Composite Finite Element Methods Part 1: Finite Element Methods

Stefan A. Sauter

Institut für Mathematik, Universität Zürich

June 2023

Model Problem:

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open interval $(d=1)$, a bounded polygonal domain $(d=2)$, a bounded polyhedral domain $(d=3)$, etc., with boundary $\Gamma:=\partial \Omega$.

Polygonal domain Ω with boundary $\Gamma:=\partial \Omega$ and outward normal \mathbf{n}.

Notation

$$
\nabla v:=\left(\partial_{j} v\right)_{j=1}^{d}, \quad \Delta v:=\sum_{j=1}^{d} \partial_{j}^{2} v, \quad \operatorname{div} \mathbf{w}:=\sum_{j=1}^{d} \partial_{j} w_{j}
$$

Poisson problem (classical formulation):

Let a "load function" $f: \Omega \rightarrow \mathbb{R}$ be given. Find a function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{array}{rlrl}
-\Delta u(\mathbf{x}) & =f(\mathbf{x}) & \forall \mathbf{x} \in \Omega \\
u(\mathbf{x}) & =0 & & \forall \mathbf{x} \in \Gamma .
\end{array}
$$

Remark. This formulation requires the equality in every point $\mathbf{x} \in \Omega$. For existence, and uniqueness results this formulation has severe drawback.

Variational formulation of the Poisson model problem (I)

For the weak or variational formulation one replaces the pointwise conditions by integral conditions. Let $v \in C^{\infty}(\bar{\Omega})$ be a test function. Multiplying the differential equation by v and integrating over the domain Ω leads to: find $u: \Omega \rightarrow \mathbb{R}$ with $\left.u\right|_{\Gamma}=0$ such that

$$
\int_{\Omega}(-\Delta u) v=\int_{\Omega} f v \quad \forall v \in C^{\infty}(\bar{\Omega})
$$

We integrate by parts to obtain

$$
\int_{\Omega}\langle\nabla u, \nabla v\rangle-\int_{\Gamma} \frac{\partial u}{\partial \mathbf{n}} v=\int_{\Omega} f v \quad \forall v \in C^{\infty}(\bar{\Omega}) .
$$

Variational formulation of the Poisson model problem (II)

Since the function u is zero on Γ we may restrict to test functions v which are zero on the boundary. Hence, the boundary integral can be dropped and we have derived the weak formulation:

Find $u \in V_{0}$ such that

$$
\begin{array}{rlr}
& \int_{\Omega}\langle\nabla u, \nabla v\rangle=\int_{\Omega} f v & \forall v \in C_{0}^{\infty}(\Omega) \\
\text { with } & C_{0}^{\infty}(\Omega):=\left\{v \in C^{\infty}(\Omega):\left.v\right|_{\Gamma}=0\right\} . &
\end{array}
$$

Variational formulation of the Poisson model problem (III)

The energy space V_{0} must satisfy:
a) V_{0} is a Hilbert space,
b) $a(u, v):=\int_{\Omega}\langle\nabla u, \nabla v\rangle$ defines a scalar product in V_{0},
c) functions in V_{0} are zero on Γ.

The subspace of $L^{2}(\Omega)$ with derivatives in $L^{2}(\Omega)$ is the Sobolev space

$$
H^{1}(\Omega):=\left\{u \in L^{2}(\Omega) \mid \int_{\Omega}\|\nabla u\|^{2}<\infty\right\} .
$$

Trace theorem: Functions in $H^{1}(\Omega)$ have well-defined restrictions to the boundary $\partial \Omega$.

