)+ 8 forie P,
0= Vif(a) — B forie NV,
0€ [Vif(a)—B,Vif(w)+p] forie A,

where the index sets P, A" and A are defined as
P={i:u; >0}, N={i:u <0}, and A= {i:u =0}
The system can be equivalently written as F(«) = 0, with
Fi(u) = max {min{7 (Vi f(u) + B), ui}, 7(Vi f(u) = B)},
where 7 is any positive constant.
How to solve the system efficiently?
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Semismooth Newton method

If there exists a neighborhood N(z) C S and a family of
mappings G : N(u) — L(X,Y) such that

|F(@+ h) — F(a) — G(@+ h)(h)|ly
l14llx—0 (|]lx

:O’

then F is called Newton differentiable at u.

Mode

Mat
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Semismooth Newton method

If there exists a neighborhood N(z) C S and a family of
mappings G : N(u) — L(X,Y) such that

| F(ath) - F@) - G@+ @l _,
Al ’

[IA]|x—0

then F is called Newton differentiable at u.

Mode
Mat

If F is Newton differentiable, a Newton type update can be
obtained as

G(uM)d = —F(u"), =k 1 d,

where G stands for the generalized Jacobian of F.
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Consider the absolute value function

f(x) = |

The function is not differentiable at 0. However, by using the
generalized derivative

[ -1 ifx<0,
$W=91 x>0
we obtain for the case x =0 :
ifth>0: |[x+h|—I|x|—|h|=0,

ifh<O0: |x+hl—|x|+|h|=|-x—h—x+h=0.
Consequently,

lim oo lf (x4 ) = f(x) — g(x + h)h| = 0

and | - | is Newton differentiable.
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Mode

Superlinear convergence Mat

Let x be a solution to F(x) = 0, with F Newton differentiable in
an open neighbourhood V containing x. If

1G(x) l2zx) < C,
for some constant C > 0 and all x € V, then the Newton iteration
Xk+1 = Xk — G(xk)_lF(xk)

converges superlinearly to x provided that ||xo — x||x iS
sufficiently small.
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Mode

Differentiability of the max function Mat

The mapping y — max(0,y) from R" — R" with

) = lify>0
8= Voity<o

as generalized derivative, is Newton differentiable.

light for solving the system
Fi(u) = max {min{7(V, f(u) + B),u;}, 7(V; f(u) — B)} = 0,Vi

with a generalized Newton method.

63/90



By defining the following index sets:

N = {ivdk < (Vif () - )},
A= {in 7 (Vif () = ) < uf <7 (Vif () +5)}
Pho={icuf > 7 (Vi () + B)}

the Newton updates can also be written in the following form:

eld = —uf, ie A\ (W UPY

2fhYd =~ (Vif(b) +8), icPh\ A

Ffhd == (Vif(uh) - 8), i€ N\ Ak

(6:;V7 f) + (1 — 5) Nd=—7(Vif) - B), ic NFnAF
(6:VE (W) + (1= 8)el)d = —7 (Vi f(u¥) + B) ie Pk Ak

and set u**! = u* + d, where V? f(x) stands for the i—th row of
the Hessian and ¢; is the canonical vector of R™
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Mode

Properties Mat

For different choices of = and § known efficient methods are
obtained:

For §; = 0 and 7 = o* (the steplength), a second order
version of the ISTA algorithm is obtained.
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Mode

Properties Mat

For different choices of = and § known efficient methods are
obtained:

For §; = 0 and 7 = o* (the steplength), a second order
version of the ISTA algorithm is obtained.

For 7 sufficiently small such that
sign (uf — 7 (Vi (u") + sign(ub)B)) = sign(uf), Vi : uf 0.
and

5 =0, forallie (N nA)uU (P NAY

the orthantwise NW-CG method is obtained.
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Mode

Properties Mat

For different choices of = and § known efficient methods are
obtained:

For §; = 0 and 7 = o* (the steplength), a second order
version of the ISTA algorithm is obtained.

