A general inverse problem

Given corrupted data £, find u that solves
f=Tw)+ ¢

where T'is a forward operator that models the relation between 1 and f, and ¢
IS @ hoise component.

 If 7' has an unbounded inverse, the problem is ill-posed (nhon-uniqueness,
unstable inversion,...); noise has also to be modeled.

 The problem has to be regularized by adding a-priori information about the
solution.
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For given data f, we look for a regularized solution © by minimizing the energy model:
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* R(u) is the prior (regularizing) term: a-priori information about the minimizer in terms of
regularity.

o D(T(u),f,A) is the data fidelity term, which forces the minimizer to obey the forward model
and/or models the type of noise.

* The parameters /A are key to obtain good reconstruction results.

* The result heavily depends on the prior (regularity of the image, basis function

representation, sparsity, etc.), the data model (physical model 1, statistics, etc.) and the
(hyper)parameters.
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Total variation denoising

Provided a noisy image f € R" we want to get a clean one u € R" using an energy model.

n
Data fidelity: Z |1, — f:|* models Gaussian noise in the image
i=1

m
The Isotropic Total Variation (TV) reqularizer R(u) = Z | (Ku)j |, aims to enforce sparsity
J=1
in the gradient [Ku of the image [Rudin, Osher, Fatemi ’91].

Energy model:

&(u,A) = Z’Ii‘ui _fi‘z + Z | (IKu); |, < 0f
=1 i=1

2000 4000 6000 80b0 10000 12000 14000 16000



Other imaging regularizers



Other imaging regularizers

m
The Anisotropic Total Variation reqularizer R(u) = Z | (Ku)j |, also enforces sparsity on

J=1
the partial derivatives of the image.



Other imaging regularizers

J=1
the partial derivatives of the image.

* Drawback of total variation regularizers: staircase effect.

—eB

=

m
The Anisotropic Total Variation reqularizer R(u) = Z | (Ku)j |, also enforces sparsity on

Staircase effect



Other imaging regularizers

m
The Anisotropic Total Variation reqularizer R(u) = Z | (Ku)j |, also enforces sparsity on

J=1
the partial derivatives of the image.

* Drawback of total variation regularizers: staircase effect.

* Second Order Total Generalized Variation (TGV2) [Bredies et al. ’09]:

Ru)=a Y |(Ku—w)l,+p Y IIEW,
j=1 i=1



Other imaging regularizers

m
The Anisotropic Total Variation reqularizer R(u) = Z | (Ku)j |, also enforces sparsity on

J=1
the partial derivatives of the image.

* Drawback of total variation regularizers: staircase effect.

* Second Order Total Generalized Variation (TGV2) [Bredies et al. ’09]:

Ru)=a Y |(Ku—w)l,+p Y IIEW,
j=1 i=1

enforces sparsity on the deformation, preserving smooth intensity variations



Other imaging regularizers

m
The Anisotropic Total Variation reqularizer R(u) = Z | (Ku)j |, also enforces sparsity on
J=1
the partial derivatives of the image.

* Drawback of total variation regularizers: staircase effect.

* Second Order Total Generalized Variation (TGV2) [Bredies et al. ’09]:

Ru)=a Y |(Ku—w)l,+p Y IIEW,
j=1 i=1

enforces sparsity on the deformation, preserving smooth intensity variations

» Other regularizers: second order total variation (TV2) [Papafitsoros & Schonlieb '12], infimal
convolution total variation (ICTV) [Chambolle, Lions ’99], etc.



Other imaging regularizers

m
The Anisotropic Total Variation reqularizer R(u) = Z | (Ku)j |, also enforces sparsity on
J=1
the partial derivatives of the image.

* Drawback of total variation regularizers: staircase effect.

* Second Order Total Generalized Variation (TGV2) [Bredies et al. ’09]:

Ru)=a Y |(Ku—w)l,+p Y IIEW,
j=1 i=1

enforces sparsity on the deformation, preserving smooth intensity variations

» Other regularizers: second order total variation (TV2) [Papafitsoros & Schonlieb '12], infimal
convolution total variation (ICTV) [Chambolle, Lions ’99], etc.

Most Imaging regularizers are nonsmooth sparsity-based
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Magnetic Resonance Imaging

 What is MRI? Magnetic resonance imaging (MRI) is a type of scan that uses strong
magnetic fields and radio waves to produce detailed images of the inside of the body. An
MRI scanner is a large tube that contains powerful magnets. You lie inside the tube during
the scan.
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* In MRI, measurements are modeled as samples of the Fourier transform (points in

so-called k-space) of the signal that is to be recovered and taking measurements
IS a time-intensive procedure.

 Keeping acquisition times short is important to ensure patient comfort and to
mitigate motion artefacts, and it increases patient throughput,

e Variational model:

min ) |(SFu); — ;> + A+ TV(w),

where & is the subsambling operator, F' the Fourier transform, y are the
subsampled measurements.
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Other medical imaging applications

X-ray computed tomography (CT): a narrow beam of x-rays is aimed at a patient
and quickly rotated around the body, producing signals that are processed by the
computer to generate cross-sectional images.

Positron Emission Tomography (PET): Positron emission tomography (PET) is a
type of nuclear medicine procedure that measures metabolic activity of the cells of
body tissues.

Medical optical imaging: uses light and special properties of photons to obtain
detailed images of organs, tissues, cells and even molecules. Examples include
optical microscopy, spectroscopy, endoscopy, and optical coherence tomography.

Electrical Impedance Imaging (EIT): is an imaging technique that reconstructs
images of a specific region in the human body based on the electrical conductivity
of biological tissue.