Definition (energy space) The energy space for the Poisson model problem is

$$
V_{0}:=\left\{v \in H^{1}(\Omega)|v|_{\Gamma}=0\right\}
$$

The weak (variational) formulation of the Poisson problem reads: find $u \in V_{0}$ such that

$$
a(u, v)=F(v) \quad \forall v \in V_{0}
$$

Here, the bilinear form $a: V_{0} \times V_{0} \rightarrow \mathbb{R}$ and the functional $F: V_{0} \rightarrow \mathbb{R}$ is given by

$$
a(u, v):=\int_{\Omega}\langle\nabla u, \nabla v\rangle \quad \text { and } \quad F(v):=\int_{\Omega} f v \quad \forall v \in V_{0} .
$$

Analysis on the continuous problem

Definition. Let V be a Hilbert space with norm $\|\cdot\|_{V}$ and let a bilinearform $a: V \times V \rightarrow \mathbb{R}$ be given.
$a(\cdot, \cdot)$ is continuous if there is some $C>0$ such that

$$
|a(v, w)| \leq C\|v\|_{V}\|w\|_{V} \quad \forall v, w \in V
$$

$a(\cdot, \cdot)$ is coercive if there is some $c>0$ such that

$$
|a(v, v)| \geq c\|v\|_{V}^{2} \quad \forall v \in V .
$$

Definition (cont'd)

$a(\cdot, \cdot)$ is symmetric if

$$
a(v, w)=a(w, v) \quad \forall v, w \in V
$$

A linear form $F \in V^{\prime}$ is continuous if

$$
\|F\|_{V^{\prime}}:=\sup _{v \in V \backslash\{0\}} \frac{|F(v)|}{\|v\|_{V}}<\infty
$$

Theorem (Lax-Milgram). Let V be a Hilbert space and $a: V \times V \rightarrow \mathbb{R}$ be symmetric, continuous, and coercive. Then, the variational problem: for given continuous linear form $F \in V^{\prime}$, find $u \in V$ such that

$$
a(u, v)=F(v) \quad \forall v \in V
$$

has a unique solution which satisfies

$$
\|u\|_{V} \leq \frac{1}{c}\|F\|_{V^{\prime}}
$$

Galerkin Finite Element Method:

To approximate the continuous problem, a finite-dimensional function space $S \subset V_{0}$ has to be defined.

Idea of finite elements:
a) subdivide Ω in small simplices (intervals, triangles, tetrahedrons)

b) approximate on the simplices by piecewise polynomials

c) Enforce continuity across element boundaries and boundary conditions to ensure $S \subset V_{0}$

Definition (shape regularity, mesh width). Let $\mathcal{T}:=\left\{K_{j}: 1 \leq j \leq N\right\}$ denote a conforming (no hanging nodes), simplicial finite element mesh for Ω. The (local) mesh width is given by

$$
h_{K}:=\operatorname{diam} K \quad \text { and } \quad h:=\max \left\{h_{K}: K \in \mathcal{T}\right\}
$$

For the approximation quality, the shape regularity constant is important

$$
\gamma_{\mathrm{sr}}(\mathcal{T}):=\max \left\{\frac{h_{K}^{d}}{|K|}: K \in \mathcal{T}\right\}
$$

Example of a tetrahedral mesh with good shape regularity constant.

Definition (Finite Element space). Let $\mathcal{T}:=\left\{K_{j}: 1 \leq j \leq N\right\}$ denote a conforming, simplicial finite element mesh for Ω and $p \geq 1$. Then

$$
\begin{aligned}
& S_{\mathcal{T}}^{p}:=\left\{u \in C^{0}(\Omega)|\forall K \in \mathcal{T}: \quad u|_{K} \in \mathbb{P}_{p}(K)\right\} \\
& S:=S_{\mathcal{T}, 0}^{p}:=\left\{u \in S_{\mathcal{T}}^{p}|u|_{\partial \Omega}=0\right\}
\end{aligned}
$$

Definition (Galerkin method). The Galerkin discretization of a variational problem is characterized by a finite-dimensional subspace $S \subset V_{0}, N:=$ $\operatorname{dim} S<\infty$:

