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1. Design of intensity modulated radiotherapy treatment

• Selection of beam angles (geometry problem)

• Computation of an intensity map for each selected beam

angle (intensity problem)

• Finding a sequence of configurations of a multileaf collimator

to deliver the treatment (realization problem)

H.W. Hamacher (1995), M. Ehrgott (2003), M. Ehrgott, C.

Güler, H.W. Hamacher, L. Shao (2010)



Models in radiotherapy treatment

• beams k = 1, ..., p are available for a treatment,

• each beam consists of bixels j = 1, ..., n,

• voxels are indexed by i = 1, ...,m,

• (aijk) denotes the dose deposited in voxel i at unit intensity

for bixel j of beam k (or the rate at which radiation along

sub-beam j in beam k is deposited into dose-point i),

(aijk) is positive for each (i, j, k).



These rates are patient-specific constants, and hence, the map-

ping between intensity (or fluence) and dose is linear.

Notations:

• Dose deposition matrix A (defined by the values (aijk)) by

indexing rows by i and columns by (j, k).

• Beam intensity: x ∈ Rnp, xjk represents the intensity of bixel

j, j = 1, ..., np of beam k, k = 1, ..., p.

Each voxel is assigned to a particular structure.



• T : represents the tumor,

• C: represents critical organs (K critical organs or organs at
risk (OARs) are represented by C1, ..., CK),

• N : represents normal tissue,

• m: total number of voxels, m = mT +mC +mN , where mC =
mC1

+ · · ·+mCK.

• AT , AC, AN : A can be partitioned and reordered into sub-
matrices AT ∈ RmT×np, AC ∈ RmC×np and AN ∈ RmC×np (ac-
cording to the rows corresponding to tumor, critical organ
and normal tissue voxels (Ai: row i of A).



Treatment planning

TG ∈ RmT : desired dose to tumor voxels,

TLB ∈ RmT : lower bounds on the dose to tumor voxels,

TUB ∈ RmT : upper bounds on the dose to tumor voxels,

CUB ∈ RmC: upper bounds on the dose to critical organ voxels,

NUB ∈ RmN : upper bounds on dose to normal tissue voxels.



Example Minimize the weighted sum of maximum deviation

from tumor goal dose and maximum overdose to critical organs

and normal tissue subject to nonnegativity constraints:

Lim et al (2007):

min
x≥0

wT ||ATx− TG||∞ + wC||(ACx− CUB)+||∞ + wN ||(ANx−NUB)+||∞,

where (·)+ = max{0, ·} and w is a vector of weight factors.

Xing et al. (1998):

min
x≥0

wT

mT
||ATx− TG||22 +

wC

mC
||ACx− CUB||22 +

wN

mN
||ANx−NUB||22.



Multiobjective optimization models

Desired dose distribution can not always be obtained, due to
physical limitations and trade-offs between the various conflic-
ting treatment goals =⇒ multiobjective characteristic of inverse
planning (Cotrutz et al (2001) and Lahanas et al (2003)):

f(x)→ min w.r.t. R3
+, (P)

where

f(x) :=


1
mT
‖ATx− TG‖22
1
mN
‖ANx‖22

1
mC
‖(ACx− CUB)+‖22

 ,
x ∈ Rs, ‖x‖2 =

√∑s
i=1 x

2
i .



fT (x) := 1
mT
‖ATx− TG‖22:

Average squared deviation from the prescribed dose to the

tumor.

fN(x) := 1
mN
‖ANx‖22:

Average squared dose to the normal tissue.

fC(x) := 1
mC
‖(ACx− CUB)+‖22:

Average squared overdose to the critical organ.



3. Multiobjective approximation problems

Scalar approximation problem:

(c, x) +
m∑
i=1

αi‖Ai(x)− ai‖βi(i) → min
x∈D

. (P1)

Multiobjective approximation problem:

C(x) +


α1‖A1(x)− a1‖β1

(1)
· · ·

αm‖Am(x)− am‖βm(m)

→ min
x∈D

w.r.t. Rm+. (PV)



Solution concept for multiobjective optimization problems:

Consider f : D → Rm, D ⊂ X, a proper closed convex and pointed

cone K ⊂ Rm.

An element f(x) ∈ f(D), where f : D → Rm, D ⊂ Rs, is called

Pareto minimal point of f(D) with respect to K, if

f(D) ∩ (f(x)− (K \ {0})) = ∅.



We denote the set of Pareto minimal points of f(D) with respect

to K by

Min(f(D),K).

Suppose intK 6= ∅. An element f(x) ∈ f(D) is called weakly

minimal point of f(D) with respect to K, if

f(D) ∩ (f(x)− intK) = ∅.

We denote the set of weakly minimal points of f(D) with respect

to K by

WMin(f(D),K).

