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1. Introduction

1.1 Examples for multiobjective location problems arising in healthcare
logistics

Example : Location for a new Vaccination Center in a district of the town Havana.

Consider a certain district of the town Havana with 23 existing facilities:
Apartment blocks located at a1 = (3.5, 3.5), a2 = (4.5, 4), a3 = (4, 2.5), a4 =
(5, 1.5), a5 = (6, 1), a6 = (6.5, 1.5), a7 = (6, 4), a8 = (7, 3.5), a9 = (8, 3),
a10 = (9.5, 3), a11 = (10.5, 3.5), a12 = (10.5, 5), a13 = (6, 5.5), a14 = (6.5, 6.5),
a15 = (11, 6.5), a16 = (10, 7.5), a17 = (9, 8),
schools located at a18 = (2, 4.5), a19 = (2, 6),
day nurseries located at a20 = (3, 4.5), a21 = (6, 3) and
outpatient health center located at a22 = (8, 6.5), a23 = (3, 13.5).



We note that in the blocks located at a3 and a17 there live a great number of
children aged of 5 to 12. The decision makers in the public health department of
Havana are looking for a location x ∈ R2 for a new Vaccination Center such that the
distances between the existing facilities a1, . . . , a23 ∈ R2 and the location for the
new Vaccination Center x ∈ R2 are to be minimized in the sense of multiobjective
optimization. So, we study the following multiobjective location problem:



‖x− a1‖
‖x− a2‖
· · ·

‖x− a23‖


−→ min

x∈R2
, (POLP)

where ‖ · ‖ denotes a norm in R2.
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Solution set of (POLP) with Manhattan norm (‖x‖1 := |x1| + |x2|, x ∈ R2).



The solution set of a multiobjective location problem with existing facilities a1, . . . , a9 ∈ R2 and
the maximum norm (‖x‖max := max{|x1|, |x2|}) (in red color) as well as with the Manhattan norm
(‖x‖1 := |x1| + |x2|) (in blue color) generated using the software FLO (https://project-flo.de).



Example: Establishment of an Emergency Ward (location for a rescue helicopter):

In the Vinales Valley in Cuba, a location for a rescue helicopter is to be determined
in such a way that it can quickly reach the potential locations (resorts and villages
located in ai, i = 1, . . . , 6) in an emergency case. The location to be determined
should be chosen in such a way that, even in the worst case, i.e., if the furthest
location reports an emergency call, this location can be reached as quickly as possible.
This problem is modeled by a location problem with the center target function.
Center-Problem: Minimize the maximum distance between the new location xR2 and
existing facilities a1, . . . , a6 ∈ R2. Here, we use the Euclidean norm ||·||2 : R2 → R

defined by ||x− ai||2 :=
(∑n
j=1(xj − aij)2

)1
2 .

Centerproblem with Euclidean norm:

min
x∈R2

max
i=1,...6

{λi||x− ai||2}. (1)



Location for a rescue helicopter (blue point) generated as solution of the Center-
Problem maxi=1,...6{λi||x − ai||2} −→ minx∈R2 (with the existing facilities ai,
weights λi = 1 (red numbers), i = 1, . . . , 6) and the level lines.



Constrained point-objective location problems

Let m points a1, . . . , am ∈ Rn be a priori given. The distance from the new facility
x ∈ Rn to a given existing facility ai ∈ Rn will be measured by the metric induced
by the Euclidean norm || · ||2 : Rn → R, i.e., we have

||x− ai||2 :=
 n∑
j=1

(xj − aij)2


1
2
.

The constrained point-objective location problem involving the Euclidean norm:

f (x) = (||x− a1||2, . . . , ||x− am||2)→ min w.r.t. Rm+
x ∈ X,

(POLPX)

where the feasible set X is a nonempty and closed set in Rn.



1.2 The concept of Pareto efficiency

A point x ∈ X is called Pareto efficient solution for (POLPX) if

@x′ ∈ X s.t.

∀ i ∈ Im : ||x′ − ai||2 ≤ ||x− ai||2,
∃ j ∈ Im : ||x′ − aj||2 < ||x− aj||2,

where Im := {1, 2, · · · ,m}.