Find $u_{S} \in S$ such that

$$
a\left(u_{S}, v\right)=F(v) \quad \forall v \in S
$$

Stability and convergence analysis

Theorem (Céa). Let V be a Hilbert space and $a: V \times V \rightarrow \mathbb{R}$ be symmetric, continuous, and coercive. Let $S \subset V$ with $\operatorname{dim} S<\infty$. Then, the Galerkin method has a unique solution which satisfies the quasi-optimal error estimate

$$
\left\|u-u_{S}\right\|_{V} \leq \frac{C}{c} \inf _{v \in S}\|u-v\|_{V}
$$

The Galerkin orthogonality holds

$$
a\left(u-u_{S}, v\right)=0 \quad \forall v \in S
$$

Theorem. If the exact solution of the Poisson model problem is regular, i.e., $u \in H_{0}^{1}(\Omega) \cap H^{p+1}(\Omega)$ then the energy error satisfies

$$
\left\|u-u_{S}\right\|_{H^{1}(\Omega)} \leq \frac{C}{c} C_{\mathrm{sr}} h_{\mathcal{T}}^{p}\|u\|_{H^{p+1}(\Omega)}
$$

Computational aspects:

For the numerical solution, a basis for S is needed

$$
S=\operatorname{span}\left\{B_{i}: i \in \mathcal{I}\right\} \quad \text { with } \quad|\mathcal{I}|=\operatorname{dim} S=N .
$$

Basis representation of Galerkin discretization
The stiffness (system) matrix $\mathbf{A}=\left(a_{i, j}\right)_{i, j=1}^{N} \in \mathbb{R}^{N \times N}$ and the load vector (right-hand side) $\mathbf{r}:=\left(r_{i}\right)_{i=1}^{N}$ are given by

$$
\begin{aligned}
& a_{i, j}:=a\left(B_{j}, B_{i}\right)=\int_{\Omega}\left\langle\nabla B_{j}, \nabla B_{i}\right\rangle, \\
& r_{i}=F\left(B_{i}\right)=\int_{\Omega} f B_{i} .
\end{aligned}
$$

The Galerkin solution u_{S} has a unique basis representation

$$
u_{S}=\sum_{i \in \mathcal{I}} u_{i} B_{i}
$$

and the coefficient vector $\mathbf{u}=\left(u_{i}\right)_{i \in \mathcal{I}}$ is the unique solution of the system of linear equations

$$
\mathbf{A u}=\mathbf{r}
$$

Remark. The coercivity and symmetry of $a(\cdot, \cdot)$ implies that the matrix \mathbf{A} is symmetric, positive definite (spd).

Affine equivalence

All finite element computations should be transformed to the affine equivalent reference element:

$$
\widehat{K}:=\left\{\widehat{\mathbf{x}}=\left(\hat{x}_{i}\right)_{i=1}^{d} \in \mathbb{R}_{\geq 0}^{d} \mid \sum_{i=1}^{d} \hat{x}_{i} \leq 1\right\}
$$

Then any simplex K with vertices $\mathbf{A}_{K, j}, 0 \leq j \leq d$, has an affine pullback $\phi_{K}: \widehat{K} \rightarrow K$ given by

$$
\phi_{K}(\widehat{\mathbf{x}})=\mathbf{A}_{K, 0}+\mathbf{m}_{K} \widehat{\mathbf{x}}
$$

with the $d \times d$ matrix \mathbf{m}_{K} having column vectors $\mathbf{A}_{K, j}-\mathbf{A}_{K, 0}$.

Basis functions of $\mathbb{P}_{p}(\widehat{K})$ are defined by using nodal points $\widehat{\mathcal{N}}_{k}$:

$$
\widehat{\mathcal{N}}_{k}:=\left\{\frac{i}{p}: 0 \leq i \leq p\right\}^{d} \cap \widehat{K}
$$

$$
d=1, k=1 \quad \bullet \bullet
$$

For all $\mathbf{z} \in \mathcal{N}_{k}$ the Lagrange basis function $\hat{B}_{\mathbf{Z}} \in \mathbb{P}_{k}(\widehat{K})$ is characterized by

$$
\hat{B}_{\hat{\mathbf{z}}}(\hat{\mathbf{y}}):= \begin{cases}1 & \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ 0 & \hat{\mathbf{y}} \in \hat{\mathcal{N}}_{k} \backslash\{\hat{\mathbf{z}}\} .\end{cases}
$$

$$
\left.\begin{array}{r}
\left.\quad \begin{array}{r}
\hat{B}_{(0)}(\hat{x})=1-\hat{x} \\
\hat{B}_{(1)}(\hat{x})=\hat{x}
\end{array}\right\} d=1, k=1 \\
\hat{B}_{(0,0)}(\hat{\mathrm{x}})=1-\hat{x}_{1}-\hat{x}_{2} \\
\hat{B}_{(1,0)}(\hat{\mathrm{x}})=\hat{x}_{1} \\
\hat{B}_{(0,1)}(\hat{\mathrm{x}})=\hat{x}_{2}
\end{array}\right\} d=2, k=1
$$

