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Model Problem:

Let 
 � Rd be a bounded open interval (d = 1), a bounded polygonal domain
(d = 2), a bounded polyhedral domain (d = 3), etc., with boundary � := @
.

Polygonal domain 

with boundary � := @

and outward normal n:

Notation

rv :=
�
@jv

�d
j=1

; �v :=
Pd
j=1 @

2
j v; divw :=

Pd
j=1 @jwj:



Poisson problem (classical formulation):

Let a �load function� f : 
 ! R be given. Find a function u : 
 ! R such
that

��u (x) = f (x) 8x 2 
;
u (x) = 0 8x 2 �.

Remark. This formulation requires the equality in every point x 2 
. For
existence, and uniqueness results this formulation has severe drawback.



Variational formulation of the Poisson model problem (I)

For the weak or variational formulation one replaces the pointwise conditions
by integral conditions. Let v 2 C1

�


�
be a test function. Multiplying the

di¤erential equation by v and integrating over the domain 
 leads to:
�nd u : 
! R with uj� = 0 such that

Z


(��u) v =

Z


fv 8v 2 C1

�


�
:

We integrate by parts to obtain

Z


hru;rvi �

Z
�

@u
@nv =

Z


fv 8v 2 C1

�


�
:



Variational formulation of the Poisson model problem (II)

Since the function u is zero on � we may restrict to test functions v which are
zero on the boundary. Hence, the boundary integral can be dropped and we
have derived the weak formulation:

Find u 2 V0 such that

Z


hru;rvi =

Z


fv 8v 2 C10 (
)

with C10 (
) := fv 2 C1 (
) : vj� = 0g :



Variational formulation of the Poisson model problem (III)

The energy space V0 must satisfy:
a) V0 is a Hilbert space,

b) a (u; v) :=
Z


hru;rvi de�nes a scalar product in V0,

c) functions in V0 are zero on �.

The subspace of L2 (
) with derivatives in L2 (
) is the Sobolev space

H1 (
) :=
�
u 2 L2 (
) j

Z


kruk2 <1

�
:

Trace theorem: Functions in H1 (
) have well-de�ned restrictions to the
boundary @
.



De�nition (energy space) The energy space for the Poisson model problem
is

V0 :=
n
v 2 H1 (
) j vj� = 0

o



The weak (variational) formulation of the Poisson problem reads:
�nd u 2 V0 such that

a (u; v) = F (v) 8v 2 V0:

Here, the bilinear form a : V0 � V0 ! R and the functional F : V0 ! R is
given by

a (u; v) :=
Z


hru;rvi and F (v) :=

Z


fv 8v 2 V0:



Analysis on the continuous problem

De�nition. Let V be a Hilbert space with norm k�kV and let a bilinearform
a : V � V ! R be given.

a (�; �) is continuous if there is some C > 0 such that

ja (v; w)j � C kvkV kwkV 8v; w 2 V:

a (�; �) is coercive if there is some c > 0 such that

ja (v; v)j � c kvk2V 8v 2 V:



De�nition (cont�d)

a (�; �) is symmetric if

a (v; w) = a (w; v) 8v; w 2 V:

A linear form F 2 V 0 is continuous if

kFkV 0 := sup
v2V nf0g

jF (v)j
kvkV

<1:



Theorem (Lax-Milgram). Let V be a Hilbert space and a : V � V ! R be
symmetric, continuous, and coercive. Then, the variational problem:
for given continuous linear form F 2 V 0, �nd u 2 V such that

a (u; v) = F (v) 8v 2 V

has a unique solution which satis�es

kukV �
1
c kFkV 0 :



Galerkin Finite Element Method:

To approximate the continuous problem, a �nite-dimensional function space
S � V0 has to be de�ned.

Idea of �nite elements:

a) subdivide 
 in small simplices (intervals, triangles, tetrahedrons)



b) approximate on the simplices by piecewise polynomials

c) Enforce continuity across element boundaries and boundary conditions to
ensure S � V0



De�nition (shape regularity, mesh width). Let T :=
n
Kj : 1 � j � N

o
denote a conforming (no hanging nodes), simplicial �nite element mesh for 
.
The (local) mesh width is given by

hK := diamK and h := max fhK : K 2 T g :

For the approximation quality, the shape regularity constant is important


sr (T ) := max
�
hdK
jKj : K 2 T

�
:



Example of a tetrahedral mesh with good shape regularity constant.