For 7 sufficiently small such that
sign (uf — 7 (Vi (u") + sign(ub)B)) = sign(uf), Vi : uf 0.
and

5 =0, forallie (N nA)uU (P NAY

the orthantwise NW-CG method is obtained.

For the choice 7; = 6; = -

e the enriched second order
method is obtained.
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Mode

Outline Mat

Orthantwise Methods
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The effect of /,—norm penalization

1 2
min > 4 — {3 + 5 [l

{(Ix;y1{0.2:0.2]) A A" (Ix;y]{0.2:0.2]))+1.5 {abs(x) +abs(y))

Mode

Mat

M
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Mode

The effect of /,—norm penalization Mat

1 )
min [ Au = [ + 8 ],

(x -1)% + /3 abs(x)
T T T
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Orthantwise directions Mode
The revival of subgradients °

The choice of the minimum norm subgradient element gives
rise to the so-called orthantwise directions.

j(u), f(u) (regular part), £'-norm
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Orthantwise directions Mode
Example °

\ an

D —

If f'(u) > 0 and sign(«) = 1 then move along the negative
direction.
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Orthantwise directions Mode
Example °

‘ /
\ I
N, \ / A
\ //// ”//
\ : //” /
\ / /
I\ /’ /
\ o /
N\
AN
AN : Y y

If u =0andf’(u) <0, then

if f'(u) + 1 < 0, move along the positive direction,
if f'(u) + 1 > 0, stay at 0.
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Orthantwise directions Mode
Definition a

1 Siu; >0

-1 ifu; <0

zi=4q1 ifu;=0yVif(u)<-p
—1 fu; =0y Vif(u) >p
0  otherwise

Defined orthant

O == {d: sign(d;) = sign(z)}
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Mode

Orthant-wise methods Mat

Identification of the orthant where the optimization step
takes place.
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Mode

Orthant-wise methods Mat

Identification of the orthant where the optimization step
takes place.

Computation of a descent direction in the identified orthant
using second order information.
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Mode

Orthant-wise methods Mat

Identification of the orthant where the optimization step
takes place.

Computation of a descent direction in the identified orthant
using second order information.

Projected line—search to guarantee that the iteration stays
in the same orthant.
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Mode

Orthant-wise methods Mat

Identification of the orthant where the optimization step
takes place.

Computation of a descent direction in the identified orthant
using second order information.

Projected line—search to guarantee that the iteration stays
in the same orthant.

Orthantwise directions correspond to minimum norm
subgradient elements.

70/90



Mode

Orthant-wise methods Mat

Identification of the orthant where the optimization step
takes place.

Computation of a descent direction in the identified orthant
using second order information.

Projected line—search to guarantee that the iteration stays
in the same orthant.

Orthantwise directions correspond to minimum norm
subgradient elements.

Is this fast?

70/90



OWL-QN (Andrew-Gao (2007)) Mode

Mat
Orthantwise limited memory quasi-Newton method °

Directions
Vi () + Bsign(ied) if uf #0
_ Vi (i) + B if ¥ =0and Vif(u*) < —p
ve =ViJ(u') = Vi (k) — B if uf =0and Vif (') > 3
0 otherwise
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OWL-QN (Andrew-Gao (2007)) Mode

Mat
Orthantwise limited memory quasi-Newton method °

Directions
Vi () + Bsign(ied) if uf #0
_ Vi (i) + B if ¥ =0and Vif(u*) < —p
ve =ViJ(u') = Vi (k) — B if uf =0and Vif (') > 3
0 otherwise

Multiplying by limited memory inverse Hessian (or solving
the BFGS full system) approximation of the regular part

d“ = B
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OWL-QN (Andrew-Gao (2007)) Mode

Mat
Orthantwise limited memory quasi-Newton method °

Directions
Vi () + Bsign(ied) if uf #0
_ Vi (i) + B if ¥ =0and Vif(u*) < —p
ve =ViJ(u') = Vi (k) — B if uf =0and Vif (') > 3
0 otherwise

Multiplying by limited memory inverse Hessian (or solving
the BFGS full system) approximation of the regular part

dF = Bk—lvk
Projection: preserve components if signs coincide;
otherwise set to 0.