An element x ∈ D with f(x) ∈ WMin(f(D),K) is called weakly

efficient element.



Assume that X,U and Y are real Banach spaces; K ⊂ Y is a pro-

per pointed closed convex cone. Vector-valued norm (see Jahn

(2004)) ||| · ||| : U → K which for all u, u1, u2 ∈ U and for all λ ∈ R
satisfies:

(1) |||u||| = 0⇐⇒ u = 0;

(2) |||λ u ||| =| λ | |||u|||;

(3) |||u1 + u2||| ∈ |||u1|||+ |||u2||| − K.

Suppose g : X → Y is a cost function, Ai ∈ L(X,U) and αi ≥
0 (i = 1, . . . ,m). We consider for x ∈ D ⊂ X and ai ∈ U (i =

1, . . . ,m) the vector-valued approximation problem

Determine WMin(f(D),K), (1)

where f(x) := g(x) +
∑m
i=1αi|||Ai(x)− ai||| and D ⊂ X is closed.



Theorem: Suppose that X,U, Y are reflexive Banach spaces, D

is a closed subset of X and K ⊂ Y is a proper convex Daniell cone

with a weakly compact base and nonempty interior. Let x ∈ D
be a weakly efficient point of (1). Assume that g is K-bounded

from above around x̄, g is K-convex and ||| · ||| is continuous.

Then there exist y∗ ∈ K+ \ {0} and Ti ∈ L(U, Y ) with

Ti(Ai(x)− ai) = |||Ai(x)− ai|||, |||v||| − Ti(v) ∈ K ∀v ∈ U

(i = 1, . . . ,m) such that

0 ∈ ∂〈y∗, g(x)〉+
m∑
i=1

αiA
∗
i y
∗Ti +NL(x;D).

(Vu Anh Tuan, Chr. Tammer, C. Zălinescu (2016))



4. Algorithms for solving multiobjective approximation problems

4.1 A proximal point algorithm for the scalar problem

(Minty (1962), Rockafellar (1976), Idrissi, Lefebvre, Michelot
(1988), Bonnel, Iusem, Svaiter (2004))

Consider (P1): (c, x) +
m∑
i=1

αi‖Aix− ai‖
βi
(i) → minx∈D ,

where ‖ · ‖(i), norms in Rki; c, x ∈ Rs, ai ∈ Rki, αi > 0, βi ≥ 1,

Ai ∈ L(Rs,Rki), D =
⋂̀
j=1

Dj, Dj ⊂ Rs closed and convex, (j =

1, . . . , `). Assume that a constraint qualification is fulfilled.

Indicator function: χM(x) :=

{
0 if x ∈M
+∞ if x /∈M .



(P1) =⇒ Unconstraint minimization problem (P ′):

F (x) = (c, x) +
m∑
i=1

αi‖Aix− ai‖
βi
(i) +

∑̀
j=1

χDj(x)→ min
x∈Rs

.

Under the given assumptions:

x0 solves (P ′)⇐⇒ 0 ∈ ∂F (x0) (2)

(5)⇐⇒ qi ∈ ∂(αi‖Aix0 − ai‖βi(i)), i = 1,2, . . . ,m,

rj ∈ ∂χDj(x
0), j = 1,2, . . . , `,

c+
m∑
i=1

qi +
∑̀
j=1

rj = 0.

(3)



Introduce

E := Rk1 × Rk2 × . . .× Rkm × Rs × ...× Rs︸ ︷︷ ︸
`+1

and the subspaces
A := {y ∈ E : y = (A1(x), . . . , Am(x), x, . . . , x)︸ ︷︷ ︸

`+m+1

, x ∈ Rs},

B := {p ∈ E | p = (p1, p2, . . . , pm+`+1), pi ∈ Rki (i=1,...,m),

pj ∈ Rs (j = m+ 1, . . . ,m+ `+ 1) :
m∑
i=1

ATi pi +
m+`+1∑
j=m+1

pj = 0},

and the operator T defined on E by
Ti(yi) := ∂(αi‖yi − ai‖

βi
(i)), i = 1, . . . ,m,

Tm+j(x) := NDj(x) j = 1, . . . , `,
Tm+`+1(x) := c .



Algorithm (PPA) (Special case: βi = 1 (i=1,...,m))

• Choose the starting points: x1 ∈ Rs and p1 ∈ E with
m∑
i=1

ATi p
1
i +

m+`+1∑
j=m+1

p1
j = 0 , p1

i ∈ Rki, p1
j ∈ Rs.