Global nodal points and basis functions are defined via affine pullbacks:

$$
\begin{aligned}
& \mathcal{N}_{k}(\mathcal{T}):=\left\{\phi_{K}(\hat{\mathbf{z}}): K \in \mathcal{T}, \hat{\mathbf{z}} \in \widehat{\mathcal{N}}_{k}\right\} \\
& \mathcal{N}_{k, 0}(\mathcal{T}):=\left\{\mathbf{z} \in \mathcal{N}_{k}(\mathcal{T}) \mid \mathbf{z} \notin \partial \Omega\right\}
\end{aligned}
$$

For $\mathbf{z} \in \mathcal{N}_{k}(\mathcal{T})$ the nodal patch is given by

$$
\begin{aligned}
& \mathcal{T}_{\mathbf{z}}:=\{K \in \mathcal{T} \mid \mathbf{z} \in K\} \\
& \omega_{\mathbf{z}}:=\bigcup_{K \in \mathcal{T}_{\mathbf{z}}} K
\end{aligned}
$$

For $\mathbf{z} \in \mathcal{N}_{k, 0}$, the associated Lagrange basis is given by

$$
\begin{aligned}
& \left.\quad B_{\mathbf{Z}}\right|_{K}:= \begin{cases}\hat{B}_{\hat{\mathbf{z}}} \circ \phi_{K}^{-1} & \text { if } \mathbf{z} \in K \in \mathcal{T}_{\mathbf{z}}, \\
0 & \text { otherwise, }\end{cases} \\
& \text { for } \quad \hat{\mathbf{z}}:=\phi_{K}^{-1}(\mathbf{z})
\end{aligned}
$$

Computation of the right-hand side

$$
\begin{aligned}
& r_{\mathbf{z}}=\int_{\Omega} f B_{\mathbf{z}}=\sum_{K \in \mathcal{T}_{\mathbf{z}}} \frac{|K|}{|\widehat{K}|} \int_{\widehat{K}} \widehat{f}_{K} \widehat{B}_{\hat{\mathbf{z}}} \\
& \widehat{f}_{K}:=f \circ \phi_{K}
\end{aligned}
$$

Employ quadrature formula for the evaluation of the integrals.

Duffy transform

$$
\begin{aligned}
& \chi(\xi, \boldsymbol{\eta}):= \begin{cases}\xi & d=1, \\
\xi\left(1-\eta_{1}, \eta_{1}\right) & d=2 \\
\xi\left(1-\eta_{1}, \eta_{1}\left(1-\eta_{2}\right), \eta_{1} \eta_{2}\right) & d=3\end{cases} \\
& \operatorname{det} \chi^{\prime}(\xi, \boldsymbol{\eta})= \begin{cases}1 & d=1 \\
\xi & d=2 \\
\xi^{2} \eta_{1} & d=3\end{cases}
\end{aligned}
$$

Hence,

$$
\int_{\widehat{K}} \widehat{f}_{K} \widehat{B}_{\hat{\mathbf{z}}}= \begin{cases}\int_{0}^{1} \widehat{f}_{K} \widehat{B}_{\hat{\mathbf{z}}} & d=1 \\ \int_{0}^{1} \int_{0}^{1} \xi\left(\widehat{f}_{K} \widehat{B}_{\hat{\mathbf{z}}}\right) \circ \chi\left(\xi, \eta_{1}\right) d \eta_{1} d \xi & d=2 \\ \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \xi^{2} \eta_{1}\left(\widehat{f}_{K} \widehat{B}_{\hat{\mathbf{z}}}\right) \circ \chi\left(\xi, \eta_{1}, \eta_{2}\right) d \eta_{2} d \eta_{1} d \xi & d=3\end{cases}
$$

and this can be approximated by Gauss quadrature to high accuracy.