Pl =P,
x;  if sign(x;) = sign(y;)

where Pi(x,y) = {0 otherwise
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Mode

lteration Mt

Wt Py (uk + akpk)

where:
Polus) = 1 if Slgn(fdi) = sign(z;)
0 otherwise.

and o is chosen according to the line search rule:

J(Po(u + apt)) < J(u*) — o () [Po(u + ap’) — u*]
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NW-CG (Byrd et al. (2012))

M
Orthantwise Newton-CG algorithm .

Steepest descent type direction:

Vif (uk) + Bsign(ut) iful #£0
T () = Vif(u*) + B if u¥ =0and Vif(uk) < -3
' ) VS -8 if u¥ =0and Vif(uk) > 3
0 otherwise
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NW-CG (Byrd et al. (2012))

M
Orthantwise Newton-CG algorithm .

Steepest descent type direction:
Vi (u*) + Bsign(uk) if uf #£0

T () = Vif (u*) + if ¥ =0and V() < —p
U= vk - 8 if uf = 0 and Vif (i) > 3
0 otherwise

or, equivalently, V;J(x) = Vif(u) + Bz, for all meaningful
components with

1 Siu; >0

-1 ifu; <0

zi=q1l ifu;=0yVif(u) <-p

—1 ifu; =0y Vif(u) >p

0  otherwise
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NW-CG (Byrd et al. (2012))

Orthantwise Newton-CG algorithm Mat
Steepest descent type direction:
Vif (uk) + Bsign(ut) iful #£0

T () = Vif (u*) + if ¥ =0and V() < —p
U= vk - 8 if uf = 0 and Vif (i) > 3
0 otherwise

or, equivalently, V;J(x) = Vif(u) + Bz, for all meaningful
components with

1 Siu; >0

-1 ifu; <0

zi=q1l ifu;=0yVif(u) <-p

—1 ifu; =0y Vif(u) >p

0  otherwise

Defined orthant: Q := {d: sign(d;) = sign(z;)}
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Mode

Subspace minimization Mat

Define the strong active set as A; := {i : ¥ = 0}
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Mode

Subspace minimization Mat

Define the strong active set as A; := {i : ¥ = 0}

_ 1
: KNT T
+ d+ —d Bid
(gglnn J(ug) + VJI(u") 2 7

sujeto a: d; =0, fori € Ay.
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Mode

Subspace minimization Mat

Define the strong active set as A; := {i : ¥ = 0}

— 1
g T 1
+V d+ =d Bid
min J(ug) J(u") %

sujeto a: d; =0, fori € Ay.

[YIBuv] d" = —YIVI(ub),

where Y, is a basis spanning the set of free variables. The
increment is given by d; = Yid".
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Mode

Subspace minimization Mat

Define the strong active set as A; := {i : ¥ = 0}

N 1
g T 1
+V d+ =d Bid
min J(ug) J(u") %

sujeto a: d; =0, fori € Ay.

[YIBuv] d" = —YIVI(ub),

where Y, is a basis spanning the set of free variables. The
increment is given by d; = Yid".

Set ur1 = uy + oud®, where «y, is chosen according to
J(Po(u* + ad")) < J(u*) — oI [Po(u* + ad®) — u]
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Enriched Hessian information Mode
joint work: J.C. De los Reyes, E. Loayza and P. Merino Mat

Incorporate more information on the second order matrix.

W = Po [ — o (B + 7 )T VI ()
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Incorporate more information on the second order matrix.
W = Po [ — o (B + 7 )T VI ()
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Enriched Hessian information Mode
joint work: J.C. De los Reyes, E. Loayza and P. Merino Mat

Incorporate more information on the second order matrix.
W = Po [ — o (B + 7 )T VI ()

How to do that?

In a distributional sense the second derivative of the ¢'-term is
given by Dirac’s delta function:

_f 400 ifu=0
Olu) = { 0  otherwise.
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Enriched Hessian information Mode
joint work: J.C. De los Reyes, E. Loayza and P. Merino Mat

Incorporate more information on the second order matrix.
W = Po [ — o (B + 7 )T VI ()

How to do that?

