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Model Problem:

Let Q C R% be a bounded open interval (d = 1), a bounded polygonal domain
(d = 2), a bounded polyhedral domain (d = 3), etc., with boundary ' := 0.

Q Polygonal domain
ﬁ with boundary I' := 0Q2

and outward normal n.

Notation

d
Vv = (8jv) ., Av:= 2?21 (‘9]2-?), divw := Zg-lzl djw;.




Poisson problem (classical formulation):

Let a “load function” f : 2 — R be given. Find a function u : Q — R such
that

—Au(x) = f(x) VxeQ,
u(x)=0 vxel.

Remark. This formulation requires the equality in every point x € £2. For
existence, and uniqueness results this formulation has severe drawback.



Variational formulation of the Poisson model problem (I)

For the weak or variational formulation one replaces the pointwise conditions
by integral conditions. Let v € C° (ﬁ) be a test function. Multiplying the
differential equation by v and integrating over the domain €2 leads to:

find u : Q@ — R with u|r = 0 such that

/Q(—A’U,)U:/va VUECOO<§>.

We integrate by parts to obtain

/Q<Vu,W>— r%v:/va Yo € C(Q).




Variational formulation of the Poisson model problem (I1)

Since the function u is zero on ' we may restrict to test functions v which are
zero on the boundary. Hence, the boundary integral can be dropped and we
have derived the weak formulation:

Find u € Vj such that

/ (Vu, Vo) /fv Yo € C8°(Q)

with C§°(£2) :={v € C*°(Q2) : v| = 0}.




Variational formulation of the Poisson model problem (l1l)

The energy space Vj must satisfy:

a) Vp is a Hilbert space,
b) a (u,v) := / (Vu, Vv) defines a scalar product in Vj,

Q
c) functions in V{y are zero on .

The subspace of L? () with derivatives in L? () is the Sobolev space

H(Q) := {u € 12(Q) /Q IVl < oo}.

Trace theorem: Functions in H!(Q) have well-defined restrictions to the
boundary 012.



Definition (energy space) The energy space for the Poisson model problem
5

Vo :i={v e HY(Q) | v|r =0}




The weak (variational) formulation of the Poisson problem reads:
find u € Vj such that

a(u,v) =F(v) Yvéel.

Here, the bilinear form a : Vo X Vo — R and the functional F' : Vj — R is
given by

a (u,v) ::/Q<Vu,Vv> and  F (v) := /va Yo € Vp.




Analysis on the continuous problem

Definition. Let VV be a Hilbert space with norm |||y, and let a bilinearform
a:V xV — R be given.

a (-,-) is continuous if there is some C' > 0 such that

la (v, w)| < Cllolly lwlly  Yv,weV.

a(-,-) is coercive if there is some ¢ > 0 such that

a (v,v)| > c|jv||} Vv eV




Definition (cont’d)

a(-,-) is symmetric if

a(v,w)=a(w,v) Yv,wéeV.

A linear form F € V' is continuous if

F (v
|Flyr = sup L0

< o0
vev\{o} llvlly




Theorem (Lax-Milgram). Let V' be a Hilbert space and a : V x V — R be
symmetric, continuous, and coercive. Then, the variational problem:
for given continuous linear form F' € V/, find u € V such that

a(u,v) =F(v) VYveV

has a unique solution which satisfies

1
lully < 2 11F 1y




Galerkin Finite Element Method:

To approximate the continuous problem, a finite-dimensional function space
S C Vp has to be defined.

Idea of finite elements:

a) subdivide 2 in small simplices (intervals, triangles, tetrahedrons)

QO
o — 0 @ L 4 | e 4 @ @
Sa
Xo T1 X X, X XN



b) approximate on the simplices by piecewise polynomials

c) Enforce continuity across element boundaries and boundary conditions to
ensure S C Vp




Definition (shape regularity, mesh width). Let 7 := {K;:1<j < N}
denote a conforming (no hanging nodes), simplicial finite element mesh for Q.

The (local) mesh width is given by

hig:=diam K and h:=max{hg: KeT}.

For the approximation quality, the shape regularity constant is important

hd
Yor (1) := max{%:KET}.




Example of a tetrahedral mesh with good shape regularity constant.



Definition (Finite Element space). Let 7 := {Kj 1< < N} denote a
conforming, simplicial finite element mesh for £2 and p > 1. Then

Sh={ueC®(Q)|VK €T: ulgcPp(K)}
S = S%O = {uesg | u|aQ:O}.

Definition (Galerkin method). The Galerkin discretization of a variational
problem is characterized by a finite-dimensional subspace S C Vp, N =
dim S < oo:

Find ug € S such that

a(ug,v) = F(v) YvéES.




Stability and convergence analysis

Theorem (Céa). Let V be a Hilbert space and a : V XV — R be symmetric,
continuous, and coercive. Let S C V with dimS < oco. Then, the Galerkin
method has a unique solution which satisfies the quasi-optimal error estimate

C
v —ugllyy, < —inf |lu—o] .
c veS

The Galerkin orthogonality holds

a(u—ug,v) =0 YveES.




Theorem. [f the exact solution of the Poisson model problem is regular, i.e.,
(TS H(% (Q) N HPT1 (Q) then the energy error satisfies

¢ p
|u — uSHHl(Q) < ;CsrhT ||U||Hp+1(Q) -




Computational aspects:

For the numerical solution, a basis for S is needed

S =span{B;:i€Z} with |Z| =dimS = N.

