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1. Introduction

1.1 Examples for multiobjective location problems arising in healthcare
logistics

Example : Location for a new Vaccination Center in a district of the town Havana.

Consider a certain district of the town Havana with 23 existing facilities:
Apartment blocks Iocated at al = (3.5, 3 5), a (4 5,4), a® = (4,2.5), at =

(5,1.5), a® = (6 1), a® = (6.5, 15) = (6 4) (7,3.5), o’ = (8,3),
— (9.5,3), a (10 5,3. 5) - <10 5,5), al3 = (6,5.5), a4 = (6.5,6.5),
= (11,6.5), ¢ = (10,7.5), a (9 8),

schools located at al (2 4.5), a ( 6),

day nurseries located at a?) = (3,4.5), = (6,3) and

outpatient health center located at a%? = (8, 6.5), a*> = (3,13.5).



We note that in the blocks located at a® and al” there live a great number of
children aged of 5 to 12. The decision makers in the public health department of
Havana are looking for a location 2z € IR? for a new Vaccination Center such that the
distances between the existing facilities al ... a*> € R? and the location for the
new Vaccination Center = € R? are to be minimized in the sense of multiobjective

optimization. So, we study the following multiobjective location problem:
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v —d’l — min (POLP)
rER?’

|z — a2 |

where || - || denotes a norm in R?.



Solution set of (POLP) with Manhattan norm (||z||; := |21| + |22, z € R?).
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The solution set of a multiobjective location problem with existing facilities a',...,a” € R? and
the maximum norm (||z||max := max{|x1|, |z2|}) (in red color) as well as with the Manhattan norm

(||[z]]1 := |z1| + |x2|) (in blue color) generated using the software FLO (https://project-flo.de).



Example: Establishment of an Emergency Ward (location for a rescue helicopter):

In the Vinales Valley in Cuba, a location for a rescue helicopter is to be determined
in such a way that it can quickly reach the potential locations (resorts and villages
located in at, i = 1, ... ,6) in an emergency case. The location to be determined
should be chosen in such a way that, even in the worst case, i.e., if the furthest
location reports an emergency call, this location can be reached as quickly as possible.
This problem is modeled by a location problem with the center target function.

Center-Problem: Minimize the maximum distance between the new location tR? and

existing facilities o', . . ., a® € R?. Here, we use the Euclidean norm ||-||2 : R? — R
: oA
defined by || — a’||y == (S (x5 — a})?)?.

Centerproblem with Euclidean norm:

iy, max {Aille — a'll2}. (1)



5 o 5 10

Location for a rescue helicopter (blue point) generated as solution of the Center-
Problem max;—; g{\i||z — a'||2} — min cpo (with the existing facilities a’,
weights \; = 1 (red numbers), ¢ = 1,...,6) and the level lines.



Constrained point-objective location problems

L ....a"™ € R" be a priori given. The distance from the new facility

Let m points a
z € R™ to a given existing facility a’ € R” will be measured by the metric induced

by the Euclidean norm || - || : R" — R, i.e., we have
. n - \2
Uy C 12
o — allp = (; () — ai) ) .
1=1
The constrained point-objective location problem involving the Euclidean norm:

flx)=(llz —allls,..., || —a™||2) = min  w.rt. R7

POLP
e X, ( X)

where the feasible set X is a nonempty and closed set in R".



1.2 The concept of Pareto efficiency

A point x € X is called Pareto efficient solution for (POLP x) if

Vi€ I [la’ = d'lls < ||z — a2,

Az’ € X st . : :
3j € Im: |l2' — a2 < [lz — o[,

where I, :={1,2,--- ;m}.

The set of all Pareto efficient solutions is denoted by Eff(X | f). We have

Ef(X | f) ={z e X | FIX]N (f(z) = REN{0}) = 0},



@1
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Example: (POLP y) with X = R?: Construction of the efficient set of (POLP y)

with the Euclidean norm.



Is x a Pareto efficient solution?



x is not Pareto efficient.



2 dominates .



2 dominates .



2’ is Pareto efficient.



EfF(R? | (f1, f2))

The set of efficient solutions Eff(R? | (f1, f2)).



Eff(R* | (f1, f2, f3))

N2

The set of efficient solutions Eff(R? | (f1, f2, f3)).



1.3 Projection property for the set of Pareto efficient solutions

Consider the location problem (POLP ), i.e.,

fx)=(|lz —alllo, ..., ||z — a™||s) - min  w.rt. R7
r € X.

Then, for any nonempty, closed, convex set X C R", we have
Eff(X | f) = Projk 2(E£(R™ | £)) = Projly 2(conv{al, - ,a™})
(see, e.g., Ndiaye and Michelot, 1998).