Computation of the system matrix

$$
a_{\mathbf{x}, \mathbf{y}}=\int_{\Omega}\left\langle\nabla B_{\mathbf{z}}, \nabla B_{\mathbf{y}}\right\rangle=\sum_{K \in \mathcal{T}_{\mathbf{z}} \cap \mathcal{T}_{\mathbf{y}}} \frac{|K|}{|\widehat{K}|} \int_{\widehat{K}}\left\langle\mathbf{g}_{K} \nabla \widehat{B}_{\hat{\mathbf{z}}}, \nabla \widehat{B}_{\hat{\mathbf{y}}}\right\rangle
$$

with $\mathbf{g}_{K}:=\left(\mathbf{m}_{K}^{-1}\right)^{T} \mathbf{m}_{K}^{-1}$.

Sparsity of the system matrix

Theorem. The system matrix is sparse: for any $\mathbf{x}, \mathbf{y} \in \mathcal{N}_{k, 0}(\mathcal{T})$ it holds

$$
\mathcal{T}_{\mathbf{x}} \cap \mathcal{T}_{\mathbf{y}}=\emptyset \Longrightarrow a_{\mathbf{x}, \mathbf{y}}=0
$$

The number of the non-zero entries per matrix row is bounded by C where C only depends on shape regularity and the polynomial degree p.

Corollary. A matrix-vector multiplication has linear complexity $O(N)$ while a general direct solver (Gauss elimination, QR decomposition, ...) of the linear system has a cost of $O\left(N^{3}\right)$. Details \rightarrow talk of W. Hackbusch.

Adaptive finite element methods (AFEM)
Idea: Start with a very coarse approximation and set up an algorithm with the structure:

$$
\begin{array}{|ll}
\hline \text { Compute } \rightarrow \text { Estimate } \rightarrow \text { Mark } \rightarrow \text { Refine } \\
\hline
\end{array}
$$

In contrast to a priori estimates, AFEM uses the computed Galerkin solution to enrich/adapt the space.

Error versus residual:

$$
\begin{aligned}
& \left\|u-u_{S}\right\|_{V}=\sup _{v \in V \backslash\{0\}} \frac{a\left(u-u_{S}, v\right)}{\|v\|_{V}}=\left\|\mathfrak{R}\left(u_{S}\right)\right\|_{V^{\prime}} \\
\text { with residual } & \mathfrak{R}\left(u_{S}\right): V \rightarrow V^{\prime} \quad \mathfrak{R}\left(u_{S}\right)(v):=a\left(u-u_{S}, v\right)
\end{aligned}
$$

Estimate of residual via local integration by parts (assume $f \in L^{2}(\Omega)$):

$$
\begin{aligned}
a\left(u-u_{S}, v\right) & =\int_{\Omega}\left\langle\nabla\left(u-u_{S}\right), \nabla v\right\rangle \\
& =-\int_{\Omega} \Delta_{\mathcal{T}}\left(u-u_{S}\right) v+\sum_{K \in \mathcal{T}} \int_{\partial K}\left(\frac{\partial u}{\partial \mathbf{n}_{K}}-\frac{\partial u_{S}}{\partial \mathbf{n}_{K}}\right) v
\end{aligned}
$$

where \mathbf{n}_{K} is the unit outward normal vector for K and $\Delta_{\mathcal{T}}$ denotes the piecewise gradient

$$
\left.\Delta_{\mathcal{T}} v\right|_{\stackrel{\circ}{\circ}}=\Delta\left(\left.v\right|_{\stackrel{\circ}{ }}\right) \quad \forall K \in \mathcal{T} .
$$

Let \mathcal{E}_{Ω} denote the set of inner element facets (inner mesh points, $d=1$; inner edges, $d=2$; inner triangular facets, $d=3$).