The set of all Pareto efficient solutions is denoted by Eff(X | f ). We have

Eff(X | f ) = {x ∈ X | f [X ] ∩ (f (x)− Rm+ \ {0}) = ∅}.
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Example: (POLPX) with X = R2: Construction of the efficient set of (POLPX)
with the Euclidean norm.
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Is x a Pareto efficient solution?
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x is not Pareto efficient.
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x′ is Pareto efficient.
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Eff(R2 | (f1, f2))

The set of efficient solutions Eff(R2 | (f1, f2)).



a1

a2

Eff(R2 | (f1, f2, f3))

a3

The set of efficient solutions Eff(R2 | (f1, f2, f3)).



1.3 Projection property for the set of Pareto efficient solutions

Consider the location problem (POLPX), i.e.,

f (x) = (||x− a1||2, . . . , ||x− am||2)→ min w.r.t. Rm+
x ∈ X.

Then, for any nonempty, closed, convex set X ⊆ Rn, we have

Eff(X | f ) = Proj||·||2X (Eff(Rn | f )) = Proj||·||2X (conv{a1, · · · , am})

(see, e.g., Ndiaye and Michelot, 1998).

Remark[Ndiaye and Michelot, 1998] The projection property, i.e.,

Eff(X | f ) = Proj||·||2X (Eff(Rn | f ))

fails in general if we replace the Euclidean norm by a not strictly convex norm (e.g,
the Manhattan norm or the Maximum norm).
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Eff(R2 | (f1, f2, f3))
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Example: (POLPX) with closed, convex constraints.
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Eff(X | (f1, f2, f3)) = Proj||·||2X (conv{a1, a2, a3})
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Example: The set of efficient solutions Eff(X | (f1, f2, f3)).
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Example: (POLPX) with nonconvex constraints.
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Example: (POLPX) with nonconvex constraints.
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Example: (POLPX) with nonconvex constraints.



1.4 Basic constrained models and solution concepts

Consider a constrained multi-objective optimization problem with m objective func-
tions f1, . . . , fm : Rn → R:


f (x) = (f1(x), . . . , fm(x))→ min w.r.t. Rm+
x ∈ X,

(PX)

where the feasible set X of the problem (PX) is a closed set with ∅ 6= X ( Rn.

Definition 1. The set of Pareto efficient solutions of problem (PX) with respect
to Rm+ is defined by

Eff(X | f ) := {x0 ∈ X | f [X ] ∩ (f (x0)− Rm+ \ {0}) = ∅}
while that of weakly Pareto efficient solutions is given by

WEff(X | f ) := {x0 ∈ X | f [X ] ∩ (f (x0)− intRm+ ) = ∅}.



Definition 2. Let h : Rn → R be a real-valued function, X be a nonempty set
in Rn and s ∈ R. Then the lower-level set of h, the level line of h and the strict
lower-level set of h to the level s is defined by:

L≤(X, h, s) := {x ∈ X | h(x) ≤ s} ;
L=(X, h, s) := {x ∈ X | h(x) = s} ;
L<(X, h, s) := {x ∈ X | h(x) < s} .

Note that L∼(X, h, s) = L∼(Rn, h, s) ∩X holds for all ∼∈ {≤,=, <}.

Let x0 ∈ X and f = (f1, . . . , fm)T with fi : Rn → R for all i ∈ Im.



Define:

S≤(X, f, x0) := ⋂
i∈Im

L≤(X, fi, fi(x0));

S=(X, f, x0) := ⋂
i∈Im

L=(X, fi, fi(x0));

S<(X, f, x0) := ⋂
i∈Im

L<(X, fi, fi(x0)).

Lemma 3 (Nickel (1995), Ehrgott (2005)). Let x0 ∈ X and f : Rn → Rm. Then
the following hold:

x0 ∈ Eff(X | f ) ⇐⇒ S≤(X, f, x0) ⊆ S=(X, f, x0);
x0 ∈WEff(X | f ) ⇐⇒ S<(X, f, x0) = ∅;



Corollary 4. It hold

X ∩ Eff(Rn | f ) ⊆ Eff(X | f );
X ∩WEff(Rn | f ) ⊆WEff(X | f );

In order to operate with certain generalized-convexity and semi-continuity notions,
we define, for any (x0, x1) ∈ Rn × Rn, the function lx0,x1 : [0, 1]→ Rn,

lx0,x1(λ) := (1− λ)x0 + λx1 for all λ ∈ [0, 1].



1.5 Main question of the talk

How is it possible to use techniques and results derived for
unconstrained multi-objective optimization problems in order to

develop algorithms for solving constrained multi-objective optimization
problems?