• Compute yk+1 and pk+1 from

p̃ki =

{
bi if ‖bi‖i∗ ≤ αi
αiPBi(bi/αi) if ‖bi‖i∗ > αi

(bi := yki + pki − a
i, (i=1,...,m))

ỹkm+j = PDj(p
k
m+j + ykm+j), (j = 1, . . . , `), p̃km+`+1 = c,

p̃km+j = pkm+j + ykm+j− ỹkm+j and ỹki = pki + yki − p̃
k
i ,

such that pk+1 := PB(p̃k) and yk+1 := PA(ỹk).



4.2 Interactive algorithm for multiobjective approximation problems

Consider the problem:

C(x) +


α̃1‖A1(x)− a1‖β1

(1)
· · ·

α̃m‖Am(x)− am‖βm(m)

→ min
x∈D

w.r.t. K (PV)

under the assumptions given above with C ∈ L(Rs,Rm), K ⊂ Rm

is a closed pointed convex cone with K + (Rm+\{0}) ⊂ intK.

m∑
i=1

λi(Ci(x) + α̃i‖Ai(x)− ai‖βi(i))→ min
x∈D

, (PV (λ))

where λ ∈ Λ ⊂ intK+.



Algorithm for the multiobjective approximation problem (PV)

Step 1:Choose λ̄ ∈ intK+. Compute an approximate solution
(y0, p0) of (PV (λ̄)) with algorithm (PPA). If (y0, p0) is accepted
by the decision maker, then Stop.
Step 2:Put k = 0, t0 = 0. Choose ¯̄λ ∈ intK+, ¯̄λ 6= λ̄. Go to Step
3.
Step 3:Choose tk+1 with tk < tk+1 ≤ 1, set λk = λ̄+ tk+1(¯̄λ− λ̄)
and compute an approximate solution (yk+1, pk+1) of (PV (λk))
with (PPA) and (yk, pk) as starting point. If an approximate so-
lution of (PV ( λk)) cannot be found for t > tk, then go to Step
1. Otherwise go to Step 4.
Step 4:(yk+1, pk+1) is to be evaluated by the decision maker .
If it is accepted, then Stop. Otherwise go to Step 5.
Step 5:If tk+1 ≥ 1, then go to Step 1. Otherwise set k = k + 1
and go to Step 3.



4. Further Research: Application to inverse problems

Inverse Stefan problem (Crank, Reemtsen and Jahn):

Consider: Process of melting ice in the water, temperature dis-

tribution u(x, t) in the water at the time t.

Heat-flow equation:

uxx(x, t)− ut(x, t) = 0.

Problem: Heat input g(t) is to be determined such that the

melting interface moves in the prescribed way: x = δ(t), t ≥ 0.

Suppose: δ ∈ C1[0, T ], T > 0, is a given function, 0 ≤ t ≤ T ,

0 ≤ x ≤ δ(t), and δ(0) = 0. Put

D(δ) := {(x, t) ∈ R2 | 0 < x < δ(t), 0 < t ≤ T} δ ∈ C1[0, T ].



Consider the parabolic boundary value problem

uxx(x, t)− ut(x, t) = 0, (x, t) ∈ D(δ), (4)

ux(0, t) = g(t), 0 < t ≤ T, (5)

where g ∈ C([0, T ]), g(0) < 0, is to be determined,

u(δ(t), t) = 0, δ̇(t) = −ux(δ(t), t), 0 < t ≤ T. (6)

Characterization of approximate solutions of the inverse Stefan
problem (4), (5), (6) using approximation theory!
Settings:

ū(x, t, a) =
l∑

i=0

aiwi(x, t), l > 0 integer, fixed,

with wi(x, t) =

[ i2]∑
k=0

i!

(i− 2k)!k!
xi−2ktk, i = 0, . . . , l,



and g(t) = c0 + c1t+ c2t
2, c0 ≤ 0, c1 ≤ 0, c2 ≤ 0.

Error functions:

ϕ1(t, a, c) := ū(δ(t), t, a)− 0,

ϕ2(t, a, c) := ūx(0, t, a)− g(t),

ϕ3(t, a, c) := ūx(δ(t), t, a)− (−δ̇(t)),

ϕ(a, c) :=

 ‖ϕ1(·, a, c)‖1
‖ϕ2(·, a, c)‖2
‖ϕ3(·, a, c)‖3

 .

Moreover, assume D ⊂ Rl+1 × R3 and D := {d ∈ Rl+1 × R3 | di ∈
R ∀ i = 0,1, . . . , l + 3; di ≤ 0 ∀ i = l + 1, . . . , l + 3}.