In a distributional sense the second derivative of the ¢'-term is
given by Dirac’s delta function:

_f 400 ifu=0
Olu) = { 0  otherwise.

Can we use this?
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Mode

Huber regularization Mat
Ui if ] < 1 u
— ,YTf uil ~ =, N 44444444}444447
hey(ui) = gl Vh,(u;) =
’Y< ) {|M,’ — % if ‘M,“ > % ! ) max{177|”i|}
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Mode

Huber regularization Mat

2 , .

V3 if fu;] < =, N Vi
by (ui) = 7 Vhy () = ———
) {\Mi’ - % if |u;| > % T max{ 1, y|u|}

The Huber function is continuously differentiable and has a
second generalized derivative.
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Mode

Weak second order information Mt

. - ~ 5 X uiSign(u;)
(Vi W)]; = max{1,y|u;|} ! max {1, y|u;|}*’

where y is the indicator function of the set {i : |u;| > 1/7}.
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Mode

Weak second order information Mt

. - ~ 5 X uiSign(u;)
(Vi W)]; = max{1,y|u;|} ! max {1, y|u;|}*’

where y is the indicator function of the set {i : |u;| > 1/7}.

From this we have

2 _ v osiyluf <1
(Vo (W), = { 0 otherwise
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Mode

Proposed algorithm Mat

Kt Py [uk — oy {(Bk + )_1 VJ(uk)”

Vif(u) + Bsign(u;) ifu; #0

~ ) Vif(u)+p ifu; =0and Vi (u;) < —f
Vil () = Vif(u)—p ifu; =0and Vi (u;) >
0 otherwise

Line—search step: find the largest a; € [0, 1] such that

J (Po [u* + akdk]) < J(u) + oVIWh)T (Po " + ayd"] — uk)
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Mode

Properties of the enriched algorithm Mat

Orthantwise directions (with projection) are indeed descent
directions.
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Properties of the enriched algorithm Mat

Orthantwise directions (with projection) are indeed descent
directions.

Defining the active set by
Sk={i:Z =0},
if u* is close to & and strict complementarity holds, then

Sk S ¢ Am)
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Properties of the enriched algorithm Mat

Orthantwise directions (with projection) are indeed descent
directions.

Defining the active set by
St={i:z =0},

if u* is close to & and strict complementarity holds, then
Sk c S c Am)

Neighborhood is larger in our algorithm.
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Properties of the enriched algorithm Mat

Orthantwise directions (with projection) are indeed descent
directions.

Defining the active set by
Sk ={i: =0},

if u* is close to & and strict complementarity holds, then
Sk c S c Am)

Neighborhood is larger in our algorithm.

Practical consequence: Faster identification of active set.
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Mode

Properties of the enriched algorithm Mat

Orthantwise directions (with projection) are indeed descent
directions.

Defining the active set by
Sk ={i: =0},

if u* is close to & and strict complementarity holds, then
Sk c S c Am)

Neighborhood is larger in our algorithm.

Practical consequence: Faster identification of active set.
Once you get close to zero, you may want to stay there.
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Behaviour for PDE-constrained optimization Mode

Comparison of methods

500

k
»
=
=3

null entries of z

‘ el oo
W

QESOM -
—NG--CG
--QWL

50 100 150
lterations

200 250 300

Objective function

Mat

QESOM
—NW-CG _
——OWL

30 40 50
Iterations
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Mode

Random quadratic problems Mt

. 1 7
min - Su Qu+ f|ull

Q is generated by the MATLAB function sprandsym,
ensuring the positive definiteness

Matrices with 25% of zero entries
B was generated randomly in the interval [2.5; /3]

Fail criteria: if convergence is not reached within first 5000
iterations

We solve 1000 experiments
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Performance Mat

Algorithms
Condition number of O | Enriched | NW-CG | OWL
Number of failures

Moderate 0 0 0
High 0 260 2
Total 0 260 2

Failures out of a set of 1000 random generated problems.
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Performance Mat

Algorithms
Condition number of O | Enriched | NW-CG | OWL
Number of failures

Moderate 0 0 0
High 0 260 2
Total 0 260 2

Failures out of a set of 1000 random generated problems.