The results of this talk are based on the articles:

• Günther C, Tammer C (2016) Relationships between constrained and unconstrained multi-
objective optimization and application in location theory. Mathematical Methods of Operations
Research 84(2):359–387;

• Günther C, Tammer C (2018) On generalized-convex constrained multi-objective optimization.
Pure and Applied Functional Analysis, Volume 3, Number 3, 2018;

• Günther C (2018) Pareto efficient solutions in multi-objective optimization involving forbidden
regions. Revista de Investigacion Operacional, Volume 39, Issue 3, pp 353-390, 2018.



2. On generalized-convex constrained multi-objective optimization

Consider a nonempty, convex set Y in Rn. fi : Rn → R, i ∈ Im, is called

• convex on Y , if for all x, x′ ∈ Y and all λ ∈ [0, 1] we have

fi((1− λ)x + λx′) ≤ (1− λ)fi(x) + λfi(x′).

• quasi-convex on Y , if for all x, x′ ∈ Y and all λ ∈ [0, 1] we have

fi((1− λ)x + λx′) ≤ max
{
fi(x), fi(x′)

}
.

• semi-strictly quasi-convex on Y , if for all x, x′ ∈ Y with fi(x) 6= fi(x′), and
all λ ∈ (0, 1) we have

fi((1− λ)x + λx′) < max
{
fi(x), fi(x′)

}
.



Lemma 5 ((Giorgi (2004)). Let h : Rn → R be a function and X be a convex set
in Rn. Then the following statements are equivalent:

1◦. h is quasi-convex on X .

2◦. L≤(X, h, s) is convex for all s ∈ R.

Lemma 6. Let h : Rn → R be a function and X be a convex set. Then the
following statements are equivalent:

1◦. h is semi-strictly quasi-convex on X .

2◦. For all s ∈ R, x0 ∈ L=(X, h, s), x1 ∈ L<(X, h, s) it holds

∀λ ∈ (0, 1] : lx0,x1(λ) ∈ L<(X, h, s).



Lemma 7. Let X ⊆ Rn be a convex and closed set with x̃ ∈ intX , x0 ∈ X .
Then, for h(x) := µB(x− x̃), µB(z) := inf{λ > 0|z ∈ λB}, B := −x̃ + X :

1◦. It holds L∼(Rn, h, h(x0)) ⊆ X for all ∼∈ {≤,=, <}.

2◦. If x0 ∈ bdX , then

L≤(Rn, h, h(x0)) = X ;
L<(Rn, h, h(x0)) = intX ;
L=(Rn, h, h(x0)) = bdX.



3. Relationships between (PX) and (PRn)

Proposition 8 (Günther & Tammer, 2016, 2018). Let X be a nonempty subset of
Rn. Assume that f : Rn → Rm is componentwise semi-strictly quasi-convex on
Rn. Then, we have

(intX) \ Eff(Rn | f ) ⊆ (intX) \ Eff(X | f ).

Corollary 9 (Günther & Tammer, 2016, 2018). Let X be a nonempty subset of
Rn. Assume that f : Rn → Rm is componentwise semi-strictly quasi-convex on
Rn. Then,

X ∩ Eff(Rn | f ) ⊆ Eff(X | f ) ⊆ [X ∩ Eff(Rn | f )] ∪ bdX.



4. The penalized multi-objective optimization problem

We consider the penalized multi-objective optimization problem

f⊕(x) := (f1(x), . . . , fm(x), φ(x))→ min w.r.t. Rm+1

+
x ∈ Rn,

(P⊕Rn)

where φ : Rn → R is the penalization function. Furthermore, assume:

A1 If x′ ∈ bdX , then

L≤(Rn, φ, φ(x′)) := {x ∈ Rn | φ(x) ≤ φ(x′)} = X.

A2 If x′ ∈ bdX , then

L=(Rn, φ, φ(x′)) := {x ∈ Rn | φ(x) = φ(x′)} = bdX.



Examples for the penalization function φ

1◦. Assume that X is convex and closed with d ∈ intX . Then, φ(·) := µB(· − d)
fulfills Assumptions A1 and A2, where µB is a Minkowski gauge associated
to the set B := −d + X , i.e.,

µB(x) := inf{λ ≥ 0 |x ∈ λ ·B} for all x ∈ Rn.

2◦. Assume that D ( Rn is convex and closed with d ∈ intD. Now, we consider
X := Rn \ intD. Then, the function φ(·) := −µB(· − d), where µB is a
Minkowski gauge associated to the set B := −d+D, fulfills Assumptions A1
and A2.