Compute the set Min(f(D),R3
+), with

f(d) :=

 ‖A1(·, d)− a1‖1
‖A2(·, d)− a2‖2
‖A3(·, d)− a3‖3

 ,
where Ai ∈ L(Rl+1 × R3, Yi), Yi are reflexive Lq-spaces,

A1(t) = (w0(δ(t), t), w1(δ(t), t), . . . , wl(δ(t), t),0,0,0),

A2(t) = (w0x(0, t), w1x(0, t), . . . , wlx(0, t),−1,−t,−t2),

A3(t) = (w0x(δ(t), t), w1x(δ(t), t), . . . , wlx(δ(t), t),0,0,0),

dT = (a0, a1, a2, . . . , al, c0, c1, c2),

a1 = (0, . . . ,0) ∈ Y1, a2 = (0, . . . ,0) ∈ Y2,

a3 = −δ̇ ∈ Y3 = Lq[0, T ],

‖ · ‖i (i = 1,2,3) norms in reflexive Lq-spaces Yi.



Methods for the Elastography Inverse Problem of Locating

Tumors

Cancer is the second deadliest disease. For its successful treat-

ment, cancer must be diagnosed in the earliest possible stages

of the disease’s progression. In living soft tissue, differences in

molecular makeup as well as in microscopic and macroscopic

structure result in significant differences in tissue stiffness. Ma-

ny cancers appear as hard nodules within the surrounding softer

tissue.

Such diseases are often detectable by the standard medical prac-

tice of palpation, but palpation remains a subjective technique

and is mostly limited to the detection of large, stiff tissue abnor-

malities that lie near the skin’s surface.



A tool like ultrasound can be used to diagnose tumors deeper

within the body, but it can also fail to find lesions that lack cer-

tain acoustical properties. The potential for using varying elastic

properties to differentiate between healthy and diseased tissue in

a more quantitative manner is clear and has been recognized by

many authors.

The elasticity imaging inverse problem is a novel approach that

uses the varying elastic properties of healthy and diseased tissue

to identify lesions similar to palpation. This approach consists

of exerting a small, external, and quasistatic compression force

to the tissue and measuring its axial displacement field or, more

indirectly, the tissue’s overall motion. From this measurement, a

tumor can be identified by solving the so-called elasticity imaging

inverse problem of determining the tissue’s underlying elasticity.



This inverse problem builds upon a combination of mathemati-

cal, computational, and experimental techniques based on linear

elasticity models.

Underlying mathematical model for this inverse problem:

System of partial differential equations that describes the re-

sponse of an isotropic elastic object to certain body forces and

traction applied to its boundary:



−∇ · σ = f in Ω, (7a)

σ = 2µε(u) + λdivu I, (7b)

u = g on Γ1, (7c)

σn = h on Γ2. (7d)

Here the domain Ω is a subset of R2 or R3 and ∂Ω = Γ1∪Γ2 is its
boundary. In (7), the vector-valued function u = u(x) represents
the displacement of the elastic object, f is the applied body
force, n is the unit outward normal, and ε(u) = 1

2(∇u +∇uT) is
the linearized strain tensor. The resulting stress tensor σ in the
stress-strain law (7b) is obtained under the assumption that the
elastic object is isotropic and the displacement is small enough
so that a linear relationship holds. The coefficients µ and λ are
the Lamé parameters that quantify the elastic properties of the
material.



In this setting, the direct problem for (7) is to find the displa-
cement u when functions g, h, the variable coefficients µ and λ,
and the body force f are known.
In the elasticity imaging inverse problem, the focus, however, is
on the inverse problem of identifying the parameter µ when a
certain measurement z of the displacement u is available. Since
cancerous tumors differ markedly in their elastic properties from
the surrounding healthy tissue, these tumors are then located by
solving the inverse problem of identifying the variable parameters
that describe the elastic properties of the tissue.
From a mathematical standpoint, this inverse problem seeks µ

from a measurement of the displacement vector u under the as-
sumption that the parameter λ is very large. The elastography
inverse problem mathematically mimics the practice of palpation
by making use of the differing elastic properties of healthy and
unhealthy tissue to identify tumors.



The ill-conditioning of the Hessian matrix in this method was

eliminated employing the Tikhonov regularization technique.

However, the choice of regularization parameter was largely heu-

ristic.

The study of error estimates for inverse problem of parameter

identification in PDEs is challenging and have been mostly car-

ried out in the context of simpler elliptic problem

−∇ (a∇u) = f in Ω, (8)

usually subject to Neumann boundary conditions, where the pa-

rameter a is to be identified.



Tikhonov regularization:

J(a) :=
1

2
‖u− z‖2 +

ρ

2
‖a‖2

H1(Ω) → min, (PT)

where z is the data (the measurement of u), ‖ · ‖ is a suitable

norm and u(a) solves the variational problem corresponding to

the elliptic problem.

In the Tikhonov approach, it is necessary to choose the regula-

rization weight ρ. We replace (PT) by

f(a) :=

(
‖u− z‖2
‖a‖2

H1(Ω)

)
→ min w.r.t. R2

+. (PTV)

So, it is possible to apply our methods for solving (8).
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