Remark[Ndiaye and Michelot, 1998] The projection property, i.e.,

BE(X | f) = Proji 2(Ef(R™ | £)

fails in general if we replace the Euclidean norm by a not strictly convex norm (e.g,
the Manhattan norm or the Maximum norm).



Eff(R* | (f1, f2, f3))

Example: (POLP x) with closed, convex constraints.
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BR(X | (f1, f2, f3)) = Proji! 2 (conv{al, a2, a3})

Example: The set of efficient solutions Eff(X | (f1, f2, f3))-
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Example: (POLP x) with nonconvex constraints.



Example: (POLP x) with nonconvex constraints.



Example: (POLP x) with nonconvex constraints.



1.4 Basic constrained models and solution concepts

Consider a constrained multi-objective optimization problem with m objective func-
tions f1,..., fm R" = R:

i(z); (fi(z),..., fm(x)) = min  w.rt RY (Py)

where the feasible set X of the problem (Pyx) is a closed set with ) # X C R".

Definition 1. The set of Pareto efficient solutions of problem (Px) with respect
to R"" is defined by

Ef(X | f):={a" € X | fIX]N(f(a") =RT\{0}) =0}

while that of weakly Pareto efficient solutions is given by

WER(X | f) = {z" € X | fIX]N (f(z") — int R™") = 0}



Definition 2. Let h : R — R be a real-valued function, X be a nonempty set
in R"™ and s € R. Then the lower-level set of h, the level line of h and the strict
lower-level set of h to the level s is defined by:

Lo(X,h,s) ={veX |hz) <s};

L_(X,h,s)={x e X |h(x)=s};
Lo(X,h,s) ={xe X |h(x) <s}.

Note that L.(X,h,s) = L.(R™ h,s) N X holds for all ~¢ {<, = <}.

Let 2' € X and f = (f1,..., fm)! with f; : R” — R for all i € I,



Define:

S<(X, f, xo) = N L<(X, fiafi(xO))Q

1€10m,
S=(X, f.a)i= 0 L=(X, i fila"));
S<<X, f,ZU()) = Z'G(} L<(X7 fZ?fZ(:BO))

Lemma 3 (Nickel (1995), Ehrgott (2005)). Let 2 € X and f : R — R™. Then
the following hold:

Ve ER(X | f) = S<(X, [, 2") CS_(X, [, 2");
) e WER(X | f) < So(X, [, 2")=0;



Corollary 4. It hold

X NEF(R" | f) C EF(X | f);
X NWER(R" | f) € WER(X | f);

In order to operate with certain generalized-convexity and semi-continuity notions,
we define, for any (zV, z1) € R™ x R", the function l.0,1:[0,1] — R",

Lo 1 (A) = (1= XNz + Az! forall A € [0,1].



1.5 Main question of the talk

How is it possible to use techniques and results derived for
unconstrained multi-objective optimization problems in order to
develop algorithms for solving constrained multi-objective optimization
problems?

The results of this talk are based on the articles:

e Ginther C, Tammer C (2016) Relationships between constrained and unconstrained multi-

objective optimization and application in location theory. Mathematical Methods of Operations
Research 84(2):359-387;

e Giinther C, Tammer C (2018) On generalized-convex constrained multi-objective optimization.
Pure and Applied Functional Analysis, Volume 3, Number 3, 2018;

e Giinther C (2018) Pareto efficient solutions in multi-objective optimization involving forbidden
regions. Revista de Investigacion Operacional, Volume 39, Issue 3, pp 353-390, 2018.



2. On generalized-convex constrained multi-objective optimization

Consider a nonempty, convex set Y in R". f; : R" = R, ¢ € I, is called

e convex on Y, if for all 7,2’ € Y and all A € [0,1] we have

fil(l =Xz + Aa') < (1= N)fi(z) + Afi(a").

e quasi-convex on Y, if for all z,2" € Y and all A € [0, 1] we have

fil(1 = Nz + A2") < max {f;(x), f;(z)}.

e semi-strictly quasi-convex on Y, if for all z, 2’ € Y with f;(z) # fi(z’), and
all A € (0,1) we have

fil(1 = XNz + A2) < max {fi(x), fi(a")}.



Lemma 5 ((Giorgi (2004)). Let h : R™ — R be a function and X be a convex set
in R™. Then the following statements are equivalent:

1°. h is quasi-convex on X.

2°. L<(X,h,s) is convex for all s € R.

Lemma 6. Let h : R — R be a function and X be a convex set. Then the
following statements are equivalent:

1°. h is semi-strictly quasi-convex on X .

