
A general inverse problem

Given corrupted data , find  that solves 





where  is a forward operator that models the relation between  and , and  
is a noise component.

f u

f = T(u) + ε

T u f ε

• If  has an unbounded inverse, the problem is ill-posed (non-uniqueness, 
unstable inversion,…); noise has also to be modeled.


• The problem has to be regularized by adding a-priori information about the 
solution.
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•  is the data fidelity term, which forces the minimizer to obey the forward model 
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• The parameters  are key to obtain good reconstruction results.λ

• The result heavily depends on the prior (regularity of the image, basis function 
representation, sparsity, etc.), the data model (physical model  statistics, etc.) and the 
(hyper)parameters.
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• Other regularizers: second order total variation (TV2) [Papafitsoros & Schönlieb ’12], infimal 
convolution total variation (ICTV) [Chambolle, Lions ’99], etc. 

Most imaging regularizers are nonsmooth sparsity-based 
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Magnetic Resonance Imaging

• What is MRI? Magnetic resonance imaging (MRI) is a type of scan that uses strong 
magnetic fields and radio waves to produce detailed images of the inside of the body. An 
MRI scanner is a large tube that contains powerful magnets. You lie inside the tube during 
the scan.
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• In MRI, measurements are modeled as samples of the Fourier transform (points in 
so-called k-space) of the signal that is to be recovered and taking measurements 
is a time-intensive procedure. 

• Keeping acquisition times short is important to ensure patient comfort and to 
mitigate motion artefacts, and it increases patient throughput, 

• Variational model: 

,min
u ∑

i

| (𝒮Fu)i − yi |
2 + λ ⋅ TV(u)

where  is the subsambling operator,  the Fourier transform,  are the 
subsampled measurements.

𝒮 F y
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Other medical imaging applications

• X-ray computed tomography (CT): a narrow beam of x-rays is aimed at a patient 
and quickly rotated around the body, producing signals that are processed by the 
computer to generate cross-sectional images.


• Positron Emission Tomography (PET): Positron emission tomography (PET) is a 
type of nuclear medicine procedure that measures metabolic activity of the cells of 
body tissues.


• Medical optical imaging: uses light and special properties of photons to obtain 
detailed images of organs, tissues, cells and even molecules. Examples include 
optical microscopy, spectroscopy, endoscopy, and optical coherence tomography.


• Electrical Impedance Imaging (EIT): is an imaging technique that reconstructs 
images of a specific region in the human body based on the electrical conductivity 
of biological tissue.