De�nition (Finite Element space). Let T :=
n
Kj : 1 � j � N

o
denote a

conforming, simplicial �nite element mesh for 
 and p � 1. Then

S
p
T :=

n
u 2 C0 (
) j 8K 2 T : ujK 2 Pp (K)

o
S := S

p
T ;0 :=

n
u 2 SpT j uj@
 = 0

o
:

De�nition (Galerkin method). The Galerkin discretization of a variational
problem is characterized by a �nite-dimensional subspace S � V0, N :=
dimS <1:

Find uS 2 S such that

a (uS; v) = F (v) 8v 2 S:



Stability and convergence analysis

Theorem (Céa). Let V be a Hilbert space and a : V �V ! R be symmetric,
continuous, and coercive. Let S � V with dimS < 1. Then, the Galerkin
method has a unique solution which satis�es the quasi-optimal error estimate

ku� uSkV �
C

c
inf
v2S

ku� vkV :

The Galerkin orthogonality holds

a (u� uS; v) = 0 8v 2 S:



Theorem. If the exact solution of the Poisson model problem is regular, i.e.,
u 2 H10 (
) \Hp+1 (
) then the energy error satis�es

ku� uSkH1(
) �
C

c
Csrh

p
T kukHp+1(
) :



Computational aspects:

For the numerical solution, a basis for S is needed

S = span fBi : i 2 Ig with jIj = dimS = N:

Basis representation of Galerkin discretization

The sti¤ness (system) matrix A =
�
ai;j

�N
i;j=1

2 RN�N and the load vector

(right-hand side) r := (ri)
N
i=1 are given by

ai;j := a
�
Bj; Bi

�
=
Z



D
rBj;rBi

E
;

ri = F (Bi) =
Z


fBi:



The Galerkin solution uS has a unique basis representation

uS =
P
i2I uiBi

and the coe¢ cient vector u = (ui)i2I is the unique solution of the system of
linear equations

Au = r

Remark. The coercivity and symmetry of a (�; �) implies that the matrix A is
symmetric, positive de�nite (spd).



A¢ ne equivalence

All �nite element computations should be transformed to the a¢ ne equivalent
reference element:

cK :=
nbx = (x̂i)di=1 2 Rd�0 j Pdi=1 x̂i � 1o :



Then any simplex K with vertices AK;j, 0 � j � d, has an a¢ ne pullback
�K : cK ! K given by

�K (bx) = AK;0 +mK bx
with the d� d matrix mK having column vectors AK;j �AK;0.



Basis functions of Pp
�cK� are de�ned by using nodal points cNk:
cNk := n

i
p : 0 � i � p

od \ cK



For all z 2 Nk the Lagrange basis function B̂z 2 Pk
�cK� is characterized by

B̂ẑ (ŷ) :=

(
1 ŷ = ẑ;

0 ŷ 2 cNkn fẑg :

B̂(0) (x̂) = 1� x̂
B̂(1) (x̂) = x̂

)
d = 1; k = 1

B̂(0;0) (x̂) = 1� x̂1 � x̂2
B̂(1;0) (x̂) = x̂1
B̂(0;1) (x̂) = x̂2

9>>=>>; d = 2; k = 1



Global nodal points and basis functions are de�ned via a¢ ne pullbacks:

Nk (T ) :=
n
�K (ẑ) : K 2 T , ẑ 2 cNko ;

Nk;0 (T ) := fz 2Nk (T ) j z =2 @
g :

For z 2 Nk (T ) the nodal patch is given by

Tz := fK 2 T j z 2Kg
!z :=

[
K2Tz

K:



For z 2 Nk;0, the associated Lagrange basis is given by

BzjK :=

(
B̂ẑ � ��1K if z 2 K 2 Tz;
0 otherwise,

for ẑ := ��1K (z)

Computation of the right-hand side

rz =
Z


fBz =

X
K2Tz

jKj���cK���
Z
bK bfK bBẑ

bfK := f � �K

Employ quadrature formula for the evaluation of the integrals.