Algorithm | Mean Variance
Enriched | 4.2970 0.4252
NW-CG | 69.3149 | 9.6458e+04

OWL 3.7154 0.7394

Global performance of the algorithms
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Are there drawbacks? Mat
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Mode

Are there drawbacks? Mat

Needs to solve the linear system
(Bk + ) dk = —%J(Mk)

which can be prohibitive for large—scale optimization problems:

computational power: solve a linear system every step is
expensive

storage: System matrix may need tons of RAM, possibly
can not be stored at all
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Reduced Oesom .

Alternative: incorporate the projection in the building of the
second order matrix.
Reorder the iterates

d* = (dg df\ )"
Assemble the reduced second order matrix

(BR)ij = (BN + (V*hy (u¥))y, i€ Sk V)

the following system may be solved:

(1 0) d¥, _( i )
By d;(\sk —VSD(xk)I\sk '
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Reduced Oesom Mat

Alternative: incorporate the projection in the building of the
second order matrix.
Reorder the iterates

dk = (d‘kgkad \Sl‘)
Assemble the reduced second order matrix

(BR)ij = (BN + (V*hy (u¥))y, i€ Sk V)

the following system may be solved:

() (&) - (outiins)

By I\Sk (xk)l\sk .

Now, second order information is only used for the update of x£,
ic\SF
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Reduced Oesom Mat

Sk tends to be large (sparse solution), therefore the former
system can be solved by decoupling.

B% my be a dense matrix

Reduced Oesome algorithm can be casted as a
Semi-smooth Newton Method by setting 7 = 1/(y+1) and ~
large, such that

sign (x}f — 7 (Vi (x*) + sign(x})8)) = sign(x})  foralli: x} 0.
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Outline Mat )\
M=

Steespest descent

Lasso Subgradient descent
Speech recognition Proximal methods
Matrix completion Coordinate descent
Optimal control method

Medical imaging Projection methods
Why does it work? Semismooth Newton
Optimality condition method

Duality Orthantwise Methods

Conclusions
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Conclusions and perspectives Mat

Sparse optimization problems are present in a wide variety
of application areas, from machine learning to image
processing.

The optimal solutions may be characterized by optimality
conditions involving primal and dual variables.

There is a large class of first order methods that efficiently
computes each iteration, although many iterations are
needed.

The inclusion of second-order information (strong and
"weak") improves the algorithms performance.
Semismooth Newton methods provide an alternative for
the numerical solution of the optimality condition.
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Perspectives Mat

Alternative line-search rules
Adaptive choice of different parameters

Relation to semismooth Newton methods-investigation of
further SSN based algorithms

Development of algorithms for problems involving the
[,-norm, with 1 < p < 2.

Development of efficient methods for sparse optimal
control problems.

Several application examples
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Bibliography e

Scalable training of ¢,—regularized log-linear models.

A Fast lterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.

Steepest descent for optimization problems with nondifferentiable cost
functionals.

Sample size selection in optimization methods for machine learning.
A family of second-order methods for convex ¢;—regularized optimization.

Variable metric forward—backward algorithm for minimizing the sum of a
differentiable function and a convex function.
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Second-order orthant-based methods with enriched hessian information for
sparse ¢;-optimization.

A second-order method for strongly convex ¢;-regularization problems.

Directional sparsity in optimal control of partial differential equations.

Gradient methods for minimizing composite functions.

An algorithm for quadratic 11-regularized optimization with a flexible active-set
strategy.

Optimization for machine learning.
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Elliptic optimal control problems with L!-control cost and applications for the
placement of control devices.

Regression shrinkage and selection via the lasso.

Accelerated block-coordinate relaxation for regularized optimization.

An efficient hessian based algorithm for solving large-scale sparse group lasso
problems.
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