3◦. Assume that X is a closed set with ∅ 6= X ( Rn. Based on the distance
function dX : Rn → R with respect to X ,

dX(x) := inf{||x− z|| | z ∈ X} for all x ∈ Rn,

one can consider the so-called signed distance function (by Hiriart-Urruty, 1979)
4X : Rn → R that is defined by

4X(x) := dX(x)− dRn\X(x) =

dX(x) for x ∈ Rn \X,
−dRn\X(x) for x ∈ X.

Then, φ := 4X satisfies Assumptions A1 and A2.



Main result:

Theorem 10 (Günther & Tammer, 2016, 2018). Suppose that φ : Rn → R fulfills
Assumptions A1 and A2. Then, the following assertions hold:

1◦. We have

[X ∩ Eff(Rn | f )] ∪
[
(bdX) ∩ Eff(Rn | f⊕)

]
⊆ Eff(X | f ).

2◦. In the case intX 6= ∅, suppose additionally that f : Rn → Rm is component-
wise semi-strictly quasi-convex on Rn. Then,

[X ∩ Eff(Rn | f )] ∪
[
(bdX) ∩ Eff(Rn | f⊕)

]
⊇ Eff(X | f ).



Proof:

1◦. By Corollary 4 we know that X ∩ Eff(Rn | f ) ⊆ Eff(X | f ) is true. Now, let
x0 ∈ bdX ∩ Eff(Rn | f⊕). By Lemma 3 (for the problem (P⊕Rn) instead of
(PX)) and A1 and A2 it follows

S≤(X, f, x0) = S≤(Rn, f, x0) ∩X
= S≤(Rn, f, x0) ∩ L≤(Rn, φ, φ(x0))
⊆ S=(Rn, f, x0) ∩ L=(Rn, φ, φ(x0))
= S=(Rn, f, x0) ∩ bdX
⊆ S=(Rn, f, x0) ∩X
= S=(X, f, x0).

Consequently, applying Lemma 3 we get x0 ∈ Eff(X | f ).



2◦. Let x0 ∈ Eff(X | f ). The first case is that x0 ∈ X ∩Eff(Rn | f ) holds. Now,
in the second case suppose that x0 ∈ X \ Eff(Rn | f ). Hence, by Corollary 9
we assume that x0 ∈ bdX . Now, by Lemma 3 and A1 and A2 it follows

S≤(Rn, f, x0) ∩ L≤(Rn, φ, φ(x0)) = S≤(Rn, f, x0) ∩X
= S≤(X, f, x0)
⊆ S=(X, f, x0)
= S=(Rn, f, x0) ∩X.

Furthermore, it holds

S=(Rn, f, x0) ∩X = S=(Rn, f, x0) ∩ bdX. (2)

In order to show the validity of (2) it is sufficient to prove S=(Rn, f, x0) ∩
intX = ∅. Indeed, if we suppose that there exist some x1 ∈ intX with
x1 ∈ S=(Rn, f, x0), then we have to distinguish two cases:



Case 1: If x1 ∈ X \ Eff(Rn | f ) holds, then by Proposition 8 it follows
x1 ∈ X \ Eff(X | f ). Since x1 ∈ S=(X, f, x0), this implies
x0 ∈ X \ Eff(X | f ), in contradiction to the assumption x0 ∈ Eff(X | f ).
Case 2: If we assume x1 ∈ Eff(Rn | f ), then by x1 ∈ S=(Rn, f, x0) we
conclude x0 ∈ Eff(Rn | f ), a contradiction to x0 ∈ X \ Eff(Rn | f ).

Hence, the equality (2) is true.

Taking into account that x0 ∈ bdX , we obtain by A1 and A2,

S=(Rn, f, x0) ∩ bdX = S=(Rn, f, x0) ∩ L=(Rn, φ, φ(x0)).

In view of Lemma 3 for the problem (P⊕Rn) instead of (PX), we infer that
x0 ∈ Eff(Rn | f⊕) holds.



5. Applications

5.1 The class of point-objective location problems

Let m points a1, . . . , am ∈ Rn be a priori given. The distance from the new facility
x ∈ Rn to a given existing facility ai ∈ Rn will be measured by the metric induced
by the Euclidean norm || · ||2 : Rn → R, i.e., we have

||x− ai||2 :=
 n∑
j=1

(xj − aij)2


1
2
.