2°. Foralls €R, 2 € L_(X,h,s), ' € L-(X,h,s) it holds
VA e (O, 1] : lx()7$1(/\) c L<<X, h, S)



Lemma 7. Let X C R"™ be a convex and closed set with & € int X, Ve X.
Then, for h(x) := pug(r — &), pp(z) :=inf{\ > 0|z € AB}, B .= —& + X:

1°. It holds L.(R", h, h(z")) C X for all ~e {<,=,<}.

2°. If 2V € bd X, then

-

L<(R" h, h(x
L<<Rn, h, h(ﬂf
L_(R" h,h(x

)=x
)) = int X;
)) = bd X.
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3. Relationships between (Px) and (Pgn)

Proposition 8 (Giinther & Tammer, 2016, 2018). Let X be a nonempty subset of
R"™. Assume that f : R — R" is componentwise semi-strictly quasi-convex on

R™. Then, we have

(int X) \ E(R™ | £) C (int X) \ BF(X | f).

Corollary 9 (Giinther & Tammer, 2016, 2018). Let X be a nonempty subset of
R"™. Assume that f : R" — R is componentwise semi-strictly quasi-convex on
R™. Then,

X N ERR"| f)CEFX | f) C[X N EFR"| £)] U bd X.



4. The penalized multi-objective optimization problem

We consider the penalized multi-objective optimization problem

o) = (filx),..., fm(x),o(x)) = min  w.r.t. RT+1
r e R",

where ¢ : R"" — IR is the penalization function. Furthermore, assume:

Al If 2/ € bd X, then

L<(R",¢,6(z')) = {z € R" | ¢(z) < ¢(a")} = X.

A2 If 2/ € bd X, then
L-(R", ¢, ¢(z")) == {x e R" | ¢(z) = ¢(z")} = bd X.



Examples for the penalization function ¢

1°. Assume that X is convex and closed with d € int X. Then, ¢(:) .= up(- —d)
fulfills Assumptions A1 and A2, where up is a Minkowski gauge associated
to theset B .= —d + X, i.e.,

pp(x) =mf{\>0|z e X- B} forall x € R".

2°. Assume that D C R" is convex and closed with d € int D. Now, we consider
X = R"\'int D. Then, the function ¢(-) := —pup(- — d), where upg is a
Minkowski gauge associated to the set B := —d + D, fulfills Assumptions A1
and A2.



3°.

Assume that X is a closed set with () ## X C R’. Based on the distance
function dx : R — R with respect to X,

dx(z) = inf{||lz — z||| z € X} forall z € R",
one can consider the so-called signed distance function (by Hiriart-Urruty, 1979)
AN x : R"™ — R that is defined by
dx () for x € R"\ X,
—dgn\ x(2) forz € X.
Then, ¢ := A x satisfies Assumptions A1 and A2.

Ax(x) = dx(x) — dgm x(x) =



Main result:

Theorem 10 (Giinther & Tammer, 2016, 2018). Suppose that ¢ : R — R fulfills
Assumptions A1 and A2. Then, the following assertions hold:

1°. We have
X ER(R" | )] U[(bd X) NES(R" | £9)] C EE(X | f).

2°. In the case int X # (), suppose additionally that f : R™ — R™ s component-
wise semi-strictly quasi-convex on R"™. Then,

X NEER" | f)] U [(bd X) NEAR" | /%)) 2 EE(X | )



Proof:

1°. By Corollary 4 we know that X N Eff(R" | f) C Eff(X | f) is true. Now, let
2V € bd X NEf(R"™ | f). By Lemma 3 (for the problem (Pjy) instead of
(Px)) and A1 and A2 it follows

S<(X, f,a") = S<(R”, f,2") N X
— S<(R", f,x )mL<(R” 6, p(a))
C S_(R™, f,2%) N L_(R™, ¢, $(a"))
— S_(R", f,2") Nbd X
( )
(

Consequently, applying Lemma 3 we get 2" € Eff(X | f).



2°.

Let 2V € Eff(X | f). The first case is that 2’ € X NEff(R™ | f) holds. Now,
in the second case suppose that 2 € X \ Eff(R" | f). Hence, by Corollary 9
we assume that 2 € bd X. Now, by Lemma 3 and A1 and A2 it follows

S<(R", f,2") N L<(R™, ¢, ¢(2")) = S<(R", f,a") N X
= 5<(X, f z!)
C S—(X, f z')
= S_(R", f,2") N X.
Furthermore, it holds
S_(R", f, 2"y N X = S_(R", f,2") N bd X. (2)

In order to show the validity of (2) it is sufficient to prove S—(R"”, f,z") N
int X = 0. Indeed, if we suppose that there exist some 2! € int X with
zt e S_(R", f,2"), then we have to distinguish two cases:



Case 1: If ' € X \ Eff(R™ | f) holds, then by Proposition 8 it follows

b e X\ Eff(X | f). Since 2! € S_(X, f,2"), this implies

2V € X \ Eff(X | f), in contradiction to the assumption 2" € Eff(X | f).
Case 2: If we assume z' € Eff(R"” | f), then by z! € S_(R", f,z") we
conclude 2V € Eff(R™ | f), a contradiction to 2’ € X \ Eff(R" | f).