Basis representation of Galerkin discretization

N
The stiffness (system) matrix A = (ai,j)

t,7=1

and the load vector

(right-hand side) r := (7“7;)7];\41 are given by

am- = a (B], Bz) — /Q <VB],VBZ> )
ri = F(B;) = /QfBi-




The Galerkin solution ug has a unique basis representation

ug = i1 W B;

and the coefficient vector u = (u;);c7 is the unique solution of the system of
linear equations

Remark. The coercivity and symmetry of a (-, -) implies that the matrix A is
symmetric, positive definite (spd).



Affine equivalence

All finite element computations should be transformed to the affine equivalent
reference element:

—~

- ~ \d ~
K:={g= (&), eRy | 2L, & <1}




Then any simplex K with vertices Ak ;, 0 < j < d, has an affine pullback
DK - K— K given by

PK (X) = Ao+ mgX

with the d X d matrix mg having column vectors Ak ; — A o.

0,1)

0,0) (1,0)



Basis functions of P, (E) are defined by using nodal points .//\/'\k:

ﬁk::{%:0<i<p}dﬁk\

d=1, k=1 d=1, k=4




For all z € N}, the Lagrange basis function By € Py (f(\) is characterized by

B(O,O) ()A() — 1 - C%]_ - 532
Bip,1) (X) = 22




Global nodal points and basis functions are defined via affine pullbacks:

N (T) = {qu(Z) KcT, 2 eﬁk},
Nk,O (T) — {Z ENk (T) | Z §§ 89}.

For z € N, (7)) the nodal patch is given by

T, ={K €T |zeK}

Wy 1= U K.
KeT,




For z € ./\/'k,o, the associated Lagrange basis is given by

Bso¢! ifze KeTy
B = z- 7K ’
2l K { 0 otherwise,
for z:= [_(1 (z)
Computation of the right-hand side
K

v / B, — \ |

- {2 KeTz

[k =Ffook

Employ quadrature formula for the evaluation of the integrals.



Duffy transform

(<7

& d=1,

x(&m) =1 £(1—mn1,m) d=2,
E(1—n1,m(1—mn2),mn2) d=3,

1 d=1,

detx/(&,m)={ & d=2,
£2n1 d = 3.




Hence,

fo J?KEZA . d—1
ff{—fKBZZ 9 f()lf()lf(fKBZ f{(fvnl)dmdi d=2,
B3 I3 €2 (FieBs) o x (& m2) diodmydé d =3

and this can be approximated by Gauss quadrature to high accuracy.

Computation of the system matrix

KeszTy’K‘
with gp = (m[_(1>Tm[_(1.




Sparsity of the system matrix

Theorem. The system matrix is sparse: for any x,y € N o(7) it holds

Txmy}:@jﬁx’yzo.

The number of the non-zero entries per matrix row is bounded by C' where C
only depends on shape regularity and the polynomial degree p.

Corollary. A matrix-vector multiplication has linear complexity O (N) while
a general direct solver (Gauss elimination, QR decomposition, ...) of the linear
system has a cost of O (N3). Details — talk of W. Hackbusch.



Adaptive finite element methods (AFEM)

Idea: Start with a very coarse approximation and set up an algorithm with the
structure:

Compute | — | Estimate| — | Mark | — | Refine

In contrast to a priori estimates, AFEM uses the computed Galerkin solution
to enrich/adapt the space.

Error versus residual:

lu—uslly = supyeyr oy LTS = 119 (us) v

with residual R (ug): V — V' R(ug)(v) :=a(u—ug,v).




Estimate of residual via local integration by parts (assume f € L?(Q)):

a(u—ug,v) :/Q<V(u—u5),Vv>

ou Ooug
[ Aru-ug)v+ Y | ( _ )

where ng is the unit outward normal vector for K and A7 denotes the

piecewise gradient

ATU|O:A<U‘O) VKET
K K




Let £ denote the set of inner element facets (inner mesh points, d = 1; inner
edges, d = 2; inner triangular facets, d = 3).

The jump of the normal derivative is given by:

[3?1UE} E

g (152) ~ ong (vl




Lemma: If f € L?(Q) the exact solution u of the Poisson model problem
satisfies

—Agu = f and [ﬂ

This leads to

a(u—ug,v) = Jgres(ug)v+ > [pRes(ug)wv.
Ec&q
oug

with res(ug) := f+ A7ug Res(ug)|p = [E}E

Remark. The volume residual res(ug) and the edge residual Res(ug) are

computable.



Employ Galerkin'’s orthogonaliy: a (u — ug,vg) = 0 for all vg € S:

a(u—ug,v—vs) = Jgres(ug)(v—vg)+ > [gRes(ug)(v—ug).
Eec&q

Standard trace estimates with mesh size function h lead to

a(u—ug,v) < (Hh res (us)|] 2(q + Ctrace | 11/2 Res (US)HLz(UEQ)) <

x [ (v = ”S)HL2(Q) |




Quasi-interpolation

Choose vg as a “quasi-interpolation” of v with an estimate

Hh_l (v — US)HLZ(Q) < Cintllvll g

Theorem. Let f € L?(Q) and let u be the exact solution of the Poisson
model problem. Let ug be the Galerkin solution. Then

lu — usll () < Cint (Hh res (s) | ;2(q) + Ctrace ||12/2 Res (“S)HL2(qu)> .




Local error estimator: Define the local error estimator:

Then

2
e \/Hh res (u3) |2 + 2 |12 Res (“5)HL2((‘3K)'

lu—usllgi) S | 22 Tk
KeT




Marking strategy

Let

nmax = maXKeT 77%{

Choose v € |0, 1], e.g., « = 0.7. Then, mark all simplices for refinement with

NK = OTfmax-

Remark. AFEM is a strategy to enrich a finite element space by mesh
refinement.



Outlook

Composite Finite Element spaces are used as a strategy to improve the finite
element space without increasing the number of unknowns. See next talk.



Thank you for your attention



