A general inverse problem

Given corrupted data *f*, find *u* that solves

is a noise component.

- If T has an unbounded inverse, the problem is ill-posed (non-uniqueness, unstable inversion,...); noise has also to be modeled.
- The problem has to be regularized by adding a-priori information about the solution.

- $f = T(u) + \varepsilon$
- where T is a forward operator that models the relation between u and f, and ε

For given data f, we look for a regularized solution u by minimizing the energy model: $\mathscr{E}(u) = R(u) + D(T(u), f, \lambda) \to \min$ \mathcal{U}

For given data f, we look for a regularized solution u by minimizing the energy model: $-D(T(u), f, \lambda) \rightarrow \min$ \mathcal{U}

$$\mathscr{E}(u) = R(u) +$$

Prior

regularity.

• R(u) is the prior (regularizing) term: a-priori information about the minimizer in terms of

For given data f, we look for a regularized solution u by minimizing the energy model: $D(T(u), f, \lambda) \to \min_{u}$ U Data model

$$\mathscr{E}(u) = R(u) +$$

Prior

- regularity.
- and/or models the type of noise.

• R(u) is the prior (regularizing) term: a-priori information about the minimizer in terms of

• $D(T(u), f, \lambda)$ is the data fidelity term, which forces the minimizer to obey the forward model

For given data f, we look for a regularized solution u by minimizing the energy model: $D(T(u), f, \lambda) \to \min_{u}$ Data model

$$\mathscr{E}(u) = R(u) +$$

Prior

- regularity.
- and/or models the type of noise.
- The parameters λ are key to obtain good reconstruction results.

• R(u) is the prior (regularizing) term: a-priori information about the minimizer in terms of

• $D(T(u), f, \lambda)$ is the data fidelity term, which forces the minimizer to obey the forward model

For given data f, we look for a regularized solution u by minimizing the energy model: $D(T(u), f, \lambda) \to \min_{u}$ Data model

$$\mathscr{E}(u) = R(u) +$$

Prior

- regularity.
- and/or models the type of noise.
- The parameters λ are key to obtain good reconstruction results.
- The result heavily depends on the prior (regularity of the image, basis function (hyper)parameters.

• R(u) is the prior (regularizing) term: a-priori information about the minimizer in terms of

• $D(T(u), f, \lambda)$ is the data fidelity term, which forces the minimizer to obey the forward model

representation, sparsity, etc.), the **data model** (physical model T, statistics, etc.) and the

• Provided a noisy image $f \in \mathbb{R}^n$ we want to get a clean one $u \in \mathbb{R}^n$ using an energy model.

• Data fidelity:
$$\sum_{i=1}^{n} |u_i - f_i|^2$$
 models Gauss

• Provided a noisy image $f \in \mathbb{R}^n$ we want to get a clean one $u \in \mathbb{R}^n$ using an energy model.

• Data fidelity:
$$\sum_{i=1}^{n} |u_i - f_i|^2$$
 models Gauss

The Isotropic Total Variation (TV) regularize

in the gradient $\mathbb{K}u$ of the image [Rudin, Osher, Fatemi '91].

• Provided a noisy image $f \in \mathbb{R}^n$ we want to get a clean one $u \in \mathbb{R}^n$ using an energy model.

er
$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_j|_2$$
 aims to enforce sparsit

• Data fidelity:
$$\sum_{i=1}^{n} |u_i - f_i|^2$$
 models Gauss

The Isotropic Total Variation (TV) regularize

in the gradient $\mathbb{K}u$ of the image [Rudin, Osher, Fatemi '91].

Energy model:

$$\mathscr{E}(u,\lambda) = \sum_{i=1}^{n} \lambda_i |u_i - f_i|^2 + \sum_{i=1}^{m} |(\mathbb{K}u)_i|_2$$

• Provided a noisy image $f \in \mathbb{R}^n$ we want to get a clean one $u \in \mathbb{R}^n$ using an energy model.

er
$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_j|_2$$
 aims to enforce sparsit

• Data fidelity:
$$\sum_{i=1}^{n} |u_i - f_i|^2$$
 models Gauss

The Isotropic Total Variation (TV) regularize

in the gradient $\mathbb{K}u$ of the image [Rudin, Osher, Fatemi '91].

Energ

$$\mathscr{E}(u,\lambda) = \sum_{i=1}^{n} \lambda_i |u_i - f_i|^2 + \sum_{i=1}^{m} |(\mathbb{K}u)_i|_2$$

• Provided a noisy image $f \in \mathbb{R}^n$ we want to get a clean one $u \in \mathbb{R}^n$ using an energy model.

er
$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_j|_2$$
 aims to enforce sparsit

the partial derivatives of the image.

\mathcal{M} The Anisotropic Total Variation regularizer $R(u) = \sum_{j=1}^{n} |(\mathbb{K}u)_j|_1$ also enforces sparsity on j=1

The Anisotropic Total Variation regularizer

the partial derivatives of the image.