The constrained point-objective location problem involving the Euclidean norm is
given by


f (x) = (||x− a1||2, . . . , ||x− am||2)→ min w.r.t. Rm+
x ∈ X,

(POLPX)

where the feasible set X is a nonempty and closed set in Rn.



d

X

Eff(R2 | f⊕)

a3

a1

a2

X

a1

a3 a2

d

X

a1

a3 a2

X

a1

a3 a2

Eff(X | f )

Eff(R2 | f )

Example: Construction of the set Eff(X | (f1, f2, f3))



5.2 (POLPX) involving two forbidden regions

Consider the problem (POLPX), i.e.,

f (x) = (||x− a1||2, . . . , ||x− am||2)→ min w.r.t. Rm+ ,

x ∈ X ,

and assume that

Di := B||·||2(di, ri) with di ∈ Rn, ri > 0, i ∈ Il, l ∈ N;
X := ⋂

i∈Il
Xi with Xi := Rn \ intDi, i ∈ Il.
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The family of penalized problems:

For any i ∈ Il, consider a penalized multi-objective optimization problem

f⊕i(x) = (||x− a1||2, . . . , ||x− am||2, φi(x))→ min w.r.t. Rm+1

+
x ∈ Rn,

where the penalization function is given by φi(·) := −||x− di||2.
Remark 1. According to Jourani, Michelot and Ndiaye (2009), this problem can be
seen as a point-objective location problem involving attraction and repulsion points.



Relationships between Eff(X | f ) and Eff(Rn | f⊕i), i ∈ Il:
Lemma 11 (Günther, 2018). 1◦. We have

Eff(X | f ) ⊇
[
X ∩ conv{a1, · · · , am}

]

∪
 ⋃
i∈Il

X ∩ (bdDi) ∩ Eff(Rn | f⊕i)
 .

2◦. Assume that the interiors of Di, i ∈ Il, are pairwise disjoint. Then,
Eff(X | f ) =

[
X ∩ conv{a1, · · · , am}

]

∪
 ⋃
i∈Il

(bdDi) ∩ Eff(Rn | f⊕i)
 .
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Example: Construction of the set Eff(X | f )



6. Necessary optimality conditions

(Günther, Tammer, Yao (2018)) An operator ∂ which associates with every h :
Rn → R and every x ∈ Rn a subset ∂h(x) ⊆ Rn, such that the following axioms
are satisfied:

H1 If h is convex, then ∂h coincides with the Fenchel subdifferential, i.e.,

∂h(x) = {y∗ ∈ Rn | ∀x′ ∈ Rn : 〈y∗, x′ − x〉 + h(x) ≤ h(x′)}.

H2 If h is locally Lipschitz continuous, and x is a local minimum point for h over
Rn, then

0 ∈ ∂h(x).

H3 If η : Y → R is convex and ψ ∈ F(Rn, Y ), then for every x ∈ Rn,

∂(η ◦ ψ)(x) ⊆ ⋃
y∗∈∂η(ψ(x))∂(y∗ ◦ ψ)(x).



Theorem 12. Let X ⊂ Rn be a closed set with intX 6= ∅. Assume that ∂ satisfies
H1, H2, H3, φ : Rn → R fulfills A1 and A2. Let f : Rn → Rm be component-
wise semi-strictly quasi-convex, let f ∈ F(Rn,Rm), f⊕ ∈ F(Rn,Rm+1), f and φ
locally Lipschitz continuous at x. Take some x ∈WEff(X | f ). Then,

1◦. If x ∈ intX , then for every ε > 0 there exist y∗ ∈ Rm+ and k ∈ intRm+ with
‖y∗‖Rm < ε and 〈y∗, k〉 = 1 such that

0 ∈ ∂(y∗ ◦ f )(x) = ∂

 ∑
i∈Im

y∗i fi

 (x).

2◦. If x ∈ bdX , then for every ε > 0 there exist u∗ := (y∗, s∗) ∈ Rm+ × R+ and
k ∈ intRm+1

+ with ‖u∗‖Rm+1 < ε and 〈u∗, k〉 = 1 such that

0 ∈ ∂(u∗ ◦ f⊕)(x) = ∂

s∗φ + ∑
i∈Im

y∗i fi

 (x).



7. Conclusions

Fields of application

• Multiobjective location and approximation problems arising in health-
care logistics.

• Economics: Considering models in utility theory (Cobb-Douglas-function).

• Bioinformatics: Considering entropy maximization models (based on en-
tropies by Shannon, Tsallis and Renyi) for DNA sequence analysis.
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