Hence, the equality (2) is true.
Taking into account that 2z € bd X, we obtain by A1 and A2,
S—(R", f,2") Nbd X = S—(R", f,2") N L=(R", ¢, ¢(")).

In view of Lemma 3 for the problem (Pg,) instead of (Px), we infer that
2V e Eff(R™ | f%) holds. [



5. Applications

5.1 The class of point-objective location problems

1

Let m points a',...,a"" € R" be a priori given. The distance from the new facility

x € R" to a given existing facility a’ € R" will be measured by the metric induced

by the Euclidean norm || - || : R" — R, i.e., we have
2
o= ally = | £ (a; - a?]
7=1
The constrained point-objective location problem involving the Euclidean norm is
given by
flx)=(||lz —a'lls,..., ||z —a™|[2) = min  w.rt. R7 (POLPy)
x e X,

where the feasible set X is a nonempty and closed set in R".



Example: Construction of the set Eff (X | (f1, f2, f3))



5.2 (POLPy) involving two forbidden regions

Consider the problem (POLP ), i.e.,

fx)=(l|z —allla, ..., ||z — a™||2) = min  w.rt. R,

r € X,

and assume that

D; = By, (d',ri) with & € R, r; > 0,0 € I;, | € N;

X = N X;with X; =R"\ int D;,7 € I,.
1€1;









The family of penalized problems:

For any 7 € I;, consider a penalized multi-objective optimization problem

fOi(x) = (||lz — alllo, ..., ||z — a™||2, ;(x)) = min  w.rt. RPT!
xr € R",
where the penalization function is given by ¢;(-) == —||z — d'||s.

Remark 1. According to Jourani, Michelot and Ndiaye (2009), this problem can be

seen as a point-objective location problem involving attraction and repulsion points.



Relationships between Eff(X | f) and Eff(R" | f%i), i € I}
Lemma 11 (Giinther, 2018). 1°. We have
Ef(X | f) D [X N convial, - -- ,am}}

U {U X N (bd D;) NEF(R™ | £%)

1el;

2°. Assume that the interiors of D;, © € I}, are pairwise disjoint. Then,
Ef(X | f) = {X N convial, - -- ,am}}

U | U (bd D;) NEf(R™ | £%)

1€l




Lint DZ_\Eﬁ(RQ | f92

ks
& \\
w N

int D1
Eff(X1NXo| f)

Example: Construction of the set Eff(X | f)



6. Necessary optimality conditions

(Ginther, Tammer, Yao (2018)) An operator 0 which associates with every h :
R™ — R and every x € R a subset dh(x) C R", such that the following axioms

are satisfied:

H1 If his convex, then Oh coincides with the Fenchel subdifferential, i.e.,
Oh(z) = {y* e R" | Vo' e R": (y*, 2’ —z) + h(z) < h(z")}.

H2 If his locally Lipschitz continuous, and ¥ is a local minimum point for h over
R"™ then

0 € Oh(z).
H3 Ifn:Y — Ris convex and p € F(R™,Y), then for every z € R",

dnoy)(z) C Uy*E@n(¢(m))a(y* o)(z).



Theorem 12. Let X C R" be a closed set with int X +# (). Assume that O satisfies
H1, H2, H3, ¢ : R" — R fulfills A1 and A2. Let f : R" — R" be component-
wise semi-strictly quasi-convex, let f € F(R™ R™), f© € F(R",R™), f and ¢
locally Lipschitz continuous at T. Take some T € WEff(X | f). Then,

1°. If T € int X, then for every € > 0 there exist y* € R' and k € int R"" with
|y*|lgm < € and (y*, k) = 1 such that

0€d(y o f)(z)=0 ( > yffz) (7).

1€1,

2°. Ifz € bd X, then for every € > 0 there exist u* = (y*,s*) € R'' x Ry and
k € int R with ||u*||gm+1 < € and (u*, k) = 1 such that

0 € du*o fO) (z)=0 (s*¢ + 3 yffi) ().

1€l



7. Conclusions

Fields of application

e Multiobjective location and approximation problems arising in health-
care logistics.

e Economics: Considering models in utility theory (Cobb-Douglas-function).

e Bioinformatics: Considering entropy maximization models (based on en-
tropies by Shannon, Tsallis and Renyi) for DNA sequence analysis.
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