• Drawback of total variation regularizers: staircase effect.

$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_j|_1 \text{ also enforces sparsity on}$$

The Anisotropic Total Variation regularizer

the partial derivatives of the image.

- Drawback of total variation regularizers: staircase effect.
- Second Order Total Generalized Variation (TGV2) [Bredies et al. '09]:

$$R(u) = \alpha \sum_{j=1}^{n} |(\mathbb{K}u - w)_{j}|_{2} + \beta \sum_{i=1}^{n} ||(\mathbb{E}w)_{i}||_{F}$$

$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_j|_1 \text{ also enforces sparsity on}$$

The Anisotropic Total Variation regularizer

the partial derivatives of the image.

- Drawback of total variation regularizers: staircase effect.
- Second Order Total Generalized Variation (TGV2) [Bredies et al. '09]:

$$R(u) = \alpha \sum_{j=1}^{n} |(\mathbb{K}u - w)_{j}|_{2} + \beta \sum_{i=1}^{n} ||(\mathbb{E}w)_{i}||_{F}$$

enforces sparsity on the deformation, preserving smooth intensity variations

$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_j|_1 \text{ also enforces sparsity on}$$

The Anisotropic Total Variation regularizer

the partial derivatives of the image.

- Drawback of total variation regularizers: staircase effect.
- Second Order Total Generalized Variation (TGV2) [Bredies et al. '09]:

$$R(u) = \alpha \sum_{j=1}^{n} |(\mathbb{K}u)|$$

enforces sparsity on the deformation, preserving smooth intensity variations

convolution total variation (ICTV) [Chambolle, Lions '99], etc.

$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_{j}|_{1} \text{ also enforces sparsity on}$$

$$(-w)_{j}|_{2} + \beta \sum_{i=1}^{n} ||(\mathbb{E}w)_{i}||_{F}$$

Other regularizers: second order total variation (TV2) [Papafitsoros & Schönlieb '12], infimal

The Anisotropic Total Variation regularizer

the partial derivatives of the image.

- Drawback of total variation regularizers: staircase effect.
- Second Order Total Generalized Variation (TGV2) [Bredies et al. '09]:

$$R(u) = \alpha \sum_{j=1}^{n} |(\mathbb{K}u)|$$

enforces sparsity on the deformation, preserving smooth intensity variations

convolution total variation (ICTV) [Chambolle, Lions '99], etc.

Most imaging regularizers are nonsmooth sparsity-based

$$R(u) = \sum_{j=1}^{m} |(\mathbb{K}u)_{j}|_{1} \text{ also enforces sparsity on}$$

$$(-w)_{j}|_{2} + \beta \sum_{i=1}^{n} ||(\mathbb{E}w)_{i}||_{F}$$

Other regularizers: second order total variation (TV2) [Papafitsoros & Schönlieb '12], infimal

Noisy image

TV2 denoised image

TV denoised image

TGV2 denoised image

• What is MRI? Magnetic resonance imaging (MRI) is a type of scan that uses strong the scan.

magnetic fields and radio waves to produce detailed images of the inside of the body. An MRI scanner is a large tube that contains powerful magnets. You lie inside the tube during

- is a time-intensive procedure.
- mitigate motion artefacts, and it increases patient throughput,
- Variational model:

$$\min_{u} \sum_{i} |(\mathscr{S}Fu)_{i} - y_{i}|^{2} + \lambda \cdot \mathrm{TV}(u),$$

where \mathcal{S} is the subsambling operator, F the Fourier transform, y are the subsampled measurements.

 In MRI, measurements are modeled as samples of the Fourier transform (points in so-called k-space) of the signal that is to be recovered and taking measurements

Keeping acquisition times short is important to ensure patient comfort and to

Magnetic Resonance Imaging Importance of sparse prior

Magnetic Resonance Imaging Importance of sparse prior

sampling S^*y

sampling S^*y

 $\lambda = 0$

 $\lambda = 10^{-4}$

sampling S^*y

 $\lambda = 0$

 $\lambda = 10^{-4}$

Magnetic Resonance Imaging Importance of sparse prior

Other medical imaging applications

- computer to generate cross-sectional images.
- body tissues.
- of biological tissue.

• X-ray computed tomography (CT): a narrow beam of x-rays is aimed at a patient and quickly rotated around the body, producing signals that are processed by the

• Positron Emission Tomography (PET): Positron emission tomography (PET) is a type of nuclear medicine procedure that measures metabolic activity of the cells of

• Medical optical imaging: uses light and special properties of photons to obtain detailed images of organs, tissues, cells and even molecules. Examples include optical microscopy, spectroscopy, endoscopy, and optical coherence tomography.

• Electrical Impedance Imaging (EIT): is an imaging technique that reconstructs images of a specific region in the human body based on the electrical conductivity