The jump of the normal derivative is given by:

$$
\left[\frac{\partial v}{\partial \mathbf{n}_{E}}\right]_{E}:=\frac{\partial}{\partial \mathbf{n}_{E}}\left(\left.u\right|_{K_{2}}\right)-\frac{\partial}{\partial \mathbf{n}_{E}}\left(\left.u\right|_{K_{1}}\right) .
$$

Lemma: If $f \in L^{2}(\Omega)$ the exact solution u of the Poisson model problem satisfies

$$
-\Delta_{\mathcal{T}} u=f \quad \text { and } \quad\left[\frac{\partial u}{\partial \mathbf{n}_{E}}\right]_{E}=0
$$

This leads to

$$
a\left(u-u_{S}, v\right)=\int_{\Omega} \operatorname{res}\left(u_{S}\right) v+\sum_{E \in \mathcal{E}_{\Omega}} \int_{E} \operatorname{Res}\left(u_{S}\right) v
$$

with $\quad \operatorname{res}\left(u_{S}\right):=f+\left.\Delta_{\mathcal{T}} u_{S} \quad \operatorname{Res}\left(u_{S}\right)\right|_{E}:=\left[\frac{\partial u_{S}}{\partial \mathbf{n}_{E}}\right]_{E}$.

Remark. The volume residual res $\left(u_{S}\right)$ and the edge residual $\operatorname{Res}\left(u_{S}\right)$ are computable.

Employ Galerkin's orthogonaliy: $a\left(u-u_{S}, v_{S}\right)=0$ for all $v_{S} \in S$:

$$
a\left(u-u_{S}, v-v_{S}\right)=\int_{\Omega} \operatorname{res}\left(u_{S}\right)\left(v-v_{S}\right)+\sum_{E \in \mathcal{E}_{\Omega}} \int_{E} \operatorname{Res}\left(u_{S}\right)\left(v-v_{S}\right)
$$

Standard trace estimates with mesh size function h lead to

$$
\begin{aligned}
a\left(u-u_{S}, v\right) \leq & \left(\left\|h \operatorname{res}\left(u_{S}\right)\right\|_{L^{2}(\Omega)}+C_{\text {trace }}\left\|h^{1 / 2} \operatorname{Res}\left(u_{S}\right)\right\|_{L^{2}\left(\cup \mathcal{E}_{\Omega}\right)}\right) \times \\
& \times\left\|h^{-1}\left(v-v_{S}\right)\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Quasi-interpolation

Choose v_{S} as a "quasi-interpolation" of v with an estimate

$$
\left\|h^{-1}\left(v-v_{S}\right)\right\|_{L^{2}(\Omega)} \leq C_{\mathrm{int}}\|v\|_{H^{1}(\Omega)}
$$

Theorem. Let $f \in L^{2}(\Omega)$ and let u be the exact solution of the Poisson model problem. Let u_{S} be the Galerkin solution. Then

$$
\left\|u-u_{S}\right\|_{H^{1}(\Omega)} \leq C_{\text {int }}\left(\left\|h \operatorname{res}\left(u_{S}\right)\right\|_{L^{2}(\Omega)}+C_{\text {trace }}\left\|h^{1 / 2} \operatorname{Res}\left(u_{S}\right)\right\|_{L^{2}\left(\cup \mathcal{E}_{\Omega}\right)}\right)
$$

Local error estimator: Define the local error estimator:

$$
\eta_{K}:=\sqrt{\left\|h \operatorname{res}\left(u_{S}\right)\right\|_{L^{2}(K)}^{2}+\frac{1}{2}\left\|h^{1 / 2} \operatorname{Res}\left(u_{S}\right)\right\|_{L^{2}(\partial K)}^{2}} .
$$

Then

$$
\left\|u-u_{S}\right\|_{H^{1}(\Omega)} \lesssim \sqrt{\sum_{K \in \mathcal{T}} \eta_{K}^{2}} .
$$

Marking strategy

Let

$$
\eta_{\max }:=\max _{K \in \mathcal{T}} \eta_{K}^{2}
$$

Choose $\alpha \in] 0,1[$, e.g., $\alpha=0.7$. Then, mark all simplices for refinement with

Remark. AFEM is a strategy to enrich a finite element space by mesh refinement.

Outlook

Composite Finite Element spaces are used as a strategy to improve the finite element space without increasing the number of unknowns. See next talk.

Thank you for your attention