Du¤y transform

� (�;�) :=

8><>:
� d = 1;
� (1� �1; �1) d = 2;
� (1� �1; �1 (1� �2) ; �1�2) d = 3;

det�0 (�;�) =

8><>:
1 d = 1;
� d = 2;
�2�1 d = 3:



Hence,

R bK bfK bBẑ =
8>>><>>>:
R 1
0
bfK bBẑ d = 1;R 1

0
R 1
0 �

� bfK bBẑ� � � (�; �1) d�1d� d = 2;R 1
0
R 1
0
R 1
0 �

2�1
� bfK bBẑ� � � (�; �1; �2) d�2d�1d� d = 3

and this can be approximated by Gauss quadrature to high accuracy.

Computation of the system matrix

ax;y =
R

 hrBz;rByi =

X
K2Tz\Ty

jKj��� bK��� R bK
D
gKr bBẑ;r bBŷE

with gK :=
�
m�1
K

�T
m�1
K :



Sparsity of the system matrix

Theorem. The system matrix is sparse: for any x;y 2 Nk;0 (T ) it holds

Tx \ Ty = ; =) ax;y = 0:

The number of the non-zero entries per matrix row is bounded by C where C
only depends on shape regularity and the polynomial degree p.

Corollary. A matrix-vector multiplication has linear complexity O (N) while
a general direct solver (Gauss elimination, QR decomposition, ...) of the linear
system has a cost of O

�
N3

�
. Details ! talk of W. Hackbusch.



Adaptive �nite element methods (AFEM)

Idea: Start with a very coarse approximation and set up an algorithm with the
structure:

Compute ! Estimate ! Mark ! Re�ne

In contrast to a priori estimates, AFEM uses the computed Galerkin solution
to enrich/adapt the space.

Error versus residual:

ku� uSkV = supv2V nf0g
a(u�uS;v)
kvkV

= kR (uS)kV 0
with residual R (uS) : V ! V 0 R (uS) (v) := a (u� uS; v) :



Estimate of residual via local integration by parts (assume f 2 L2 (
)):

a (u� uS; v) =
Z


hr (u� uS) ;rvi

= �
Z


�T (u� uS) v +

X
K2T

Z
@K

 
@u

@nK
� @uS
@nK

!
v;

where nK is the unit outward normal vector for K and �T denotes the
piecewise gradient

�T vj �
K
= �

�
vj �
K

�
8K 2 T :



Let E
 denote the set of inner element facets (inner mesh points, d = 1; inner
edges, d = 2; inner triangular facets, d = 3).

The jump of the normal derivative is given by:

h
@v
@nE

i
E
:= @

@nE

�
ujK2

�
� @
@nE

�
ujK1

�
:



Lemma: If f 2 L2 (
) the exact solution u of the Poisson model problem
satis�es

��T u = f and
h
@u
@nE

i
E
= 0:

This leads to

a (u� uS; v) =
R

 res (uS) v +

P
E2E


R
E Res (uS) v:

with res (uS) := f +�T uS Res (uS)jE :=
h
@uS
@nE

i
E
:

Remark. The volume residual res (uS) and the edge residual Res (uS) are
computable.



Employ Galerkin�s orthogonaliy : a (u� uS; vS) = 0 for all vS 2 S:

a (u� uS; v � vS) =
R

 res (uS) (v � vS) +

P
E2E


R
E Res (uS) (v � vS) :

Standard trace estimates with mesh size function h lead to

a (u� uS; v) �
�
kh res (uS)kL2(
) + Ctrace




h1=2Res (uS)


L2([E
)
�
�

�



h�1 (v � vS)


L2(
) :



Quasi-interpolation

Choose vS as a �quasi-interpolation�of v with an estimate




h�1 (v � vS)


L2(
) � Cint kvkH1(
)

Theorem. Let f 2 L2 (
) and let u be the exact solution of the Poisson
model problem. Let uS be the Galerkin solution. Then

ku� uSkH1(
) � Cint
�
kh res (uS)kL2(
) + Ctrace




h1=2Res (uS)


L2([E
)
�
:



Local error estimator: De�ne the local error estimator:

�K :=

s
kh res (uS)k2L2(K) +

1
2




h1=2Res (uS)


2L2(@K):
Then

ku� uSkH1(
) .
s X
K2T

�2K:



Marking strategy

Let

�max := maxK2T �2K:

Choose � 2 ]0; 1[, e.g., � = 0:7. Then, mark all simplices for re�nement with

�K � ��max:

Remark. AFEM is a strategy to enrich a �nite element space by mesh
re�nement.



Outlook

Composite Finite Element spaces are used as a strategy to improve the �nite
element space without increasing the number of unknowns. See next talk.



Thank you for your attention


